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During the publication process a misprint appeared in the 
line following equation (19). That sentence should read:

The LQG control gain is

u = −ĜX̂, (19)

where Ĝ =
(

BTD̂B + WR

)−1
BTD̂Φ, and D̂ is a solution to 

the steady state Ricatti equation

D̂ = ΦTD̂Φ+ WQ −ΦTD̂B
(

BTD̂B + WR

)−1
BTD̂Φ.
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Introduction

Control systems align some output or parameter to a given 
reference. Synchronizing two signals aligns them in time and 
two signals are said to be syntonized if they have zero fre-
quency offset. Steering goals can also include offsets to com-
pensate for known biases, signal delays, and calibrations.

The control of oscillators and signals is a common prac-
tice in time and frequency systems [1–4]. Physical realiza-
tions of timescales are created by steering signals derived 
from frequency standards toward a reference paper clock (see 
figure  1). Timing laboratories around the world steer local 
timescales in the long-term toward coordinated universal time 
(UTC) [5, 6]. The frequency standards themselves have many 
internal control systems that lock voltage controlled oscilla-
tors to atomic based signals, stabilize temperatures, and com-
pensate for drift. Environmentally regulated rooms that house 
precise timing equipment also utilize sophisticated control 
system designs. This paper will concentrate on several dis-
crete time control system design techniques. Designs in this 

paper will use a two-state system model. It is straightforward 
to then apply these techniques to systems with three or more 
states [3, 4]. The terms steer and control will be used inter-
changeably throughout the paper.

Pole placement

Using pole placement methods, a control can be designed 
based on the desired transient response of a system [7, 8]. The 
individual frequency steers for a proportional control are cal-
culated by multiplying the control gain, G, by the current time 
and frequency offset values. The general form of a two-state 
control system for timing applications with a time interval of 
τ between steers is

Φ= +τ+ uX X B ,t t t (1)

= =
⎡
⎣⎢

⎤
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⎡
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yXwhere

time offset 
frequency offset  , the state transition matrix 
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τ=B 1 , assumes frequency steps are used to 

implement the control, and the proportional control amount 
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Discrete time control systems are widely used in time and frequency applications. Control 
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Placing these values into (1) gives
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(2)

The eigenvalues of A correspond to the system poles, and are 
related to how the control system responds to offsets. The con-
trol systems can be classified as over-damped, under-damped, 
and critically damped. The under-damped system has two 
complex conjugate poles, an over-damped system has two real 
and unequal poles, and a critically damped system has real 
and equal poles.

The poles are found by solving for the eigenvalues of A. 
The eigenvalue equation

( )λ τ λ+ + − + − =g g g2 1 0y x y
2 (3)

has solutions

λ
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(4)

For example, in critical damping the poles need to be real and 
equal, therefore

( )
λ λ

τ
= =

− + −g g 2

2
d

y x
 (5)

and the relationship between the gain components is

( ) ( )τ+ − − − =g g g2 4 1 0.y x y
2 (6)

The positive solution, using (5) and (6), noting that the abso-
lute value of the poles need to be less than or equal to one to 
ensure stability, is

λ τ= − = −g g1 1 .x y (7)

Figure 2 gives an example of critically damped control system 
responses to a frequency step.

Minimum control effort

The goal for this design is to minimize the control effort, or 
so-called control energy,

( )∑
=

−

u k
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2
,

k

N

0

1
2 (8)

necessary to drive the initial time offset, x(0), and the fre-
quency offset, y(0), to zero in N steps [7].

The recursive property of the state space model (1) can be 
used to find the value of the states at any point for k  >  0.
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Now set ( ) =NX 0 in (9) and solve for ( )NX ,
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(10)

= −SU. (11)

The minimal control effort solution for U is found by applying 
the right pseudo-inverse [7] to solve for U in (11),

( ) ( )† †= − −U S SS X 0 ,1 (12)

where † denotes the conjugate transpose.
Solving (12) gives
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The individual steers are

Figure 1. Block diagram of a control system that creates a physical 
realization to timescale.
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Figure 3 gives an example of a minimal control effort 
design removing time and frequency offsets with different 
steering intervals.

Linear quadratic Gaussian stochastic control

Linear quadratic Gaussian (LQG) is an optimal control design 
technique that incorporates Kalman filtering [9] to estimate 
time and frequency errors that are used as the input into a steer 

calculation [1–4, 7–11]. It can be shown that the optimal con-
trol and optimal estimation problems can be designed inde-
pendently. This property is known as the separation principle.

Kalman filters estimate the time and frequency offsets from 
noisy measurements of signals that have inherent stochastic 
properties. A noise vector w(k), corresponding to the sto-
chastic properties of the state elements, is added to the model 
in (1) giving a state equation

( ) ( ) ( )Φ+ = + wk k kX X1 . (15)

The noisy measurement is related to the state by

( ) ( ) ( )= +z k k v kHX , (16)

where z(k) is the time difference measurement,

Figure 2. Example of the response to a frequency offset for two critically damped controls with poles at 0.9999 and 0.999.

Figure 3. Removal of a time offset of 15 ns and frequency offset of 1  ×  10−14 over one month using a minimal control design with steering 
intervals of one, five, and fifteen days.
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=
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and v(k) is the measurement noise.
The Kalman filter state estimates are calculated using

Φ Φ+ = + + + − +� � �k k u k z k k u kX X B K H X B1 1 ,g( ) ( ) ( ) ( ( ) ( ( ) ( )))
 

(17)
where Kg is the Kalman gain and the hat (�  ) over the para-
meter denotes an estimated value.

In the LQG design a discrete frequency steer is calculated 
by minimizing the quadratic cost function,

∑= +J u W uX W X .k
T

Q k k
T

R k[ ] (18)

WQ and WR are matrices that are chosen by the designer in 
order to set relative penalties assessed to the state offsets and 
control effort as they vary. In general, if the magnitude of WR 
is increased compared to WQ, the penalty is increased for the 
system attempting to drive the state vector toward zero rapidly 
(see figure 4). If the magnitude of WR decreases the system 
faces a smaller penalty for large control effort and the system 
is driven toward zero more aggressively.

The LQG control gain is

= −�u GX, (19)

where ( )= +
−� � �WG B G B B G,T

R
T1

 and �D is a solution to the 
steady state Ricatti equation

Φ Φ Φ Φ= + − + −� � � � �WD D W DB B D B B DT
Q

T T
R

T1( )

This gives a statistically optimal control u(k) for the given cost 
function with the designer specified parameters  WQ  and WR.

Control considerations

Limiting the amount of control allowed can aid in the 
robustness of a control system [12, 13]. The limits can take 
a physical form, for example, limiting the magnitude of any 
given steer sent to a frequency synthesizer. Limits can also 
be utilized to raise alarms when control parameters exceed 
some defined levels. Trends can also be monitored. An issue 
with a system could show if many steers in the same direc-
tion are detected. Caution should be used to keep control 
limits as broad as practical. Over limiting a system can 
excessively clamp stochastic signals or possibly invalidate 
the assumptions of a linear system. Limits should also be 
broad enough to handle changes in the reference standard or 
external factors like environmental disturbances. Simulating 
control designs is very valuable in ensuring system designs 
operate as intended. Be sure to create good system models. 
Check how the system responds to steps, ramps, and out-
liers in the input.

Common control applications in precise timing can 
include maintaining a given time offset, frequency offset, 
or could be utilized to improve the frequency stability of a 
given device. Caution should be applied when aggressively 
steering so as to not overly disturb the frequency stability by 
causing large frequency shifts. Being overly cautious about 
minimizing control effort can lead to long-term system 
wander.

Conclusion

There are many techniques to choose from when designing 
control systems for precise timing applications. The choice 
of design technique is dependent upon the system along 
with the desired control response and system performance. 
This paper has outlined several discrete time control design 
methods.
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