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Abstract
The special mechanical properties of nanoparticles allow for novel applications in many fields,
e.g., surface engineering, tribology and nanomanufacturing/nanofabrication. In this review, the
basic physics of the relevant interfacial forces to nanoparticles and the main measuring
techniques are briefly introduced first. Then, the theories and important results of the
mechanical properties between nanoparticles or the nanoparticles acting on a surface, e.g.,
hardness, elastic modulus, adhesion and friction, as well as movement laws are surveyed.
Afterwards, several of the main applications of nanoparticles as a result of their special
mechanical properties, including lubricant additives, nanoparticles in nanomanufacturing and
nanoparticle reinforced composite coating, are introduced. A brief summary and the future
outlook are also given in the final part.

(Some figures may appear in colour only in the online journal)

1. Introduction

Nanoparticles, microscopic objects with at least one
dimension less than 100 nm [1], have attracted intensive
scientific attention. Distinctive size-dependent properties
of nanoparticles often exist, which are mainly due to their
relatively large surface area [2]. Moreover, when the size of
a particle approaches nanoscale with the characteristic length
scale close to or smaller than the de Broglie wavelength of
the charge carrier (electrons and holes) or the wavelength
of light, the periodic boundary conditions of the crystalline
particle are destroyed, or the atomic density on the amorphous
particle surface is changed [3]. Due to these, a lot of the
physical properties of nanoparticles are quite different from
bulk materials, yielding a wide variety of new applications.
For example, nanoparticles encapsulated or adsorbed in matrix
materials have been used as carriers for delivering drug
molecules [1, 4, 5]. Stability, self-assembly behaviour and
mutual interactions of nanoparticles at fluid interfaces are
very relevant to many colloid applications [6]. Special
optical properties due to the excitation of surface plasmons
in metallic nanoparticles can be used in biomedicine, energy
and environment protection technologies [7]. Magnetic

nanoparticles could become superparamagnetic and respond
to external magnetic fields very fast with almost zero
remanence [8]; these properties lay bases for applications such
as biomedical imaging and information storage technology
[9, 10]. Some of the basic functions of nanoparticles, e.g.,

a catalysis of electrochemical reactions and the enhancement
of electron transfer, make them very useful in designing novel
electrochemical sensing systems [11].

As such, research topics on the mechanical properties of
nanoparticles have become increasingly hot in recent years; the
number of relevant publications has increased dramatically, as
shown in figure 1. Nanoparticles show different mechanical
properties relative to microparticles and bulk materials,
providing more effective options for the surface modification
of many devices in the mechanical strength, or to improve
the quality of nanomanufacturing/nanofabrication, etc. To
be more specific, on the one hand, the mechanical effects of
nanoparticles can affect the tribological properties of lubricants
with nanoparticles [12] as well as reinforce composite coatings
[13]. In a lubricated contact, the comparison in the hardness
between nanoparticles and the contacting surface determines
whether particles are deformed or indented into the surface
when the contact pressure is sufficiently large [14]. This
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Figure 1. The number of publications related with the topic on the
mechanical properties of nanoparticles in the past decade.

information could reveal how the particles behave in the
contact. On the other hand, nanoparticles are usually used
as abrasives in the nanopolish of ultra-smooth surfaces by
chemical mechanical polishing (CMP), which is the most
effective planarization tool in the manufacture of an integrated
circuit (IC), till now. Good controls over the mechanical
properties of particles and their interactions with the polished
surface etc are important for improving the surface quality and
enhancing material removal [15, 16]. Successful applications
in these fields usually need a deep understanding of the
basics of the nanoparticles’ mechanical properties, such as
hardness and elastic modulus, interfacial adhesion and friction,
movement law, as well as their size-dependent effects. In order
to acquire more of this information, different testing methods
have been developed, e.g., nanoindentation with atomic force
microscopy (AFM) [17, 18], in situ compression by a force
probing holder based on the observation with transmission
electron microscopy (TEM) [19, 20]. However, the obtained
results are still inadequate and some are controversial. For
instance, there is still no definite conclusion as to whether
the elastic modulus of nanoparticles measured with AFM is
affected by the particle size and the indentation depth [21–24].
Furthermore, the contact mechanics, especially the frictional
and mechanical behaviours related to nanoparticles, have not
been fully understood. The applicability of classic theories,
e.g., the Hertzian theory, for describing the contact behaviours
in the case of particle sizes down to the nanoscale, is still in
discussion [23, 24].

This work aims at giving a review of the important recent
advances in the mechanical properties of nanoparticles, from
the basics to their application. The review is organized into
four sections: section 1 discusses the mechanical models and
theories between nanoparticles or the nanoparticles acting on
a surface. In this part, the basic concepts of the relevant
interfacial forces and theories of nanoparticles, e.g., the van der
Waals force, electrostatic force, capillary force, DLVO theory,
contact and adhesion theories etc are also introduced. Section 2
briefly describes some of the typical measurement techniques
currently used for studying the mechanical properties of

nanoparticles. Section 3 summarizes the important results
on some of the mechanical properties of nanoparticles, such
as hardness, elastic modulus, adhesion and friction, as well
as movement. Section 4 introduces the main applications
of nanoparticles that result from their special mechanical
properties; these applications include a lubricant with
nanoparticles as additives, nanoparticles in nanomanufacturing
and nanoparticle reinforced composite coating. The general
framework of this review is schematically given in figure 2.

2. Interaction forces and basic theories relevant to
the mechanical properties of nanoparticles

‘As we go down in size, there are a number of interesting
problems that arise.’—Feynman [25]. The first problem
is the diverse interaction forces between the nanoparticles
themselves, or between them and the surface.

2.1. Van der Waals (vdW) forces

VdW forces are the weak interaction between all molecules
and particles, which play important roles in the particles’
mechanical properties. This kind of force includes three parts:
one is the orientation force (the Keesom force) [26], resulting
from the interaction between the permanent dipole moment
of polar molecules. The second is the induction force (the
Debye force) [27], which comes from the interaction between
the permanent dipole moment of the polar molecule and the
induced dipole moment. The third is the dispersion force (the
London force) [28], which exists in a wide variety of polar and
nonpolar molecules, coming from the induced instantaneous
dipole polarization. VdW energies are usually from several
to dozens of thousands of Joules per mole, one or two orders
of magnitude smaller than the chemical bond energy. The
vdW forces are long-range forces and can be effective in a
large range of distances, varying from long distances greater
than 10 nm down to atomic scale distance (about 0.2 nm) [29].
The methods for calculating the vdW interaction forces or
energies between small molecules or large macroscopic bodies
have been well established [29]. Several of the common vdW
forces and energies are given in table 1. The vdW forces of
objects with any shape can be transformed with the Derjaguin
approximation to those between two planes per unit area
[30]. Based on the quantum electrodynamics theory, Lifshitz
deduced the expression for calculating Hamaker constants,
which can be used to solve problems with media involved [32].
Typically, the Hamaker constants for interactions in a medium
are an order of magnitude lower than those in a vacuum [33].
The vdW force is always attractive between identical materials,
but it may be repulsive between dissimilar materials in a third
medium (usually liquid) [29].

2.2. Electrostatic force and electrical double layer (EDL) force

For particles suspended in water or any liquid with a high
dielectric constant, they are usually charged and can be
prevented from coalescing due to the repulsive electrostatic
force. The charging of a surface in a liquid has three main
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Figure 2. Schematic diagram of the framework of this review.

Table 1. Several of the common vdW energies and forces.

Types vdW energies vdW forces

Molecular-plane W = −πCvdWρ

6D3
F = −πCvdWρ

2D4

Sphere–sphere W = − A

6D

R1R2

R1 + R2
F = − A

6D2

R1R2

R1 + R2

Sphere–plane W = −AR

6D
F = − AR

6D2

Plane–plane W = − A

12πD2
F = − A

6πD3

Note: Cvdw is a coefficient related to the atomic pair potential, R is
the sphere radius, R1 and R2 are the radii of two spheres,
respectively,D is the distance between two surfaces,
A = π 2CvdWρ1ρ2is the Hamaker constant [31] and ρ is the atomic
density.

sources [29]: (1) the ionization or dissociation of surface
groups; (2) the adsorption or binding of ions from the solution
onto a previously uncharged surface; (3) when two dissimilar
surfaces are very close, charges can hop across from one
surface to the other. The surface charges are balanced by
an oppositely charged ion layer in the solution at some
distance away from the surface, forming the EDL. The idea
of the EDL was first formally proposed by Helmholtz, who
derived the charge distribution in the solution based on the
simple molecular capacitor model [34]. In reality, the thermal
motion of ions in the solution introduces a certain degree
of chaos causing the ions to be spread out in the region of
the charged surface, forming a ‘diffuse’ double layer. In
that case, the analysis of the electronic environment near the
surface is more complex and requires more detailed analyses
[33]. Gouy [35], Chapman [36] and Stern [37] put forward
more accurate models for analysing the surface and electrolyte
interfaces, making great contributions to the development of
EDL theories. Gouy [35] and Chapman [36] independently
developed theories of a so called ‘diffuse double layer’, in
which the change in the concentration of the counter ions near

a charged surface follows the Boltzmann distribution. The
Gouy–Chapman theory provides a better approximation of the
real system than the Helmholtz theory, but it still has limited
quantitative applications. It assumes that ions behave as point
charges and that there is no physical limit for the ions in their
approach to the surface. Then, the Gouy–Chapman diffuse
double layer was modified by Stern [37] so that ions have
a finite size and cannot approach the surface closer than a
few nanometres: the first layer of ions in the Gouy–Chapman
diffuse double layer are not at the surface, but at some
distance away from the surface. As a result, the potential and
concentration of the diffuse part of the layer is low enough to
justify treating the ions as point charges. Stern also assumed
that some ions are probably adsorbed by the surface in a plane;
this layer is known as the ‘Stern layer’ [37]. Within this
layer, thermal diffusion is not strong enough to overcome the
electrostatic forces. In the diffusive outer layer, the ions are
far enough from the solid surface and are subjected to weak
electrostatic forces from the surface only, hence they remain
mobile.

A double layer is formed to neutralize the charged surface,
which in turn causes an electrokinetic potential between the
surface and any point in the mass of the suspending liquid.
This voltage difference is of the order of millivolts and is
referred to as the surface potential. The magnitude of the
surface potential is influenced by the surface charge and the
thickness of the double layer. Starting from the surface, the
potential drops off roughly linearly in the Stern layer and then
exponentially through the diffuse layer, approaching zero at the
imaginary boundary of the double layer. The potential curve
is useful because it can suggest the electrical force strength
between particles and the critical distance within which this
force comes into play. A charged particle’s mobility is related
to the dielectric constant and the viscosity of the suspending
liquid, as well as the zeta potential, which is a potential at
the boundary between the moving particle and the liquid. The
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Figure 3. Schematic model of EDL.

boundary is called the slip plane and usually defined as the point
where the Stern layer and the diffuse layer meet [38, 39]. The
common EDL model is shown in figure 3. The EDL interaction
energy and the force between the bodies of different geometries
can be referred to [40].

2.3. Capillary force

Capillary force is mainly due to the formation of liquid menisci
(also termed the meniscus force), the significance of which was
realized by Haines [41] and Fisher [42]. Capillary force can
be classified into two types: normal capillary force and lateral
capillary force [43]. A comprehensive review of the normal
capillary force was given by Butt and Kappl [44]. Denkov
et al [45] and Kralchevsky and Nagayama [46] contributed a lot
to the study of the structure of colloid nanoparticles due to the
lateral capillary force. Capillary forces should be considered
in the studies on powders, soils and granular materials [47–50],
the adhesion between particles or particles to surfaces [51, 52]
and the stiction in micro/nano-electromechanical systems [53].
It is also relevant to nanoparticle assembling or living cells self-
assemble technologies [54, 55].

The normal capillary force arises from the Laplace
pressure within the curved meniscus formed by liquid
condensation or vapour bridges around two adhering solid
surfaces [43, 44]. It can be attractive or repulsive depending
on whether the capillary bridge is concave or convex. Two
equations are important to understand the capillary forces,
i.e. the Young–Laplace equation and the Kelvin equation.
The Young–Laplace equation relates the curvature of a liquid
interface to the pressure difference, while the Kelvin equation
describes capillary condensation, which is the physical basis
for many adhesion phenomena [46]. Capillary condensation is
the condensation of vapour into capillaries or fine pores even
for vapour pressures below the saturation vapour pressure. The
Kelvin equation relates the actual vapour pressure to the surface

curvature of the condensed liquid. The normal capillary force
is owing to two actions: one is the pressure difference across
the curved interface and the other is the action of the surface
tension force exerted around the annulus of the meniscus. Butt
and Kappl [44] gave the usual derivations and expressions for
capillary forces between different geometries.

The origin of the lateral capillary forces is the overlap of
the perturbations in the shape of a liquid surface due to the
presence of attached particles [46]. The larger the interfacial
deformation created by the particles, the stronger the capillary
interaction between them. The theories and expressions of
lateral capillary forces for particles bound to interfaces, liquid
films and biomembranes were included in a good review
by Kralchevsky and Nagayama [46]. The lateral capillary
forces are effective in controlling small colloidal particles and
protein macromolecules confined in liquid films to form fine
microstructures.

2.4. Other forces—solvation, structural and hydration forces

Apart from vdW forces and EDL forces, some other forces,
i.e. solvation, structural or hydration forces, come into play
when two surfaces or particles approach very close (separation
less than a few nanometres) in the liquid. These forces
can be monotonically repulsive, monotonically attractive or
oscillatory and they can be much stronger than either the
vdW forces or EDL forces at small separations. Solvation,
structural or hydration forces (in water) arise between two
particles or surfaces if the solvent or water molecules
become ordered by the surfaces [56]. When the ordering
occurs, an exponentially decaying oscillatory force with a
periodicity equal to the size of the confined liquid molecules,
micelles or nanoparticles appears [56–58]. Solvation forces
depend not only on the properties of the liquid medium
but also on the surface physicochemical properties, such
as hydrophilicity, roughness, crystalline state, homogeneity,
rigidity and surface micro-texture. These factors affect the
structure of the confined liquids between two surfaces, which
in turn affects the solvation force [29]. The hydration force is
a strong short-range repulsive force between the polar surfaces
separated by a thin polar liquid layer (thickness <3 nm); the
force magnitude decays exponentially with the liquid layer
thickness [58–62]. The physical mechanisms underlying
the hydration force are still in discussion. A well known
interpretation of hydration force is that the solvent molecules
are bound strongly and are restructured by polar surfaces.
An ordered-solvent layer was formed at the surface-solution
interface, which exponentially decays away from the surface;
the overlap of the ordered-solvent layers near the two mutually
approaching surfaces creates a force [59–61]. The hydration
force could determine the behaviours of many diverse systems,
e.g., the colloidal dispersion stability, the swelling of clays and
the interactions of biological membranes.

2.5. DLVO theory

The DLVO (Derjaguin–Landau–Verwey–Overbeek) theory
was introduced by Derjaguin and Landau [63] in 1941 and
Verwey and Overbeek [64] in 1948 for describing the stability
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Figure 4. Schematic plots of the DLVO interaction potential energy
E (the Hamaker constant A is 1.5 × 10−20 J).

of colloidal dispersions. The theory combines the effects
of the vdW attraction and the electrostatic repulsion. It can
explain many phenomena quantitatively in colloidal science,
e.g., the adsorption and the aggregation of nanoparticles in
aqueous systems, and describe the force between charged
surfaces interacting through a liquid medium [65–69]. Figure 4
shows the schematic plot of the DLVO interaction potential
energyE of model nanoparticles (diameter: 100 nm and
surface potential: 20–40 mV) which are dispersed in aqueous
salt solutions.

It can be seen that a strong long-range repulsion with a high
energy barrier is present for highly charged surfaces in dilute
electrolyte (i.e. long Debye length). When the surface charges
are reduced or the concentration of the electrolyte solutions are
increased, a small secondary minimum in the potential energy
curve appears. Colloid particles may undergo a reversible
flocculation due to the secondary minimum because of its weak
energy barrier [33], resulting in slow particle aggregation for
the surface with a low charge density. Below a certain surface
charge or above a certain electrolyte concentration (known
as the critical coagulation concentration), the energy barrier
falls below the zero axis and particles then coagulate rapidly.
Consequently, the colloid system becomes unstable.

Although the DLVO theory is the basis for understanding
colloid stability and has a considerable amount of experimental
support, it is inadequate for the colloid properties in the
aggregated state. This is because short-range interactions are
dominant in this state and the specific properties of ions should
be taken into account rather than regarded as point particles.
Most deviations of experimentally measured forces from those
expected from the DLVO theory are due to the existence
of a Stern-layer or non-DLVO forces, e.g., ion-correlation,
solvation, hydrophobic and steric forces [70–72].

2.6. Contact, adhesion and deformation theories of
nanoparticles

In traditional contact theories for two objects in contact with
each other under external forces, for instance, the simplest
case of two interacting elastic spheres deduced by Hertz in

Table 2. Relations between the contact radius a, the contact radius
a0 due to adhesion force without an external load, the deformation δ
and the adhesion force for two spheres contacting each other
according to the Hertz, JKR and DMT theories.

Hertz JKR DMT

a

(
R∗P
E∗

)1/3
{

R∗

E∗ [P + 3πR∗γ
[

R∗

E∗ (P + 2πR∗γ )

]1/3

+ (6πR∗γP

+ (3πR∗γ )2)1/2]

}1/3

δ
a2

R∗
a2

R∗
a2

R∗ −
(

8πaγ

3E∗

)1/2

a0 0

(
6πR∗2γ

E∗

)1/3 (
2πR∗2γ

E∗

)1/3

Pad 0 2πR∗γ
3πR∗γ

2

Note: R∗ is the reduced radius defined as 1/R∗ = (1/R1) + (1/R2),
γ is the adhesion work per unit area. P is the external force and E∗

is the reduced Young’s modulus defined as
(1/E∗) = 3

4 [((1 − v2
1)/E1) + ((1 − v2

2)/E2)], E1, E2, and ν1, ν2 are
Young’s moduli and Poisson’s ratios of the two spheres, respectively.

1882 [73], surface forces were not included. In these models,
the displacement and the contact area are equal to zero when
no external force is applied. However, as the size of the object
is decreased to the nanoscale, the surface forces play a major
role in their adhesion, contact and deformation behaviours.
Modern theories of the adhesion mechanics of two contacting
solid surfaces are based on the Johnson–Kendall–Roberts
(JKR) theory [74] or the Derjaguin–Muller–Toporov (DMT)
theory [75]. The JKR theory is applicable to easily deformable,
large bodies with high surface energies. Strong, short-range
adhesion forces dominate the surface interaction; the effect of
adhesion is included within the contact zone. In contrast, the
DMT theory better describes very small and hard bodies with
low surface energies [76]. In this case, the adhesion is caused
by the presence of weak, long-range attractive forces outside
the contact zone. Tabor [76] introduced a nondimensional
physical parameter, often referred to as Tabor’s parameter,
to quantify the limits of JKR, DMT and the cases between
them. The intermediate regime between the JKR and the
DMT theories has also been described by Maugis [77] using
the Dugdale model [78]; a ‘transition parameter’ roughly
equivalent to Tabor’s parameter was defined [77]. A summary
of the different conventions used for defining the ‘transition
parameter’ was given by Greenwood [79]. Carpick et al [80]
provided a simple analytic equation to determine the value
of the ‘transition parameter’; it could closely approximate
Maugis’ solution. The expansion of the JKR theory by Maugis
and Pollock [81] leads to the additional description of plastic
deformation. Table 2 summarizes the relations between the
contact radius, deformation and the adhesion force for two
spheres contacting each other according to the three mostly
used theories.

Although the Hertz, JKR and DMT theories have been
widely used to study the mechanical properties of nanoparticles
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Figure 5. Schematic diagram of the basic working principle of AFM.

[21, 22, 82, 83], whether or not the continuum mechanics can
be used to describe a particle at the nanometre scale is still in
discussion. The molecular dynamics (MD) simulation method
provides an opportunity to understand the atomistic processes
in the contact region. Luan and Robbins [84] researched the
contact between two nanocylinders by MD simulations and
found that the atomic-scale surface roughness produced by
discrete atoms led to dramatic deviations from the continuum
theory. Contact areas and stresses may be changed by a factor
of two, whereas friction and lateral contact stiffness by an
order of magnitude. Also Miesbauer et al [85] analysed the
contact between two NaCl nanocrystals with MD simulations.
It was found that the Hertzian theory was a suitable description
of the studied system when the system size was larger than
50 Å; the discrepancy became more obvious as the particle
was even smaller. Cheng and Robbin [86] investigated the
nanoscale contact with MD simulations to test the adaptability
of continuum contact mechanics at the nanoscale; the results
suggested that the continuum contact models could be applied
to the case where the forces averaged over the areas containing
many atoms. Nonetheless, the continuum theory, because of
its concise expression, is still widely applied in the mechanical
analysis at the nanoscale, such as designing micro/nano-
devices [87], creating nanostructured materials with optimized
mechanical properties [88] and understanding the molecular
origins of friction and adhesion [89–91].

3. Main techniques for studying nanoparticles

The research methods frequently used in studying the
mechanical properties of nanoparticles will be briefly
introduced as follows:

3.1. AFM techniques

AFM is a powerful technique that can be used to obtain both
high-resolution images on many kinds of solid surfaces and
the vertical force as well as lateral force between a sharp
tip and the surface [92–94]. The schematic diagram of

the basic working principle of AFM is shown in figure 5,
including a cantilever with a sharp tip on its end, piezotube
scanner, scanning and feedback systems, a four quadrant
photoelectric detector and the computer. Briefly, the sharp
tip scans over the sample and the deflection of the cantilever
is quantified through a laser beam reflected off the backside
of the cantilever and received by the photoelectric detector.
If a constant force is kept between the tip and sample during
scanning, the topographic image of the sample surface can
be obtained by plotting the height of a sample stage on
the piezoscanner, which is controlled by a feedback system.
Alternatively, the interaction force between the tip and sample
can be obtained with the cantilever’s vertical deflection using
the force-versus-distance curves, briefly called force curves,
together with Hooke’s law [95, 96]. These curves can provide
valuable information on some of the important properties
of nanoparticles, such as hardness, elastic modulus and the
adhesion between nanoparticle and substrate. The lateral force
is closely related to the torsional deflection of the cantilever;
an accurate value can be obtained after careful calibration of
the cantilever’s torsional coefficient [97]. More details about
the basics of AFM can be seen in [93, 96].

3.2. Particle tracking velocimetry (PTV)

PTV is an image-based velocimetry method of measuring
the velocity field and tracking individual particles in fluidic
systems [98, 99]. Fluorescent particles are usually used
as tracers within a defined area where those particles are
illuminated; then pictures of these particles are taken. The
motion trajectories of the particles can be reconstructed by
locating them in those pictures and the velocities of the
particles can be calculated correspondingly. Based on these,
deep insight into some of the complex and low-velocity
flows in a region can be acquired. It is a technique that
is slightly different from particle image velocimetry (PIV)
where the particles’ displacements within a segment of an
image are averaged [100]. Currently, there are mainly two
different PTV methods, i.e. two-dimensional particle tracking
velocimetry (2D-PTV) [101] and three-dimensional particle
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tracking velocimetry (3D-PTV) [102]. The defined area is a
thin light sheet for 2D-PTV while it is an illuminated volume
for 3D-PTV, which is usually based on a multiple-camera-
system.

3.3. In situ TEM

TEM could provide images with a significantly higher
resolution than a light microscope by using electrons as ‘light
source’ which have a much lower wavelength [103, 104]. The
basic principle is that a beam of electrons passes through a very
thin sample and, after interacting with the atoms in the sample,
some unscattered electrons reach a fluorescent screen to form
an image. The image is shown in varied darkness indicating
the material density in different parts of the specimen. The
image is magnified and can be studied directly from the screen
or recorded with a camera for post-analysis. In situ TEM offers
the capability of real-time observation of the responses of the
microstructural evolution of nanostructures to external active
stimuli and their relationship with properties [19, 105]. Active
stimuli applied to the sample examined in the microscope
during simultaneous imaging include mechanical [19], thermal
[106] and electrical [107] ones, etc.

3.4. MD simulation

Computational simulations are usually considered as very
useful complementary tools to experimental studies on the
mechanical properties of nanoparticles [108]. Among many
different kinds of computation methods, MD simulation is
an important aspect which could model the time evolution
of the physical motions of interacting atoms or molecules
[109, 110]. It is a computation method that is based
on statistical mechanics; statistical ensemble averages are
normally hypothesized to be equal to the time averages of
the system. Mostly, in MD simulation, Newton’s equations
of motion for the atoms or molecules in a system are
numerically solved to get their positions and velocities and
finally to describe the thermodynamic behaviours of the
system. The interactions and potential energy between atoms
or molecules are defined by a molecular mechanics force
field.

4. Basic mechanical properties of nanoparticles

4.1. Hardness and elastic modulus of nanoparticles

Understanding some basic mechanical properties of nanopar-
ticles, such as the hardness and the elastic modulus, will aid
a lot in the proper design of particles in specific applications,
as well as evaluating their roles and action mechanisms. To
the authors’ knowledge, the measurement of the mechanical
properties of microparticles has been developed for decades.
The microindentation technique was used by Steinitz in 1943
to test the hardness of microparticles with indented areas of
larger than 100 µm2 and a minimum indenter size of 20 µm2

[111]. About ten years ago, nanoindentation was employed by
Shorey et al to measure the elastic properties of particles (aver-
age size: 5 µm) used for magnetorheological finishing [112].

Figure 6. Relative displacements and deformations of the
particle-AFM tip system during the indentation process. Left: the
AFM tip just touches the particle without deformation of the
particle. Right: the particles’ deformation occurs due to the applied
force by the AFM tip.

Their methods were aimed at measuring the film of particles
rather than individual particles. The deformation behaviours
of polystyrene microspheres (diameter: 20 µm) by using AFM
against a mica surface was firstly investigated by Biggs and
Spinks in 1998 [82]. Since then, protocols of calculating
the mechanical characteristics (e.g., the elastic modulus) of
nanoparticles have developed rapidly, primarily by measuring
the particles’ deformation with AFM. Typically, quantitative
computation of the elastic modulus of nanoparticles requires
the measurement of indentation h by converting AFM force-
displacement curves into force-indentation curves instead of
measuring the contact area radius [21]. The latter is hard
to obtain directly. The external load P applied through the
cantilever (its spring constant denoted as k) to the tip can be
described with the Hooke law,

P = k · δc (1)

where δc is the cantilever deformation. The indentation depth
h of the tip into the sample surface is:

h = z − δc (2)

where z is the piezo displacement. The relative displacements
and deformations of the particle-AFM tip system in the
indentation process are shown in figure 6. Since there is
often system thermal drift, the deflection offset, δc0 should
be considered. In this case, equation (1) can be rewritten as

P = k · (δc − δc0). (3)

Also, if the position for the tip initially touching the sample
surface is considered, resulting in another height offset z0,
equation (2) becomes

h = (z − z0) − (δc − δc0). (4)

In this way, the force–indentation curves can be obtained for the
calculation of the particles’ elastic modulus by evaluating the
slope of the loading region on the curves with contact theories.
More details about the calculation of the elastic modulus
of compressed nanoparticles can be seen in [22, 83, 113].
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Table 3. Summary of the hardness and elastic modulus of different particles with the size of several hundreds of nanometres or smaller.

Hardness/(bulk Indentation
Particle material Diameter/size value) Elastic modulus/(bulk value) depth Notes

Organic
nanospheres

Polystyrene(PS)
[21, 114]

58–194 nm [21];

180–250 nm [114]

8.0–4.1 GPa [21];

1–2 GPa [114]
/(3–3.6 GPa) [115]

3–6 nm [21]

5–6 nm [114]

Modulus increases with
the decrease of particle
size [21]

Vinylbenzyl(trimethyl)
ammonium chloride
units inside [114]

Polypropylene(PP)
[22]

200–500 nm 1.3–2.8 GPa
/(1.5–2 GPa)

1.5 nm

Polyesters [116] 2–3 nm 0.1–0.3 GPa Hyperbranched,
molecular
weight = 3000–7000

Polyethylenimine
(PEI) [117]

15 nm 5–160 MPa up to 10 nm Bigger pressure resulted
in larger modulus

Poly-
(methylmethacrylate)
(PMMA) [118]

350 nm 4.3 GPa/(4 GPa) [115] up to 60 nm 6.6 GPa (200 ◦C heat
treatment)

Liquid
crystal [119]

95–150 nm 0.1–0.6 GPa 10 nm 4-pentyl-4-
cyanobiphenyl (5CB)
(main component)

Core/shell PS/CeO2 [113] 130–260 nm 5–15 GPa 20–30 nm Modulus increases with
particle size

PMMA/silica
[113, 118]

450 nm [118];
350 nm [113]

10.3 GPa [118];
9–11 GPa [113]

up to 80 nm PMMA-based
terpolymer [113]

Metal
nanoparticle

Gold [120] 22 nm 1.72 GPa/(Vickers
hardness 216 MPa)

100 GPa/(79 GPa) 3–5 nm Six-fold symmetry gold
nanoparticles

Gold modified
with
proteins [121]

10 and 20 nm 0.12 and
0.08 GPa (a);
0.22 and
0.13 GPa(b)

1.3 GPa(a);
9.5 and 1.0 GPa(b)

Protein: (a) bovine
serum albumin;
(b) streptavidin
pure gold particle:
hardness = 0.4 GPa;
modulus = 5.2 GPa

Silver [122] 13 nm 3.12 GPa
/(Vickers hardness
251 MPa)

103.9 GPa
/(83 GPa)

Silicon nanoparticle 40–140 nm [123];
5–40 nm [124];
40–100 nm [125]

25–34 GPa [124];
20–50 GPa/
(12 GPa) [125]

600–180 GPa [123]/(around
150 GPa)

13–36 nm [123]
3–24 nm [125]

Modulus increases with
decrease of particle
size [123]; simulation
result [124]

Nanowire,
nanotube,
etc.

Gold
nanowire [126]

40–250 nm 70 ± 11 GPa 400 nm
(displacement)

Silver nanowire
[127, 128]

20–140 nm 75–160 GPa

lead
nanowire [128]

30–280 nm 14–30 GPa/(16 GPa)

ZnO
nanowires [129]

70, 99 nm 120, 83 GPa/(140 GPa)

WS2

nanotube [130]
20 nm 171 GPa/(150 GPa [131])

Boron nitride (BN)
nanotubes [132]

0.58–2.38 nm 40.78–1.85 GPa/(30–40 or
74 GPa)

Single-walled, modulus
decreases with diameter
increases

Carbon
nanotubes [133]

0.92–1.91 nm 57–9 GPa/(36.5 GPa, bulk
graphite [134])

Carbon
nanotubes [135]

∼9 nm ∼16 GPa Multi-walled

Silicon nitride
nanobelts [136]

20–50 nm (thickness) 570 GPa
(bending modulus)
/(120–330 GPa)

150 nm
(displacement)

Cellulose
nanocrystals
[137]

4.2 nm (wood), 5.9 nm
(cotton) [137]
8–20 nm [138]

24.8, 17.7 GPa [137];
8.1 GPa(mean value) [138]

Cellulose nanocrystals
are crystalline, rod-like
shaped particles

Mostly based on the previous method, the elastic modulus of a
variety of nanoparticles have been measured by compressing
or bending particles primarily with AFM, as summarized in
table 3; the hardness of some nanoparticles is also given. As
shown, the nanoparticles’ hardness and elastic modulus often
deviate from their bulk materials’ and some show obvious

size-dependent behaviours. Typical related results and the
underlying mechanisms can be divided as the following three
categories.

(1) In the case of spherical polymer nanoparticles, there
are yet no uniform size-dependent behaviours of the
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mechanical properties. For instance, the compressive
moduli of the polystyrene nanoparticles (diameter:
200 nm) were found to be slightly less than those of
the corresponding bulk materials due to the presence of
hydrated ionic functional groups [21]. In contrast, the
work conducted by Paik et al [22] showed that the elastic
modulus of polypropylene (PP) nanoparticles was higher
than that of the bulk material. It was thought that the
glass transition temperature (Tg), the crystalline phase
and crystallinity etc could affect the deformation of the
polymer chain inside and thereby result in the change of
the particle’s elastic modulus.

(2) For crystalline metal nanoparticles, dislocations inside
the particles have been demonstrated as one of the
factors contributing to the change in the mechanical
behaviour of nanoparticles, which is in contrast to
the traditional view that no dislocation is present
in crystalline nanoparticles. The experimental work
done by Ramos et al [120] indicated that the
hardness and elastic modulus of six-fold symmetry
gold nanoparticles were higher than the bulk phase
due to the formation of stacking faults and dislocations
in specific crystallographic directions. Mordehai and
Nix et al [139, 140] performed nanoindentation and
compression tests combined with theoretical simulation to
reveal the deformation behaviours of single-crystal gold
nanoparticles on sapphire substrates. The particle strength
under indentation increased with the lateral dimension of
the particle due to the competition between the generation
of dislocations beneath the indenter and their drainage
from the particle [139]. Under compression with a flat
diamond punch, the compressive stress of the particle
increased with the decrease of the particle size since
the nucleated dislocations resulted in the stress gradient
along the slip planes [140]. In situ TEM nanoindentation
experiments showed the direct evidence of the presence of
dislocations in metal nanoparticles during deformation but
they disappeared during the unloading process, as shown
in figure 7 [105]. Wang et al [141] recently demonstrated
a new kind of stacking fault related with dislocations
in gold nanocrystals, which could nucleate, migrate and
annihilate under mechanical loading with in situ TEM and
MD simulation.
For silicon nanoparticles, similar behaviours were
observed by Gerberich et al [125] that their hardness
(particle diameter: 40 nm) was four times greater than
the value of bulk silicon. They proposed that the
dislocations or line defects inside the particle are the main
factors resisting high pressures. Furthermore, atomistic
simulation conducted by Zhang et al [124] confirmed
that the superhard silicon nanoparticles resulted from
the nucleation and movement of dislocations. Apart
from dislocations or defects, the changes of the lattice
strain and the bond energies of nanoparticles to the
compressive stress were proposed as another cause for the
strengthening and weakening of the mechanical properties
of nanoparticles [142]. Furthermore, first-principles
electronic-structure calculations made by Cherian et al

Figure 7. High-resolution TEM images of a silver nanoparticle
before and after compression: (a) before compression (twin
highlighted); (b) at the initial stage of compression (an edge
dislocation highlighted); (c) at a stage of further compression (two
additional dislocations shown in the inset); (d) after the removal of
the compression (no dislocation observed) [105].

[143] suggested the size dependence of the bulk moduli
of several semiconductor nanoclusters correlated with the
strong interaction with the passivant.

(3) For nanowires or nanotubes, it has been typically found
by Jing et al [127] and Cuenot et al [128] that the
elastic moduli of silver and lead nanowires decreased
with the increasing radial diameter. They proposed that
the increase in the modulus was attributed to the effects
of the surface stress, the oxidation layer and the surface
roughness [127], or the surface tension effect [128]. MD
simulations conducted by Yang et al [144] showed the bulk
modulus of Ni/Ni3Al nanowires increased but the surface
energy decreased with the increasing wire perimeter size.
However, only the fracture properties rather than the
elastic behaviour of ZnO nanowires were affected by the
surface effects due to the presence of surface cracks and
defects [129].
Worth mentioning is the fact that measuring the
mechanical properties of individual nanoparticles is very
complex; many influencing factors could affect the finally
measured results. These factors include the uniform
dispersion of nanoparticles on an ideally hard substrate,
the precise locating of particles and the proper application
of loads onto the particles, as well as the measurement
of the minimum particle deformation, etc. In addition,
many uncertainties during measuring and calculating
the mechanical properties of nanoparticles with AFM,
e.g., uncertainties associated with the instrument
calibration and the calculation models, should be
considered [138].
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Figure 8. AFM images of a nanoparticle on the substrate (a) before and (b) after manipulation; (c) the dependence of the friction force of
polystyrene particles on the silicon surface on the particle radius (R) [24].

4.2. Adhesion and friction of nanoparticles

The adhesion and the friction of nanoparticles play important
roles in nanofabrication, lubrication, the design of micro/nano
devices, colloidal stabilization and drug delivery. In this
case, characterizing the adhesion and friction behaviours of
nanoparticles has attracted significant research interest over
the past decade [84, 145–157]. So far, AFM has been proved
to be a powerful tool to measure the adhesion and friction
between a nanoparticle and a solid surface. The AFM tip itself
can also be thought of as a nanoparticle; then the adhesion
force as well as the friction force can be easily obtained by the
cantilever’s deflection [151, 154]. However, the use of AFM is
practically limited by the tip material and its geometric shape.
By attaching the particle to the force sensor in the microscope,
the force between a surface and a colloid particle was directly
measured with AFM by Ducker et al in 1991 [70]. Since
the properties of the attached particle, such as the size, the
shape and the material were controllable, the uncertainties
in the force measurement caused by the irregular shape of
the AFM tip etc could be avoided. Hence, the colloidal
probe technique is more effective for studying the adhesion
and friction of micro/nanoparticles [96, 158]. Nevertheless,
it is actually very difficult to attach a single nanoparticle
with the size of less than 1 µm on the AFM force sensor;
the colloid probes in most references have sizes larger than
1 µm [158]. A chemical method was used by Vakarelski et al
to place individual gold nanoparticles (20–40 nm) on the tip
of an AFM cantilever to measure the adhesion force between
nanoparticles and mica [159]. Ceria nanoparticles (50 nm in
diameter) were attached on the AFM tip with epoxy glue by
Ong and Sokolov [160] to measure the adhesion force between
nanoparticles and a flat silica surface. Other various methods
include measuring the adhesion force of the tip against a film
of nanoparticles [153, 161–163] and manufacturing a tip with
a certain curvature by thermal oxidation, etc [164, 165].

Besides the direct adhesion measurement by the vertical
deflection of the AFM cantilever, nanoparticle movement
manipulation by the cantilever’s torsional deflection was firstly
used to push C60 islands grown on a NaCl surface in 1994
[156]. Since then, this method has been increasingly popular
to characterize the intriguing nanoadhesion/friction behaviours

of nanoparticles [91]. For instance, the frictional anisotropies
for molybdenum oxide (MoO) nanoparticles were investigated
by Sheehan and Lieber [166]. The maximum sliding friction
force between polymer latex spheres (radius between 50 and
100 nm) and a highly oriented pyrolytic graphite (HOPG)
surface was obtained by Ritter et al [23]. More recently,
the interfacial friction between antimony (Sb) nanoparticles
and a HOPG surface was successfully measured through
pushing nanoparticles with the AFM tip by Dietzel et al [167].
In addition, the adhesion forces between nanoparticles with
different sizes and the surface were measured by Guo et al [24].

In the most general case, the adhesion force is a
combination of electrostatic force, vdW force, meniscus or
capillary force, solvation force and structure force, etc. The
adhesive contact between elastic surfaces is usually described
by single-asperity theories such as JKR, DMT or M-D
(Maugis-Dugdale) theories, as mentioned previously. The
adhesion force of micro/nanoparticles has been extensively
studied and most of the equations for the continuum contact
theories can be applied extremely well, even at the submicron
scale [82, 85, 168–170]. A linear dependence of the adhesion
force on the reduced radius was found by Heim et al [170]
for the adhesion between silica spheres, proving that the DMT
theory was also valid for the particle with dimensions below
1 µm. The simulation of the adhesion between a nickel AFM
tip and a gold surface by Landman et al [168] showed good
agreements with the JKR theory for both the mean positions
of atoms and the stress distribution. Individual nanoparticles
with varying size from about 50 to 500 nm were manipulated
on a silicon surface using AFM by Guo et al [24]. The results
showed that the friction forces between the particles and the
substrate were proportional to the two third power of the radius,
which was in agreement with the Hertzian theory, as shown in
figure 8. The situations where the continuum contact theories
are no longer applicable involve changing surface energy with
time [171–173], viscoelastic materials [174, 175] and rough
surfaces [176, 177]. All of these factors could give rise to
hysteresis and time-dependent effects.

Under ambient conditions, the capillary force (meniscus
force) was demonstrated to make the largest contribution to the
adhesive force [178]. The capillary force between a plate and a
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sphere was calculated by O’Brien and Hermann [179], proving
the meniscus dimension was of 1 nm [180, 181]. The adhesion
between particles in aqueous media was found to be mainly
influenced by the electrostatic force [182, 183], solvent force
and structure force [184–186]. For small particles of nanoscale
size, more subtle effects beyond continuum theories have
been observed. Specifically, the surface molecular structure,
the distribution of terminal groups on the particles’ surfaces
and the surface energy variation due to particle deformation
could influence and even dominate the adhesion behaviours
[84, 153, 158, 187, 188].

In Amontons and Coulomb’s friction theories for
describing macroscopic dry sliding friction, the friction is
proportional to the normal force, but independent of the contact
area as well as the sliding velocity. However, the tribological
properties at the micro/nano scale cannot be explained with
these empirical theories. Ever since 1987 when the frictional
forces were detected with AFM by Mate et al [154] for
the first time, the friction at the micro/nano scale has been
observed by many researchers to deviate considerably from
the predictions based on established macroscopic laws. The
nanoscopic friction is proportional to the true contact area,
which is not necessarily proportional to the loading force
[189–191]. Furthermore, the friction in a nanoscale contact
increases logarithmically with the sliding velocity [192], being
in sharp contrast to empirical theories. The friction between
the AFM tip and the substrate has been measured as a function
of many parameters, such as the externally applied load
[189–191, 193, 194], the sliding velocity [192, 195, 196], the
tip radius and shape [189, 191], the relative orientation between
the scan direction and the substrate lattice [197–200], the
temperature [201, 202] and the chemical nature of the sample
[203–205]. The method using the AFM tip to control the lateral
manipulation of nanoparticles provides a powerful tool to
measure the interfacial friction of nanoparticles with arbitrary
materials and sizes. Polymer latex spheres (50–100 nm in
radius) were manufactured by Ritter et al [23] on a HOPG
surface; the threshold force needed to overcome the static
friction of a single latex sphere was found to depend on the
sphere size, being in accordance with the JKR and DMT
theories. Similarly, Sb nanoparticles on a HOPG surface
were pushed by Dietzel et al [157] with an AFM tip and
two coexisting frictional states were observed: some particles
showed finite friction and increased linearly with the interfacial
areas, while other particles experienced a state of frictionless
sliding. The transition from static to kinetic friction was also
investigated in another of their work and a hysteretic character
in the force domain was found [167]. Polystyrene nanospheres
with radii varying from about 30 to 200 nm on the polished
nanosmooth silicon surface were manipulated by Guo et al [24]
with the contact mode of AFM; the typical results are shown
in figure 9. The results indicated that the ratios between the
kinetic friction Ff -kinetic and the static friction force Ff -kinetic

were in the range of 0.3–0.6. Moreover, the ratio did not change
whether the particles were located in different areas of the
surface, the tip normal force was varied or even the surface
was modified [24].

Gold particles with a mean diameter of 25 nm were
manufactured by Mougin et al [206] on silicon substrates; it

Figure 9. Static and kinetic frictions and their ratios for particles
with radii of 71.85 nm and 228.2 nm on a non-hydroxylated surface
and a hydroxylated surface, respectively. The normal load is
348 nN. The columns with solid fill and horizontal stripes represent
Ff -kinetic and Ff -kinetic on the non-hydroxylated surface, respectively.
The columns with vertical and oblique stripes repesent those on the
hydroxylated surface, respectively. The square and the circle
represent the ratio of Ff -kinetic and Ff -kinetic for particles with R of
71.85 nm on the non-hydroxylated and the hydroxylated surface,
respectively. The triangle and the rhombus represent those for
particles with (R = 228.20 nm) on the non-hydroxylated surface
and the hydroxylated surface, respectively [24].

was found that the adhesion of the particles to the substrate was
strongly reduced by the presence of hydrophobic interfaces.
The friction and wear of spherical gold nanoparticles under
dry conditions and submerged in water were studied by
Maharaj and Bhushan [207]; the results indicated that the
addition of gold nanoparticles reduced friction and wear.
Sitti and Hashimoto [208, 209] proposed an AFM-based
force-controlled pushing system for the manipulation and
assembly of nanoparticles. Interaction forces among the AFM
probe tip, the nanoparticle and the substrate, including the vdW
force, capillary force, electrostatic force, repulsive contact
force and frictional force were analysed [208]; several modes
of particle motion including sliding, rolling and rotation were
observed [209].

4.3. Movement of nanoparticles

Various forces such as gravitational (buoyancy) forces,
surface forces, viscous flow forces and the forces due to
Brownian motion result in the movement of nanoparticles
in the media in different ways [210–220]. However, the
experiments for the direct observation of nanoparticles’
movement are limited primarily due to the small particle
size preventing the application of the most commonly used
imaging techniques. Fortunately, the rapid development of
measurement technology provides opportunities for tracking
individual nanoparticles or even single molecules. Up to now,
several methods have been used for making high-resolution
measurements of the motion of single nanoparticles. Among
these methods, two groups can be classified: one is to passively
track the particle motion without applying significant external
stimuli and the other is to measure the particles’ motions
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Figure 10. The particle trajectories in a water droplet during the evaporation process [223].

under external mechanical forces [221]. To be more specific,
studies based on two typical methods will be emphasized in
the following parts.

The first method is particle tracking with the fluorescence
technique. A system for observing nanoparticles was
developed by Xu et al [222] using a high-resolution
fluorescence microscope and fluorescent core-shell SiO2

nanoparticles of 50–60 nm in diameter were used as the seed
nanoparticles. By using this system, the velocity profile
of nanoparticles in a channel flow [222], the Marangoni
flow in evaporating water droplets [223] and nanoparticle–
wall collision behaviours [224] were investigated. The
Marangoni flow in a droplet manifested with fluorescent
nanoparticles revealed a stagnation point where the directions
of the surface flow, the surface tension gradient and the
surface temperature gradient changed, as shown in figure 10
[223]. The nanoparticle–wall collision experiments showed
the nanoparticles adsorbed on the solid surface after collision
in liquid were much easier to be removed than those deposited
on dry surfaces [224]. The reason for this observation was that
the particles might be adsorbed at the secondary minimum of
the particle–wall interaction when the collision occurred in
water, rather than at the primary minimum for the particles
deposited on dry surfaces, as described in the DLVO theory
mentioned earlier. Another system for in situ observing
nanoparticles’ movement with the fluorescence technique in
confined geometries where external loads and rotations could
be applied was developed by Lei et al [225]. With this system,
it has been found that the velocities of free particles were
much larger (20 times) than the rotating speed, providing
evidence that nanoparticle impacting was also one of the
main surface material removal factors during the surface
planarization process. More discussions on this point will be
given in the latter part of this review.

The second method is the TEM observations, which
could give more delicate details of the particle movement
and provide deeper understanding of the roles of particles
in specific applications. The movement behaviours of a
single MoS2 nanoparticle in a dynamic contact were directly
observed with in situ TEM by Lahouij et al [226]; the
results showed that either a rolling or a sliding process of the
fullerenes could be possible during shearing. The motion of

inorganic nanoparticles during fluid evaporation was observed
using a TEM by Zheng et al [227]. The observation of the
self-assembled process of nanoparticles in a liquid medium
with the particle size comparable to the molecular dimension
of the liquid was made using an environmental TEM by Dai
et al [228].

The movement of nanoparticles is very complicated due
to the influence of many factors, e.g., complex forces, medium
and environment. In this instance, the studies on the single
nanoparticle’s motion in the past were mostly qualitative in
nature; more precise measurement methods or instruments
with a combination of functions are needed for quantitative
analyses in future works.

5. Applications relevant to the mechanical
properties of nanoparticles

5.1. Nanoparticles in lubrication

The mechanical properties of nanoparticles play a major role
in influencing the tribological properties of lubricated systems
with nanoparticles. The effects of the mechanical properties
of nanoparticles as lubricant additives on the tribological
properties differ in various materials. The lubricating
properties of typical nanoparticle materials are summarized
in table 4. From a general point of view, the combined effects
of rolling, sliding and the formation of a third body layer and
tribofilms are the main reasons for the increased lubricating
behaviour after adding nanoparticles [12], as briefly described
in the following parts.

(1) The rolling mode of nanoparticles in the lubricated
contact area could provide very low friction and wear;
however, the occurrence of this effect is strongly
dependent upon some properties, e.g., the shape, the
size and the concentration of the nanoparticles in the
lubricant [246, 250, 253, 254]. Spherically shaped and
mechanically stable nanoparticles without significant
agglomeration are favourable for their rolling in the
contact area between tribopairs [245]. As far as
the intrinsic mechanical properties of nanoparticles are
concerned, whether the initial spherical shape of the
nanoparticles in the contact area can be preserved or
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Table 4. Summary of lubrication properties of nanoparticles of different materials as additives.

Material category Examples Lubrication mechanism and regime Favourable aspects Unfavourable aspects

Metal
nanoparticles

Au [229],
Ag [229, 230] Cu
[231–233], Ni [234]

(1) Formation of soft and low shear
strength tribofilms

Friction and wear
reduction,
anti-contact fatigue,
good extreme
pressure

Low dispersibility in
organic solvent

CuO, ZnO and ZrO2

[235–237],
TiO2 [238]
Al2O3 [239, 240]

(2) Formation of the third body layer
due to mechanical compaction

Organically coated
modification
[233, 241, 242]

(3) Extreme pressure related to the
size and the hardness of
nanoparticles

More stable colloid
system

Modification with
chlorine and
phosphorus

containing compounds
are not green

Metallic-organic
complexes [243]

(4) Effective in mixed lubrication
and low-load boundary lubrication

Efficient delivery of
particles to the
asperity contact

Dichalcogenide
MX2(M = W,
Mo; X = S, Se)
nanoparticle

WS2 [244–246],
MoS2 [226, 247, 248],
WSe2 [249]

(1) Rolling/sliding at the low normal
stress and exfoliation at the high
normal stress under boundary
lubrication

(2) Layers in the particles can easily
slide due to weak intermolecular
interactions

Reducing sliding
friction, by up to
50%, in the mixed
lubrication regime

Carbon-based
nanoparticle

Diamond nanoparticle
[218, 250–252]

(1) Ball-bearing effect
(2) Viscosity-increasing effect
(3) Increase in the surface hardness
of tribopair

Friction reduction,
anti-scuffing, surface
polishing

Graphite nanoparticle
[253, 254]

Ball-bearing spacers, reduce metal
contact and increase the wettability
of lubricant on surface

High temperature
resistance, extreme
pressure and
self-lubrication
ability

Water insoluble due to
hydrophobicity

Fullerene [255–257] Similar to dichalcogenide MX2 More effective for low
viscosity base oil and
high normal loads

Silicon
nanoparticle

SiO2 [258–261],
Al2O3/SiO2

composite
nanoparticles [262]

Bear load, separate tribopair,
prevent direct contact, and promote
rolling, inhibit the expansion of the
microcracks on the tribopair
surface due to particle embedment

Cheap and easily
available

Polymer
nanoparticle

PTFE nanoparticle
[263, 264]

(1) Increased load bearing properties
due to large adhesion between
lubricant and tribosurface

(2) Mechanical energy adsorbed by
particles as its deformation occurs
(shock-absorbing effect)

Reduce friction and
wear; extreme
pressure

Unstable under high
temperature

not have a close relationship with their hardness/elastic
properties, which are also affected by the nanoparticle
size [226].

(2) The sliding mode of nanoparticles could also result in
low friction and wear. Sliding friction usually occurs
when the particle is not very spherical in shape and has
low adhesion to the tribopair surfaces [265]. Besides,
particle agglomeration in the contact area is another factor
that could lead to sliding friction during the shearing of
tribopairs [229–233]. In this case, the nanoparticles play
a role as a spacer in minimizing the direct contact between
the asperities of two shearing surfaces.
Externally applied pressure on the nanoparticles, the
rigidity of the tribopair surfaces and the interaction forces

between particles are very relevant to the above two modes
of particle movement in the lubricated contact area. A
smaller applied load and harder tribopair surfaces readily
lead to rolling friction of nanoparticles in the contact area,
because these would give less of a probability for the
particles to mechanically deform or indent into the surface
[14, 245]. Moreover, particle agglomeration is greatly
determined by the interaction force between particles,
thereby inhibiting rolling while promoting the sliding of
nanoparticles in the contact area [229, 231]. Another
important aspect of the nanoparticle in the lubricant
under a low applied pressure is that the viscosity of
the lubricant could be enhanced and thereby the oil
film formation properties in the lubricated contact could
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Figure 11. Typical results of lubrication properties of oils (polyester (PE)) with added diamond nanoparticles: (a) film thickness against ball
rolling speed for PE with nanoparticles of different concentrations (applied pressure: 174 MPa); (b) physical model of nanoparticles as
additive; (c) SEM image of the rubbing surface under PE lubrication (rubbing time: 30 min; applied pressure: 220 MPa); (d) SEM image of
the rubbing surface under PE lubrication with nanoparticles (rubbing time: 30 min; applied pressure: 220 MPa) [218].

be improved, as shown in figures 11(a) and (c) [218].
It can also be noted from this figure that when the
applied pressure increased further, the sliding effect of
nanoparticles could give rise to the surface polishing
effect.

(3) When the applied pressure is sufficiently large, nano-
particles become mechanically unstable and delamination
of nanoparticles could happen [245, 246]. For
instance, studies suggested that when the applied
pressure was ∼1 GPa and the tribopair operated in the
boundary lubrication regime, exfoliation of inorganic
fullerene-like (IF) nanoparticles as the lubricant additive
would dominate [244–247]. In this case, material
layers of the broken particles could form as the third
body and adhere on the tribopair surfaces separating the
counterpart. These layers likely align themselves parallel
to the tribopair surfaces due to adhesion and shear. It
occurs more often for metal dichalcogenide and graphite
nanoparticles, which have anisotropic layered structures
with weak vdW forces as the bonding interaction between
layers [226, 244–249, 253–257]. In addition, valleys
between asperities could be filled out by nanoparticles;
then the tribopair surface could be partly smoothened out
to reduce friction and wear [261].
It is worth pointing out that nanoparticles as lubricant
additives do not always give rise to favourable tribological
properties. Increases in friction and wear, as well
as lubricant starvation, were observed due to the

abrasive effect of hard nanoparticles under large pressures
and heavy aggregations of oils with high particle
concentrations in the inlet of the contact area [264].

5.2. Nanoparticles in nanomanufacturing

As already mentioned in the introduction, CMP is an
indispensable planarization tool in nanomanufacturing ICs.
Abrasive and corrosive slurry is used to physically grind and
chemically remove microscopic topographic features on a
wafer to obtain a flat surface [215]. In this process, abrasive
nanoparticles in the slurry are a very important contributor
to obtain controlled material removal without sacrificing
planarity. They usually either embed in the polishing pad
or remain immersed in the slurry, as schematically shown
in figure 12 [265]. Among many factors that could affect
the material removal rate and surface quality in CMP, the
mechanical interaction between the nanoparticles and the
wafer surface plays a critical role. For the material removal
process, two models have been proposed to understand
the mechanical behaviours of abrasive nanoparticles in
CMP, i.e. the hydrodynamic model and the solid contact
model [266, 267].

(1) In the hydrodynamic model, the wafer and the polishing
pad are separated by a thin liquid film; the material
removal is primarily due to the collision of abrasive
nanoparticles onto the wafer, or the fluidic shearing.
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Figure 12. Schematic illustration of the CMP tool and the contact
among wafer, pad asperity and abrasive particles during the CMP
process [265].

The effects of the particle size, the incidence speed and
angles etc on the collision between nanoparticles and the
wafer surface have been investigated [214, 224, 268, 269].
Xu et al [224] designed an experiment based on
a fluorescent microscope system where fluorescent
nanoparticles adsorbed on a glass surface were exposed
to the vertical impact of a liquid with 15 wt% abrasive
nanoparticles. The results suggested that the collision
between the abrasives and the wafer surface had a
negligible effect on the material removal at a liquid
impact speed of 3 m s−1. When the impacting speed
was increased and the nanoparticle incidence angle was
changed, damage to the wafer surface could occur. For
instance, there were many pits and scratches on the
surface on the wafer surface under a speed of 50 m s−1

and an incidence angle of 45◦; heavy and heterogeneous
deformation in the surface layer was observed with
the high-resolution TEM [214], as shown in figure 13.
MD simulation studies on the collision process of a
nanoparticle onto a silicon or silica surface suggested the
damage could be increasingly reduced with the increasing
incident angle [269–271]. Moreover, the critical velocity
for the pileup formation on the silicon surface is affected
by the incidence angle rather than the particle size [270].

(2) In the solid contact model, part of the polishing pad is
in direct contact with the wafer surface [272, 273]. The
particles embedded in the pad slide against the substrate
surface, in a similar way to fixed abrasive grinding
(referred to as fixed particles). The particles immersed in
the slurry between the pad and the wafer can be referred to
as free particles. Lei et al [225] used a fluorescence based
experimental system to track the movement of individual
particles between the polishing pad and the solid surface.
The results confirmed that some particles were fixed on the
polishing pad and rotated with the pad, while the others
moved freely in the slurry flow. Paul et al [274] proposed
that the ratio of the number of fixed particles and that
of free particles was of great importance to the material
removal mode. In regard to this model, it has been widely
accepted that the material removal is due to the two-body

abrasion between the polishing pad and the wafer surface,
as well as that between nanoparticles and the wafer surface
[266, 267, 275–277]. Nevertheless, increasing evidence
shows that the rolling of free nanoparticles in the slurry is
not notably inferior to abrasive sliding for the material
removal and surface finish on the atomic scale in the
CMP process [265, 278]; a typical MD simulation result
is shown in figure 14.

Another important aspect is understanding the adhesion
and the removal of nanoparticles on the wafer surface; this is
a relevant problem in the post-CMP cleaning process [279].
Interfacial forces, such as the vdW force, electrostatic force
and capillary force in the vicinity of the nanoparticle and the
wafer surface dominate the adhesion process [280]. Many
experimental factors could influence the adhesion strength
between the particle and the wafer surface, as the following
list demonstrates.

(1) The adhesion could increase with the contact time, since
the contact area and then the interfacial forces increase as
time progresses [281].

(2) Large atmospheric humidity could accelerate the adhesion
formation [282].

(3) The size effect of nanoparticles on the adhesion strength
has been a research focus and some contradictory
results have been obtained. Heim et al [170] found
that the relationship between microparticle/wafer surface
adhesion and the particle radius agreed with the prediction
of contact theories. On the contrary, the results obtained
by Thoreson et al suggested that no size effect of
the particle/wafer surface adhesion could be observed
[283]. This trend was also confirmed by the experiments
conducted by Lei et al [225], in which a series of
heat-treated AFM probes with various curvature radii were
employed to measure the particle/wafer surface adhesion.
This result might be as a result of the reduction of the real
contact area caused by asperities on the tip surface [284].

(4) In addition, the influence of capillary force should be also
considered, since small particles could aggregate to form
larger ones [43].

After nanoparticles are adsorbed onto the wafer surface
due to the action of interfacial forces, they could be embedded
in the surface by pad pressure if valleys or asperities are present
on the surface [285]. In this case, the number of residue
nanoparticles on the wafer surface after the CMP process could
reduce when the wafer surface hardness increases [286]. These
residue nanoparticles should be removed during the post-CMP
cleaning process to avoid their unfavourable effects on the
follow-up processes [287]. Applying external mechanical
stimuli, megasonic cleaning as well as some wet chemical
effects are optional ways to overcome the adhesion force and
remove physisorbed (in some cases chemisorbed) or partially
embedded nanoparticles, as schematically shown in figure 15.

The mechanical removal forces are very complex, mainly
including the contact elastic force, the hydrodynamic drag
force and the friction between a brush and nanoparticles,
etc [288, 289]. A schematic description of all the forces
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Figure 13. (a) AFM image of the surface after a 10 min exposure; (b) cross-section high-resolution TEM images of the specimen subsurface
after exposure [214].

Figure 14. The rolling process of a silica particle under an external down force of 5 nN and a lateral driving force of 10 nN (left); The
number of removed atoms against various external down forces with abrasive rolling and abrasive sliding (right) [265].

for a nanoparticle on the surface in the cleaning process
was put forward by Huang et al [290]. Furthermore,
contact models and lubrication hydrodynamic theories were
employed to analyse the fluid flow field and calculate the
hydrodynamic drag force, as well as the surface roughness and
the characteristics of the brush nodules were considered [291].

The mechanical brush scrubbing method is very efficient
for removing residue particles; however, it becomes less
effective when the particle size is very small, e.g., a
nanoparticle. In this case, megasonic cleaning and chemically-
activated removal could be adopted. Megasonic cleaning is to
utilize a sound field with a frequency of typically 0.8–2 MHz
to excite controlled cavitation, which is gentler and on a much
smaller scale than that produced under ultrasonic cleaning.
Increases in the megasonic frequency, the cleaning period and
the solution temperature etc could improve the cleaning effects
[292–295]. Nevertheless, this cleaning method has some
problems, e.g., the instability of the sound field for cleaning
large size wafers and low cleaning efficiency. The basic idea
of the chemically-activated removal, i.e. using a chemical
additive, is to weaken the bonds between particles [296] or
to change the charges on the wafer surface and the particles
(alter the solution pH [297, 298] or add surfactants [299]) for
controlling the electrostatic repulsion between the particles and
the wafer surface.

5.3. Nanoparticles in coatings

Incorporating different kinds of nanoparticles within a
metal or polymer matrix to produce nanocomposites can

deliver improved properties, such as enhanced mechanical
properties, self-lubrication, wear-resistance and energy-
absorbing capabilities [300]. A few examples demonstrating
the influence of nanoparticles on the mechanical (hardness,
elastic modulus as well as tensile strengths etc) and tribological
properties of nanocomposite coatings are shown in table 5.
There are two main categories of nanocomposites, which are
summarized as follows.

(1) Due to some of the inherent properties of the matrix, for
instance the high strength and modulus, wear resistance
and high thermal and electrical conductivity, metal or
metal alloy matrix composite coatings show distinct
advantages over polymeric composites [315]. In these
coatings, ceramic (Al2O3 [301, 304, 306], TiO2 [305],
SiC [307, 308]) and carbon-based (graphite [316] and
CNTs [317]) nanoparticles are usually added. There
are three reasons why ceramic particles are used as
reinforcement to enhance the hardness and the wear-
resistance of composites:

• the high hardness and strength of particles [306, 308]
• migration and dislocation motion of grain boundaries

can be prevented by the particles in the matrix [304]
• heterogeneous nucleation effect of particles in metal

or metal alloys [308].

The addition of graphite nanoparticles or CNTs in a metal
matrix could, on the one hand, reduce the porosity of
a pure metal coating, then the coating would be much
denser and compact with fewer cracks. On the other hand,
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Figure 15. Basic schematic models of typical post-CMP cleaning of
nanoparticles: (a) brush–particle mechanical interaction;
(b) megasonic cleaning; (c) chemical additive (surfactant).

the crystalline size in the coating could be refined due to
the presence of nanoparticles. In addition, the structural
and chemical stability of CNTs, which have a higher
stiffness and strength compared with the metal matrix are
another important factor contributing to the strengthening
effect [317].

(2) Modification of the physical properties of a polymer
matrix can be achieved by adding inorganic or
organic nanoparticles, causing some new characteristics
of polymers to be obtained [318]. For example,
polymer composite coatings containing some inorganic
nanoparticles can provide resistance to the initiation and
propagation of cracks, fill cavities and initiate crack
bridging, deflection and bowing [319]. Basically, the
mechanical properties of polymer based nanocomposites
can be affected by many factors, among which the
interface between the nanoparticle and the polymer matrix
plays a dominant role due to the large specific surface
area of the particle [310, 318]. Hence, a good design of a
nanocomposite, by taking the complex interplay between
matrix, interface and nanoparticles into consideration,
could tailor the composite material system with desirable
physical properties. Several underlying mechanisms
responsible for the interface reinforcement are:
(1) the interaction between nanoparticles and the

polymer matrix could result in the formation of
special microstructures (for instance, a finer scale
lamellar structure), correspondingly the improved
mechanical properties could prevent rapid crack
propagation in the coating [320];

(2) nanoparticles could enhance their interaction with the
matrix through chemical bonds (for example, increase

the cross-linking densities in the coatings) or increase
the physical interactions between macromolecular
chains of the matrix [313, 314, 321]. In this
manner, effective pathways could be provided for
nanoparticles to complement the poor mechanical and
tribological performances of some polymer matrices,
e.g., their poor resistance to surface abrasion and
wear [319].

Uniform dispersion of nanoparticles in the matrix is
very crucial in obtaining improved mechanical properties
(e.g., strength and ductility) of nanocomposite coatings,
since the maximum filling content of nanoparticles with
a large surface area is limited [318]. When the content
of nanoparticles in the nanocomposite coatings exceeds
a critical value, particle agglomeration would happen,
resulting in deterioration of the mechanical properties (for
instance, aggravated microcracks on the coating surface),
decrease in Young’s modulus and increase in the wear rate
[313, 319]. In order to achieve good particle dispersion,
appropriate preparation and processing methods are
needed. Specifically, powder metallurgy and vapour
phase processing [315], ultrasonic assisted melting and
disintegrated melt deposition, mechanical alloying and
friction stir processing [322], as well as layer-by-layer
deposition [323, 324] have been used. In addition, the
interface between the nanoparticle and the matrix can
be modified precisely on the molecular/atomic level
with techniques, such as atomic layer deposition (ALD)
[325] or molecular assembly to obtain some interesting
structures, e.g., core/shell hybrid nanoparticles [326].

6. Conclusion and outlook

Increasingly high requirements of the surface and interface
properties of many mechanical systems demand new
designs and improvements of surface modifications and
manufacturing technologies. Nanoparticles exhibiting many
unique mechanical properties have become one of the most
attractive choices for meeting these needs in the past couple of
years. The foregoing parts review basic physics and recent
important results of nanoparticles from the perspectives of
their mechanical properties and interfacial interactions, as well
as related applications. Available fundamental research data
regarding the mechanical properties of nanoparticles provide
valuable guidance for their effective implementation in surface
engineering, micro/nanomanufacturing and nanofabrication
etc. Many of these applications with nanoparticles have
already made impressive progress in practice and exhibited
significant advantages in many fields.

Despite these, further works are still needed to acquire
information on the mechanical properties of more kinds of
nanoparticles with the advances of convenient characterization
techniques and mature nanoparticle production technologies.
Quantitative descriptions of the mechanical properties of
nanoparticles in relation to the size dependent and material
effects etc should be also made. Additionally, how to achieve
a much clearer picture about the roles of nanoparticles in their
specific applications is of great significance. Hence, direct
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Table 5. Summary of the mechanical properties of some nanocomposite coatings.

Maximum Friction
tensile(T) or coefficient Optimum

Increased hardness (H) flexural (F) (COF)/wear particle Particle
Nanoparticle/matrix or modulus (M) strength rate(WR) concentration size (nm)

Metal
matrix

Al2O3 [301],
AlN [302],
MgO [303]/Al or Al
alloy

(H)68.4
HRF(115%) [301]

(H)1.59 GPa (50%)
(M)140 GPa

(56%) [302]

(T) 250 MPa
(67%) [301]

Compressive
strength
288 MPa(164%)
[303]

4–7 vol%
[301, 303]
39 vol% [302]

40–80

Al2O3/Ni-W [304]
TiO2/Ni [305]

(H)8.5 GPa
(31%) [304]

(H)400 HV
(23%) [305]

1460 MPa
(1180%), residual
stresses [304]

−(50–75)%
[303];
−40%
(WR) [305]

5–7 wt% [304]
12 g l−1 [305]

30–90

(WC, ZrO2, Al2O3,
and Si3N4)/(Co or
Fe) [306]

(H) increase by 5–16
HRB

bending strength
increase by 54%

−(50–90)%
(WR),

−75%
(COF)

2–6 vol% 10–100

SiC/Mg
alloy [307, 308]

(T) 216 MPa(24%);
Yield strength
384 MPa(113%)
[308]

10 vol% [307]
0.5 wt% [308]

∼20 [307];
50 [308]

Nanographite/Cu [309] (H) 94 HV (31%,
5 vol%)

−23%(COF,
15 vol%),

−33%(WR,
15 vol%)

35

Polymer
matrix

SiAlON, [310]
SiO2 [311]/Epoxy
resin

(H) 67(Shore-D,
18%) [310]

(M) 60 MPa (−40%)
aggregation,
5 wt.% [311]

(T)18 MPa(-44%)
aggregation,
5 wt.% [311]

−67% (WR,
3 wt%) [310]

9–11 wt% [310] 70 [310]

ZnO/polyurethane [12] (T) 17.83 MPa
(108%)

2 wt% 27

nano-PTFE/Phenol
resins [313]

(H)112 HRM (25.8%) (F)110 MPa
(19.6%)

−33%(COF);
−61% (WR)

2–5 wt% 20–80

PTFE-MoS2-
Al2O3/polyoxy-
methylene [314]

(H)123 MPa (7%) (T)52.08 MPa
(−7%)

3 wt% 10–30

visualizations of the interfacial behaviour of nanoparticles in
applications on the micro-/nano- and even atomic scales would
be very helpful.
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