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POWERFUL RELATIVISTIC ELECTRON BEAMS
IN A PLASMA AND IN A VACUUM (THEORY)

B.N. BREJZMAN, D. D. RYUTOV
Institute of Nuclear Physics of the Siberian Branch
of the USSR Academy of Sciences,
Novosibirsk, USSR

ABSTRACT. The possibility of using intense relativistic electron beams (REBs) for heating plasmas in open systems is
discussed. Within this context the following three sets of problems are discussed:
1. REB transport in a vacuum with a strong magnetic field; beam equilibrium, stability and critical currents in a vacuum.
2. Beam transport in a plasma; charge and current neutralization of the beam; reverse-current heating of the plasma, and

macroscopic REB instabilities in the plasma.
3. The theory of collective relaxation of REBs in a plasma, including quasi-linear and non-linear relaxation models; the role

of plasma non-uniformity, and macroscopic effects during REB relaxation.

1. INTRODUCTION

The aim of this survey is to examine the inter-
action between high power relativistic electron
beams (REBs) and a plasma within the context of
the problem of plasma heating. The possibilities
of using REBs in this connection are rather varied.

First, there is the traditional method, for non-
relativistic beams, of heating a plasma in straight
systems: injection of the beam into the plasma
from the end of the device along the magnetic lines
of force. This was in fact the way that the first
experiments on heating a plasma by means of
REBs [ 1-9], which brought such very encouraging
results, were set up.

Second, there is the method of heating a plasma
in toroidal systems by a beam circulating in a
torus round a large circumference. Experi-
mental data on the interaction between the injected
beam and the plasma in these circumstances are
unavailable, but it is natural to assume that the
interaction is qualitatively the same as in straight
systems. The most difficult problem here
appears to be the injection of powerful REBs
through a strong magnetic field. The first results
relating to this problem were published by Meixel
et al. [10] and Rudakov et al. [11].

And third, there is the heating method proposed
by Winterberg and Zavojskij, in which small parti-
cles of a D-T mixture are heated by collective
absorption of a focussed electron beam [12, 13] .
At present, no experimental results are available
for this scheme.

In this survey we shall focus our attention on the
first of the above possibilities (i.e. heating the
plasma in open systems), since it is along this
line that most of the results have been obtained
both experimentally and in theoretical work.

In the case of open systems the range of plasma
densities of interest for controlled nuclear fusion
runs from n ~ 1014 cm"3 (normal open traps) to
n ~ 1018-1019 cm"3 (0 pinches with a liner [14] and
multimirror traps [15]). The energy required to
heat the plasma up to T ~ 104 eV in the devices
described ranges from tens of kJ to tens of MJ.

At present there are in existence REB sources
with an energy of ~1 MJ [ 16], and we can hope to
see sources with energies of 10 MJ in the near
future. Hence the energy requirements do not
seem to be an insuperable problem. Furthermore,
they may become much more moderate if we bear
in mind the use of REBs as a means of preheating
a plasma, let us say up to T ~ 103 eV, with the
final heating being effected by another method (e.g.
adiabatic compression).

In all the above open systems the absence of
contact between the plasma and the ends of the
device is essential for longitudinal thermal insu-
lation, or, in other words, between the electron
beam source and the plasma there must be a
vacuum space (or a space filled with plasma of
such low density that the thermal flux through it can
be disregarded). Hence the bulk of the plasma can
be heated only in a case in which the transport of
the beam through this space can proceed without
great losses of energy.

We discuss the problems of beam transport in
Sections 2 and 3, assuming from the outset that in
the system considered there is a strong longitudi-
nal magnetic field. It predetermines to a con-
siderable extent the motion of the beam particles
and makes the problem of beam equilibrium much
easier to solve. More specifically, we can there-
by eliminate the problem of beam reflection by the
curvature of the electron trajectories in the mag-
netic self field. Even in this relatively simple
case, however, the problem of transport through
a vacuum still retains some rather interesting,
though seemingly not very well known, physical
effects, hence we have devoted a certain amount
of space to it (Section 2).

Beam transport in a case in which the space
between the source and the bulk of the plasma is
filled by a second plasma (rarefied as compared
with the principal plasma, but not necessarily so
compared with the beam) is discussed in Section 3.
There we deal with the problems of charge and
current neutralization of the beam and consider
macroscopic beam instabilities in the plasma (by
macroscopic instabilities we mean those whose
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scale is not less than the transverse dimension of
the beam). Instabilities of this kind are extremely
dangerous since they may lead to displacement of
the beam as a whole and to its being spilled onto
the walls of the vacuum chamber.

The next problem (and apparently the most
important one so far as beam heating is con-
cerned) is to find a mechanism by which the beam
energy can be effectively transferred to the bulk
of the plasma. This problem arises because the
collisional deceleration length required for rela-
tivistic electrons in a plasma with n ^ 1019 cm"3 is
too great (£,1 km) to provide for effective dissi-
pation of the beam energy in a device of reason-
able length. Hence all prospects here are based
on the collective effects occurring during the
development of small- scale beam instability, which
can in principle reduce the beam relaxation length
in the plasma by a considerable amount. The
problems involved are discussed in Section 4.
Relaxation is considered on the basis of weak
turbulence theory, the applicability conditions
of which enable us to examine a number of rather
interesting practical effects. The most difficult
problem is to find the turbulent oscillation
spectrum, which is determined by the balance
between the linear excitation of the oscillations by
the beam and the non-linear spreading of the
oscillations over the spectrum. If this problem is
solved, it is not difficult to derive the electron
beam deceleration rate and, accordingly, the
relaxation length. In Section 4 we discuss several
relaxation models corresponding to various physi-
cal conditions.

Such is the general arrangement of our survey.
The areas of plasma physics covered are still a
long way from being able to give specific recom-
mendations on constructing devices. There is a
great deal more to be explained and clarified
(especially as regards REB relaxation in a
plasma). Hence we seek only to give the reader
general guidance concerning the results obtained
so far and to draw attention to those problems that
still remain to be solved.

2. BEAM TRANSPORT IN A VACUUM

2.1. Transport in a strong longitudinal magnetic
field; critical currents

A typical set-up for experiments on the transport
of a REB in a vacuum is shown in Fig. 1. The
beam emitted by the cathode (1) and accelerated in
the diode space passes through the anode (2)
(which may be a thin metal foil or grid) into the
drift space (3), after which it reaches the col-
lector (4) connected to the anode by the return
current conductor (5). Henceforth we shall take
this conductor to be cylindrical in all cases.

The duration of the beam T in the transport
experiments is usually long compared with the
time of flight of the electrons through the drift
space (L/c). Hence we shall mainly discuss
steady-state transport. Non-steady-state effects

FIG. 1. Scheme of an experiment for REB transport studies in a vacuum:
(1) cathode; (2) anode; (3) drift space; (4) collector; (5) return
current conductor. The distribution of the potential © along the axis of
the device is shown at the bottom.

with CT » L reduce mainly to some degree of
deceleration of the particles at the leading edge
of the current and to acceleration at the trailing
edge (due to the induced e.m.f.).

To ensure vacuum transport of the beam over
long distances, use is made of a strong longitudi-
nal magnetic field, which suppresses transverse
broadening of the beam. In this section we shall
assume that the magnetic field is infinitely large
so that the beam electrons are tied to the lines of
force and can only move in a longitudinal direction.
The conditions under which this approximation is
valid will be formulated below (see Eq. (2.19)).
The presence of a strong magnetic field hinders
the transverse broadening of the beam as a result
of the space charge, but there is still a restriction
from above on the amount of current passed
through by the system for a given particle energy.
This limitation is associated with the effect of the
Z component of the electric field close to the point
at which the beam enters the drift space, but when
calculating the critical current it proves possible
(see Smith and Hartman [ 17]) to get round the
very difficult problem of ascertaining the field
structure in this region, and just to calculate the
field in a region some distance away from the
ends1.

We shall start with a simple case in which the
cross-section of the beam is shaped like a thin
ring (the thickness of the ring a is taken to be
small compared with both the beam radius r̂  and
the distance between the beam boundary and the
chamber wall).

In the steady state a long way from the ends of
the system (at a distance several times greater
than the radius of the return current conductor R)
the distribution of the electrostatic potential $ is
almost the same along the entire length (it
depends on the radius alone). In the case of an
annular beam

= -2
T

b
V

r In

J
In

R
r '

R

r v < r < R

(2.1)

1 Here it is assumed that the length of the drift tube is much greater
than its radius. The critical current problem for a shorter space (L « R)
is considered by Godyak et al. [18] .
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Here Ib is the total current, and v is the electron
velocity (the beam is taken to be monoenergetic).
On the chamber wall the potential is taken equal
to zero. The velocity of the particles is associ-
ated with 0b = </>(rb) by the law of the conservation
of energy. Using v0 to represent the electron
velocity at the input to the drift space, we get

where

me
(2 .2)

Eqs (2.1) and (2.2) give the following equation
f o r <f>b:

me"

. R
In —

(2 .3)

The function F ^ ) on the left-hand side of this
equation is plotted in Fig. 2. It has a maximum at
the point e<k/mc2 = - y0 + y\ . The maximum is
equal to (y2,™ - 1)3/2. It can be seen from the plot
that for small currents

<!_.= m e
2eln R

( T 2 /3 . 1 ) 3 / 2 (2.4)

Eq. (2.3) has two solutions. The first corresponds
to a small deceleration potential, i . e . to particles
of high velocity and low density inside the drift
space. The second solution corresponds to a high
deceleration potential, which implies a lower
steady-state velocity and higher density.

FIG.2. Graph showing the function F(«n,).

It can easily be verified that the total energy in
the system (the kinetic energy of the particles plus
the energy of the field) is less in the first case
than in the second. It may therefore be assumed
that the second state is unstable and that the
system must inevitably change from the second
state to the first, although there is still no rigor-
ous proof in support of this statement.

We may note that in the case of finite conduc-
tivity of the chamber walls, even the first state
becomes unstable. This is the so-called "wall"
instability, well known in the physics of acceler-
ators (see e.g. Lopukhin and Vedenov [19],
Kolomenskij [20] and Neil and Sessler [ 21 ]). The
reason for this is that oscillations moving at a
velocity close to the flow velocity (but smaller
than it) possess negative energy in the laboratory
frame of reference. If there is dissipation (in
this case Joule dissipation in the walls), these
oscillations become unstable. For the growth rate
of this instability with y » 1, Ib/Icr « 1 the follow-
ing evaluation is valid (see Appx I):

In—
rb

(2.5)

Here a is the conductivity of the wall material. It
should be noted that since this instability is of the
convective type, it can occur only in fairly long
systems. A stabilizing effect is exerted on it by
the spread of the beam electrons over the longi-
tudinal velocities. Under typical experimental
conditions with high-current pulsed beams (see
e.g. Abrashitov et al. [3 ] , and Kapetanakos and
Hammer [7]), the dissipative instability does not
develop because of the limitation of the system in
a longitudinal direction and the short duration of
the beam.

At Ib > Icr there is no solution for Eq. (2.3),
which indicates that it is impossible to have the
steady-state flow of a current higher than critical
through the drift space. As can be seen from
(2.4), at rb -» R the critical current for an annular
beam, when calculated formally, becomes infinite,
In actual fact, at rb -»• R we have to take into ac-
count the finite width of the beam a. We then get
the following result (see Bogdankevich and
Rukhadze [22]):

mc° (Y2/3 - 1)3/2 R
a

(2.6)

In deriving (2.4) we took the beam to be annular,
but it is easy to show that the same equation
determines the critical current for an arbitrary
axisymmetric beam, provided that its radius is
fairly small (rb «: R). Or, to be more exact, at
rb « R, Eq. (2.4) gives us the first term of the
expansion of Icr with respect to the parameter
(In (R/rj,))"1. The dependence of the critical
current on the beam configuration shows up in the
next order with respect to (In (R/r^)"1:

B
2eln —

rk r. r"

X | 1 - ^- J r"f(r")dr" 1 (2.
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Here f(r) = 27rjb(r)/Ib, where jb(r) is the current
density and Ib is the total beam current.

The second term on the right-hand side of (2.7)
is calculated on the assumption that
lnR/rb » 70 - 1. In the opposite limiting case
(7o - 1 » mR/rb) w e c a n calculate the critical
current by taking the beam electrons to be ultra-
relativistic and not making the additional as-
sumption that R » rb. The result takes the follow-
ing form:

I(KR)

1
m c rn

"1

(2.8,

This equation is given by Bogdankevich and
Rukhadze [22] for the case of a beam with a uni-
form current distribution over the cross-section.

Quantitative verification of the rather obvious
results described above was provided in experi-
ments of Mkheidze et al. [23] and Nation and Read
[ 24]. Reasonable agreement with the theoretical
values was found.

It is conceivable that by injecting the beam in the
form of separate clumps, or by modulating the input
current with respect to time in some other way, we
might bring about an increase in the mean current
Ib above Icr. It seems obvious, however, that in
order of magnitude the relationship Ib-£ Icr remains
valid for any method_of modulating the input
current. Indeed, at Ib ~ Icr the space potential is
equal in order of magnitude to the energy of the
injected electrons, while at I b » Icr the potential
energy would considerably exceed the kinetic
energy which would certainly lead to most of the
current being reflected.

We should point out an interesting effect relating
to the steady-state injection of the beam. It can
easily be seen that for all the cases considered
above (Eqs (2.4), (2. 6)-(2. 8)) at Ib = Icr the space
potential is somewhat less than the initial kinetic
energy of the electrons. For example, in the case
of (2.4),

i.e. at 70 = 2-3, the residual kinetic energy
amounts to about 20% of its initial value. At first
sight it might seem unclear why we do not get a
supercritical current under steady-state conditions
if each particle has a finite reserve of energy in
the critical state. This can be understood by
considering small deviations of the system from
the steady state. We shall do this using the
example of an annular beam.

Away from the ends of the waveguide, where in
the steady state none of the quantities is dependent
on the longitudinal co-ordinate z, propagation of
small axisymmetric perturbations is described by
the following dispersion equation (see Appx I):

X |\(KR)Ko(icrb) - I0(Krb)K0(KR)] (2.9)

Here Io and Ko are modified zero-order Bessel
functions, and K2= k2 - (u2/c2). For long waves
( KR
fied,

« l)Eq.(2.9) can be substantially simpli-
i .e.

1 =
- - )v'

—*~> K
mv 7 b

(2.10)

As can be seen from this equation, long-wave
oscillations possess a linear dispersion law
(u = const X kz), there being two types of pertur-
bations — the fast and the slow. A simple exami-
nation shows that for small current values both
types of perturbation propagate in the direction of
motion of the electrons2. As the current nears the
critical value the velocity of the slow perturbations
tends to zero3. Let us now assume that at the
initial moment of time the system was in a steady
state with current Ib, and that the current at the
waveguide input then increased by a small value
AIb. Under subcritical conditions the slow pertur-
bations associated with this change in current will
drift together with the stream, and the system
will change to a new steady state with current
Ib + Alb- In the critical conditions, however, the
slow potential perturbations will build up until they
stop the flux. Further investigation of this situ-
ation is of course impossible within the framework
of linearized equations.

For the time being, no categorical answer can
be given to the question of what happens when a
current greater than critical is injected into the
waveguide. In such a case we would have the
following possibilities:

(a) A steady-state case in which a non-monotonic
distribution of the potential along the length4 is
established in the system (see Fig. 3), and where
the excess current is reflected from the hump of
the potential. If the amount by which Ib exceeds
Icr is not very great the turning point of the parti-
cles should be at a distance of the order of several
radii from the point where the beam enters the
waveguide (there is no other scale in the problem).

As pointed out above for small (sub-critical) currents there can be
two steady states with different particle velocities v. Our statement
refers to the solution with the higher velocity. In the case of the lower-
velocity solution the slow perturbations propagate opposite to the
electron stream.

It should be stressed that in Eq. (2.10) the value of v corresponding
to the electron energy behind the decelerating layer is used.

4 Generally speaking, the problem of the monotonicity of the solution
also exists for sub-critical currents. Proof of the monotonicity exists for
only a few special cases.
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/."I

FIG. 3. Distribution of the potential along the device upon injection of a
supercritical current.

(b) Non-steady flow of the supercritical current.
The point here is that the steady-state solution
(should there be one) may prove unstable on
account of two-stream motion in the region z < z0

(Fig. 3). Study of the instability is now a highly
complex.procedure, since even the steady-state
distribution of the potential close to the point of
beam input into the waveguide is not yet known. An
indication of the fact that the pattern is really not
steady-state can be gained from experiments [25]
in which microwave oscillations were observed
when supercritical currents were injected into a
vacuum. The experimental data, however, do not
enable us to say for certain that the generation of
microwaves is associated with the supercritical
nature of the injected current rather than with
some other factor, e.g. the presence of residual
plasma, a slipping instability connected with the
finite magnitude of the magnetic field (see below),
or something else.

2.2. Effects associated with the finite magnitude
of the magnetic field

When going from the case Hz -• °c to finite mag-
netic fields it is essential, first and foremost, to
consider the problem of radial beam equilibrium.
We shall illustrate the nature of the problems
involved by using the example of the ultrarela-
tivistic beam ) » 1, assuming, in addition, that
the field H_ is not too small, so that the electric
and magnetic self fields of the beam can be
regarded as a perturbation (see Hammer and
Rostoker [26]). We shall make one further
assumption: that the characteristic Larmor radius
of the beam electrons rH is small compared with
the beam radius, i.e.

(2.11)

where A0 is the angular spread of the particle
velocities which may occur, e.g., through scatter-
ing of the beam electrons in the anode foil5. In the

case of an annular beam we have to replace rb by
a on the right-hand side of this inequality.

Inequality (2.11) can be represented as

l m c
2 A0 2 ymc (2.12)

It follows that when the condition rH « rfc is satis-
fied, the magnetic pressure HjQir automatically
becomes much greater than the transverse gas-
kinetic pressure of the beam electrons
.9>x ~ynbmc2A02 (to see that this is so we may
note that Ib < Ic r^ ^nc3/e). Hence we shall first
consider the equilibrium of the beam without any
angular spread.

In this case the projections of the particle
trajectories onto the plane perpendicular to the z
axis are circles6, and the beam equilibrium con-
dition can be written as

v p
£2 - eEr + - v_H - - vH, = 0 (2.13)

(here we are using a cylindrical frame of refer-
ence r, <p, z). The azimuthal magnetic field H^
and the radial electric field Er are, respectively,

= i l rr.j2(r.)dr.

r ' j (r')dr'
d r '

(2.14)

(2.15)

The function jz(r') is determined by the beam
source, and we shall take it as given. To obtain
a closed system of equations we shall also write
the function

p(r) = me .. (2.16)

(it should be noted that p(r) f const, even if the
energy £0 of the electrons injected into the device
is constant over the cross-section; see Section
2.1). For the given functions jz(r) and p(r) Eqs
(2.13)-(2.16) form a closed system from which the
functions v (r), vz(r), E^r), H (r) can be de-
termined (as stated at the beginning of this section,
we take the field Hz to be uniform; the condition
under which this approximation can be applied will
be shown below).

It is easy to see that if we can satisfy the fairly
soft inequality:

H 2 * ^ 2 (2.17)

(or, in "practical" units, H^Oe) £,1.5 X 103/rb

(cm)) the inequalities v^/c < 1/y and p^/r < eHz/c

5 The reason for the angular spread could also be non-collinearity of
the electrical and magnetic fields in the diode space. This effect
decreases, of course, as the longitudinal magnetic field increases.

6 If there is spread, the trajectories become cycloidal because of
Larmor rotation; for condition (2.11) the amplitude of the cycloid is
small compared with the beam radius.
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are automatically satisfied and considerably
facilitate the solution of the problem of equilibri-
um. The first of these enables vz to be expressed
in terms of p(r), i .e.

v^ -
(r)

while the second one means that we can disregard
the first term on the left-hand side of Eq. (2.13),
as compared with the last one. As a result we
find that

E = H + 2 l f —^—
r * rcJ ^2/̂ n

dr1

For these reasons the conditions for compen-
sation of the electric and magnetic forces are
changed, and the resulting radial force*.

eIE. - — Hc ' .

is equal in order of magnitude to eEr A02 (instead
of eEr/7

2). At the same time, one can verify that
at A0 > 7"1, Ib< Icr,one can disregard the self fields
of the beam in the equilibrium equations as
compared with the gas-kinetic pressure &>

x, so
that the variation in the magnetic flux is
determined by

ru

. . 4?r

v = — / rh,(r ' )dr '
f rHz 2 J JzV 'z

l
r r'j (r')dr' -,

/ —o
(2.18)

It is easy to see that, given condition (2.17), the
distortion of the z component of the magnetic field
by the azimuthal current j is small: AHZ/HZ« 1.
Nevertheless, we shall give an equation for the
variation in the magnetic flux:

*b
r

Aip = 2TT / rAH (r)dr
oJ

since A^f can easily be measured (see, e. g.,
Abrashitov et al. [ 4]) and gives an idea of the
beam parameters7 :

Aip = -
xz 0 Y2(r)

dr 7 » 1

If we make the fairly realistic assumption
7(r) - const, this formula can be simplified to

Aip = -

(the distribution of the current over the cross-
section may be arbitrary).

The angular spread of the beam particles results
in two new effects. First of all, a transverse gas-
kinetic pressure 53.~ nbmc27A02 is created, and
second, there is variation in the electrostatic
repulsion force. The variations become important
if the angular spread exceeds 7"1. In this case the
difference c-vz (where vz is the mean beam elec-
tron velocity) becomes approximately equal to
cA02/2 (and not to c/72, as was the case for
A0 = 0).

1 The expression given for Ai// relates to a case in which there is a
longitudinal slot in the return current conductor through which the
magnetic flux can be forced out.

In conclusion we should stress that all the results
given are valid when only two conditions (2.11) and
(2.17) are satisfied. These can be combined as

H, X max { 1; 7A0 } (2.19)

It need only be remembered that we are dealing
with beam equilibrium a long way beyond the
transition layer at the entrance to the drift space,
so that we can consider the inequality Ib < Icr

automatically satisfied. In the transition layer it-
self, when supercritical currents are injected, the
conditions under which the perturbation theory can
be applied to the problem of radial equilibrium
are more restrictive (since there is both a direct
and a return current flow during injection of
supercritical currents in the transition layer, and
their pressures are added).

Let us now go on to the problem of beam stability
in a finite magnetic field. As can be seen from
Eq. (2.18), the angular velocity v /r of the electron
drift rotation depends, generally speaking, on the
radius (the rotation is differential). Differential
rotation may be the reason for the so-called
diocotron instability [ 27]. We shall study it for
the example of a beam with an angular spread that
is negligibly small, while the longitudinal veloci-
ties are the same for all particles.

Let us pass to the frame of reference associated
with the beam and consider, within this reference
frame, the low-frequency (u « uHe) potential oscil-
lations with kz = 0. Bearing in mind that the z
components of the electric field and current are
equal to zero in the wave, and that transverse
motion of the electrons is of the drift type under
condition (2.19), we get the following equation for
the electric potential of the wave 6$:

3r
1 -

_ J . n l . 0 ( 2 . 2 0 )
' 8r w J v '

u r

Here v' (r) is the unperturbed value of the electron
drift velocity;

"JOH«
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is the so-called diocotron frequency, and S is the
number of the azimuthal harmonic {£ f 0). The
prime on nb and v indicates that they are taken in
the beam frame of reference and not in the labora-
tory:

n 47rec
H,

r
/ r 'nb(r ') dr1

sJ

We should point out that although, when deriving
(2.20), we assume kz = 0, it is also applicable to
finite values of kz, provided the latter is not too
large, i . e .

H'
(2.21)

In the simplest case, in which the radial distri-
bution of the density n^r) takes the form shown in
Fig.4, Eq.(2.20), taking into account boundary
conditions at r -» 0 and r = R, gives the following
dispersion relation (for details see Levy [ 27]):

w2 u
2 " fi, R'

21 21 21 2C

R
2«

21 21 2
r r

R
= 0

(2.22)

r, r2 R r

FIG. 4. Density profile used to solve Eq. (2.20).

Here n 0 = ^ e c / H ^ n ^ and the other notations are
shown in Fig.4. It can be seen from (2.22) that
the stability criterion:

.2*
- r:

R'
+ 4

R' .24

R"
- S

R'

R'

> 0 (2.23)

contains only the geometric characteristics of the
problem and the harmonic number.

We shall show another simple sufficient stability
criterion for Eq.(2.20), valid for the arbitrary
density distribution n^(r). It is arrived at by the
standard method (see, e.g. Mikhajlovskij [28] and
Timofeev [29]; Eq.(2.20) is multiplied by 6<£*/r

and integrated over the interval 0 < r < R. This
leads to the following equality:

0 = Im

ft.

/
dr = - dr

I

It can be seen from this that, if f2(r) is a mono-
tonic function,all the solutions of Eq.(2.20) are
stable. This is true, in particular, for the state
with a uniform density distribution along the radius.
It is interesting to see that this state is stable with
respect to all classes of perturbation as a whole,
including electromagnetic ones (see Wong et al.
[30]).

In a situation where the amount by which the
instability threshold is exceeded is not too small,
the characteristic growth rate in the reference
frame connected with the beam is equal in order of
magnitude to QQ. In this frame of reference the
instability is absolute. In the laboratory frame it
is of the convective type and can therefore only be
observed in fairly long devices. Actually, the
condition for instability development in the beam
system takes the form T'IHIU^, 10, where T ' ~ L / Y C

is the time of flight of the relativistic electrons
through the drift tube, as calculated within their
own frame of reference. Taking into account that
Imu ~fio> w e arrive at the next instability develop-
ment condition, namely L £,10 7Hz/27ren\)~272Hz/enb.
We should also point out that the diocotron insta-
bility should become stabilized if there is fairly
good neutralization of the beam charge and current,
since in this case the drift rotation of the electrons
is considerably reduced.

The part played by the diocotron instability in
specific experiments was discussed by Carmel and
Nation [31] and by Kapetanakos et al. [32]. We
shall deal first with the former study, whose
authors consider the instability observed to be a
possible reason for the destruction of the beam in
their experiments. The instability growth rate and
its dependence on the magnetic field intensity agree
satisfactorily with the theoretical estimates. An
interesting feature of the experiments is that the
instability leads to the space inside the annular
beam becoming filled. This seems natural when
it is considered that the beam relaxes into the
stable state, and that the state with a uniform
density distribution over the cross-section is , as
already pointed out, a stable one. The drop in
current along the device, as measured by Faraday
cups, may be due to the fact that the current
injected into the system is close to critical. Since
the critical current is somewhat smaller for a
solid beam than for an annular one, the "smearing"
of the beam over the cross-section may have been
accompanied by reflection of some of the electrons.

In the study of Kapetanakos et al. [ 32] the
steady-state pattern observed for the division of
the beam into azimuthal segments is explained in
terms of oscillations with zero frequency (in the
laboratory frame). It remains unclear, however,
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why these oscillations build up (in space) more
rapidly than the others. Furthermore, when
deriving the dispersion relation, the authors dis-
regard the magnetic field perturbations in the
laboratory frame of reference. Consideration of
the effect of these perturbations on movement of
the particles gives a correction of the order of
unity and therefore seems essential in making a
quantitative interpretation of the experimental
results.

Yet another source of instability when a beam
propagates through a vacuum is anisotropy of the
electron distribution function in the frame of
reference moving at the mean velocity of the beam
[33, 34]. Occurrence of this anisotropy may be
due partly to scattering of the beam in the anode
foil, since if the foil is made of a material with
Z » 1, the relative electron spread over the
energies is small compared with the angular
spread A0. Hence we can take it that the beam
electrons are monoenergetic after passing through
the foil. Under these conditions the following
estimate is valid for the spread in momentum of
the beam particles over the longitudinal and
transverse directions:

Ap!L~ ymc A6'

A0 + -v- l
Ap}

It can be seen from this that at A0 ̂  7"1the in-
equality Ap'x> Ap'z is satisfied, and there may be
cyclotron build-up of the eigenmodes of the wave-
guide due to the normal Doppler effect. Here the
longitudinal wave vector for the excited wave is
determined from the resonance condition, which
in a laboratory frame of reference takes the form:

w(k2) - kzvz = eH2/Tmc

where w(kz) is the waveguide mode frequency. It
appears that an anisotropic instability has been
observed experimentally [33, 34] .

3. BEAM TRANSPORT IN A PLASMA

3.1. Charge and current neutralization of the beam

In this section we consider a situation in which
the drift space ((3) in Fig. 1) is filled with a plasma.
We sfyall assume that the plasma density n is much
greater than the beam density nfa. When the first
portions of the beam are injected, the drift space
becomes negatively charged and some of the plasma
electrons An ^ nb are forced onto the anode foil
and collector ((2) and (4) in Fig.l, respectively)
in such a way that the drift space becomes electri-
cally neutral8. Because of the induced e.m.f.

8 In principle it is sufficient to have a plasma with n = nb for charge
neutrality. After ejection of the plasma electrons only ions with n4 = nb

are left in the drift tube. But as the beam density generally varies rapidly
with time (the injection pulse length is ~100 ns), the exact neutrality
condition nj = n^ cannot be satisfied during the whole of the pulse. Hence
from the very outset we consider only the case n » n^.

associated with the variation in beam current with
respect to time, a current is created in the plasma
directed opposite to the beam current.. If the
conductivity of the plasma is fairly high, there
may be almost entire compensation of the beam
current, so that the magnetic self-field vanishes9.

The charge neutralization does away with the
restrictions on the limiting current which are due
to electrostatic reflection (Section 2.1), and the
current limitation then becomes due to various
instabilities produced by the motion of the beam
with respect to the plasma. The relevant problems
are dealt with in Section 3.2. In this section,
however, we shall leave aside the problem of
stability for the moment and deal only with the
purely "laminar" effects associated with the charge
and current neutralization.

These effects have been studied theoretically in
numerous articles [26, 37-41] . In all these publi-
cations the plasma is considered infinite10. The
effect of the electric and magnetic fields created by
the beam on the motion of the beam particles was
disregarded11. The main difference between these
studies is that they deal with one group or other of
the specific effects influencing the plasma current
(absence or presence of electron/ion collisions,
direction and magnitude of magnetic field, etc.).

The most thoroughly studied case is one in which
the beam current is distributed uniformly over the
beam cross-section and is a step function of time.
The corresponding calculations are extremely
unwieldy and we shall not give them here; the
reader can find them in the original papers. Of
particular interest is the article by Lee and
Sudan [38] in which they trace the transition from
infinitely weak to infinitely strong longitudinal
magnetic fields in the beam current neutralization
problem.

For the experimental set-up which we are con-
sidering (Fig. 1) the formulation of the problem as
described above and based on the approximation of
an infinite plasma is of interest provided that the
duration of the electron beam T is fairly small,
i.e. T « L/c (L is the length of the drift space).
However, experimentally we more often find the
opposite limiting case, i.e. r Ŝ> L/c (under typical
conditions T ~ 100 ns; L = 2-3 m). In such a case
the problem of neutralization becomes much more
trivial, especially as regards analytic calculations.

The specific calculations depend on the type of
Ohm's law. We shall perform them for a case in
which the device has a strong longitudinal magnetic

9 Current neutralization has been observed in experiments (see
Abrashitov et al. [4], Miller and Kuswa [6], Korn et al. [9], Roberts and
Bennett [35]). See also Agafonov's review of experimental work on beam
transport [ 36].

10 The exception is the study of Rosinskij et al. [ 40] in which the
presence of a cylindrical conducting sheath was considered, although the
length of the plasma was still assumed to be infinite.

11 The latter is valid either for fairly complete charge and current
neutralization, or else for the injection of currents that are considerably
smaller than the critical current.
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field that suppresses the transverse conductivity,
i .e . we shall assume that

where a is the longitudinal conductivity operator:

..2 / ~ VI

k

4TT

v is the frequency of electron/ion collisions (which,
like Up , we shall take to be independent of space
and time, for the sake of brevity). In this case
r and z components of the electric field and the <p
component of the magnetic field are produced (see
Appx I), so that the problem can be described by
means of the following equations:

8E 8Er _ 1 8HL,
3z 8r ""c at

8 E r

8z
(3.1)

r 8r
1 3EZ _4TI

c at c

where jh(r, z, t) is the beam current density.
Assuming that the beam particles move at a
constant velocity v and assuming the function
j b (r, t) = jb(r , 0, t) to be known, we can find the
current at an arbitrary point in the plasma:

The fact that the boundaries of the drift space are
conductors is taken into account by the boundary
conditions:

E z = 0

Er = 0

when r = R

when z = 0, L
(3.2)

The formal solution of Eq. (3.1) presents no diffi-
culty, but it is very cumbersome. We shall there-
fore only consider the limiting case T » L/c .
Here, to make things clearer we shall assume that
the beam current j . (r, t) is a smooth function of
time (of the type shown in Fig. 5), and that the
shape of the current can be described by a single
parameter T; the beam current is assumed to be
likewise a smooth function of the radius.

In the limit CT » L the return current induced
by the beam in the plasma may be taken as inde-
pendent of z, i . e .

jb(z =

12 It should be pointed out that if for the total duration T » L/c the
beam has a steep leading edge (the current build-up time < L/c), our
results are applicable to the diminshing part of the current.

FIG. 5. Beam current density as a function of time (for fixed r).

The same applies, of course, to the charge density
p, = i / v . However, the most important simpli-
fication is that at C T » L we can limit ourselves
to a quasisteady-state approximation (see Landau
and Lifshits [42]). In this case there is the
natural splitting of the electric field into two parts:
a solenoidal part independent of z, Es = (0;0;Es(r, t)),
and a part derived from a scalar potential which is
dependent on z, E = - (8<f>(r, z, t)/9r; 0; 90(r, z, t)/8z),
where <f> is the electrostatic potential.

The solenoidal part of the field is determined
from the equations:

8ES =

8r "c "aF

while the potential $ is calculated from

(3.3)

(3.4)

1 JL
r 8r 8r

(3.5)

| f + divj = 0at

A more formal derivation of Eqs (3.3) - (3.5) is
given in Appx II. Bearing in mind that j r = j =0
and j z = a (Es -(8$/8z))instead of the latter equation
we get

^ - a = 0 (3.6)

Let us recall that the functions j b and p. are con-
sidered here to be independent of the co-ordinate z.

Thus, in the quasisteady-state approximation,
the problems of current compejisation (Eqs (3.3),
(3.4)) and charge neutralization (Eqs (3.5), (3.6))
are split up13.

We shall not give the full solution of Eqs (3.3) -
(3.6) in this paper but merely explain the conditions
under which this neutralization occurs.

3 We should point out that inasmuch as the solenoidal part of the
electric field has only a z component, the effect of current compensation
does not depend on the value of transverse conductivity; more particularly,
the set of equations (3.3) and (3.4) does not vary when the conductivity is
isotropic. In this respect the quasisteady-state considered by us differs
considerably from the current compensation problem in a boundless
plasma (L-» »); in the latter case the compensating effect depends to a
great extent on transverse conductivity [ 38].

881



BREJZMAN and RYUTOV

More particularly, in order to determine the
conditions for satisfactory charge neutralization
we shall, assuming the conductivity to be fairly
high, obtain a solution of the equations (3.5) - (3.6)
in the form of an expansion in inverse powers of
a.14 It is obvious that p<°> = -pb(r, t), </>(°) = 0.
Substituting p*0* in (3.6) and taking into account the
symmetry of the problem with respect to the plane
z = L/2, we get ^ 1 \ i . e .

2

L/
4

p ~

Finally, substituting Q^ in (3.5), we obtain the
correction for p*°) (which is actually equal to the
unneutralized charge density), i.e.

(D =

X [ v + ^7 ) •£• I - ~ r

(here we have taken into consideration the fact that
L » R, and have disregarded the second term on
the left-hand side of (3.5). The condition for

(1)charge neutrality |p
approximately written:

can thus be

(3.7)

Similarly, we can find the following expression
for the current from Eqs (3.3) and (3.4):

P 0

It can be seen from this that the current compen-
sation condition takes the form:

a » • — -s-
4TT r 2

b

(3.8)

This condition is considerably more restrictive
than (3.7) (let us recall that C T » L). It can also
be rewritten in the form:

6 « r b (3.8')

where 6 ~ (c T/4iro) is the skin depth.
If the conductivity is high, and condition (3.8) is

satisfied with a large margin, the plasma contains
neither an electric nor a magnetic field induced by
the beam. In this case the beam equilibrium con-
ditions become considerably less restrictive, since
the external magnetic field has to balance only the
gas-kinetic pressure associated with the angular
spread.

But since (3.8) is much more stringent than (3.7),
one often encounters situations in which there is
charge neutrality but no current compensation, the
radial electric field of the beam becoming much
smaller than in the case of a vacuum, while the
azimuthal magnetic field remains the same as
before. As a result the radial repulsion of the
beam is replaced by compression. The beam
equilibrium in this case is studied in the same way
as in Section 2.2, but since there is no cancellation
of the electric and magnetic forces, the conditions
of applicability of the perturbation theory to the
equilibrium problem become more stringent (see
Hammer and Rostoker [26]). It is quite clear,
however, that by creating a fairly strong longi-
tudinal magnetic field we can pass as large a
current as we like through the plasma (under
charge neutralization conditions)15. Beam equi-
librium in the case of partial or complete charge
neutrality is studied in Refs[43 - 51] (for the results
obtained in this field up to 1970 see the review
article by Benford and Book [ 52]).

Interesting effects occur when the conductivity of
the plasma contains non-axisymmetric inhomo-
geneities. In this case the return current is ,
generally speaking, displaced with respect to the
beam; hence there can be displacement of the beam
as a whole in the return-current magnetic field.
To illustrate a situation which may occur, let us
consider the limiting case shown in Fig.6(a), where
the conductivity of the plasma is high within a
cylindrical area, the axis of which is displaced
through a distance A from the beam axis, and is
small outside this area. Clearly, the return
current will only flow in the high-conductivity
area, so that the lines of force of the magnetic
field created by it represent circles with their
centre at point A (Fig. 6(a)), displaced with respect
to the beam axis. When acted on by the longitudinal
magnetic field and the return-current field, the
beam moves in a spiral that winds onto the high-
conductivity area. Clearly, as a result the beam

( a ) ( b )

vacuum cHamfcer

FIG. 6. Effect of inhomogeneity in the plasma conductivity on displace-
ment of the beam: (a) one high-conductivity region (hatched); ring in the
middle shows initial beam position; circles with centre at point A show
lines of force of the return-current magnetic field; dashed line shows
the beam position at some distance from the drift space entrance; (b) two
high-conductivity regions.

P
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In these estimates we take a to be of the order of magnitude
/ 4TI(K + 1/T).

We are talking only about limitations associated with beam
equilibrium and are not dealing with stability.
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may shift through a distance 2A with respect to its
initial position and, if A is sufficiently high, may
strike the wall of the drift tube. The pitch of the
spiral is 27r(Hz/HI)A, where Hj is the return-
current field on the beam axis. Obviously, the
effects described above are important only when
the length of the device is comparable with the
pitch of the spiral or exceeds it (otherwise the
beam cannot shift with respect to the azimuth). If
the conductivity of the plasma is distributed in a
more complex manner than in Fig. 6(a) (e.g. if
there are two areas of satisfactory conductivity
displaced with respect to one another (Fig. 6(b))
then wandering of the beam may assume an
extremely complex and irregular character. It is
possible that the irregular blurring of the beam
during transport through a plasma, observed in
some experiments, e.g. those described by
Abrashitov et al. [ 3] , can be explained by this
mechanism.

3.2. Plasma heating by the return current

Joule dissipation of the return current relates
more to the problem of heating a plasma than to
that of beam transport. However, since it is a
matter related directly to current compensation,
we shall deal with it at this point (and not in
Section 4 on plasma heating).

Return-current Joule dissipation has been dis-
cussed by Altyntsev et al. [ 1], Rudakov [ 53] and
Lovelace and Sudan [54], the most detailed calcu-
lations having been made by the last-mentioned
authors. In actual fact, however, they considered
a beam in a plasma unbounded in the longitudinal
direction. We shall present calculations for the
case L « CT, which at present seems the most
realistic one from an experimental point of view.

Assuming that the duration of the beam T is
greater than the time taken by the plasma electrons
to be scattered by the ions (or by the fluctuations in
the electric field if we are talking of the anomalous
resistance of the plasma), we shall apply the
following Ohm's law:

= a E v ' ' , t)

(as already pointed out, in a quasisteady-state the
transverse conductivity is not part of the problem).
Here the return-current dissipation is described
by Eqs (3.3) and (3.4) in which we need only to
replace a by cr(r, t).

The energy dissipated by the return current per
unit length of the plasma column is

c J J r b 9t
- « 0 Q

in which we introduce the notation:

. dr1

(3.9)

I*(r,

I*(r,

t)"

t)

P
. = 2n / r1.

0

j(rij t)

j b ( r ' , t )

The total currents for the beam and plasma (i .e.
I*(R, t), I*(R, t)) will be designated simply by I (t)
andl(t). b

In the case where the current is switched on in a
"step", i .e .

0, t < 0

j (r), t> 0

one can reduce Eq. (3.9) to the form:

R

1 / dr* o

C^ J T b ~~ M

in which WM is used to designate the magnetic
energy per unit of beam length in the vacuum. We
should stress that this result does not depend on
the specific of the function a(r , t) .

The energy WM is released in the plasma over a
time of the order of the field penetration 17:
TS ~ 47rTp cr/c2 . A contribution is in fact made to
the integral (3.9) at those values of t for which the
quantity I*(r,t) + I*(r,t) becomes essentially non-
zero, and it is at the field penetration times that
this happens. At the upper limit, t > TS , the
integral converges through attenuation of the
plasma current.

If the beam has a sharp trailing edge and its
duration exceeds TS , then when it switches off an
additional energy W is released in the plasma,
so that the total energy dissipation will be 2WM .

A simple estimate of Q is possible in the more
general case as well: I*(r, t) = f(r)g(t). Here we
may assume, without limiting the generality, that
f, g > 0. Furthermore we assume that the function
g(t) has a single maximum, i .e . g(t) takes the
form shown in Fig. 5. The following inequality is
then valid (see Appx III):

Q * 2rjmaxWM(t)

where r?is a numerical factor of the order of unity
and dependent on the beam current distribution over

Q = 2n / dt r j z ( r , t)dr
a(r, t)

Making use of Eqs (3.3) and (3.4) it is easy to see
that

In this section we do not make the assumption that a is independent
of space and time.

17 We consider that r^ ~ r ~ R; but if r^ « r , then the dissipation
time is of the order of the penetration time, calculated for the beam
radius. It is interesting to observe that if at r^ « rp the duration of the
beam satisfies the conditions 4it^o/c2 « T « 4nTp o/c2, then throughout
the beam injection time the current measured bylhe Rogowski coil,
external with respect to the plasma, is exponentially small, so that a
rough estimate of the heating Q ~ JlUdt (where U = -i^d(I + Ib)/dt is the
induced e.m.f.) will produce a result that is much too low.

883



BREJZMAN and RYUTOV

the cross-section (the exact expression for rj is
given in Appx III). It should be stressed that when
deriving this inequality we do not make any
assumptions with regard to the function a(r, t).

Taking into account the fact that the total energy
imparted to the beam by the accelerator is equal in
order of magnitude to IbUr, where U is the voltage
on the accelerator diode, it is easy to see that if
T <̂  TS the efficiency of the heating can be calculated
in the following way:

fLI? r\ -1 K L
efficiency ~ I — T T — ; ( I . U T ) ~ T C (3.10)

x c Ts ' xcr C Ts

When T > TS the efficiency decreases in proportion
to T"1 . It can be seen that the efficiency may be
of the order of unity only when the beam current
is much greater than the critical vacuum current,
namely at Ib ~ Icr(cTs /L). In this case the e.m. f.
induced in the plasma is exactly of the order of the
kinetic energy of the beam electrons. The passage
of a current Ib > Icr(cTs /L) is impossible, since in
such a case the induced e.m.f. would be greater
than the electron energy.

Unfortunately, it appears to be that under con-
ditions where the conductivity is determined by
Coulomb collisions, the penetration time is so
long that the optimal beam current Ib ~ Icr(

CT
s /L)

is too high. For example, in the cases of interest
for thermonuclear applications i% amounts to 10"2

- 1 second, and for reasonable values of
L (L £,10 cm) the optimal current is greater than
3X104 Icr.

Return-current heating may become acceptable
if there is anomalous resistance in the plasma,i.e.
if the collision frequency is much higher than the
Coulomb frequency [53, 54]. The condition
required for anomalous resistance is that the
directed velocity of the plasma electrons u should
exceed the threshold value of«vte, where vte is
the thermal velocity of the plasma electrons and a
is a numerical factor dependent on the ratio between
the electron and ion temperatures and on the shape
of the electron distribution function. It ranges
from (m/M) (for a plasma with Te » Ti and with
an electron distribution function that is isotropic
in a frame of reference moving at velocity u) to
unity (for plasma with Te ~ Tj).

Taking into account the fact that under conditions
of zero net current u ~ cnb/n, we get the following
criterion for the existence of anomalous resistance:

and, accordingly, the following expression for the
limiting temperature up to which the plasma may
be heated through anomalous resistance:

2a2 \ n

Heating up to Te ~ 104 eV is possible at n /n >. 0.2a.
Even for the lowest possible value of or (a ~ 2 X 10"
for a deuterium plasma) this condition, as applied
to plasmas with n > 1014 - 1015 cm"3 , necessitates

the use of extremely dense beams. It should also
be pointed out that during the heating of a plasma
the electron distribution function may elongate
along the electric field direction [ 55, 56]. In this
case, even at Te » Tj (by these symbols we denote
the mean particle energy in a frame of reference
moving with the mean velocity of particles of the
given kind), the parameter a may become much
larger than (m/Mf , right up to a ~ 1 (see the
theoretical studies of Vekshtejn et al. [ 55, 56] and
the results of computer calculations of Biskamp
and Chodura [57]), while an increase in a leads
in turn to the condition nb/n > 0.2a requiring beam
densities that are too high.

The possibility that the distribution function is
deformed was not taken into account by Guillory
and Benford [ 58], whose investigation of the exci-
tation of ion-acoustic oscillations by the return
current is based on the assumption of electron and
ion distribution functions of the Lorentz type. For
this reason the conclusions given by these authors
cannot be regarded as quite reliable. A similar
objection can be raised against the study of
Lovelace and Sudan [ 54], whose use of Sagdeev's
equation [ 59] for the effective collision frequency
does not seem to be fully justified since, strictly
speaking, it relates only to the case of a current
perpendicular to the magnetic field in which there
is a cyclotron mixing effect, and the electron
distribution function cannot become elongated along
the electric field18.

The situation at a » (m/M) can be slightly
improved by creating non-uniform plasma density
distribution along the device. In this case the
heating conditions in the reduced density regions
are made easier and the energy released in them
through electron thermal conductivity is uniformly
distributed along the device. On the whole, how-
ever, the prospects for heating plasma with
n >̂ 1015 cm"3 by return current are not too good at
present. Nevertheless there is no doubt that it
would be possible to use this heating method in the
region of relatively low plasma densities
( n ~ 1014 cm"3).

3.3. Macroscopic instabilities in connection with
beam transport in a plasma

As was demonstrated in Section 3.1, when a beam
is transported in a plasma it is comparatively easy
to neutralize the space charge. This eliminates
restrictions on the value of the current due to
electrostatic reflection of the beam. If, moreover,
there is current neutrality, the beam equilibrium
conditions, even at I. > I , do not impose any
unduly hard limitations on the value of the longi-
tudinal magnetic field. The corresponding
limitations, as can be seen from what follows,
are due to the stability requirement.

18 Sagdeev's formula can be used only if there is no external longi-
tudinal magnetic field (then magnetic field lines are perpendicular to
the current).
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Unstable oscillations in a plasma/beam system
can be conveniently subdivided into two groups:
large-scale, or macroscopic, and small-scale
oscillations. The first group includes those with
a characteristic longitudinal scale of the order of
(or larger than) the beam radius. The second sub-
division contains the perturbations of shorter
wavelength. To some extent this is an arbitrary
grouping in that, depending on the relationship
between the plasma and beam parameters, insta-
bilities of the same physical nature may sometimes
come within the first group, and at other times the
second. Nevertheless we shall use this classifi-
cation, since both the macro- and micro-
instabilities differ in their outward manifestations.
The former give rise to considerable distortion of
the equilibrium beam configuration (sausage-type
deformations, kink instabilities, and so on), while
the latter are mainly responsible for heating and
diffusion of the particles.

In this section we examine the large-scale
instabilities, since it is they that constitute the
most obvious hazard in beam transport (small-
scale instabilities are studied in detail in Section 4
in connection with the plasma heating problem).

Being concerned with pulsed beams, we shall
focus our attention here on purely electron oscil-
lations. As far as oscillations involving ions are
concerned (disregarding the ion-acoustic instability
of the return current, which was discussed in
detail in Section 3.2), they have considerably lower
characteristic frequencies and growth rates, and
under actual conditions often fail to grow during
the beam injection time.

Let us first consider collisionless instabilities,
i .e . those with frequencies and growth rates large
compared with the effective collision frequency veff,
which takes into account both the Coulomb collisions
between electrons and ions, and electron scattering
by micro fluctuations. An example of an instability
of this kind is the build-up of helicon waves (see
Shafranov [60] with a frequency below cyclotron
frequency in a dense plasma (wp » uH). These
waves are essentially whistlers. We shall demon-
strate below that they are unstable when the density
of the beam kinetic energy is higher than-the density
of the external magnetic field energy.

For the sake of clarity let us solve the problem
of the stability of a beam moving along an external
magnetic field Hz in a metal waveguide of radius
R » c/ujp filled with plasma of density n » nb. The
equilibrium distribution of the beam density nb and
electron velocity vz over the waveguide cross-
section will be considered to be uniform. The
current and space charge of the beam in a state of
equilibrium are assumed to be completely
neutralized.

Taking the charge and current neutralization into
account, we arrive at the following expressions
for the transverse components of the current
perturbation in the wave:

2 2
kz c (3.11)

E r " ' 4^

, 2 2
k2C

(3.12)

Here 0b = 47rnbmv2
T/H2

: .
Instead of Ohm's law for the longitudinal current

component we shall apply the condition Ez = 0,
which means that the longitudinal conductivity in
the system is substantially higher than the trans-
verse conductivity. When a whistler is propagated
through a plasma without a beam, the condition, as
is well known, makes for a limitation from above
on the value of the wave vector (kc « u ). It can
be demonstrated that when a beam is present there
is a further limitation-.

— ' Y (3.13)

which we shall take to be satisfied.
Let us substitute the currents (3.11) and (3.12) in

Maxwell's equations and consider axisymmetric
perturbations. As a result we get the following
equation for the cp component of the wave electric
field:

1 - =fi*q ^ 5 ' ^ - w » (3'14)

where ft = w up/uHk c .
The solution of this equation, which behaves

properly at the origin, takes the form:

A-
- 1 - -^-J ] (3.15)

(where a is an arbi trary constant and J1 is a
Bessel function).

The boundary condition on the wall of the wave-
guide (E (R) = 0) gives us the following dispersion
relation:

4 4
2 2 k 7 C

H (j4
P

- 1 (3.16)

Ht(S. = 1, 2, . . .) are the roots of function Jx .
At /3b = 0 (without a beam) this equation gives us

the dispersion relation for whistlers in waveguide.
As /3b increases, the dispersion of the wave varies
slightly but, right up to £b = 1, all the oscillations
remain stable. If ]3, exceeds unity, however,

" D 2 / 2 2

there is an aperiodic instability Situ JkzR > p b - 1.
The maximum growth rate for kz is attained at

= ni/2B?{R - 1), i . e .

raaxlmu = (3.17)

As the number of the harmonic increases, so
does the growth rate, in proportion to n\, but at
high values of ni (nt ~ Rup/c) the conditions under
which Eq. (3.16) is applicable cease to be valid,
since when deriving the dispersion relation we can
no longer disregard the longitudinal electric field
Ez. The value k^ is restricted from above by the
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condition kzc « u^y (at kzc > uH/7 we have to
take into account corrections of the order of
kzC7/wH in the expressions for the transverse
current (3.11) and (3.12)).

Generally speaking, a completely neutralized
beam is unstable even in a strong magnetic field
(wH» u ). The characteristic frequency of the
unstable perturbations is in this case ~wD.
Although this instability can apparently not lead to
the beam being diverted onto the chamber walls
(there is a strong longitudinal magnetic field), it
may bring about a considerable spread over the
longitudinal energies, which is undesirable in many
respects (see Section 4). We shall therefore con-
sider in greater detail the conditions under which
this instability ar ises .

If uH > u , we can disregard the transverse
displacement of the beam particles and plasma,
and apply the following Ohm's law:

ltxJ]

AIM
1 +

( u - k v)2 n 7
• S J E Z (3.18)

(see Eq. (A. 1.1)). For this Ohm's law the
presence of the beam and plasma inside the drift
tube affects only the TM mode (the TE mode is
uncoupled and described by the same equations as
in the case of a vacuum — see Appx I).

We shall assume that the beam and the plasma
are uniform and completely fill the drift tube.
For the sake of brevity we shall consider only
axisymmetric perturbations (as being the most .
unstable). In these perturbations the z component
of the electric field satisfies the following equation
(derived in similar fashion to (A. 1.3)):

1JL 9EZ

r dr dr C2
"P | E

(u - k v)2J z

Taking into account the fact that the solution of
this equation should be well behaved at zero and
vanish at r = R, we can easily get the following
dispersion equation:

+ ^ +
2

Up
(3.19)

where k±{ = MJJ/R, and /ifi is the JP-th root of J0(M).
Stability analysis of this dispersion equation is
carried out by the standard method (see e.g.
Mikhajlovskij [ 61]). It can easily be seen that for
beams that are not unduly dense, nb « n/7 , the
stability condition takes the form:

kz + V ^ > ^f- (3>20)

This gives the following result for the maximum
permissible tube radius for which the beam is still
stable:

This criterion stems from the requirements of
stabilization for the most unstable oscillations with

A more detailed study of the instability under con-
sideration is contained in a paper by Berk [62] in
which he describes, more particularly, the effects
associated with the finiteness of a longitudinal
magnetic field. Some findings relating to the same
problem are also to be found in an article by Grishin
and Kolomenskij [ 63] .

The instabilities occurring during beam transport
through a plasma in a magnetic field satisfying the
inequality

(3.21)

are described in detail in a survey by Bogdankevich
and Rukhadze [22]. However, some degree of
caution should be exercised with regard to their
results, since the authors have proceeded on the
assumption that, given (3.21), the unstable oscil-
lations can be considered electrostatic, whereas
in actual fact for oscillations with u /k z = c con-
dition (3.21) (and even Hz-> 00) is, generally
speaking, insufficient for the electrostatic approxi-
mation. Hence many of the relationships given by
them are not quantitatively valid, and at 7 » 1
they are not even qualitatively acceptable (they give
a wrong dependence on 7). More particularly, at
the limit Hz-» 00, instead of the dispersion relation
(3.19) another dispersion relation is implied in the
survey [22], namely

1 -1 —
2

Up
73n (u - k

which at [(CJ/k )̂ - c « c is very different from
(3.19).

Let us now consider the instabilities that are
caused by incomplete compensation of the beam
current. Since the charge neutralization condition
in the plasma is more easily satisfied than the
current compensation condition, we shall assume
that there is no space charge in the equilibrium
state and that the net current is equal to the beam
current. One would naturally expect, in such a case,
the development of a kink instability of the kind
studied by Kruskal and Shafranov. The following
approximation holds for its growth rate:

Imio (3.22)

(we take the radius of the plasma column to be
equal in order of magnitude to the beam radius rb).
The condition under which this instability arises
takes the form:

Ib
c r b H z ~

7rrb (3.23)

19 In a system which is limited along the z direction, such oscillations
are obviously impossible. The problem of the stability of beams limited
longitudinally is discussed in the survey of Bogdankevich and Rukhadze [22].
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where L is the length of the system and Hz is the
external magnetic field. The specific features of
excitation of this instability by a relativistic
electron beam are considered by Lee [ 64].

The growth rate of the Kruskal-Shafranov insta-
bility is relatively small, since the magnetic field
is frozen into the plasma, and ions are drawn into
the motion. Should the freezing condition be
disrupted on account of the finite nature of the
conductivity (e.g. due to a return-current insta-
bility), a build-up of purely electron kink instability
oscillations becomes theoretically possible. Here
the instability development time is determined by
the time taken for diffusion of the magnetic field
perturbations into the plasma. Instabilities of
this type have been studied by Benford [65] on
the assumption of a uniform'current distribution
over the beam cross-section. The beam boundary
was assumed to be sharp. When formulated more
realistically (for a smoothly decreasing current
distribution), the solution of the problem is made
more complicated by the fact that the stabilizing
effect of shear must be taken into account.

In conclusion we should point out that the macro-
scopic beam instabilities in the plasma can of
course also occur in a case where the longitudinal
magnetic field is negligibly small or absent entirely.
Such instabilities were treated theoretically by
Rosenbluth [66], Weinberg [67, 68], Ivanov and
Rudakov [69]. The hose and the sausage insta-
bilities were both discussed. The experimental
observation of the hose instability was reported by
Moses, Bauer and Winter [ 70].

4. COLLECTIVE EFFECTS IN THE
RELAXATION OF REBs IN A PLASMA

4 . 1 . General formulation of the beam relaxation
problem

As was pointed out in Section 1, binary collisions
alone cannot ensure sufficiently fast dissipation of
the energy of a relativistic beam to heat a plasma
to thermonuclear temperatures. Hence the princi-
pal part in the problem of the beam heating of a
plasma should be played by collective effects.
Collective relaxation of the beam is connected with
the development of a beam instability in the plasma,
followed by scattering of the beam by the resulting
electric field fluctuations. The relaxation length
is determined by the fluctuation spectrum20.

The beam instability development time is
normally extremely small compared to both the
beam injection time and the characteristic time
for variation of the plasma parameters. Thus our
main interest lies in solving the problem of the
steady-state injection of the beam into the plasma
and in finding the steady-state oscillation spectrum.

The next step should be to describe the self-
consistent variation of the plasma parameters
(temperature, density, etc.) due to the beam
heating.

A steady-state oscillation spectrum in the beam
relaxation problem is established because of the
fact that the generation of waves is balanced, first,
by their removal at the group velocity from the
generation region, and, second, by various non-
linear processes. Depending on which of the
effects is stronger, we are dealing with either the
quasi-linear or non-linear approximation.

The quasi-linear approximation has been applied
to the problem under consideration by various
authors [ 53, 71, 72]. It produces such high values
for the oscillation energy density that the conditions
of applicability of a quasi-linear approximation are
very restrictive and in most cases the non-linear
interaction of the waves has to be considered.

In many situations of practical interest this can
be done within the framework of weak turbulence
theory. This is based on the relative smallness
of the oscillation energy as compared with the
thermal energy of the plasma, and includes
averaging over the random phases of the inter-
acting waves (see the various surveys [73-75]).
Theories going beyond the approximation of weak
turbulence do not, in our opinion, have a suf-
ficiently reliable formal basis at present. On the
other hand, we can already formulate a number of
problems that the weak turbulence theory would
seem unable to answer. As a general observation
it should be pointed out that the non-linear theory
of relaxation is only just emerging and that many
of the results now available require further
elucidation.

The problem of beam relaxation is characterized
by a large number of physical parameters
(nb/n; T ; Te/mc2; T j T ^ u^/u)p; ^i A y c / "p R )
and, correspondingly, a wide variety of limiting
cases. A complete discussion would be impossible
within the confines of this survey, hence we shall
deal in detail only with the most broadly studied
case of beam relaxation in an isothermal plasma
without a magnetic field, after which we shall
discuss some possible modifications of the theory.

4.2. Excitation of Langmuir oscillations by a REB

If there is no magnetic field in a plasma or if it
is small enough that u H « u then.as it follows
from the linear theory, the beam excites predomi-
nantly Langmuir oscillations [ 76]. The mechanism
involved is Cherenkov excitation. As is known,
the condition for Cherenkov interaction between a
particle with velocity v and an oscillation with a
wave vector k and frequency u(k) is

u - kv = 0 (4.1)

20 By fluctuation spectrum we mean the distribution of the energy of
the fluctuations over the wave vectors, which is characterized by the
spectral function W(k).

Estimation of the instability growth rate depends
strongly on the distribution of the energy and
angular spread of the beam. In the case of a
monochromatic beam (Av = 0) the instability is
hydrodynamic in nature and the growth rate when
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maximized along the longitudinal component of the
wave vector is given by the following equation (see
Fajnberg et al. [71] and Bludman et al. [77]):

I m u

Here k2 = up/v. This result is valid for

|kAv|<| lmu(k) |

(4.2)

(4.3)

If we have the opposite inequality, then the insta-
bility goes over to the kinetic stage and the
approximation of the growth rate changes: if the
velocity spread Avz of the beam electrons along
the longitudinal direction is not too large we can
have a situation in which for some values of kx the
instability is kinetic, while for others it is hydro-
dynamic. Finally, if Avz and Avx are fairly large
(see below for the exact criterion), the instability
is kinetic for all values of kx. We shall examine
only this situation, bearing in mind that the pro-
duction of monochromatic beams involves great
experimental difficulties. A detailed study of the
dependence Imu(k) for the intermediate case is
given by Rudakov [ 53]. A description of the
hydrodynamic and the intermediate stages of
relaxation is given by Rudakov [53] and
Fajnberg et al. [71] .

Let us formulate the condition under which the
kinetic approximation is applicable in the case of
a relativistic beam (7 » 1) with an angular spread
A0 <, 1 and an energy spread AS<^S. In this case
we may assume that v - c and Av± - cA0. For
determining Avz we use the equation:

Av, - c
AS (4.4)

It can be seen from this that at A0 > y
the longitudinal spread is mainly determined by
the angular divergence of the beam. For a beam
of 2 - 3 MeV energy, at A0 > 10°- 15° the even
stronger inequality:

A0 > 7 -1 (4.5)

is satisfied. Since the chances of producing power-
ful beams with a smaller angular spread are at
present only slight, we will take the condition (4.5)
to be satisfied and assume Av2 ~ cA0 . The con-
dition for the applicability of the kinetic
approximation can then be written as

where kz = wD/c. It can be readily seen that at

1/4 .

z p/
1/4 1/6

r / \ / \ "I

the inequality (4.6) is satisfied for all values of k±.
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It is clear from the resonance condition (4.1)
that at A0>,y(A<^/<^ the beam can interact only
with those oscillations whose wave vectors satisfy
the following relationship:

k, - - ^ < — k.A0
J-

(4.8)

The region determined by this inequality in the
wave-vector space is shown in Fig. 7(a). From
here on we shall call this region the resonance
region.

( a )

FIG. 7. Resonance region and growth rate for beam instability:
(a) resonance region as determined by Eq. (4. 8) (hatched); region
boundaries subtend an angle A9 with the vertical; the growth rate is
positive on the right-hand side of the resonance region and negative on
the left; dashed line shows maximum growth rate; (b) growth rate as a
function of longitudinal wave-vector component for a fixed k± (denoted
by k±Q in the upper part of the graph).

The calculations of Brejzman and Mirnov [78]
demonstrate that the expression for the growth
rate at the kinetic limit under the assumptions
made above takes the form:

n b
i m u - 7TWp n —

[ ( c o s 0 i _ c o s 0 ) ( c o s 6 ) . C O S 0 2 ) ] V 2

(4.6) X -2gsin0 + (cos 0 - — cos0 ' ) | f

(4.9)

g = me /pf(p,0)dp
0

COS0,
1
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Use is made in these calculations of the spherical
co-ordinates p, d, cp in the momentum space, and
k, 0 \ q? in the wave-vector space. The angles 6
and 0' are measured from the direction of beam
injection. The symbol f denotes the momentum
distribution function for the beam electrons
normalized by the condition:

2TT / p2 dp / f sin0d0 =
0

An analysis of Eq. (4.9) shows that the growth
rate is positive on the right-hand side of the reso-
nance region and negative on the left-hand side
(Fig. 7(a)). For a fixed value of kx the dependence
of Imu on kz takes the form shown in Fig. 7(b).
The position of the peak growth rate Tcz depends on
kx; k2 = kz(kx).

The peak points for the growth rate (with respect
to kz) form the broken line in Fig. 7(b). The
dependence of the growth rate on kx on this line
takes the form shown in Fig. 8. Beyond the narrow
region of small kx (kx ~ A0u /c) the dependence of
InTuTon k, takes the form:

Imw
ujp

P n 7 A02 u2 + k2c2 (4.10)

In calculating the growth rate we have disregarded
collisions between plasma electrons and ions. To
take them into account we have to include the term
-i//2 on the right-hand side of Eq. (4.9). In a dense
plasma, collisions may lead to suppression of the
instability.

where u = w(k, r) is the solution of the dispersion
relation. Let us consider first the part played by
the longitudinal inhomogeneity of the plasma (i.e.
let us assume that w depends only on z). It then
follows from Eq. (4.11) that only the longitudinal
component of the wave vector is time-dependent:

dk7

dt (4.12)

where LH is the characteristic length scale of the
longitudinal inhomogeneity21. We should further
point out that interaction with the relativistic beam,
and consequently build-up, is possible only in the
case of those oscillations for which k_, satisfies the
inequality (4.8). But since k2 varies with time
(see Eq. (4.12)), a given oscillation will interact
with the beam only over the small interval of time:

Relaxation of the beam will only occur in a case
where the oscillation is able to build up sub-
stantially from the thermal level over the time At,
i. e. only on condition Im u) At > A where A is a
numerical factor of the order of 10 and takes into
account the smallness of the initial oscillation
energy (for greater detail see Brejzman and
Ryutov [ 80]). On the basis of (4.10), this con-
dition can be written as

1 +•

1 +
(4.13)

where the parameter /un is determined by the
equation:

FIG. 8. Growth rate for beam instability maximized for kz as a function
of the transverse component of the wave vector (the value for growth rate
on the dashed line shown in Fig. 7(a)). The ratio of Irm5'1 to Ifruj2 is
of the order of 1 .5-2 and depends on particulars of the beam distribution
function.

4. 3. Effect of the inhomogeneity of the plasma on
the relaxation process

When an oscillation propagates through a non-
uniform medium, its wave vector varies according
to the equation given by Landau and Lifshits [79]:

It is clear from (4.13) that inhomogeneity influ-
ences oscillations with different k x in different
ways. For values of k± at which the criterion
(4.13) is satisfied, the part played by the inhomo-
geneity is small, since the corresponding
oscillations have time for considerable amplifi-
cation over the period during which they interact
with the beam. Conversely, if it is not satisfied
for certain kx, the oscillations are not in fact
excited at all.

It can easily be seen that at nu A > 1 and
A0> l/p||A the inequality (4.13) is not satisfied
for any value of kx. Hence, if the initial angular
spread of the beam is large enough, A60>l/fji^ A,
then there is no relaxation at all. But if
A0O <, l//j|| A, relaxation proceeds; though as soon
as the angular spread reaches a small value,
A0 ~ l//unA, it is terminated [ 80]. Finally, if

(4.14)

dk
dt

(4.11)
By the inhomogeneity length scale we mean | d lnn/bz|
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inhomogeneity has no effect to speak of on the
relaxation.

Similar considerations indicate that transverse
inhomogeneity does not affect the relaxation
when [81]

1 (4.15)

where the parameter nx is determined in the same
way as nn.

If the relaxation is non-linear, as was pointed
out by Rudakov [53], we have to modify conditions
(4.14) and (4.15) slightly by replacing the factor
A by unity.

Since we are in fact dealing with non-linear
conditions in the problem of beam heating of a
plasma (see below), let us consider which limi-
tations on the inhomogeneity scale the conditions
/jn, n± < 1 lead to. Assuming n ~ 1015 cm"3,
nb ~ 1012 cm"3 , 7 = 5, we get L,,, L± > 100 cm. In
terms of longitudinal inhomogeneity this inequality
may be satisfied without much difficulty; in terms
of transverse inhomogeneity, however, it means
that for a plasma of radius ~10 cm the variation
in density along it should not exceed 10%.

By regulating the inhomogeneity we should be
able, theoretically, to switch the beam instability
"on" and "off". More particularly, by purposely
making the plasma highly inhomogeneous we can
suppress this and certain other instabilities during
beam transport.

4.4. Quasi-linear approximation

The quasi-linear approximation has a very
limited range of applicability in the problem of the
relaxation of a high-current relativistic beam.
Nevertheless, special consideration of it is fully
justified as it represents a necessary first step in
formulating the general theory of relaxation.

As already mentioned, in the quasi-linear
approximation it is assumed that the generation of
oscillations by a beam instability is compensated
by their drift at the group velocity deep into the
plasma. Let us single out a layer in the plasma
(Fig. 9), in which the beam imparts to the oscil-
lations, let us say, 50% of its initial energy, and
let us agree that we will call the thickness of this
layer I the relaxation length22 .

The electron beam enters this layer from the
left, while on the right both the beam and the
oscillations flow out of it. To find the density of
the oscillation energy on the right of the relaxation
region, we should note that here the oscillation
energy flux vgUe (where U4 is the energy density
of the Langmuir oscillations, while v is their

relaxation

22 The finite size of the plasma in a transverse direction within the
quasHinear approximation is insignificant so long as the relaxation length
is small compared with the transverse dimension of the plasma rp. But if
r < I, then when formulating the theory we have to recognize that
oscillations with fairly large kx leave the plasma without having had time
to build up. Thus, at rp « ! the spectrum of the oscillations excited by
the beam should be almost one-dimensional.

foam «• oscillations

-ptasma
ioundary

FIG. 9. Geometry for the determination of relaxation lengths.

characteristic group velocity) becomes, by defi-
nition, comparable with the initial energy flux of
the beam 7nbmc3. Since the group velocity for
Langmuir oscillations excited by a REB is equal in
order of magnitude to v2 /c, from the given con-
dition we find that

(4.16)

We then proceed to calculate the relaxation
length. It should be estimated on the assumption
that waves propagating deep into the plasma have
enough time to build up over the length:

~ A
Imu

(4.17)

where Imu is the instability growth rate. An
important feature of a relativistic beam is the
presence of a sharp growth rate peak (of width A6)
for the oscillations propagating more or less along
the beam (Fig. 8). Consequently interactions
between the waves and the beam only result in a
spread of the longitudinal component of the
momentum. In this case, even when the electron
energy is reduced by an order of the initial energy,
the angle between the electron momentum and the
beam axis remains small (~2A6Q, where A0O is the
initial angular spread of the beam which is assumed
to satisfy the inequality (4.5)). In other words, in
the plasma the beam releases energy of the order of
its initial energy without substantially increasing
the angular spread . We must therefore substitute
into (4.17) the value of Imu calculated using the
initial angular spread, which gives us the following
expression:

TA0O (4.18)

This r e su l t was obtained by Rudakov [53] and
Bre jzman and Ryutov [ 7 2 ] 2 4 .

23 We should point out that in the case of a non-relativistic beam the
release of energy is accompanied by an increase in angular spread up to
A 6 ~ l .

24 Unidimensionality of relativistic beam relaxation was first pointed
out by Fajnberg et al. [71].
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Numerical calculations based on (4.18) give very-
small values for the relaxation length. For
example, at n = 1015 cm"3 , nb = 1012 cm"3 ,
T = 103 eV, A = 10 and 7 = 5 , the relaxation
length is equal to 2 cm, even at A0O ~ 1.

Waves excited within the relaxation region are
absorbed upon further propagation into the plasma
because of various dissipative processes. In par-
ticular, there is a highly effective dissipation
mechanism associated with the inhomogeneity of
the plasma density. This occurs if the Langmuir
oscillations reach a lower density area, where
their phase velocity may drop to a value of the
order of v ; they are then Landau damped, i . e .
absorbed by the plasma electrons.

It is worth noting that although the quasi-linear
relaxation of a relativistic beam is one-dimensional,
it is accompanied by the appearance of a consider-
able number of accelerated electrons [ 72 ] 2 5 .
Indeed, the condition for interaction between the
ultrarelativistic particles and the oscillation
moving along the z axis takes the form:

- ck **• = 0
P

i .e . interaction with this oscillation is possible in
the case of all the electrons lying on the cone
subtending the angle 0 = arc cos (wp/ck) with the pz
axis in momentum space. But if the oscillations
excited in the plasma have wave vectors ranging
from a certain k+ to a certain k_, there may be
interaction with them by all the electrons lying on
the cones with angles 0 ranging from 0 = 0_ =
arc cos (to /ck.) to 6 = 0+ = arc cos (up/ck+) (Fig. 10).

8=8.

FIG. 10. Relaxation of an ultrarelativistic electron beam for one-
dimensional oscillation spectrum. At the beginning of relaxation the
electrons lie on the arc of a circle with radius p = p0 in momentum space.

Since the quasi-linear interaction between electrons
and oscillations moving along the z axis results in
diffusion of the electrons along the lines px= const,
then, as can be seen from Fig. 10, the beam relax-
ation is inevitably accompanied by the appearance
of accelerated electrons.

Formally the quasi-linear problem of steady-
state injection of a beam into a homogeneous

plasma can be reduced to solving the following set
of equations [72]:

c o s 0 ,
9z

n O 1 A ° 21/1* U1 . ZZSpV a i

CCOs6te=p?-d£P\%-^ + -T-d8

(4.19)

p g
(4.20)

Here use is made of the spherical co-ordinate
systems p, 0, y and k, 01 and </»'.

The growth rate of the instability Irau is
expressed in terms of the beam electron distri-
bution function f in Eq. (4.9), while the diffusion
tensor components are expressed in terms of the
spectral density of the oscillation energy W(k, 0', z):

3L

Y = 2TT

4 P
mup / jik
nc3 J k (4.21)

X
si.n0'W(k, 0')d0'
' - cos0') (cos0' - cos0')

= (cos0 - — sin0')/si.n0
wp

Here

Analysis of the set of equations (4.19) and (4.20)
given in Ref. [72] affords the basis for a quanti-
tative assessment of the relaxation process, i . e .
for finding the oscillation energy density and the
variation in 0. and 0+ (see Fig. 10). A graph
showing the dependence of 0. and 0+ on the z co-
ordinate at the initial stage of relaxation is given
in Fig. 11. The calculations were made for a case

(A

LI

1.0

0.8

0.6

0.2 O.k 0.6 0.8

25 This is all the more surprising in that accelerated electrons do not
appear during the one-dimensional relaxation of a non-relativistic beam
(see Ivanov and Rudakov [ 82]).

FIG. 11. 9+ and 6. (see Fig. 10) as a function of the longitudinal co-
ordinate z in relaxation of an ultrarelativistic electron beam in a plasma.
Numerical integration is performed for a case in which the initial distri-
bution function is constant along the arc p = p0 in Fig. 10.
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in which the beam distribution function at the
input to the plasma takes the following form:

2

_ nb6(p-p0)
6 <A6r

0, 9 > A8

4. 5. Classification of non-linear processes

When the Langmuir oscillation level is not too
high (which is actually the case under the conditions
in which the weak turbulence theory is applicable)
we need merely take into account the non-linear
processes in the lower (second) order of the perturb-
ation theory. It is well known [ 74, 75, 83, 84]
that in an isothermal plasma (Te = Ti = T) without
a magnetic field the Langmuir oscillations may
take part in the following second-order processes
(Fig. 12):

(1) Scattering by plasma electrons and ions
(Fig. 12(a));

(2) Scattering by plasma electrons and ions with
transformation into electromagnetic waves
(Fig. 12(b)) and the reverse process (Fig. 12(c));

(3) Merging of two Langmuir oscillations into an
electromagnetic wave (Fig. 12(d)) and the
reverse process (Fig. 12(e));

(4) Merging of a Langmuir and an electromagnetic
wave into an electromagnetic wave (Fig. 12(f))
and the reverse process (Fig. 12(g)).

Let us now describe each of these processes,
beginning with the first.

FIG. 12. Principal non-linear processes in an isothermal plasma without
a magnetic field. Straight solid lines represent particles (electrons or
ions); wavy lines represent Langmuir oscillations (!); dashed lines show
electromagnetic oscillations (t).

Lf a wave with a wave vector k and frequency
u(k) is scattered by a particle possessing a
velocity v, the wave vector k1 and the frequency
u(k') of the secondary wave satisfy the relationship:

u (k ) - u ( k ' ) = ( k - k ' ) v (4 .22)

which is a trivial consequence of the laws of the
conservation of energy and momentum (tiu) is the
wave energy and "hk is its momentum). If the
scattering is effected by particles with a Maxwellian
distribution, on the average the waves give up their
energy to the particles [ 84]. Since the number of
quanta during each elementary scattering event is
conserved, the result is that the frequency of the
secondary wave becomes less than that of the
primary one.

For the process described in Fig. 12(a), Eq. (4.22)
takes the form:

3 Vt e (k 2 - k'2) _
= ( k - H ' ) v (4.23)

In scattering by electrons the absolute value of the
vector v on the right-hand side is equal in order of
magnitude to v. 26 and the right-hand side,
roughly approximated as kv. ~ w vte/c, proves to
be formally much greater than the left-hand side,
which can be estimated as k2vt /u ~ w (v /c) .
But in actual fact this means that the scattering of
wave k into wave k1 can be effected only by particles
whose velocity is almost perpendicular to the
vector k - k' (in this way the equality of the left-
and right-hand sides of (4.23) is maintained). But
since a plasma with an isotropic distribution
function contains electrons with an arbitrary
velocity vector orientation, condition (4.23) does
not impose any limitation in practice on the per-
missible values of k1.

Calculations (see Tsytovich [83]), show that the
probability of scattering is maximal at k1 ~ ( | - i)k,
or in other words, in electron scattering the
spectral transfer is towards oscillations with a
wave vector smaller than the original one by a
factor of 2 or 3. The characteristic scattering
time is determined as

.1 n T
JP X T

4.24

where k is the characteristic wave vector of the
oscillations. Here we have introduced notations
that will be used in what follows: the superscript
on T means that this quantity relates to scattering
of the Langmuir oscillations into Langmuir oscil-
lations, and the subscript indicates that the
scattering is due to electrons.

In scattering by ions, the absolute value of the
vector v on the right-hand side of (4.23) is equal
in order of magnitude to v t i , and the estimate for
the right-hand side is

kvt. ~ i

We are not considering scattering by beam electrons, since there
are very few of them, nj,« n.
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From this it can be seen that if

T i m
me2 10 M

(4.25)

the left-hand side of (4.23) is formally much larger
than the right-hand side (in contrast with the
previous instance) and that there is a considerable
limitation on the reduction in the wave vector
modulus in a single scattering event:

Ak ~ \ mV
MT « k (4.26)

For a hydrogen plasma inequality (4.25) is
satisfied at T » 25 eV, and for a deuterium plasma
it is satisfied at T » 10 eV.

In this way, in each elementary scattering act
due to ions the wave vector modulus is only reduced
by a small value (Ak « k), throughout the tempera-
ture region of practical interest. In this case by
convention the spectral transfer is said to be differ-
ential. No substantial limitations are placed on the
angle between k and k1 by condition (4.23) (in
particular, scattering through large angles is
permissible (see Fig. 13)).

FIG. 13. Wave-vector region into which H-SL scattering by ions is per-
mitted by the conservation laws in a plasma with no magnetic field.
Initial oscillation is indicated by a dot.

The reduction in the wave vector by its own
magnitude takes place within k/Ak steps. The
calculations show that if the oscillation spectrum
has a characteristic width of the order of k from
the outset, the time taken by the process can be
estimated in the following way:

u _ _1_ nT / _ k j \
Ti ~ u_ u t VAky

(4.27)

It is important for what follows to note that at
temperatures that are not too high
(T<mc2(m/10M)2 / 5 , i . e . T <, 10 keV in the case
of a deuterium plasma) for oscillations excited by
the beam (k ~ up/c), ion scattering is much more
effective than electron scattering. A qualitative
explanation for this effect is given e.g. by Kaplan
and Tsytovich (Ref. [ 84], p. 67).

Let us now consider the scattering of Langmuir
oscillations by plasma particles with transformation
into transverse (electromagnetic) waves (which we

shall represent by the subscript t) described by the
dispersion equation:

ut = N/U2 + k2c2 (4.28)

The principal contribution to this process is like-
wise made by the plasma ions.

Taking into account the fact that the variation in
frequency in ion scattering is very small, it can be
said that the frequency of the t wave is close to w .
This means that kt « u /c and the dispersion
equation for the t waves can be simplified:

Accordingly, equality (4.22) takes the form:

1 kV - kV ="2 k vte 2 t c (4.29)

(on the right-hand side we have disregarded k
since kt « k ~ w /c) . If condition (4.25) is satis-
fied, as a first approximation we can disregard
the right-hand side, after which we determine
from (4.29) the wave vector of the t wave,
kt =v3 kvt e /c. The characteristic time fo r i - t
scattering by ions is calculated (see Tsytovich [83])
as Up1(nT/Uje)(k/Ak) , where Ak is determined by
(4.26), i .e . T.4t is equal in order of magnitude to
the SL-Q. scattering time. But the i - t scattering
process is highly sensitive to the inhomogeneity of
the plasma. Indeed, in accordance with Eq. (4.11),
the wave vector for the electromagnetic wave
varies by a magnitude of order kt over time:

At~r *i
P wp

where it is assumed that the transverse scale of
inhomogeneity coincides with the plasma radius.
If the scale is small enough, then t oscillation
rapidly leaves the region of permitted kt values
(4.29) and is consequently not excited. On the
basis of the evaluation given above for T*1, the
condition for suppression of the i-\ scattering can
be written as

r p < 5
c nT M vte
u_ U. m c

(4.30)

This inequality is easily satisfied even at Uf i /nT~l,
and we shall therefore assume in what follows that
there is no S.-X scattering27. However, it can be
demonstrated, as for example by Kaplan and
Tsytovich [ 84], that even if S.-X scattering is
permitted, as far as the Langmuir oscillation
spectrum is concerned the results are qualitatively
the same as for S.-S. scattering.

27 Since kj« C/OJ the effect of the inhomogeneity on i-i scattering
is less important.

893



BREJZMAN and RYUTOV

Let us go on to the process shown in Fig. 12(d).
This process results in electromagnetic radiation
with a frequency close to 2up (since the frequency
of each Langmuir wave is close to w ). The wave
vector for the t waves as determined^ from the
dispersion equation (4.28) is \l~3u / c . The gener-
ation rate is determined from the relationship:

at (4.31)

where the superscript 2 above Ut means that the
radiation is generated at the second harmonic of
the plasma frequency. If the level of t oscillations
is high enough, the decay process t -* S. + S. may
occur, and to take it into account we have to add the
term -upUt Ujg /nmc to the right-hand side of (4.31)
[83]. Furthermore, we have to consider the
possibility that the electromagnetic radiation
escapes at the group velocity (which in the case of
oscillations at twice the plasma frequency is equal
to NA372c)and also the absorption of the radiation
due to pair collisions. As a result, instead of
(4.31) we get the following schematic equation
for Ut

2:

- U + v (4.32)

where vei is the frequency of electron/ion collisions.
Since v . « c / r is normally the case in a hot
plasma, the collisions in (4.32) can be disregarded.

If the time taken for the escape of the radiation
from the plasma is small compared with the decay
time for t-* JL + A, i . e . if the following condition
is satisfied:

^ TT

(4.33)

then the radiation leaves the plasma freely. In the
opposite case, the radiation remains trapped and
its energy density is determined from the balance
between the forward and reverse processes, which
gives us U ^ ~ Ufi.

When the radiation is not trapped, then, as can
be seen from what follows, it may remove a great
deal of energy from the plasma, and we therefore
have to seek ways of trapping it. For this reason
there is a certain advantage to be gained by
creating density distributions for which the density
increases by more than a factor of 4 on all sides
of the relaxation region (Fig. 14). The radiation is
then reflected from the higher density regions and
becomes trapped. Formally, this means that we
can drop the term U*2)c/r in (4.32). What happens
to the radiation then depends on the relationship
between ve\ andup(U8/nmc ). If the former is greater
than the latter28, the radiation is effectively absorbed
by the plasma and is kept at a low level. But if

28 It should be noted that the electromagnetic waves may be absorbed
more effectively close to the reflection points than within the plasma..
This is the result of spatial dispersion effects (see Golant and Piliya [ 85]).

FIG. 14. Radial distribution of plasma density for which there is no
radiation at twice the plasma frequency. The beam passes through the
region with density nx. Hatched area shows vacuum chamber wall.

the former is smaller than the latter, then U*2*
becomes equal to U4. At this level of electro-
magnetic energy density the processes t + Jl ** t
(Fig. 12 (f) and (g)) are initiated. These lead to the
occurrence of radiation at a frequency of ~ 3up,
and it will no longer be confined in the plasma at a
reasonable level of inhomogeneity. It may there-
fore be advisable to surround the plasma with a
reflecting sheath. But to ensure that the radiation
is absorbed by the plasma and not by the walls,
the latter should have a very small absorption
factor (less than v&ir /c) .

4.6. Non-linear relaxation

The part played by non-linear processes in beam
relaxation will be considered for the simplest case
of an isothermal plasma (Te = Tj = T) without a
magnetic field. This problem was studied by
Altyntsev et al. [1] and in greater detail by
Brejzman, Ryutov and Chebotaev 186], which is
the one we shall describe here.

If we substitute the oscillation energy density
calculated from Eq.(4.16) on the basis of a quasi-
linear approximation in expression (4.27) for the
spectral transfer time due to the principal non-
linear process (JP-JP scattering by ions), the time
will in virtually every case be small in compari-
son with the inverse growth rate of the beam
instability. This means that in actual fact a
steady-state spectrum is created not through drift
of the oscillations but through their transfer from
the resonance to the non-resonance region of the
spectrum. As a result, the energy density for
resonance waves is substantially reduced, while
the relaxation length increases with respect to
quasi-linear relaxation length. The relaxation
length may become considerably greater than the
plasma radius r . Nevertheless, if the condition

P

r > Av /Imu
P g'

is satisfied (and, as mentioned in Section 4.4, it
is very soft), we can disregard the escape of the
oscillations both in the longitudinal and transverse
directions, and apply the following equation for
the spectral function W(k,z,t):

^ = 2(Imuat T ) W (4.34)
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The term TW describes deformation of the
Langmuir oscillation spectrum through ion
scattering. F is a linear integral functional of W:

F= / A(k,k') W(k')dk'

The expression for the kernel A(k,k') can be
found, e.g. in the surveys of Galeev et al. I 75]
and Tsytovich [ 83] . In order of magnitude F"1

coincides with T. derived in Section 4 .5 .
As was demonstrated in Section 4. 5, only

oscillations with wave-vectors close in the modulus
(see Eq. (4. 26)) can interact with each other
during ion scattering. It follows from this fact,
and also from the structure of the beam instability
growth rate (which is positive in the region shown
in Fig. 7), that for non-linear relaxation the
spectrum of oscillations interacting with the beam
should be essentially tridimensional, i . e . in the
resonance region there should be oscillations with

29
all values of kx. The tridimensionality of the
resonance oscillation spectrum is one of the dis-
tinctive features of the relaxation mechanism
under discussion, i . e . the electric field of the
oblique waves (kx~kz) directed at an angle with
respect to the beam axis brings about a consider-
able increase in angular spread.

Let us consider the initial relaxation stage where
the beam momentum spread is still small
(|Ap|-£p0). In this case it follows from (4.20) by
definition of £>aa thatee

not clear whether there are any steady-state
spectra at all in the problem we are considering.
However, on physical grounds it is obvious that
even if the system lacks a steady-state solution,
there should be a quasi-steady state in which the
spectral function W(k,t) fluctuates around a mean
level <W(k,t))>, where the brackets show time
averaging. Inasmuch as the conservation laws
permit scattering over large angles (see Fig. 15),
it is natural to assume in this case that the oscil-
lation spectrum is more or less isotropic (the
anisotropy is of the order of unity). We then get
from Eq. (4. 21) the following approximation for

ee
mu
n

(4.38)

- — 2>tee
(4.35)

FIG. 15. Theory of non-linear relaxation of an ultrarelativistic beam
in a plasma with no magnetic field. The concentric circles are lines
along which there is isotxopization of the oscillation spectrum. Arrows
indicate direction of spectral transfer. The resonance region is hatched.
The region permitted by conservation laws for scattering of waves kz0,
kx0 is illustrated.

Taking into account, furthermore, the fact that
for the broad-angle oscillation spectrum (kx~k2)
all three diffusion factors are of the same order
of magnitude, it can be stated that the increase in
angular spread is accompanied by spreading of
the beam electron energies in the direction of
lower values, and that at A0 >A0_

A0

To find the relaxation length, i . e . the length at
which A(f/# and correspondingly A0 become of the
order of unity, we have to determine the oscil-
lation spectrum W(k) and then estimate the dif-
fusion factor &QQ. In the steady state the spec-
trum is determined from the condition:

Imu(k) + F(k) = 0, W(k) f 0

Imu(k) + F(k) S 0, W(k) = 0 (4.37)

The corresponding problem reduces to the solution
of a first-order integral equation, for which we
know that, except for certain degenerate cases,
there are no regular solutions. It is therefore

29 In general, we might have a situation in which there is only a
spectrum of non-resonance oscillations suppressing noise in the resonance
region, but analysis shows that such states are not actually possible.

The energy density of the oscillations Uj is esti-
mated from the condition Imu ~ F i n the region
k ~ u p / c . On the basis of Eqs (4.10) and (4.27) we
get

U.
M T^ 4

(4.36) and, consequently, that

i . e .
1/4

Here we have introduced the notation30

. _ o c n m A me
"lOuTnT I V ~T~

2 N 2

(4.39)

(4.40)

(4.41)

The quantity S. is obviously the beam relaxation
length.

We should point out that there is a misprint in the paper of
Altyntsev et al. [1] ; the factor k/Ak has been omitted in the estimate
of the spectral transfer time and in the formula for i.
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Let us now find the energy q released by the
beam per unit plasma volume per unit time:

"3 / 4

(4.42)

One can see that q has a sharp peak at small z
(z ~.0A0Q), after which it rapidly diminishes. At
a distance of the order of -0A0Q the beam loses
energy of the order of <#A0O (calculated per beam
particle). The bulk of the energy ~ S', however,
is lost by the beam in a considerably greater
distance (~J0).

The results given above were obtained on the
assumption of non- steady state and, in fact, the
isotropy, of the turbulence spectrum. It should
be emphasized, however, that the problem cannot
be considered definitively solved. In particular,
it can be demonstrated [ 87] that in the so-called
diffusion approximation based on a simplified
expression for rthat makes allowance for the
smallness of Ak/k, there is a genuine steady-
state solution for (4. 34). Let us look at this in
greater detail.

In the diffusion approximation, Eq. (4.34) takes
the following form:

j~r W(k, x) = W(k, x) 2 Imu

+ 4 k 2 / T ( X ' y ) W ( k ' y ) d y
- l

Here we use the notations:

x = cos0, y = cos0'

2 u mu2

T(x,y) " T l n T T

X [ l - x 2 - y 2 + 3xV-3xy

+ 3 xy3+ 3 x3y - 5 x3^]

(4.43)

(4.44)

The kernel of the integral T(x,y) is degenerate and
constitutes a polynomial of the third order with
respect to x. Generally speaking, the angular
dependence of the growth rate of the instability
Imu does not take this form. From this it follows
directly that in the genuine steady state the function
W may differ from zero for the given k only in the
discrete set of values x (x = xi(k)). The lines xi(k)
on which the spectral distribution is concentrated
will be termed rays. In accordance with what has
been said, the function W should take the following
form:

jr

W(k,x) = V Wi(k)6(x-Xi(k)) (4.45)

i = l

The shape of the rays, xj(k), the number of
them, jV, and the distribution of intensities,
now have to be determined from the conditions
(4.37), which give us a set of 2JVnormal differ-
ential equations for Xj(k) and Wj(k). In a case in

which the angular spread of the beam is small
(A0 < 1), the ray located in the resonance region
does in fact coincide with the line of the peak
growth rate Imu(k,x) with respect to x, there
being no other rays in the region of large k
(k > Wp/c) [ 87] . In this region W ~ k"3. For smal-
ler k the function W(k) becomes more complex, but
the ray-like nature of the spectrum is of course
conserved. Since in this case a larger portion of
oscillation energy is concentrated in the resonance
region than in the case of the isotropic spectrum
(~i instead of ~A0), the estimate of the diffusion
factor @QQ changes as compared with (4. 38) and
takes the form:

mu.

nA0
U, (4.46)

This results only in a slight change in the de-
pendence of the angular and the energy spread of
the beam on the longitudinal co-ordinate:

\l/5
(4.47)

However, the relaxation length B. is the same as
before (see Eq. (4.41)).

In both the relaxation schemes formulated
above, the energy lost by the beam is transferred
into the long-wavelength area of the spectrum by
ion scattering. We shall point out below a few of
the mechanisms limiting the long-wavelength
oscillation level. Which one is the principal
mechanism has to be decided taking into account
the concrete experimental conditions. We should
stress, however, that if the removal of energy
from the long-wavelength region of the spectrum
is efficient enough, the beam relaxation does not
depend on the mechanism by which the long-wave-
length oscillations are damped. The words "ef-
ficient enough" mean that the characteristic
damping time for long-wavelength Langmuir oscil-
lations should not exceed the time taken for them
to be transferred from the region k ~ u /c into
k < Wp/c by ion scattering (which is equal to T.ce;
see Eq.(4.27)).

The most effective mechanism for the damping
of long-wavelength Langmuir oscillations
(k < Up/c) is their transformation into electro-
magnetic waves by interaction with oscillations
from the region k > up/c (see Brejzman et al. [ 86]
and Brejzman and Ryutov [ 88]). The process in
question is shown in Fig.l2(d). Using the esti-
mate in Section 4.5, we can easily establish that
this process may hamper the build-up of oscil-
lations in the long-wavelength region if

T Xmc2

i.e. at T ^2 keV (for a deuterium plasma).
If the electromagnetic radiation is not trapped

it will remove from the plasma a large amount of
the energy lost by the beam, which is of course
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undesirable when the beam is being used as a
means of heating the plasma. Some of the
arrangements which can be used to counteract
this effect are described in Section 4 .5 .

At temperatures of less than 2 keV, the
removal of energy from the long-wavelength
region is not efficient enough, and therefore the
spectral transfer due to H -S. scattering by ions
causes a build-up of these oscillations in the
region k <: Ak, where concentration of energy
becomes very high [86] (see Fig. 16). Limitation of
the energy density of these oscillations may be due
to pair collisions. But if the collision frequency
is small, it is obviously necessary, in calculating
the wave absorption rate, to make use of effects
which reach beyond the approximation of weak
turbulence (see below).

( a )

FIG. 16. Shape of the Langmuir oscillation spectrum: (a) without
damping in the region of small k; (b) with damping. In (a) a high-energy
density peak forms in the region of small k.

A relaxation model differing substantially from
the one discussed above was formulated by
Rudakov [ 53 ] . He suggested that the chief non-
linear process is scattering of the oscillations by
plasma electrons and in fact totally disregarded
scattering by ions.

The chain of events leading to the establishment
of the steady state in this model can be roughly
represented in the following way. Oscillations
are generated by the beam in the resonance region
(see Fig. 7) and because of scattering by electrons
are continuously transferred to the k < <o,/c region,
where, as was assumed by Rudakov [ 53 J, they are
absorbed as a result of binary collisions. The
energy density of the oscillations in the k < up/c
region is estimated by Rudakov assuming that the
time T " calculated from their energy density UJ
should be exactly equal to the reciprocal of the
maximum growth rate of the beam instability.
This means the non-linear processes suppress the
instability at all points, except at the maximum
growth rate point, i . e . only oscillations moving
almost strictly along the beam are to be found in
the resonance region. In this case, as pointed
out in Section 4.4, the inequalities ^>pp > 3>p, ^ee

are satisfied, and relaxation is practically one-
dimensional (since the beam energy losses are
accompanied by only a small increase in angular
spread). This is the most characteristic feature
of Rudakov1 s model.

According to this model the relaxation length is
calculated in the following way. From the con-
dition TgC ~ (maxlmw)"1 we estimate the energy
density U1 of the non-resonance oscillations
(k< U p / c ) :

T> nT
T 3/2

• maxlmu

Knowing U'g.we can find the energy q dissipated
by the beam in a unit of plasma volume per unit
time: q ~ v£. UJ (where v&i is the frequency of
electron/ion collisions). Further, by dividing
the beam energy flux by q we can estimate the
relaxation length:

(4.48)

It can be seen that the relaxation length is a strong
function of the initial angular spread of the beam
A0o* this b e i n g a consequence of the one-di-
mensionality of the relaxation referred to above.

However, in the most important temperature
region from the practical point of view
(2 keV < T < 10 keV), Rudakov's solution is ap-
parently not realizable. Indeed, if we make his
assumption [ 53] that the non-resonance oscil-
lations fill the entire range of wave vectors fairly
uniformly from k = 0 to k = up/c and estimate the
time taken for spectral transfer of these oscil-
lations as a result of ion scattering, we can easily
see that this period of time (T -£ 10 keV; see
Section 4.5) is considerably less than the inverse
growth rate of the instability. Consequently, ion
scattering causes "bunching" of the oscillation
spectrum near the point k = 0, after which, as we
know from Tsytovich [83], the non-linear growth
rate due to electron scattering is sharply di-
minished. Thus we arrive at a situation in which
the instability in the resonance region remains
large, and a step-by-step transfer of oscillations
due to the ion scattering considered above sets in.

It should be pointed out, however, that models
of the type discussed by Rudakov are possibly
valid in cases where the system produces a
spectrum with a high energy density at k -* 0 (i. e.
at T ;C 2keV). But even in this case the relaxation
length differs from (4.48), since the smallness of
the wave vectors forming the bulk of the spectrum
alters the expression for the rate of scattering of
the Langmuir oscillations by electrons.

We shall now deal with the limits of applicability
of the relaxation length (4. 41). When the beam
density r^ and consequently the Langmuir oscil-
lation energy density increases, we encounter
effects that do not fit into the picture drawn above.
These effects consist for the most part in a modi-
fication of the dispersion properties of the plasma
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under the influence of turbulence. The most sig-
nificant modification takes place in the acoustic
branch of the oscillations, which at a fairly high
level of turbulence becomes unstable. This fact
is related to the "negativity" of the Langmuir
oscillation pressure. It can be shown [89] that
when the plasma density is perturbed by a value
6n the pressure of the Langmuir oscillations
varies by

6n
6 P -

n -k

n -k2r2
6n
n m e '

U,

with 6p < 0 at 6n > 0. It is clear from this that at

(4.49)

low-frequency density fluctuations can occur spon-
taneously in the plasma. Bearing in mind that Uj
can be expressed, using Eq. (4. 39), in terms of
the beam and plasma parameters, we shall re -
formulate the inequality set out above in the form
of a restriction on these parameters:

m

The instability growth rate occurring under
condition (4.49) can be expressed as follows:

Imw
U,

Mnk2r% '

.1/2
T

Me2

1/2

(4.51)

where K is the wave vector of the acoustic per-
turbation. The fastest growing perturbations are
those with the highest possible value of K, which
is equal to k (at K > k we cannot speak of a Lang-
muir plasmon gas). Under typical experimental
conditions the growth rate (4.51) is very high
compared with the inverse beam injection time.

The development of the instability in the plasma
causes density inhomogeneities which begin to
increase and finally reach the point where the
generation rate for the Langmuir oscillations is
substantially slowed down by effects similar to
those described in Section 4 .3 .

Reliable estimates of the relaxation length in
the limit (4.50) are not available. If it is
assumed that the density of the Langmuir oscil-
lation energy is "frozen" at the level of (4.49),
which corresponds to the excitation threshold for
an acoustic instability, we get for the relaxation
length an expression which does not depend on the
beam density:

(4.52)

Since the wave energy density in the limit (4.50)
still appears to increase with nb (though more
slowly than for small nb), Eq. (4.52) should be
understood more as an upper estimate of the
relaxation length for high-density beams.

When going from (4.49) to (4.50), we applied
(4.39) for the energy density of the Langmuir
oscillations. Of course, this is valid only if
there is no peak in the spectrum in the region of
small k. Otherwise the source of the instability
may be the spectrum peak itself, and acoustic
fluctuations may occur at much smaller values of
Ujg, as compared with (4.49). The initial stage of
this instability was studied by Zakharov [ 90] .

There have been attempts of late to make both
analytical [ 91] and numerical [92-94] studies of
the effects under conditions where the acoustic
instability described above begins to manifest it-
self. The general idea behind these studies is to
determine the deformation of the Langmuir oscil-
lation spectrum due to interaction with plasma
inhomogeneities31 (see Section 4.3). As a result
of the interaction there is, first, a decrease in
the effective growth rate of the beam instability
(see Ryutov [95]) and, second, at a fairly high
level of inhomogeneity there is a possibility of the
absorption of the oscillations by plasma electrons.
Unfortunately, all the studies listed here deal with
a highly idealized case of one-dimensional turbu-
lence.

(4«50) 4 .7 . Effect of a magnetic field on relaxation

We have not yet considered effects related to the
presence of a magnetic field in the plasma. In
actual fact, however, even a weak magnetic field
(GJH < UL ) may substantially affect relaxation of the
beam. And indeed, the conclusions reached in
Sections 4.5 and 4.6 on the structure of the
Langmuir oscillation spectrum and transfer to the
region with small wave vectors were based on an
analysis of the conservation law (4. 23), which is
largely dependent on the dispersion properties of
the Langmuir oscillations. Taking the magnetic
field into account, we get an additional term to
the Langmuir oscillation frequency, equal to

^4
k2 J l^c 2

From (4. 23) it is clear that the part played by the
magnetic field is considerable when this additional
term exceeds(3/2)(krD)2 u . Assuming k ~wp/c
and kj.~k (this situation occurs in the case of the
spectrum considered above), we get a condition
for which we have to take the magnetic field into
account: u^ > u)p(vte/c)2. This condition can be
rewritten as j3 < 1. Since in most experiments it
is just this inequality that is satisfied, it would
be very helpful to improve the theory by taking
the magnetic field into account.

Progress along these lines is attended by
certain difficulties of a formal nature, namely,
the fact that the equations for the Langmuir oscil-
lation spectrum are more complicated, and the

Similar effects were discussed earlier in connection with non-
relativistic beams [ 95-97] in the approximation of the given
inhomogeneity.
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relaxation process involves new types of oscil-
lations, such as helicons, cyclotron oscillations,
and so on. However, if we assume that the relax-
ation is associated with the excitation only of
Langmuir oscillations with an energy density
restricted through ion scattering, then we can
already make some qualitative statements on the
role of the magnetic field.

We now apply the conservation law (4.23) modi-
fied so as to take into account the additional
(magnetic field) term for the oscillation frequency:

/ . _ " _ _ " _ . ...2
3 v_te_

2

ky

1 -
k-V

= (k - k ' )v . (4.53)

It can be seen from this that for /3 < 1 an oscil-
lation with wave vector k ~ u p / c may be scattered
into the region of k space depicted in Fig. 17, i . e .
the scattering in the magnetic field leads, first,
to "blurring" of the spectrum over the wave vector
magnitude and, second, to slow ("differential")
angular transfer (the angular dimension of the
region into which transfer is allowed is of the
order of |3(kAkc2/u2) In this case we can write
down the following expression for T.8':

.it 1 nT M

mc2/3
(4.54)

where the additional factor /3~ is associated with
a reduction in the volume of phase space into
which the transfer is allowed. Comparing Eqs

FIG. 17. Wave-vector region into which 2-i scattering by ions in a
magnetic field with 6<1 is permitted by the conservation laws. Initial
oscillation is indicated by a dot.

(4.54) and (4.27), we see that at |3 < 1 the quantity
Uj, as estimated from the condition Imu ~ (TJ )" ,
increases by a factor of /3~ compared with the
zero-field case, which results in a reduced relax-
ation length. To take this effect into account it
was proposed by Altyntsev et al. [ 1 ] that the
relaxation length estimated on the basis of (4.41)
should be multiplied by /3. It should be noted,
however, that this conclusion still requires care-
ful checking.

In a plasma with /3 < 1 the scattering of the
Langmuir oscillations has yet another important
feature: as the magnetic field increases, so does

the portion of energy which the oscillations impart
to the plasma ions (this is proportional to the
magnetic term added to the oscillation frequency).
We should recall that in a plasma without a mag-
netic field the portion of energy transferred to the
ions in the scattering process does not exceed
3/2 (T/mc2).

Even though for /3 > 1 the magnetic field only
slightly affects the dispersion of the Langmuir
oscillations interacting with the beam, and the
non-linear processes in which they participate, it
may still substantially alter the relaxation pattern.
The reason for this is that the beam excites oscil-
lations which do not exist at H = 0. More particu-
larly, as shown by Brejzman [ 98] and by Brejzman
and Feizov [ 99], relaxation may involve the exci-
tation of whistlers.

It follows from linear theory that whistlers are
excited by the beam less effective than Langmuir
oscillations; but under conditions where the energy
density of the Langmuir oscillations is limited by
non-linear processes, it may well be the whistlers
that are responsible for the beam relaxation. A
formal solution of the beam-whistler interaction
problem is derived by Brejzman and Feizov [ 99].
In the present paper we shall estimate the part
played by this effect on the basis of qualitative
considerations.

In the presence of a magnetic field Hz the condi-
tion for interaction between the beam electrons
and the wave is

«(k) " kzvz - = 0 (4.55)

where u'H =uH/y is the relativistic electron cyclo-
tron frequency.

Equation (4.55) follows from application of the
energy and momentum conservation relations
during a radiation (or absorption) event of a wave
by a particle. Here^uj is the energy of the radi-
ated wave, while-nnu^ is the change in the "trans-
verse" energy of the particle during radiation.

As can be seen from the dispersion equation for
the whistlers, i . e .

u(k) = uHk|kz|c (4.56)

in a weak magnetic field (uH < up) the phase veloci-
ty of these waves is small compared with the speed
of light. Hence the Cherenkov resonance (n = 0)
with beam electrons is impossible for^whistlers.
But if n f 0, then we can disregard w(k) in the
resonance condition (4.55). In other words, the
change in the "transverse" energy of the particle
is much greater than the energy losses in radiation
of the wave. This means that the action of the
whistlers on the beam results in almost elastic
scattering of the particles.

We now derive the change in angular spread of
the particles A0 for steady-state injection of the
beam into the plasma. To do this we shall esti-
mate the distance from the plasma boundary at
which the energy density of oscillation excited by
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the beam with a spread of A0 attains a level con-
siderably exceeding the thermal level:

z ~ A vg2./lmu

Here A is a factor of the order of 10, v is the z
component of the wave group velocity, and Imu is
the instability growth rate. For Imu we have the
expression (see Brejzman and Feizov [ 99]):

Imu ~Un —
b kc 1

A6'
(4.57)

This gives us

Z *"*"' 1\ •"~~

(we have assumed that at A0 ~ 1 the beam excites
oscillations with a wave vector k ~u^/c).

As can be seen from (4.59), the relaxation length
diminishes as the magnetic field decreases. The
limitation on the field magnitude from below is due
to the fact that as Hz •* 0 the phase velocity of the
whistlers becomes the order of vt i, and we have
to take their absorbtion by plasma ions into
account. As a result we get the following con-
dition for the applicability of (4, 59):

2 2 1/4
uH> up(T0T/Mc)

By comparing (4.59) and (4.41) we get the con-
dition at which the excitation of the whistlers sub-
stantially influences the relaxation process:

If the non-linear interaction of the waves with each
other is negligibly small, this relationship will
also give the z dependence of the angular spread of
the beam. Thus, in a quasi-linear approxi-
mation32:

A0(z)-(z/ i) 1/2

where the quantity:

nb

(4.58)

(4.59)

is the beam relaxation length under conditions
where it is the excitation of the whistlers that
determines the relaxation.

The whistler energy density Uw at a distance z
from the plasma boundary can be found from the
law of conservation of momentum flux. There are
no oscillations at the input to the plasma, but the
electron momentum flux is equal to r^vp, where v
and p are the velocity and momentum of the elec-
tron, respectively. Taking into account the fact
that the relaxation reduces essentially to an
increase in the angular spread of the beam, we
get

r^vp = nbvp( 1 - A02(z)) + v k
U..

g z

It follows from this that

Uw(z)~nbvpA02(z) (4.60)

At a distance 4W from the plasma boundary the
oscillation energy density is comparable with the
beam energy density. The wave energy flux,
which is equal to vgzUw, is still substantially
smaller than the beam energy flux, i.e. the
relative loss of energy by the electrons AS\S is
small:

To

32 As shown by Brejzman and Feizov [99] , non-linear processes for
whistlers are unimportant in the case under consideration.

^o m.
20AM

me
T

We should point out that these results all relate
to the case of a beam infinite in the transverse
direction, i .e. it is understood that the inequality
rb > iw is satisfied in which rb is the beam radius.
In the opposite case (rb < S.v) the waves propagating
in a radial direction leave the region of inter-
action with the beam without having had time to
be amplified. But the limitation rb > SL may prove
unimportant if, on account of the radial non-
uniformity of the plasma density and magnetic
field, the plasma column constitutes a waveguide.
In the case of whistlers this state of affairs is
quite feasible. The qualitative picture of the
relaxation in this case remains the same as in
the case of an infinite beam.

Obviously, the whistlers may be excited by the
beam not only in the case j3 > 1 which we have
discussed here, but also when (3 < 1. It is not yet
clear, however, whether the whistler mechanism of
relaxation can be the predominant one when j3 < 1.

To answer this question we need to study other
relaxation mechanisms more thoroughly than has
been done so far (primarily relaxation of the
beam through interaction with Langmuir waves).

So far we have been discussing effects occurring
in the region of weak magnetic fields, i .e .
uH < w . Naturally, when moving on to strong
magnetic fields (<oH > u ), we find that the relax-
ation process is completely different. More
particularly, there is a considerable change in
the dispersion relation, the expressions for the
growth rates, and so on. Formulation of a theory
for this region of parameters is in some measure
facilitated by the fact that in a strong longitudinal
field the motion of the beam electrons and plasma
can be considered one-dimensional.

An analytical solution of the problem has not been
found. We do, of course, have numerical cal-
culations (see Toepfer and Poukey [ 92,100],
Thode and Sudan [ 93], Sudan [ 94]), but they are
based on the assumption of the one-dimensionality
of both the particle motion and the oscillation
spectrum. Such models are undoubtedly of use,
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though it must be borne in mind that in a real situ-
ation, even when uH -* °o, the oscillation spectrum
for non-linear relaxation can obviously not be
considered one-dimensional33. Indeed, as can be
seen from the dispersion relation for electron
oscillations in an infinitely strong longitudinal
magnetic field, namely

= 0

their spectrum is of the decay type and the laws of
conservation permit decay of a wave spreading
strictly in the direction of the field into two other
waves (with finite values of kx). As the estimates
show, the decay instability may develop within
times comparable to the inverse growth rate of
the beam instability, and hence it must definitely
be taken into account in the problem under con-
sideration.

4 .8 . Macroscopic effects in the relaxation of
REBs in a plasma

In studying the relaxation of an electron beam we
assumed that the parameters of the plasma
(density profile and temperature) were fixed. If
the beam is used to heat the plasma we can limit
ourselves to this approximation only for the rather
small interval of time during which the plasma
parameters cannot be altered to any great extent
by the beam. To describe the whole heating
process we need to solve the self-consistent
problem of beam relaxation and motion of the
beam-heated plasma.

The most important effect in this connection is
the occurrence of inhomogeneities in the plasma
density. If the density gradient exceeds the
critical value

Vn > Vn „ = E
1 ' 'crit -yc-yc

(see Section 4.3), the relaxation is terminated.
This effect is most pronounced for the condition:

_ n (4.61)

where $ is the relaxation length. The condition
(4.61) is a completely realistic one.

As an illustration of the problems that arise, let
us consider the beam heating of an initially uni-
form plasma filling the half-space z > 0, and
assume furthermore that condition (4.61) is
satisfied. Immediately after the beam is switched
on, its energy is released in a layer of thickness
z ~ It. As the plasma in the layer gradually heats
up, it expands at an ever greater rate and becomes
more and more inhomogeneous. When the charac-
teristic density gradient reaches the critical value
for suppression of the instability, the energy
begins to be released in the next layer of thickness

$., where the plasma, in its turn, becomes inhomo-
geneous, and so on. Of course, in actual fact the
relaxation region shifts into the plasma continu-
ously and not in spurts (this can be called a
relaxation wave).

Depending on the ratio of the mean free path of
the plasma electrons to S., we use one or the other
set of gas-dynamic equations for solving the
problem. For the sake of clarity we shall con-
sider a situation in which the mean free path is
small and thermal conductivity can be disregarded.
We can then say that over a small interval of time
(small as compared with J>(T/M)~*) the plasma
density in the region in which the beam energy is
released diminishes by An ~ (At2T/M^2)n, where
T is the temperature to which the plasma is
heated by the beam over the time At:
T ~«?(nb/n) (cAt/4). The longitudinal density
gradient attains a critical value over the time
At0 ~ ^ (e M/T)^ , where the small ratio | Vn|crit /a?
is denoted as e.

After this time interval the relaxation region
shifts in the direction z > 0 by a distance of the
order of & so that the velocity of the relaxation
wave may be expressed as

I
At0 V M

(4.62)

where T is now taken to mean the temperature
which the plasma possesses behind the relaxation
wave front:

cAt.

33 With the exception of the initial stage of beam relaxation
(Matsiborko et al. [101]).

T ~
n

It can be seen from (4.62) that the relaxation
wave is propagated at a velocity greatly exceeding
that of sound in a beam-heated plasma.

The results of more accurate computer cal-
culations described by Brejzman et al. [86] are
shown in Fig. 18, which gives density profiles at
successive moments of time. The time is
measured in units of AtQ, and the distance in
units of It.

5. CONCLUSIONS

The experiments conducted so far [1-9] demons-
trate that the collective dissipation of REB energy
in a plasma is a fact. For example, in the experi-
ments described by Abrashitov et al. [3] and by
Kapetanakos and Hammer [7] it was established
that the beam transfers to the plasma as much as
20% - 25% of its initial energy under conditions in
which the binary collisions were known to be insig-
nificant. The heating of the plasma may have been
due either to direct dissipation of the beam energy
(beam instability) or to Joule dissipation of the
return current, due to anomalous resistance. In
some of the experiments it proved possible to
create conditions under which only one of these
mechanisms was active and each of them could be
observed separately. For example, in the study of
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FIG. 18. Propagation of relaxation wave (result of numerical integration).
Plasma density perturbation profiles are shown for three successive moments
of time.

Korn et al. [9] the heating can be ascribed with a
high degree of certainty to the return current. In
the investigations of Altyntsev et al. [1] (at a
plasma density n<1012 cm"3) and those of Kojdan
et al. [2] (at n>1014 cm"3) it can be attributed to a
beam instability.

Literal application of the results contained in
Section 4 to explain experiments of the type
reported in Refs [1-9] is impossible because the
plasma was in some cases markedly non-isothermal
(Te » Tf), and in a plasma of that kind, as we know,
other types of oscillations (as compared with those
considered in Section 4) occur and, correspondingly,
other non-linear processes. Their role is illus-
trated most strikingly in cases in which a current
flows through the plasma and creates ion-acoustic
turbulence with a characteristic spatial scale of the
order of a Debye length (for example, this is the
situation when there is anomalous resistance).
Under such conditions the J?-S scattering of
Langmuir oscillations by electrons and the two-
quantum absorption of S. and s plasmons by elec-
trons (the symbol s relates to sound waves) proceed
very effectively. Outwardly these processes appear
to be collisional damping of the Langmuir oscilla-
tions with a decrement of the order of up(Us/nTe).
In the case of fairly high values of Us the beam
instability may be completely suppressed.

Direct comparison of the results in Section 4
with data reported in Refs [1-9] is impossible also

because the density ratio nb/n used in those studies
is not small enough. At the limit of applicability
the theoretical results can be used to estimate the
relaxation length only for the smallest available
experimental values of nb/n (nb/n ~10"3 - 5X 10"4).
They do not contradict the experimental data in
this region.

If one has in mind the use of REBs in controlled
nuclear fusion research, one should apparently
consider using plasmas with a higher density than
is usual in Refs [1-9] (e.g. n^.1016 cm"3). In this
case the region of beam and plasma parameters
of interest in experiments and the limits over
which the theory is applicable overlap to a large
extent. As an illustration we shall give a numerical
example: n = 1017cm"3; T = 5keV; nb = 1012cm"3;
7=2; 87rnT/H2 ~ 1 . For these parameters we
satisfy the condition for the applicability of weak
turbulence theory (see (4.50)), hence the relaxation
length may be calculated from (4.41). This cal-
culation gives i~400 cm (for a hydrogen plasma),
which is quite acceptable. Generally speaking,
at T~ 3X 103 - 104 eV the relaxation lengths are
small even for very moderate beam parameters.

However, since at lower plasma temperatures
the relaxation length is considerably increased,
the initial heating stage should be the result not
of a beam instability but some other mechanism,
for example Joule dissipation of the return current.

Since the heating of a plasma with density
n>1016 cm"3 appears to require the use of beams
with highly supercritical currents, for purposes of
transport we shall need neutralization of the beam
charge. Current neutralization does not seem to
be essential, at least in a fairly strong magnetic
field. The main difficulty involved in transport
under these conditions is the beam instability.
However, the most hazardous large-scale instab-
ilities are suppressed by a strong magnetic field,
and to counteract small-scale instabilities we
can make the plasma highly inhomogeneous by
artificial means.

On the whole, the prospects for using REBs for
heating plasma can be considered encouraging; in
principle it appears possible to solve the two main
problems, namely, transport of the beam and
rapid energy deposition in the bulk of the plasma.

APPENDIX I

In an infinitely strong longitudinal magnetic field
we can disregard the displacement of the particles
across the lines of force. Accordingly, only the
z component of the current:

6jz = -enfe6v - ev 6nb

will be perturbed in the wave. On the basis of
the continuity equation:

-iw6nb+ikzv6nb +ikznb 6v = 0
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and the equation of motion:

-iu 6v + ik2 v6v = -

we get an Ohm's law in the form:

ie2nbuEz
6 j z = mT3(w-kzv)2 ( -1-

For this Ohm1 s law the Maxwell equations split
into equations for the TM wave, in which the <p
component of the magnetic field and the r and z
components of the electric field are perturbed,
and into equations for the TE wave, in which the
r and z components of the magnetic field and the
cp component of the electric field are perturbed
(we are dealing here with axisymmetric perturba-
tions). The presence of the beam has no effect
whatsoever on the TE wave, and we shall there-
fore consider only the TM wave:

Assuming that the conductivity a of the wall is
such that the skin depth is small compared with
the tube radius, we can apply the Leontovich
boundary condition at the point r = R (see Landau
and Lifshits [42] p.355):

(A.I.7)

Substituting the solution (A.1.5) and (A.1.6) in the
boundary conditions (A.1.4) and (A.1.7), we get a
system of equations for the constants A, B and C,
and from their condition of solvability arrive at the
dispersion relation:

In(*R)+€l'o(KR) =
I0(Krb)

2 uf_
Z " 2

y

z r 9r c

(A.1.2)

1 9 47r

The set of equations (A.1.1), (A.1.2) can be reduced
to a single equation for E :

_1 _9_ 9Ez
r 9r r 9r 1 - E_ = 0 (A.I.3)

where

and

K2 = k2 ~

wj(r) =4vre2nb(r)/m

For an infinitely thin annular beam

n, (r) = o * I b ' 6(r- iv )b ' 27rer, v b

D

In this case by integrating Eq.(A.1.3) with respect
to r from r b - 0 to r b +0 we can easily see that the
following relationships hold:

E z I r. + 0 = E.

E' - E 1

r b - 0

2e lib I

In the region r < r h

(w -kzv)a

Ez= AI0(*r)

E.

(A.1.4)

«= 0

(A.1.5)

(the solution K0(Kr) is discarded from the boundary
condition for the field at the point r = 0). In the
region r >rb

E z = BI0Ur)+CK0(Kr) (A.1.6)

At the limit a - 0° it changes to (2.9), and at <cR«l
to the following equation:

-R-+-^j (A.1.8)

If we assume here that 0 = °o (i.e. e = 0), then we
arrive at the dispersion relation (2.10).

To study the resistive wall instability one only
needs to consider the limit K R < 1 , since at KR>S>1
the oscillation field diminishes exponentially
between the beam boundary and the wall (we
assume that R - rb ~ R ) , and the part played by
dissipation in the wall becomes negligibly small.
We shall therefore make use of an approximate
dispersion relation (A.1.8). Assuming the para-
meter e to be small, we can easily derive an
equation for the growth rate using the perturba-
tion theory:

Imu = f
2Rc

where u is determined from the "unperturbed"
dispersion relation (2.10). The latter has two
solutions, a fast wave and a slow wave:

k z v
v2 R

1 + \ f In —
c2 r b

X 1 ± . l - - h r In— + \ ? 2 l n 2 ^
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As is readily verifiable, it is the slow wave solu-
tion that is unstable. Direct verification shows that
the slow wave possesses negative energy (in the
laboratory frame of reference).

We shall not give an unwieldy general expression
for the growth ra te , but merely one for the special
case T » l , I b / I c r « 1. Here § In R/r b = Ib/(T2Icr)
and

(the displacement current can be disregarded
since we know that 1/T « c / r ) . Thus, for E|°)
and H ^ , (3.3) and (3.4) are the very equations
we get, i.e. Es should be identified with E ^ .

1 a2

At 4 f 0 we can disregard the terms —̂  r-^- in

Eq. (A.2.1), as compared with 427r2/L2. AS a
result we find that

Imu = L 3r
4 / 0

The maximum growth rate is reached at the limit
of applicability of the theory, where K R ~ 1 . It
can easily be seen that this corresponds to
kzR ~ T , i.e.

Imu - (
Vic,

Hence, by introducing the notations Ep z = Ez - E
Epr = E r , we can write 3E p z /3r = 3E p r /8z . Con
sequently, there exists a function which is such
that the relationships

E = - M -
PZ az'

E Pr
3r

are satisfied. Further, using the exact equation
divE = 47r(p + pb), we arrive at (3.5).

APPENDIX II

Let us represent the functions "Er, E z , H^ and jj
in the form of the following Fourier series for z:

fi= 1

APPENDIX III

From Eqs (3.3) and (3.4), in which a is replaced
by a(r,t), we can easily arrive at the following
equation for the function I*(r,t):

31*
9t

ai* ai*b

3r r a 3r at
(A.3.1)

E,

H,, k
1=0

4TTcos — z
l

We get the following expressions for the Fourier
coefficients:

a

(j8) _ 1 d'&z

c ar at
(A.2.1)

The initial and boundary conditions for (A.3.1) take
the form

1*1 =0
I t -* -oo

1 91*
a 3r

= 0
r = R

(A.3.2)

(A.3.3)

Let us use i(r,t ' ,t) to denote the solution of
(A.3.1) for the special form of the function g(t),
i.e. g(t) = 0(t - t 1 ) , where 0 = 0 for negative values of
the argument and 0 = 1 for positive values. Clearly,
i ( r , t ' , t ) is the solution of the equation:

a l e
In the quasi-steady state — « T~ . For this

ai T i-i

reason there is a major difference between the
equations with 4 = 0 and 4 / 0 . At 4 = 0 we get

E(0) =

3Ez
0)

3r

at
_a_j_ai_
3r ra 3r

(A.3.4)

for the boundary conditions (A.3.3) and the initial
condition

t = t' = -f(r)

In accordance with the principle of the maximum
for an equation of the parabolic type (see e .g .
Smirnov [ 102]) at t > t1:

-maxf(r) < i ( r , t ' , t ) < 0 (A.3.5)

904



RELAT1VISTIC ELECTRON BEAMS

The solution of (A.3.1) for the arbitrary form of
the function g(t) is expressed in terms of i(r, t1, t)
as

t

I*(r,t) = /-jjf i ( r , t ' , t )d t '

Bearing in mind that g(t) has one maximum, and
that i(r, t ' , t ) satisfies inequalities (A.3.5), it can
be stated that

|l(r, t ) | g maxr f(r)maxtg(t) = maxlb(t)

We then apply Eq. (3.9), from which it follows
that

R

8lg(r,t)
at

[10]
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NOTE ADDED IN PROOF

Some papers connected with the subject of this
review have been published during the last few
months.

The beam propagation in a vacuum was con-
sidered in papers by Grishin [103] and Friedman
[104]. In Ref.[103], the possibility is pointed out
of increasing the vacuum critical current by means
of division of the waveguide into many narrow
channels with conducting walls (honeycomb struc-
ture). In Ref.[104] the influence of local broaden-
ing of the waveguide diameter on the beam para-
meters is investigated experimentally.

More detailed theoretical treatment of some
problems of current neutralization is presented
in works by Chu and Rostoker [105] , Rosinskij
et al. [106] and Kuppers et al. [107] . In the experi-
mental work by Wachtel and Safran [108] a sur-
prising phenomenon is discovered: when the beam
is injected into the neutral gas which is ionized by
the beam itself, then at some conditions the maxi-
mum value of the net current is twice as large as
the beam maximum current.

Lee and Lampe [109] have simulated numerically
the macroscopic beam-plasma instability in a weak
magnetic field.

The paper by Chu and Rostoker [110] considers
the possibility of plasma heating by the return
current excited in a plasma by the rotating beam.
It is well known that rotating beams can be obtained
by injecting a non-rotating beam into the cusped
magnetic field. The efficiency of this method was
studied experimentally by Kapetanakos [111], who
has shown that it is possible to transmit into a
rotating beam up to 85% of the initial beam energy.
More detailed discussion of the possibilities of
regulating beam parameters by means of the
cusped magnetic field is presented in the work by
Levin et al. [112].

Kingsep et al.[113] and Degtyaryev et al. [114]
have continued the one-dimensional computer
simulation of non-linear phenomena at a high level
of Langmuir turbulence. Rudakov [115] has noted
that the possibility exists that in a low-density
plasma in a strong turbulence regime all the beam
energy will be transmitted only to a small group
of high-energy electrons, while the bulk of plasma
electrons and ions will remain cold.

Experiments on beam-plasma interaction in open-
ended systems were continued [116,117].

To conclude, let us mention the appearance of
first experiments on the heating of pellets by
focussed E-beams [118] .
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