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Abstract. In the limit of a small Debye length (,ID+ 0) the analysis of the plasma 
boundary layer leads to a two-scale problem of a collision free sheath and of a 
quasi-neutral presheath. Bohm’s criterion expresses a necessary condition for the 
formation of a stationary sheath in front of a negative absorbing wall. The basic 
features of the plasma-sheath transition and their relation to the Bohm criterion 
are discussed and illustrated from a simple cold-ion fluid model. A rigorous kinetic 
analysis of the vicinity of the sheath edge allows one to generalize Bohm’s 
criterion accounting not only for arbitrary ion and electron distributions, but also for 
general boundary conditions at the wall. It is shown that the generalized sheath 
condition is (apart from special exceptions) marginally fulfilled and related to a 
sheath edge field singularity. Due to this singularity smooth matching of the 
presheath and sheath solutions requires an additional transition layer. Previous 
investigations concerning particular problems of the plasma-sheath transition are 
reviewed in the light of the general relations. 

1. Introduction 

The problem of sheath formation at the plama bound- 
ary is of importance for nearly all applications where 
a plasma is confined to a finite volume. It is one of the 
oldest problems in plasma physics and yet is still not 
fully understood. Because of its particular importance 
in plasma technology and fusion research it remains of 
undiminished or even growing interest. 

In its simplest form the interaction of a plasma with 
a (more or less) absorbing wall can be characterized as 
follows: due to the high mobility of the electrons the 
wall potential will adjust itself to be negative with 
respect to the surrounding plasma (this holds not only 
for floating walls but is usually even true for the anode 
of a gas discharge!). The repulsion of electrons results 
in the formation of a positive space-charge region 
(‘sheath’) shielding the neutral plasma from the nega- 
tive wall, The typical extension of the sheath is given 
by the electron Debye length L o .  Usually the Debye 
length is small compared with all other characteristic 
lengths L of the plasma (e.g. ion mean free path) and 
the sheath is planar and collision free. This usual case, 
however, runs into a fundamental complication: the 
substantial distortion of the ion distribution due to wall 
losses renders shielding impossible unless the ‘Bohm 
criterion’ is tulfilled. This condition for sheath for- 
mation demands that the ions enter the sheath region 
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with a high velocity, which cannot be generated by ther- 
mal ion motion. (A corresponding condition for an elec- 
tron sheath in front of a positive wall is easy to fulfil but 
without practical importance). Consequently, the ions 
must beaccelerated byanelectricfieldpenetratinga‘pre- 
sheath’ region. The boundary layer is thus split up into 
the separate model zones of a collision free sheath (scale 
AD) and of a quasi-neutral presheath (scale L) .  The com- 
plete interchange of physical mechanisms dominating 
these regions results in a formal singularity at the sheath 
edge, merging sheath and presheath in the asymptotic 
limitA,/L+ 0. Thesingularity, aswellasthestrongcon- 
dition imposedon the presheath acceleration, has always 
attracted considerable interest in arguments questioning 
the Bohm criterion. 

Basic features of the plasma-sheath transition have 
been revealed in the early works of Langmuir (1929)- 
especially in the famous kinetic analysis of the low- 
pressure column due to Tanks and Langmuir (1929). 
In these investigations the essence of the Bohm cri- 
terion was already used in an implicit form. The explicit 
formulation and clear interpretation of the sheath con- 
dition is due to Bohm (1949). Harrison and Thompson 
(1959) were able to solve the Tonks-Langmuir problem 
analytically and to find a kinetic formulation of Bohm’s 
criterion valid under rather general conditions. 

The first investigations on the plasma-sheath tran- 
sition were concerned with collisionless plasmas. Boyd 
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(1951) introduced the Bohm criterion by an artificial 
cut-off into the diffusion controlled theory of the col- 
lision dominated plasma. Persson (1962) was appar- 
ently the first to recognize the universal role of ion 
inertia in the boundary region later called the ‘pre- 
sheath’. The first self-consistent kinetic analysis of a 
collisional presheath was given by Riemann (1981). 

The term ‘presheath’ is due to Hu and Ziering 
(1966) and was originally addressed to the Knudsen 
layer of a collision dominated plasma. With a different 
meaning it was used by Franklin (1976) to designate a 
transition layer required for a smooth matching of 
plasma and sheath. Gradually the application of the 
name to the inertia-dominated boundary region- 
regardless of the plasma collisionality-prevailed. In 
the case of a bounded collisionless plasma the term 
‘presheath (here first used by Emmert et al (1980)) 
refers to the whole plasma. This coincidence may have 
increased some continuing confusion in nomenclature 
pointed out by Franklin (1989). 

Boyd (1951) investigated a quasi-neutral ‘extra 
sheath’, Ecker and McClure (1962, 1965) considered 
zones of mobility and inertia limited motion. Chodura 
(1986) distinguished a plasma presheath, a quasi-neu- 
tral magnetic sheath and an electrostatic sheath. Main 
(1987) analysed a presheath governed by Poisson’s 
equation, and Zawaideh et a/ (1990) related the term 
‘sheath’ to the use of Poisson’s equation in the numeri- 
cal analysis. The confusion in the model regions is 
easily transferred to the region limit, the sheath edge, 
which according to Emmert er al (1980) is ‘a rathcr ill 
defined point’. It is exactly to this point that the Bohm 
criterion is related-no wonder that this uncertainty 
was a continuous source of criticism in the strange 
sheath condition: Hall (1961) pointed to the neglect of 
a transition region in Bohm’s derivation; Ecker and 
McClure (1962, 1965) questioned the criterion by tak- 
ing into account finite sheath edge fields; Godyak and 
co-workers (1982, 1989) related the Bohm criterion to 
contradictory boundary conditions of the sheath and 
presheath; Bakhst er a/ (1969) argued that in collisional 
systems the Bohm criterion could never be satisfied, 
and that collisions in the sheath had to be considered 
in any case to obtain a reasonable solution at all; 
Zawaideh et al (1990) claimed to have obtained new 
reasonable solutions violating the Bohm criterion by 
accounting for collisions in the sheath. 

Other investigators advanced arguments confirming 
the validity of Bohm’s criterion in the equality form 
(Allen and Thonemann 1954). This more distinct 
statement was used as a boundary condition both for 
the sheath and for the presheath. The singularity 
related to the plasma-sheath transition was considered 
a reasonable consequence of the scale transition AD/ 
L +  0 confirming the marginal validity of the sheath 
condition (Stangeby and Allen 1970, Riemann 1980). 
This interpretation again became questionable when 
Emmert et al(l980) presented the analytic model of a 
plasma sheath transition without singularity. Bissel and 
Johnson (1987) analysed a slightly different model and 
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obtained again the sheath edge singularity using the 
equality form of Bohm’s criterion as a boundary con- 
dition. Was this procedure still conclusive? Scheuer 
and Emmert (1988h) reinvestigated the same problem 
without imposing the criterion and uerified the results 
of Bissel and Johnson closing with the ‘interesting open 
question, why the Bohm criterion is satisfied in the 
equality form’. 

In this review I shall try to answer the question 
‘why’-and ‘why not’ under slightly modified 
conditions. I shall further attempt to set aside the con- 
fusion arising from the definition of the model zones, 
to discuss the objections to Bohm’s criterion and to 
clarify its accurate meaning. A kinetic analysis of the 
sheath edge region will allow definite conclusions to he 
drawn on the plasma-sheath transition and to gen- 
eralize the sheath condition. The review is concerned 
only with theoretical investigations of the asymptotic 
case AD/L+ 0 governed by the Bohm criterion. It is 
further restricted to the formation of stationary wall 
sheaths. For the discussion of related problems in the 
theory of double layers see reviews by Allen (1985), 
Raadu and Rasmussen (1988) and Raadu (1989). 

To illustrate the basic concept and the main objec- 
tions, the entire topic of the Bohm criterion and sheath 
formation will he discussed in section 2 in a simplified 
form. Starting from a cold-ion fluid model we shall 
rederive the original Bohm criterion (section 2.1), 
introduce the two-scale formalism to describe sheath 
and presheath (section 2.2) and investigate the pre- 
sheath mechanism (section 2.3). Section 2.4 deals with 
the plasma-sheath transition for small but finite AD/L 
and section 2.5 examines arguments questioning 
Bohm’s criterion. Finally section 2.6 points to problems 
not covered in the scope of this review. 

A rigorous kinetic theory of the plasma-sheath 
transition resulting in general sheath conditions will he 
developed in section 3. This analysis is not restricted 
to absorbing walls, but accounts for ion reflection and 
emission. Furthermore, it yields new results on the 
type of the sheath edge singularity. Section 4 discusses 
the sheath criterion in more detaii and prcscnls special 
forms adapted to specified conditions. The problem of 
matching the plasma and sheath solutions, and the 
definition of appropriate model zones, are considered 
in section 5 .  Section 6 reviews special problems and 
their relation to the points discussed in the preceding 
sections. The most important results and statements on 
the Bohm criterion are finally summarized in section 7. 

2. The mechanism of sheath formation: 
elementary theory 

In this section the basic properties of the plasma- 
sheath transition will be discussed and fundamental 
concepts will he introduced. To this end a simplified 
model exhibiting the basic mechanisms hut avoiding 
mathematical exertion is studied. More rigorous 
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Figure 1. Shielding positive sheath in front of a negative 
wall (schematically). 

models of the boundary layer will be considered in 
following sections. In particular, the assumptions made 
here are monoenergetic cold ions, Boltzmann dis- 
tributed electrons, and completely absorbing walls. In 
addition our general presupposition E = Ao/L + 0 is 
recalled, where L is any relevant characteristic length 
of the plasma boundary. 

2.1. The space-charge region (sheath) 

The case considered is a neutral non-magnetized 
plasma with one kind of singly-charged ions in contact 
with an absorbing wall. Due to the high mobility of 
the electrons the wall is usually negatively charged, so 
that most of the electrons are repelled (see figure 1). 
The thermal electrons are therefore hardly disturbed 
by wall losses and can be assumed to be in Boltzmann 
equilibrium. The corresponding decrease of the elec- 
tron density is presumed to form a positive space- 
charge shielding the potential distortion in a typical 
distance of some electron Debye lengths A D  in front of 
the wall. Since AD is the smallest characteristic length, 
the space-charge region can be regarded as a thin, 
collision-free planar ‘sheath. 

Considering the problem more carefully, the pre- 
sumed shielding becomes somewhat questionable, 
because the ions are strongly distorted by wall losses. 
To investigate this quantitatively the following dimen- 
sionless quantities are introduced 

normalizing the kinetic (miu : /2 )  and potential (eU) 
energy of the singly charged ions with the electron 
thermal energy (kT,),  the electron and ion densities 
(Ne,i) with the charged particle density (No) of the 
plasma (more precisely of the ‘sheath edge’, see below) 

Figure 2. Sheath potential variation according to equation 
(9) for.various ion energies yo. 

and the space coordinate z (see figure 1) with the 
electron Debye length which is given by 

( ”* A D =  ~ 

The sheath is represented by the equations 

ion continuity (3) n , Y 1 i 2  = 112 Y 11 

Y = Y n + x  ion energy conservation (4) 

n ,  = exp - x electron Boltzmann factor (5) 

d’x/dE2 = n i  - n ,  Poisson’s equation. (6)  
The zero potential and the subscript 0 refer to the 
‘sheath edge’ where the sheath merges into the neutral 
(more or less undisturbed) plasma region. (The sheath 
edge will be defined more rigorously in the following.) 

With the ion density (see equations (3) and (4)) 

n i  = (1 + x / y 0 ) - ’ i 2  (7) 
Poisson’s equation (equation (6))  can be integrated 
after multiplication with dx/d 5. Using the boundary 
condition 

x, x ’  -+ 0 for 5- --m (8) 
of a potential distortion fading away at the sheath edge, 
we obtain 

The second integration must be performed numeri- 
cally. The corresponding boundary condition (e.g. the 
wall potential x ( O ) ) ,  is not essential, because it results 
only in a parallel shift of the potential curves due to 
the spatial homogeneity of equation (9). In figure 2 we 
show solutions with ~ ( 0 )  = 10 for various values of the 
ion energy yo.  Obviously, only for y o  3 0.5 the bound- 
ary condition (8) is really met-for smaller ion energies 
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We conclude this interpretation with the lin- 
earization 

0 1  I 

X 
0 1 

Figure 3. Electron and ion denstiy variation in the sheath 
for yo > b and yo < 1. 

no shielding is possible. This can be seen analytically 
from the expansion 

of equation (9) for x +  0, resulting in a contradiction 
if 2y0 < 1. 

The necessary condition 

y o 3 4  

01 

for the formation of a shielding sheath is known as the 
‘Bohm criterion’. It was derived and formulated by 
Bohm (1949) (under the somewhat unfortunate notion 
‘criterion for a stable sheath’ (Hall 1961)). Similar 
statements have already been given by Langmuir 
(1929, p98O). 

To understand the physical reason, it is illustrative 
(Chen 1974, chapter 8.2) to compare the variation of 
the electron and ion densities (see figure 3 and 
equations (5) and (7)). Both n, and ni decrease with 
increasing x ,  n, according to the Boltzmann factor, 
and ni due to the ion acceleration at constant current 
density. Only for sufficiently fast ions exceeding the 
‘Bohm velocity’, U > uB, the ion density ni falls more 
slowly than n, near the sheath edge (x’ 0), so that a 
positive space-charge shielding the negative wall dis- 
tortion from the neutral plasma can be built up. To 
stress this aspect the Bohm criterion can be written in 
the form 

(cf equations (5) and (7)), which is very suitable for 
generalization. 
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of Poisson’s equation at the sheath edge. For po > 0 
(fulfilled Bohm criterion) the presumed exponentially 
damped distortions corresponding to Debye shielding 
are obtained. In contrast, po < 0 (violated Bohm cri- 
terion) yields only oscillatory solutions contradicting 
the boundary condition (8). These oscillations are the 
cause of the widely used but misleading interpretation 
of Bohm’s criterion as a criterion for a sheath with 
monotonic potential variation. In general, the Bohm 
criterion enables statements to be made about the local 
sheath formation near the sheath edge but not on the 
global sheath structure. 

2.2. Sheath and presheath: two-scale theory 

The description of the screening by the sheath is not 
satisfactory and cannot be complete: it ends at a (as 
yet hardly defined) ‘sheath edge’, which cannot be 
identified with the undisturbed plasma. According to 
the Bohm criterion the ions enter the sheath region 
with a velocity uk 3 uB = (kTe/mi)’’2. Usually we have 
T, 9 Ti and this implies the need for an electric field 
in the plasma region preceding the sheath in order to 
accelerate the ions to this high velocity. I follow the 
majority of authors and caii this piasma region, where 
the accelerating field overcomes the ion inertia, the 
)resheath’-a notion introduced by Hu and Ziering 
(1966). With respect to the controversial nomenclature 
mentioned in the introduction the universal role of 
ion inertia for the presheath mechanism which was first 
recognized by Persson (1962) should be emphasized. 

Depending on the particular physical situation, the 
presheath may be a part of the boundary layer (e.g. 
the Knudsen layer of the collision-dominated plasma) 
or the entire plasma (e.g. the collision free, low-press- 
ure column). In any case, an extension L ,  large com- 
pared with the Debye length AD, is assumed: 

L P A ,  = EL. (14) 
The sheath analysis would otherwise include the pre- 
sheath, and the Bohm criterion would have to be ful- 
filled at the entrance of the presheath. Remembering 
that the Bohm criterion originates from ion continuity 
and energy conservation (equations (3) and (4)) (at 
least) one of these equations must be violated on the 
presheath scale. Therefore, L will usually be deter- 
mined by the ion mean free path, by the ionization 
length or by the geometry of the system. 

To consider the problem on the presheath scale it 
is natural to use the corresponding space coordinate 

and to write Poisson’s equation in the form 
(15) X Z/L = E 5  

A characteristic feature of this differential equation is 
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presheath field singularity (exceptions will he discussed 
in sections 2.5, 3.3 and 6 . 3 ) .  Note that the position Of 
the sheath edge is given by a special value of the poten- 
tial (we use this potential value as reference point, X = 
0) rather than by a special value of the space coordi- 
nate. We can only say that the sheath edge is located 
at x = 0, or at 5 = -m. 

2.3. The presheath and its breakdown 

Before discussing physical processes in the presheath 
the consequences of its quasi-neutrality are formulated. 
Equating the ion density 

(where Ji is the ion current density) with the electron 
density (equation (5)) and differentiating logarith- 
mically yields 

xt  

1 dy dX l d j i  
2ydx d x  ji dx’  
- - - - = _ _  

As long as the Bohm criterion is not yet fulfilled, i.e. 
for y < 1, we therefore have 

Flgure 4. Schematic potential variation in front of a 
negative wall. (a) E = A D / l  small but finite; (b) E-0 ,  
presheath scale x = z/L; (c) E + 0, sheath scale = z/AD. 

that the coefficient of the highest derivative vanishes 
in the asymptotic limit E-  0, thus reducing the order 
of the problem and the number of possible boundary 
conditions. This implies that no uniformly valid 
solution, which is regular in the smallness parameter 
E ,  is possible. Problems of this type belong to the class 
of ‘singular perturbation theory’ (Van Dyke 1964). 
They are solved on separate scales x and 5 and the 
solutions are ‘matched’ (see section 5). 

From equation (16) and from the asymptotic limit 
E+ 0 it is clear that the presheath is quasi-neutral. (It 
is important to bear in mind that quasi-neutrality is not 
based on a small curvature of the potential variation 
on the x scale, hut on a small scale factor E . )  On the 
other hand, since the extension x = .e5 of the sheath 
( E  = O(1)) on the presheath scale tends to zero, the 
sheath is planar and collisionless. 

The formation of the model zones ‘sheath’ and ‘pre- 
sheath’ is sketched in figure 4. For small hut finite E = 
AD/L, the potential shows a steep variation (d/dz - 1/ 
AD) in the sheath and a weak variation (d/dz - 1/L) 
in the presheath region (figure 4(a)). In the limit E = 
AD/L+ 0 we must distinguish between the sheath and 
presheath scales. On the presheath scale the sheath is 
compressed into an infinitely thin layer and the scale 
transition is indicated by a formal field singularity 
(figure 4(b)) .  If the potential variation within the 
sheath is to he resolved one must consider the sheath 
scale, where the presheath is infinitely remote (figure 
4(c)). In this concept the sheath edge is defined by the 

dy  dX 1 dji 
< y - ,  

dx  d x  l i d ~  

By comparison with the ion energy law (see equation 
(4)) it can be concluded that a presheath, where slow 
ions are accelerated to the Bohm velocity uB, is possible 
only if 

(i) dj,/dx > 0, i.e. the ion current density increases 
approaching the wall and/or 

(ii) dy/dx < dX/dx, i.e. the ions suffer a retarding 
force (e.g. friction) in the presheath. 
This requirement can he fulfilled in particular by the 
following isolated presheath mechanisms. 

(a) Geometric presheath with current concentration 
dji/dx > 0 (e.g. spherical probe), L =curvature 
radius. 

(b) Collisionalpresheath with ion friction, dy/dx < 
dX/dx, L = ion mean free path. 

(c) Ionizing presheath with current increase dji/ 
dx > Oand mean ion retardation, dy/dx < dX/dx, L = 
ionization length. 

A further presheath mechanism, which is not contained 
in this analysis, should at least he mentioned here (see 
section 2.6).  

(d) The magnetic presheath, where kinetic energy y 
perpendicular to the wall is converted into parallel 
kinetic energy, L = ion gyroradius. 

To study the presheath dynamics quantitatively the 
magnetic fields are again disregarded and a friction 
force 

is accounted for where A(uJ is the ion momentum- 
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transfer mean free path and Si the ionization rate. 
Returning to dimensionless quantities we use a dimen- 
sionless collision cross section q and ionization rate U 
defined by 

Further we restrict ourselves to simple geometries 
where the current continuity can be formulated one- 
dimensionally via the variation of an area element 
A(x): 

I d  
A dx  

divj, =--(Aji) = U 

(A(.) = (1 Tx)@ with /3 = O  for plane, /3 = 1 for 
cylindrical, and p = 2 for spherical geometry.) We 
then obtain from equation (18) 

1 dy dX U A‘ _ _ _  -= --- 
Zydx dx ji A 

and the momentum balance reads 

Equations (23) and (24) represent a system of dif- 
ferential equations for ~ ( x )  and y ( x ) .  Solving for the 
derivatives we find a singularity (vanishing 
determinant) at y = 4, i.e. at the Bohm velocity. Of 
course, this singularity is presumed to indicate the scale 
transition (Persson 1962). 

From hydrodynamics we know the singularity of 
‘breaking the sound barrier’, and in the hydrodynamic 
theory of the multicomponent plasma there occur 
removable singularities at the sound velocities of each 
particle component (Franklin 1976, chapter 4.6, Valen- 
tini 1488). In the simple model described here the 
electrons are not described dynamically and the ions 
are cold, consequently there is no singularity cor- 
responding to the electron or ion sound velocity. The 
strong coupling via the quasi-neutrality, however, gen- 
erates a new one-component fluid whose dynamical 
behaviour is determined by the ion inertia and by the 
electron pressure. The corresponding ‘sound’ velocity 
U ,  of ion acoustic waves (Chen 1974, ch 4.6) is identical 
to the critical velocity uB. It  is therefore concluded that 
the plasma-sheath interface is defined on the presheath 
scale by the singularity which occurs when the (ion 
acoustic) ‘sound barrier’ is broken and that the Bohm 
criterion is automatically fulfilled with the equality sign 
(Stangeby and Allen 1970, Andrews and Stangeby 
1970). 

For some special cases equations (23) and (24) can 
he solved analytically. In particular the following 
special solutions are obtained. 
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Figure 5. Potential variation of elementaly presheath 
models. (a) Geometrical presheath, equation (26); broken 
line, undisturbed plasma potential. (b) Collisional 
presheath, equation (28), (c) Ionizing presheath, equation 
(30). 

(a) Geometric presheath (spherical probe (Allen et 

A(x) = (1 - x)’ q = o  U =  0 (25)  

a[ 1957)) with 

x = 1 - exI2(1 + zX)p4 .  (26) 

A = l  q =  1 o = o  (27) 

(28) 

(b) Collisional presheath with 

x = &(I - e-‘X - 2 , ~ ) .  

(c) Ionizing presheath (plane symmetric ‘column’ 
with ionization proportional to n, (Kino and Shaw 
1966)) with 

A = l  q = o  U = e-X/2 (29) 

x = d![arctan X - iX + 4 - (n/4)] 

X =  (2ex - 1)1/2. (30) 

These sohitinns are plotted in figure 5. They show a 
quite different behaviour in the plasma region: the 
geometric presheath (a) relaxes to the undisturbed 
(field free) plasma; the collisional presheath (b) tends 
to a logarithmic potential shape, indicating that the 
ion transport requires a residual plasma field; and the 
ionizing presheath (c) ends with zero field at a finite 
point representing the midplane of a symmetric 
plasma. Despite these differences all the solutions run 
quite similarly with y = t into the singularity at the 
sheath edge. The growing field inhomogeneity 
approaching this singularity indicates the formation of 
space charge and the breakdown of the quasi-neutral 
approximation. 

2.4. The plasma-sheath transition 

To extend this interpretation of space-charge formation 
at the ion acoustic singularity of the presheath let us 
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return to the general problem and use Poisson’s 
equation 

rather than quasi-neutrality, In place of equations (18) 
and (23), we then obtain 

n i  = n,  f (31) 

(32) 
1 dy d x  l d j i  &z--- n ,  d Ax 

2ydx dx  ji dx  n ,  dx  ni 
U A‘ ni d Ax - - - _ _ _  E2--- 
ii A n e  d x  n i  ’ 

Eliminating dy/dx from (24) and (32) yields 

, (33) 

The right-hand side (RHS) of this equation represents 
the space-charge contribution vanishing in the limit 
E - O .  In the first term on the LHS the difference 
between the density decrease due to the Boltzmann 
factor h’) and that due to ion acceleration &’/2y) can 
he recognized. For y < 1 this term is negative. It is 
compensated for by the positive second term on the 
LHS, which clearly exhibits the joint effects of the pre- 
viously discussed presheath mechanisms (collisional 
friction q ,  ionization U and geometry -A ’ ) .  

With increasing y < 6 (thus decreasing the bracket) 
an increasing electric field is needed to avoid an excess 
of the second term. For y 3 4 this is not possible: both 
expressions on the LHS become positive and therefore 
the space-charge contribution must he finite. Formally, 
this contribution is of the order E’; to make it signifi- 
cant Ax  must grow to the order E-’. This explains the 
steepening of the potential variation according to the 
scale transition when breaking the sound harrier y = 6 .  

Of course, for finite E = AD/L, this steepening does 
not occur abruptly at the sound barrier, hut begins 
smoothly in a ‘transition region’, which is influenced 
by the presheath mechanism and by the growing space- 
charge as well. This transition region can he described 
mathematically on an ‘intermediate scale’ (Lam 1965, 
1967, Su 1967, Franklin and Ockendon 1970) x = O(6) 
with E e 6 1. From the quasi-neutral approximation 
we have x = 0 (6’12) and we can estimate the order of 
magnitude ~ * 6 ’ / ~ / 6 ~  of the RHS of (33). Comparing with 
typical terms O(1) of the LHS we see that the transition 
region is characterized (in this hydrodynamic approxi- 
mation, see section 5) by the scaling 

x = E415c = & 2 I S W  ( L  w = O(1)). 
(34) 

I wish to demonstrate this transition by a numerical 
solution of the spherical probe problem (Allen et al 
1957, see section 2.3) accounting for space charge and 
geometry. With x = y  - f, A(x)  = (1 - x)* and AA = 
l/a we obtain from (5 ) ,  (17) and (31) 

Numerical solutions for various finite E = Ao/L are pre- 
sented in figure 6(a). They show that with decreasing 
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Flgure 6. Numerical solutions of the spherical probe 
problem (equation (35)) for small E = ho/L, L = R. (a) 
Presheath scale x = z/L; ( b )  intermediate scale according 
to equation (34). 

E ,  the quasi-neutral solution ( E  = 0) is approached in 
the presheath region, which becomes universal for 
small E .  Near the sheath edge the curves diverge and 
the quasi-neutral solution is no longer a good approxi- 
mation. Plotting (figure 6 ( b ) )  the same results in the 
transformed coordinates w and 5 (see equation (34)) 
the curves now come close together near the sheath 
edge and diverge in the presheath region: the solution 
becomes universal on the intermediate scale, which is 
the appropriate scale to describe the transition region. 

With increasing sheath potential, the solutions for 
different E again begin to diverge slightly. This indi- 
cates that the sheath scale now becomes the appro- 
priate scale: all curves with small E run (apart from a 
trivial parallel shift) into the curve y o  = 0.5 of figure 2. 
This sheath solution is not only universal for different 
small E ,  hut also for all different presheath mechan- 
isms. This universal sheath region is addressed by the 
Bohm criterion: it can only he formed with supersonic 
ions. 

2.5. Is the Bohm criterion necessary for space-charge 
formation? 

No: because the Bohm criterion refers exclusively to 
the sheath edge in the limit A/L - 0 (other assump- 
tions can he removed by adapted generalizations, see 
sections 3 and 4). In particular, Bohm’s criterion does 
not have to he satisfied if the (local, see section 5) 
Debye length is not small compared with the ion mean 
free path (Ingold 1972, Metze er a1 1989). This quite 
trivial statement is nevertheless important, since the 
incorrect application of the Bohm criterion to inad- 
equate model zones and/or parameter regimes is a 
frequent source of misinterpretation and confusion. 

However, because of the singular character of the 
asymptotic solution, and because in real situations AD/ 
L may he small, hut never exactly zero, there is a 
need-heyond the above clarification-to examine the 
validity and implications of the Bohm criterion very 
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Flgure 7. Formal ‘sheath solutions’ violating Bohm’s 
criterion for various initial fields x b .  

carefully. With this in mind let us recall Bohm’s deriv- 
ation (section 2.1) and discuss the main arguments 
against its validity. 

Firstly, it must be observed that the criterion de- 
pends decisively on the boundary condition described 
by equation (8) and that this boundary condition rep- 
resenting the scale transition holds only in an approxi- 
mate sense for small but finite AD/L (Hall 1961). The 
position Eo (xo) of the sheath edge will really be finite 
and x, x’ and 2’’ cannot vanish simullaneuusly (Chen 
1965). It is, therefore, advisable to investigate whether 
a finite field (and/or space charge) at the sheath edge 
can yield physical solutions violating the Bohm cri- 
terion (Ecker and McClure 1962, 1965, Chekmarev 
1972). 

In figure 7 are plotted solutions of Poisson’s 
equation (see equations (9, (6) and (7)) violating the 
Bohm criterion ( y o  = 0.1) for various initial fields x;. 
(For different conclusions from the same figure see 
Ecker (1973).) The figure exhibits two classes of 
solutions. For small x;l we recognize the oscillatory 
solutions derived from the linearized equation (13). 
For initial fields exceeding a critical value 

> 0.598 691) the limiting potential x = xc (cf figure 
3) can be overcome and we obtain monotonic potential 
curves. (It is interesting to note that very similar solu- 
tion structures for a somewhat different problem were 
discussed by Langmuir (1929, p 977).) These solutions 
cannot be considered physical because they show a 
strong potential variation (on the scale of the Debye 
length) at the ‘sheath edge’, contradicting the scale 
argument L B AD. The unphysical nature of these solu- 
tions is reflected by the subsequent mathematical 
breakdown shortly after passing the ‘sheath edge’, 
E < Eo: the solutions run into a region (x < -yo) ,  
where the square root of equation (7) becomes 
imaginary. 

The next criticism of the Bohm criterion concerns 
the influence of a transition region between the sheath 
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-True potential distribution 7 
---Potential distribution as 

given by eq. (9) 

-Tramition region+/ 

I c- Presheath - 
Flgure 8. Presumed schematic potential variation, if 
Bohm’s criterion is violated (after Hall 1961). 

and the quasi-neutral presheath. Can the ‘unphysical’ 
solutions (yll < 1) in figure 2 become ‘physical’, if we 
account for the ‘presheath processes’ on the sheath 
scale (see Hall 1961 and figure S)? Within the par- 
ameter range Ao/L * 1 the answer is again ‘no’: to 
become physical, the solutions would have to change 
completely their shape on the sheath scale, where the 
influence of the presheath processes is far too weak. 

The corresponding question ‘from the other e n d  
of a small sheath field should be addressed: can the 
linearized equation (13) be improved to yield physical 
(i.e. growing or decaying) solutions for y ,  < $, if we 
account for an-arhi?rari!y sma!!--inf.uence Of CO!- 

lisions (Zawaideh et al 1990), ionization or geometry? 
The answer is now in principle ‘yes’, hut this ‘improved 
equation then refers to a point of the presheath region 
(note that the location of the zero potential is 
arbitrary), and it is not surprising that the presheath 
mechanism enables a growing potential accelerating 
subsonic ( y  < 1) ions. ’ 

To illustrate this let us reconsider the numerical 
solution of (35) (cf figure 6) for a small but finite value 
E’ = (figure 9(a)). No region is exactly collision 
free, no region is exactly neutralized, and we have a 
continuously growing field throughout the subsonic and 
sonic ranges. Let us tentatively introduce a ‘sheath 
edge’ in the subsonic range, i.e. let us choose an arhi- 
trary point xo,  y o  < 1 (to he specific, say y o  = 0.075, 
x ,  - -0.3) on the quasi-neutral solution and let us start 
at this point to solve Poisson’s equation (35) with a 
vanishing initial field ( ( y ;  = xb = 0). The result is pre- 
sented in figure 9(b); it shows a ‘sheath solution’ oscil- 
lating closely around the previous solution in figure 
9(a). The oscillations can he seen more distinctly if we 
consider the derivatives (figure 9(c) and ( d ) ) .  It can be 
seen that this has produced a finite space-charge with 
alternating sign, an oscillating positive definite electric 
field and a monotonically increasing potential. Does 
this show that a reasonable sheath solution violating 
the Bohm criterion (see Zawaideh el a1 1990) has been 
found? No, it just shows that the oscillations on the 
scale of the Debye length derived from (13) make the 
presheath solution ( y  < 1) numerically (and physically) 
stable. The error introduced by the incorrect boundary 
condition y = yo,  y ’  = 0 at x = xo  (or a small physical 
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Figure 9. Numerical solution of Poisson’s equation (35) for 
E* = (ct figure 6). (a) Correct probe solution; (b)-(d) 
oscillatory solutions resulting from the artificial boundary 
condition y ’ =  0 at x = -0.3 (see text). 

distortion) results in stable oscillations round the undis- 
turbed (presheath) solution. (This is in contrast to the 
sheath region, y > 1.) Moreover, this discussion shows 
that we are not allowed to choose an arbitrary sheath 
edge xo: the sheath edge is uniquely defined by the 
singularity of the asymptotic solution. 

Is this singularity caused by the contradictory 
assumptions of subsonic Row ( y  < 1) in the presheath 
and supersonic flow ( y  > 1) in the sheath region? And 
is this presumed contradiction reflected in contra- 
dictory boundary conditions of a zero sheath-edge field 
on the sheath scale and an infinite field on the pre- 
sheath scale (Godyak 1982, Godyak and Sternberg 
1990)? 

We have seen in section 2.4 that there is no dis- 
crepancy between subsonic and supersonic flow vel- 
ocities but that passing the ‘sound harrier’ y = $, 
changes a critical sign in equation (33), thus forcing 
strong space-charge formation. Due to the scaling AD/ 
L+ 0 this results in the formal sheath-edge singularity. 
There is no contradiction between sheath-edge fields 
dX/dx--tmanddX/d5-tOfor&-tO,X-*O. Correctly 
interpreted these conditions read 

where Eo is the typical field in the transition region at 
the sheath edge. To obtain a smooth transition 
avoiding singularities Godyak and Sternberg made the 

suggestion to ‘glue’ the presheath and sheath models 
together with the common boundary condition 

E ,  = kT,/eA,. (37) 

In fact, this boundary condition postulates a stronger 
singularity in E = AD/L than that described by 
equations (36). Equation (37) gives the characteristic 
field of the sheath region where the quasi-neutral 
approximation has broken down. Therefore the 
described ‘gluing’ can be considered as only a rough, 
qualitative ‘patching’. A consistent ‘matching’ (see sec- 
tion 5) has to be performed on the intermediate scale 
(34) of the transition region. From the scaling of this 
region we read an order of magnitude 

of the sheath edge field confirming the presheath and 
sheath field limits of relations (36). (The scaling is 
changed slightly in a more rigorous kinetic treatment 
accounting for slow ions at the sheath edge, see section 

Summarizing this discussion we conclude that, in the 
limit AD/L -+ 0 of a small Debye length, the Bohm 
criterion is indeed a necessary condition for the for- 
mation of a stationary sheath. Furthermore, an under- 
standing is obtained of why the sheath edge may be 
usually characterized (e.g. Allen and Stangeby 1970, 
Boozer 1975, Franklin 1976) by a field singularity ter- 
minating the quasi-neutral approximation or, equiv- 
alently, by the ‘marginal’ (i.e. with equality sign) 
validity of Bohm’s criterion. 

This usual relation, however, is not necessarily true. 
In widening geometries A’ > 0 the second bracket on 
the LHS of equation (33) may become zero at some 
xo within the plasma. This will certainly happen, for 
instance, in a collision free (q = 0) cylindrical (A’ = 1) 
column, if the experimental arrangement (e.g. laser 
beam) restricts ionization (U > 0) to a limited region 
near the axis. 

For E-+ 0 this results in a zero ( y  = i) of the first 
bracket in equation (33) at x = x o .  For x 7 x o  both 
brackets on the LHS change their sign so that a further 
quasi-neutral acceleration of the supersonic flow 
( y  > 1) is possible. Analogous situations are present in 
the supersonic acceleration of the solar wind (Hund- 
hausen 1974) and in the ‘cathodic plasma jet’ of an arc 
discharge (Wieckert 1987.) 

Approaching the wall, the Bohm criterion is over- 
satisfied and there is now no singularity and no 
breakdown of the  quasi-neutral approximation. An 
exponentially decaying sheath in front of the wall is 
only formed if required by the boundary conditions. 
This sitution is completely analogous to Dehye screen- 
ing. 

5.) 

2.6. Related problems 

This section is concluded with supplementary topics 
not systematically dealt with in this review. The first 
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concerns the sheath formation in a magnetized plasma 
(L = ion gyroradius pl B A,) where the presheath 
mechanism is provided by the Lorentz force. Unfor- 
tunately there are only few investigations on this topic, 
and these give no coherent picture. 

Daybelge and Bein (1981) considered the sheath 
formation in a magnetic field exactly parallel to the 
wall without elementary processes. Obviously, this 
results in an artificial static model with no transport at 
all and in particular with no presheath ion acceleration. . 

To provide wall transport Chodura (1982) accounts 
for field lines intersecting the wall at a small angle Y. 
Beyond the Bohm criterion ( u z  2 U,) at the sheath edge 
he postulates a second condition of supersonic flow 
along the field lines ( U ,  2 us or U ,  U, sin Y) at the 
‘entrance’ of the magnetic presheath. Consequently, 
he assumes an additional ‘plasma presheath’ to fulfil 
the second condition (unfortunately the model zones 
are differently named in Chodura’s articles 1986 and 
1988, see table 1). Chodura derives his additional con- 
dition from a dispersion relation including electrostatic 
effects and refuses oscillatory solutions. In the pre- 
sheath region, however, there is no boundary condition 
of decaying electrostatic fields (cf equation (8)); on 
the contrary the oscillatory electrostatic modes on the 
presheath scale guarantee the stability of the quasi- 
neutral solution against charge imbalances (see section 

dition ull us appears questionable. 
Another way to provide ion transport to the wall 

was chosen by Behnel (198Sa,b). He assumed an 
exactly parallel (Y = 0) magnetic field and accounted 
for collisions (A B L = p,).  Bebnel solved the ion Boltz- 
mann equation in a given potential but did not obtain 
the self-consistent solution. He claimed that the pre- 
sheath acceleration necessary to satisfy the Bohm cri- 
terion results in high potential drops ( A x  - In Alpl) 
and high velocities in the E x B direction. This could 
possibly be the reason for a Kelvin-Helmholtz insta- 
bility resulting in a highly turbulent state, a result 
obtained from particle simulations by Theilhaber and 
Birdsall , ,  (1989). 

The second topic refers to the transient problem of 
sheath and presheath formation. Prewett and Allen 
(1973) investigated the evolution of a presheath in front 
of a cylindrical and spherical probe immersed in a 
collisionless cold ion plasma. The transient sheath edge 
is again distinguished by a field singularity, Bohm’s 
criterion is fulfilled in a ‘dynamic’ form, where the ions 
attain a velocity us with respect to the moving sheath 
edge. The presheath disturbance propagates in the 
form of a rarefaction wave at ion sound velocity into 
the undisturbed plasma and approaches the stationary 
solution. 

In the corresponding plane problem no stationary 
solution exists (see equation (19) and its discussion) 
and no a priori smallness parameter E = AD/L. Never- 
theless, the transient solution (Allen and Andrews 
1970, Cipolla and Silevitch 1981) tends to a self-similar 
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structure with a disturbance propagating at sound vel- 
ocity and accelerating the ions to fulfil Bohm’s criterion 
in front of the sheath edge, which in this case exhibits 
no singularity. 

Solved transient presheath models are compared 
and discussed in more detail by Braithwaite and Wick- 
ens (1983). 

3. Refined theory of the plasma-sheath transition 

Using a simplified fluid model, in section 2 the basic 
mechanism of sheath formation was discussed in great 
detail. The persuasive power of the conclusions suffers 
from the simplifications drawn, particularly from the 
assumption of cold, monoenergetic ions. In the fluid 
description, warm ions produce an additional pressure 
contribution to the momentum balance. This implies 
that the critical velocity uB causing the sheath edge 
singularity is replaced by the sound velocity 

(39) 

(see e.g. Persson 1962, Self and Ewald 1966, Zawaideh 
ef all986). Here Ti is the ion temperature and y=  1 for 
isothermal flow, y = 8 for adiabatic flow with isotropic 
pressure and y = 3 for one-dimensional adiabatic flow 
(Chen 1974, p 84). The different values of y reflect the 
uncertainty arising from the cut-off of the hydro- 
dynamic hierarchy. 

A more rigorous way to generalize Bohm’s criterion 
is to account for the full ion velocity distribution. The 
easiest way to  do this is to rewrite equations (7) and 
(12) for several ion groups k with different velocities 
uZk,  This results in 

or 

where ck designates the relative density contribution of 
group k .  Proceeding to a continuous distribution we 
obtain the famous kinetic formulation of Bohm’s cri- 
terion 

due to Harrison and Thompson (1959). The derivation, 
however, is mathematically unsound as pointed out by 
Hall (1962). The analysis of section 2 assumes x < y x  
and strictly speaking does not permit the transition 
from equation (40) to (41). In view of the essential 
contribution of slow velocities in (41) this is a serious 
objection which forces a more careful investigation. 

In the following we give a rigorous analysis of the 
plasma-sheath transition based on the kinetic equation 
for the velocity distribution Fi(z ,  U)  of positive ions. 
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This gives the opportunity to relax the model assump- 
tions and to investigate the sheath edge singularity 
simultaneously (Riemann 1989a, b). (For simplicity ref- 
erence is made for the most part to one positive-ion 
species; more species can he accounted for trivially by 
summing the corresponding charge density contri- 
butions.) An arbitrary (but given) density distribution 
of electrons and possibly of negative ions is considered. 
For the sake of completeness the boundary condition 
of a completely absorbing wall is dropped and positive 
ions entering the plasma from the wall (e.g. ion reflec- 
tion or contact ioization of fast neutrals) are accounted 
for. Apart from these generalizations the basic concept 
described in section 2 is followed. 

3.1. Kinetic analysis of the ions 

As a starting point, Boltzmann's equation in the form 

aFi e d U a F ,  
uz----- 

a 2  mi d r  au,  

= C ( z , u ; F i )  + R ( z , u ; F ~ ) = S ( Z , U )  (42) 
is used, where z again designates the space coordinate 
perpendicular to the wall. (We assume here a one- 
dimensional, but not necessarly plane, geometry, z 
may be a suitable curvilinear coordinate.) C is the 
collision term (including ionization and recombination) 
and R represents possible additional phase space con- 
vection terms arising, for example, from the system 
geometry or  from a magnetic field. At present there is 
no need to specify C and R explicitly, because we 
are interested in general structures and not in special 
solutions. We only assume that they do not involve 
dU/dz or aFi/az (which may become singular at the 
sheath edge) and combine them in a generalized 
'source function' S(r ,  U). 

We return to the designations of section 2 (see 
equations ( l ) ,  (15) and (17)) and introduce the dimen- 
sionless half distributions 

f:(,Y,y) = L(5)"2 N o  2mi 1 Fi( z ,u . ,  U ,  Z 0) d 2 u ,  

(43) 

(44) 

Due to the scale transition x is used in place of x or 
5 as an independent variable assuming a monotonic 
potential variation. The energy variable y forces one 
to distinguish between positive and negative U, by sep- 
arate functions f :  and f;. In an analogous way the 
source functions are defined as 

s ' (x ,y)  = - S ( Z ,  u I , u Z  S 0) d2u,  (45) 

(which in general depend on the full three-dimensional 
No "1 

distribution Fi and cannot be explicitly expressed in 
terms of f: and f;) and Boltzmann's equation 
(equation (42)) is written in the form 

where k(,Y) designates the inverse function of the self- 
consistent potential variation ~ ( x ) .  The boundary con- 
dition at the wall & = xW) is represented in the form 

where LY is the coefficient for specular reflection and g 
accounts for diffuse reflection and contact ionization, 
for example. The artificial splitting of the distribution 
function in velocity space ( u , 5 i O )  requires the 
additional boundary condition 

connecting f: and f; a t  the turning points of the ion 
orbits. (If the source function S contains a singular 
contribution -vS(u) as assumed in some simplified 
models (see e.g. Harrison and Thompson 1959, Rie- 
mann 1981). equation (48) does not hold, and the 
analysis then has to he changed slightly. The essential 
conclusions of this section, however, remain valid.) 

The self-consistent potential finally obeys Poisson's 
equation 

f;Cuw>Y)= @f:(,Yw>Y)+g(Y) (47) 

f:(,Y>O) = f ; ( X . O )  (48) 

where n-(j+the total negative charge density includ- 
ing electrons and negative ions-is assumed to be a 
known function and the summation symbol in brackets 
refers to the way of accounting for more positive ion 
species. In the asymptotic limit E = A0/L + 0 equations 
(46) and (49) result in the familiar two-scale problem: 
on  the presheath scale x = 0(1), equation (49) can be 
replaced by quasi-neutrality and on the sheath scale 
x = k ( ~ )  = O ( E ) ,  equation (46) turns into the collision- 
free Boltzmann equation 

in plane geometry, 

3.2. Derivation of general sheath conditions 

Equation (50) shows that the sheath distributions f: 
are functions of the energy y-x only. Complementing 
the boundary conditions (47) and (48) by a specification 

of the distribution of the ions entering the sheath 
region from the sheath edge, we obtain the con- 
tributions 

fT(O,Y) = M Y )  (51) 

f;: =fo(Y - X)WY - x) 
fa = @fT(X,Y) 

fa  = d Y + X w  -x) 
f:4 =f;Ol3Y)@(X-Y) 

(52) 

corresponding to the types of orbits sketched in figure 
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plasma lons 
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sheath 

reflection and 
emisslcn hom 

Figure io.  Different contributions to the ion distribution 
function in the sheath (schematic orbits): (l), ions coming 
from the sheath edge; ( Z ) ,  specular ion reflection; (3), 
diffuse reflection and emission; (4). contributions due to 
turning points in the sheath. 

10. O(x) designates the Heaviside step function. Sum- 
ming the contributions and solving forf: andf;  yields 

f:(X>Y)=@(Y - X ) f u ( u - X ) + ~ ( X - Y )  

d Y  + x w  - x) 

f F ( X ? Y )  = O(Y - x) 

X 
I - O r  

X[a!hUs,,(Y - x) + 6 ( Y  + X.' - X I 1  

+ @ ( x - y )  (53) 
d Y  + x w  - x) 

Calculating the ion density from (44) we find after 
some transformations 

(54) 

with 

f(Y) = (1 - W d Y )  - d Y  + x w )  

= f: (0, Y) - f;(o, Y). ( 5 5 )  
Following on from section 2.1 the derivation of a 
sheath condition by an expansion of the ion density for 
small x is required. The natural way to do this seems 
to be to follow what is usually done when the kinetic 
form of Bohm's criterion is derived (Harrison and 
Thompson 1959, Boyd and Thompson 1959, Bertotti 
and Cavaliere 1965), i.e. to differentiate equation (54) 
or its less general analogue and to apply condition (12) 
or-in the case of equality-to compare the higher 
derivatives. This way, however, was criticized with 
good reason by Hall in 1962 (see discussion after 
relation (41)): due to the singularity of the first inte- 
gral (physically caused by slow ions) nik) is not ana- 
lytic in origin and cannot be represented by its Taylor 
series. In place of that it has to be expanded in a power 
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series in XLiz. This expansion is performed in appendix 
1 and results in 

ni = a , ~ ' / '  

with 

Simultaneously using 

Poisson's equation (49) may be written as 

else 

Multiplying by dX/dE and using again the boundary 
cnnditlon (eql?lticn !a)) of s decayizg sheath (sca!c 
transition!) we can integrate (59): 

If c,,, is the first non-vanishing coefficient of the series, 
we conclude c,,, > 0. Neglecting higher order terms we 
can integrate once more and obtain 

constant - 2  JA ~ 2 E 

Comparing again with the boundary condition (8) we 
conclude further m 3 2. In particular this implies 

a, = bo a ,  = o  u , ~ b , .  (62) 
The first condition of (62) requires the quasi-neutrality 
of the sheath edge. It is fulfilled trivially by the nor- 
malization a, = bo = nI,-(0)  = 1. The second condition 
a l  = 0 implies 

f ( o ) = f + ( 0 , O ) - f - ( O , 0 ) = 0  (63) 
and is always fulfilled due to the boundary condition 
(48). The third condition may be written (cf equations 
(56) and (58)) 

and represents in principle the general sheath condition 
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we intended to derive. Returning to the boundary dis- 
tributions fa and g (see equation (57)) f may be 
expressed in the form 

2 
1-lY + - g ( x w  + Y) 

In the square brackets we recognizef(y) (see equation 
(55)).  From equation (63) we see that the cor- 
responding contribution in (64) may be integrated by 
parts. Therefore the general sheath condition may be 
written explicitly as 

dY 
(1 - 4fdY) - g(xw + Y )  

2y3/2 

I shall discuss and specify this condition in section 4. 
Here our attention is drawn to another aspect: from 
the discussion of the Bohm criterion in section 2 one 
must be aware of the fact that the sheath condition 
(66) may hold with the equality sign. In this case we 
have an additional sheath condition a 3 2 0  or (cf 
equations (56) and (55)) 

f ' ( 0 ) = - [ ( 1 - ~ ) f o ( ~ ) - g ( y + ~ ~ ) l I , = o ~ 0 .  (67) 

The question of whether the presheath distribution 
function will fulfil these sheath conditions at the sheath 
edge will now be addressed. 

d 

dY 

3.3. Presheath kinetics and sheath edge 

To obtain information on the  general sheath conditions 
resulting from the density variation in the sheath the 
density variation in the presheath is investigated. 
Remembering equation (44) we multiply Boltzmann's 
equation (46) by y-'i2, add the contributions (+, -) 
and integrate: 

Engaging quasi-neutrality ni(x) = n _ ( x ) ,  considering 
the sheath edge x = 0 and using the abbreviation of 
equation (57) we obtain 

Comparing equations (69) and (64) we come to the 

following important conclusion (Riemann 1980, 
1989a, b). The general sheath condition (64) is auto- 
matically fulfilled marginally (i.e. with the equality 
sign), if the sheath edge exhibits the usual field singu- 
larity k'(0) = 0. The same is true for symmetric source 
functions s+ = s- independently of k'(0). Two ques- 
tions must now be answered. 

(i) Can we  conclude safely that the sheath edge is 
really characterized by the usual field singularity? 

(ii) If we really have k'(0) = 0 or S+ = s-, will then 
the additional sheath condition (67) also be fulfilled? 

In the fluid mechanical model of section 2 the sheath- 
edge field singularity was related to a critical ion den- 
sity variation at the 'sound barrier'. On the level of a 
kinetic description we do not recognize a sound barrier 
and expect essential contributions to the density vari- 
ation from slow ions. Therefore a relation between the 
distribution of slow ions at the sheath edge and the 
potential shape by a formal integration of Boltzmann's 
equation is required. To do this the appropriate pre- 
sheath boundary condition at the sheath edge must be 
formulated. This is obtained from the physical bound- 
ary conditions (47) at the wall, because the sheath is 
collisionless (see equation (50)): 

fF(0,Y) = d'(0,Y) +g(xw +Y). (70) 

(Notice, incidentally, that equation (70) together with 
quasi-neutrality is the definition of the sheath edge in 
the kinetic analysis.) 

The formal integration of Boltzmann's equation is 
presented in appendix 2. At the sheath edge especially 
the ion distribution function depends only on the sum 
of the source half distributions s', s- 

s = s +  + s-. 
To reach specific conclusions let us assume that s can 
be represented for small y in the form 

(71) 

S ( X 2 Y )  = SO(x)Y" y-0. (72) 

(In general, we expect that ions with zero velocity are 
influenced by the source, i.e. s ( x ,  0) # 0 and conse- 
quently a = 0.) Modelling the potential shape at the 
sheath edge further by the ansatz 

k'(X) = ko(-X)b x-* 0 (73) 

(where the presumed sheath-edge field singularity cor- 
responds to b > 0) we obtain from appendix 2 

f(y)+ cy0+b+(l/2) Y-0 

1 

C = koso(0) lo r b ( l  - t)'-'i2 dt. 

From the finite density slope dn_/dx and from the 
regularity and continuity of the source we can conclude 
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that the integral on the LHS of equation (69) must exist 
in any case. Inserting (74) we find 

a + b > 0  (75) 

and conclude that in all ‘normal’ situations a = 0 
(s(x,O) # 0) the sheath edge necessarily shows the 
usual field singularity (b  > 0). Only in the somewhat 
academic case of a source function (collision term) 
vanishing exactly at zero velocity, a finite sheath edge 
field is possible. This agrees with corresponding con- 
clusions for completely absorbing walls (Bissel 1986, 
1987, Riemann 1989a). 

From the requirement of regular distributions f, f 
(otherwise the expansion (56) would be meaningless) 
we can further conclude that a + b + + is an integer- 
normally 1. This allows one to  specify the field singu- 
larity in more detail: we expect b = 1 for finite regular 
sources (a = 0) in contrast to singular sources (Har- 
rison and Thompson 1959, Riemann 1981) and fluid 
models, where b = 1 holds (without proof here). 

Since-apart from very special exceptions-the 
sheath condition (64) holds with the equality sign, the 
additional condition (67) must be fulfilled. In  the case 
of absorbing walls (CY = 0, g = O,f(y) =f (y)  =fn(y) > 
0) this condition is met trivially by the requirement of 
a non-negative distribution function. Generally we find 
that the validity of the sheath condition (67) depends 
on sign(C) = sign(k,s,): presheath solutions with 
growing porentiai in front of the sheath edge (k; > U) 
require a source providing an effective production of 
slow ions (so > 0). (Note that this corresponds to some 
extent to the presheath mechanisms discussed in sec- 
tion 2.3.) 

To illustrate the conclusions of this section explicitly 
let us refer to a simplifed model of a plane, weakly 
ionized plasma in front of an absorbing wall and 
assume that the ion kinetics can be represented one- 
dimensionally by a BGK or charge exchange collision 
term and/or ionization (Emmert el a1 1980, Riemann 
1981, Bissel and Johnson 1987, Biehler et al 1988, 
Scheuer and Emmert 1988a,b, Koch and Hitchon 
1989, see section 6). In  this case the source function 
has the form 

S’Or>Y) = 4Y)[fN(x>Y) -fT(x,y)I  

+ O(x)fN(x> Y) (76) 

where v 3 0 represents the collision frequency, U 2 0 
the ionization rate and fN the symmetric neutral vel- 
ocity distribution. With a= 0 and g = 0 (cf equation 
(55)) this results in 

dY 
Y 

For u(0)  # 0 or ufN(0) # 0 we have a field singularity 
k’(0) = 0 (s+(O, 0) + s~(0, 0) > 0 j a = 0, b > 0) and 
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(69) indicates the marginal validity of the sheath con- 
dition (64). The additional condition (67) is satisfied. 

Only for special models with u ( 0 )  = 0 and ufN(0) = 
0 can the sheath edge field be finite and positive, 
k’(0) 1 0  and we see from (69) and (77) that the sheath 
condition (64) will then be oversatisfied if collisions are 
present (v > 0). 

4. The Bohm criterlon 

Let us recall that Bohm’s criterion is addressed to the 
asymptotic limit Ao/L + 0 and expresses a necessary 
condition for the decay of strong fields on the scale A D ,  
It refers locally to the sheath edge and is definitely not 
a global condition for a monotonically varying sheath 
potential. In this sense equation (66) represents the 
most general sheath condition and should include all 
correct ‘generalizations’ of Bohm’s original condition. 
(The unspecific name ‘generalized Bohm criterion’ is 
avoided here because it is used too diversely.) 

4.1. Kinetic and hydrodynamic formulations 

To discuss various specifications and aspects of the 
sheath condition let us temporarily return to the 
assumption of completely absorbing walls (Y = 0, g = 
0. Introducing an effective temperature 

of the negative charge carriers we obtain from (66) the 
kinetic form of the Bohm criterion 

due to Harrison and Thompson (1959) and Boyd and 
Thompson (1959). (As stated above we want to avoid 
the term ‘generalized Bohm criterion’ frequently used 
for the kinetic form. The name ‘kinetic’ should not be 
confused with a ‘dynamic’ form used in the analysis of 
moving sheaths (see section 2.6).) Note that (79) is 
easily extended to account for more species i of positive 
ions: 

For simplicity reference is again made to one positive 
ion species. 

To compare the condition with simplified versions 
referring to the mean ion velocity or kinetic energy we 
apply Schwarz’s inequality and find 

i.e. the simplified versions are fulfilled afortiori if the 
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kinetic criterion holds. To obtain a consistent hydro- 
dynamic formulation we assume uz = U + 5 ,  151 < U, 
(5)  = 0 and calculate 

(u;*)o = u - v  - 25/u + 352/u2 - + . . . )  

=[U' - 3(5')]-'. 

With U = (UJ and (E2) = kTi/mi this results in the 
hydrodynamic Bohm criterion 

showing that a consistent fluid approach must become 
one-dimensionally adiabatic at the sheath edge ( y  = 
3 in equation (39), see Zawaideh et a1 (1986)). This 
expresses the fact that there is no interchange of the 
parallel and perpendicular ion velocities on the Debye 
length scale. 

4.2. Special ion distributions 

The hydrodynamic approach ignores the delicate con- 
tribution of slow ions to the mean value in (79). 
Obviouslyf,(O) (andf-(y)) must be zero and a shifted 
Maxwellian ion distribution cannot fulfil the sheath 
condition. The same is true for a Maxwellian half dis- 
tribution (Tonks and Langmuir 1929). To overcome 
this difficulty some investigations (e.g. Chekmarev and 
co-workers 1972, 1983, 1984, Main and Lam 1987) use 
shifted Maxwellian half distributions with a gap 
extending from zero to a minimum energy. The results 
of such models are inconveniently involved and rather 
questionable due to the artificial gap neglecting slow 
ions. 

In principle all specifications based on prescribed 
distributions fa must be refused: the Bohm criterion 
refers to the sheath-edge distribution f,, which is uni- 
quely determined from the presheath kinetics. 
However, if it is not known-and this will he the most 
frequent case-it appears reasonable and reliable to 
represent characteristic features by simple models. In 
this sense it is useful for special applications to rep- 
resent different ion groups schematically by a dis- 
tribution (Stangeby 1984a) 

F , ( u , )  = E a$,, 

resulting in the special form 

of the Bohm criterion 

4.3. Electrons and negative ions 

In a more accurate sense the Bohm criterion may he 
specified by distinguishing different components of 
negative particles. Two practically important examples 
are now given. 

(a) The sheath in front of a 'hot cathode' may be 
modelled by Boltzmann distributed plasma electrons 
and a cold beam of emitted electrons (Hobbs and Wes- 
son 1967, Prewett and Allen 1976): 

(An analysis accounting for the temperature of the 
emitted electrons has been given by Schcherbinin 
1973.) 

This results in the effective temperature (see 
equations (78), (79)) 

intensifying the condition imposed on f o .  It should he 
noticed that in spite of the validity of Bohm's criterion 
a double layer with negative space-charge in front of 
the cathode is formed (Langmuir 1929, Prewett and 
Allen 1976). 

(b) An admixture of negative ions (or electrons 
with different temperature) may he represented in the 
form (Boyd and Thompson 1959, Takamura 1989) 

resulting in 

(87) 

intensifying or relaxing Bohm's condition depending 
on the temperature I / y  of the admixture. Observe 
again that due to the hotter component the space 
charge may become negative within the sheath. It 
should be noted further that the relative concentration 
K refers to the sheath edge and depends on the pre- 
sheath potential drop. The resulting self-consistency 
problem is discussed by Braithwaite and Allen (1988) 
for the special case of a spherical probe collecting cold 
ions. 

4.4. The marginal validity of Bohm's criterion 

As we have seen, the sheath condition i s e x c e p t  for 
a few artificial models-fulfilled by the equality sign. 
There are essentially three interpretations illustrating 
and/or establishing this equality. 

(a) Continuous densify uariation. Bohm's criterion 
may he written in the form 

and the equality sign appears to he a natural conse- 
quence of the quasi-neutral presheath solution .+or) = 
n - ( x ) ,  x < 0 (Allen and Thonemann 1954, Chen 1965, 
Bissel 1987). 

(b) The breakdown of the quasi-neutral solution. As 
discussed in section 2.3 the field singularity k' - 0 due 
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to the sound barrier forcing the onset of space-charge 
formation. (The sheath edge as a Mach surface has 
been dealt with by Stangeby and Allen (1970) and 
Andrews and Stangeby (1970)). k ’ +  0 is also related 
to the equality sign in the kinetic criterion (Cavaliere 
et a/ 1965, Riemann 1977, 1980). 

(c) Information loss at the absorbing wall. Ion- 
acoustic waves cannot be propagated backwards from 
the sheath edge, because the flow there becomes super- 
sonic (Bertotti and Cavaliere 1965, Cavaliere el al 1968, 
Franklin 1976 ch9). The relation of Bohm’s criterion 
to the sound velocity remains true also if the changed 
conditions (0 # 1) due to electron emission (Prewett 
and Allen 1976) or negative ions (Braithwaite and 
Allen 1988) are considered. The kinetic Bohm criterion 
corresponds to a root w/k  = 0 of the ion-acoustic dis- 
persion relation (Allen 1976, Raadu and co-workers 
1988, 1989). 

All three arguments interpret the equality sign from 
presheath considerations. ‘Approaching the problem 
from the sheath side evidently always results in this 
type of ambiguity’ (3 sign, Stangeby 1986). The reason 
is clear: the sheath condition with the 3 sign is a 
necessary condition and must hold in any case. The 
equality sign, however, has-albeit somewhat arti- 
ficial-exceptions: the statement is more distinct but 
less safe. Consequently the convincing arguments can- 
noi be whoiiy conclusive. 

Concerning the first argument (a) the limit O+ must 
he ohserved, which cannot be derived from quasi-neu- 
trality. (The same argument applied t o  all higher 
derivatives would result in n ,  = n _  everywhere.) With 
respect to the second argument (b) we know from the 
discussion in section 2.5 that the quasi-neutral solution 
does not in any case break down at sound velocity and 
that space-charge formation can-without singularity- 
also be due to the boundary conditions. The third argu- 
ment (c) finally remains valid, even if Bohm’s criterion 
is oversatisfied (Raadu and Rasmussen 1988 Appendix 

Aftcr this critical discussion we should bear in 
mind, however, that the equality sign in Buhm’s cri- 
terion represents the normal case. Carefully applied, 
the marginal condition provides a suitable means to 
formulate boundary conditions both for the presheath 
(Bissel and Johnson 1987, see section 6.3) and for the 
sheath region. Especially in the form of equation (89), 
it has been systematically used by Allen and co-workers 
to provide boundary conditions in the investigation of 
double layers (Andrews and Allen 1971, Prewett and 
Allen 1976, Allen 1985). It should be observed, 
however, that the validity of the equality form for 
double layers is not generally accepted, (see e.g. Raadu 
1989 section 3). 

A). 

4.5. Ion reflection and emission 

In section 2.5 some arguments were resolved against 

systematic application of the two-scale concept. One 
argument cannot be resolved in this way: the Bohm 
criterion is based on the assumption of completely 
absorbing walls and may be essentially affected by ions 
coming from the wall. Such ions can produce a con- 
tribution nwk) to the ion density, growing with x and 
relaxing-r even cancelling?-Bohm’s condition of 
the presheath acceleration. On the other hand, we have 
in many applications little emission and small reflection 
coefficients. Moreover, ions emitted from sufficiently 
negative walls are trapped near the surface and cannot 
come to  the sheath edge. 

The pioneering works concerning the influence of 
wall processes on the sheath conditions are the papers 
by Hu and Ziering 1966 (specular and diffuse reflec- 
tion) and Hassan 1968 (thermal accommodation and 
contact ionization). Both (rather involved) analyses 
represent the plasma ions by shifted half Maxwellian 
distributions. Attempting to remove the requirement 
of the artificial low-energy gap in the ion distribution, 
Hu and Ziering determined a ‘permissible range of 
the ion reflection coefficients’. This argument appears 
strange, as indeed does the use of truncated Maxwel- 
lian sheath edge distributions. 

There is an abundance of detailed information on the 
involved plasma wall interaction processes (see e.g. Post 
and Behrisch 1986). Such complex problems will not be 
considered in detail, since the interest of this review lies 
in the overall representation of ions coming from the wall 
to the sheath edge. This is done, more or less sche- 
maticaliy, by the coefficient 1y and the function g in 
equation (47) and in the resulting sheath condition (66). 
(Usingthisnotationweput aside theproblemofcoupling 
f u  and g in the plasma and at the wall surface.) 

To reach a comprehensible interpretation of the 
influence of (Y and g on the sheath condition let us 
introduce the ion distribution 

resulting from a given g, if the plasma was not present, 
and the corresponding density 

The influence of the plasma is then represented by an 
additional ion distribution 

fJY) = f , t (y )  +f,(Y) 
with 

f,(Y) = dpi(Y) (92) 

and 

the validity and necessity of the Bohm criterion by a 
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6 Y - ’ / ’ ~ , ( Y )  dy = 1 - ndo) .  (93) 

Inserting equations (91)-(93) into (66) we obtain the 
sheath condition in the form 

< 2(- dn,  - -) d n -  

and conclude the following. 
dX d x  x = o  

(94) 

(i) Ion emission (diffuse reflection, contact ioniz- 
ation) relaxes the sheath condition firstly by a density 
contribution n, increasing with x, dn,/dX > 0, and sec- 
ondly by a reduced share 1 - nw(0) of plasma ions with 
decreasing density. 

(ii) Specular reflection has only an indirect influence 
via the enhancement of n,. In the case of no emission 
specular reflection does not affect the Bohm criterion 
because positive and negative velocities result in the 
same dynamic density variation. 

To demonstrate this explicitly let us consider the 
example of a Maxwellian emission 

(95) 
2K .,or) = -eSD:-xwl, 

1 - L Y  

Using again the abbreviation (78) we obtain 

and distinctly see the relaxation of the sheath condition 
with growing q.  For q- 1 finally (an academic case!) 
the RHS of (96) tends to infinity and there remains 
no sheath condition at all: the charge balance is now 
completely governed by thermal ions and we have 
Debye screening. However, as long, as this limiting 
case is not attained, there remains a (relaxed) sheath 
condition, and this remaining condition will, apart from 
the exceptions discussed, he fulfilled with the equality 
sign and will he related to a presheath field singularity. 
This singularity, however, can no longer he interpreted 
as ‘breaking the sound barrier’. 

5. The plasma boundary layer: matching and 
model zones 

The plasma sheath transition has been considered in 
the limit E -  0 on separate presheath and sheath scales 

x ,  ~ = x / E  yielding separate solutions Y:(x)  and 
Y ! ( g )  for any physical quantity Y .  To account for finite 
E the two-scale analysis may in principle be extended 
to higher order approximations Y ; ( x )  and Y:(E) cor- 
rect to the (possibly fractional) order U in E .  Y :  and 
Y ;  refer still to separate scales and must be related by 
a ‘matching principle’ assuming that there is an over- 
lapping region where the approximations can he 
adapted to each other. A mathematical fomulation of 
the matching principle proposed by Van Dyke (1964) 
can he used to determine free constants and allow one 
to construct uniformly (on both scales) valid ‘matched 
asymptotic expressions’. For the details of the method 
see, e.g., Van Dyke (1964) and Nayfeh (1973, 1981). 
I do not want here to apply the technique explicitly, 
hut want to discuss a fundamental difficulty arising 
from it: the presheath and sheath solutions have no 
overlapping region. 

If c ,  is the first non-vanishing coefficient in 
equation (59), we obtain from (61) the limiting vari- 
ation 

x p  I l ~ p ( m - 2 1  E- -x, m > 2 (97) 

of the sheath solution. Integrating (73) we find cor- 
respondingly 

x; - l x l l / ( l + h )  x - 0  (98) 

for the plasma solution. Apart from the common lim- 
iting sheath edge value x;(0) = xp(-p) = 0 there is 
obviously no overlap region to match the solutions 
smoothly (cf the discussion of the ‘contradictory’ pre- 
sheath and sheath limits of the sheath edge field in 
section 2.5). So far this problem has been avoided by 
expressing all quantities as functions of ,y rather than 
x or E. 

According to a concept described by Kaplun (1967) 
the difficulty is overcome by introducing an ‘inter- 
mediate scale’ suitable for describing a transition layer 
accounting for (weak) space charges as well as for 
(weak) presheath processes. To find the appropriate 
scale transformation 

x = Sf x = w w  & e  6 , w e  1 (99) 

we compare the space charge 

b # O  pp = E 2 2 -  d2xo  E2 I x I  - ( 1 + 2 h ) / l + b  

dx2 
(100) 

produced by the curvature of the quasi-neutral solution 
(cf equation (98)) with the space charge (cf (59)) 

P. - xmi2 (101) 
of the sheath solution. Equating the orders of mag- 
nitude and assumingx = O(6) andx = O(w) (i.e. f,  w = 
O(1)) we get from equations (98), (100) and (101) 

. (102) 6 = &(4+4b) / (m+2+4b)  = E4/(m+2+4b) 

The same result is obtained by equating the orders of 
magnitude of the potentials (97) and (98). From the 
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discussion of section 3.3 we expect b = ~4 and b = 1 
respectively. Since the field singularity causes the mar- 
ginal validity of the sheath condition we have c, = 0 
and expect m = 3 in a kinetic and m = 4 (due to the 
existing expansion in x rather than in X I / ? )  in a hydro- 
dynamic approach. We summarize these values as fol- 
lows. 

m b s w  

Kinetic approach with 
regular source 3 1 &6/7 F4/7 

singular (cold) source 3 1 &‘I9 E4I9 

Hydrodynamic 

Kinetic approach with (103) 

approach 4 1 F4IS EZis, 

(In the case of an oversatisfied sheath condition (m = 
2) there is no field singularity and no transition layer; 
the sheath field decays exponentially.) It is remarkable 
that the sealing depends on the kind of approach. This 
is due to a different modelling of the production of 
slow ions, On the other hand it reflects the fact that 
there is no dominant process ‘stabilizing’ the solution 
in an overlapping region. This is in sharp contrast to . ,,,, illaiai ‘.. . A : ~ . ~  F?)1,,11,U“1,, LZ’SC L s s ,I me CVKSIL‘I? CL... 

(Su and Lam 1963, Cohen 1963, Blank 1968), where 
plasma and sheath can be matched without an 
additional transition layer, because the electric field is 
everywhere balanced by ion friction (resistivity). 

In the scaling 6 = E ~ / ’  of the hydrodynamic 
approach we recognize the transition region discussed 
in section 2.4 (see equation (34)). The smooth tran- 
sition of figure 6(b) indicates that the two ‘ends’ of 
an intermediate solution indeed provide the overlaps 
required for matching with the plasma and the sheath 
solution. This matching (with hydrodynamic scaling) 
was performed by Lam (1965, 1967) and by Su (1967) 
in the calculation ut sphrrical probe characteristics. 
Franklin and Ockendon (1Y70) performed a systematic 
higher order matching for the Tonks-Langmuir model 
of the collision free low-pressure column (see section 
6.3) hydrodynamically and kinetically. They were the 
first to find the kinetic E’/’ scaling. The same scaling 
was obtained by Riemann (1978, 1979) for the tran- 
sition layer of the charge exchange model. (The results 
are shown in section 6.2, see figure 12). The transition 
layer of the ‘regular case’ with the expected scaling 
has, apparently, not yet been tackled. 

To avoid confusion with other ‘transition regions’ 
(and even different notations) it should he observed 
that a complete plasma-boundary analysis may involve 
various further model zones: in the plasma region 
(scale A) it may be convenient to neglect ion inertia 
and/or it  may he necessary to account for additional 
processes outside the intrinsic presheath (scale L ) .  On 
the sheath side a further model zone is formed, if high 
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voltages are applied: considering the limit x 9 1 we 
recover from equation 9 the ‘Child-Langmuir law’ 

= $ , , ( E  + constant), (104) 

d - x 3 / J A 0  (105) 

describing the (unipolar) ion sheath. Its thickness 

may finally cause the need to consider a ‘thick sheath’ 
accounting for collisions, geometry etc, thus ‘inviting’ 
the introduction of further model zones and transition 
regions (Lam 1967). 

A list of different notation used in literature is pre- 
sented in table 1. For comparison, also accounted for 
are the corresponding regions of the continuum model 
AD%-A.  Note that in all cases the Debye length A D  
refers locally to the sheath edge and not to the plasma 
centre. If the electron/ion density of the boundary 
layer is related by n = O(n,L/A) to the plasma density 
no, we have AD - (A/L)lI2AOn. This ‘enhancement’ of 
the Debye length should he observed in estimating or 
interpreting the sheath thickness of collision dominated 
plasmas (Metze et al 1989, Valentini 1989). The con- 
tinuum case L = A u  results in a sheath thickness L = 
A u  - A’I’A3~. 

8. SPPCI1! pm!?!ems 

Since the solution of Poisson’s equation in the sheath 
can he reduced to straightforward integrations, if the 
sheath edge distribution is known, the analysis of 
special problems is essentially concerned with the pre- 
sheath solution. This analysis is seriously complicated 
by the self-consistency problem arising from the sim- 
ultaneous determination of the ion distribution func- 
tion and of the quasi-neutral potential variation. In the 
following the problems in general are not considered, 
or the solution methods: rather specific aspects in the 
light of general conclusions on the Bohm criterion and 
sheath formation are discussed. 

6.1. Geometrical presheath: spherical probes 

Probe theory is a wide field, and an introduction isgiven 
by Allen (1974); more comprehensive reviews are given 
by Kagan and Perel (1964), Chen (1965), Swift and 
Schwar (1970) and Chung et a1 (1975). This review con- 
cerns only the plasma-sheath transition of collisionless 
(A 9 R ) ,  sufficiently negative probes. The basic ion col- 
lection mechanism is described by the cold-ion model 
of Allen er al (1957). which was used in section 2.4 to 
illustrate the space-charge formation. The thin (-AD) 
sheath covering the probe surface is surrounded by an 
extended(L - R )  presheathregionaccelerating theions. 
At Bohm’s velocity uB the presheath ends in a sheath 
edge with linear field singularity ( b  = 1, see equations 
(73) and (103)). As a consequence, the ion (saturation) 
current to the probe is determined by the plasma density 
and electron temperature and does not depend on the 
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Table 1. Nomenclature and scaling of various boundaly layer model zones. 

A D < A  Plasma, presheath Transition Sheath 

Characteristic 
extension A L A 8'5 L"5t  AD = AW(AIL)"* ~ 3 , ' ~  A D  

layer Debye Ion 

~ ~~~~~ 

Boyd (1951) normal extra abnormal extra* 
sheath region sheath region 

Ecker et a/ (1962, zone of mobility zone of inertia 
1965,1966) limited motion limited motion 

quasineutral region 
Lam (1965) 

Lam (1967) 

Su (1967) 

1. transition layer 

transsonic layer 

diffusion domin- kinetic neutral transition 
ated region region region 

Franklin and 
Ockenden (1970) 

outer region intermediate 
region 

sheath 

sheath 

2. transition layer sheath 

thin collisionless (collisionless) 
layer thick sheath 

collisionless 
sheath 

inner region 

Franklin (1976) plasma presheath sheath 

Chodura (1982)s plasma magnetic sheath 

Chodura (1986. 1988)s presheath magnetic sheath electrostatic (Debye) sheath 

Main (1987) t presheathll -f 

presheath presheath 

Zawaideh et a/ (1 990) * sheath 

AD%.+ Plasma Sheath 

Characteristic 

Su and Lam (1 963) 

Cohen (1963) 

Lam (1967) 

Blank (1968) 

Debye Ion 

extension A A, = Ag3A31\"3 1 
transitional (ion) sheath 
region 

charge sheath 

merged sheath (mobility) 
edge layer thick sheath 

quasineutral region thin space ion sheath 

plasma region sheath region 

I 
t Scaling of the fluid approach, in kinetic approaches slightly different, cf equation (103) + Ion inertia neglected. 
5 See section 2.6. 
I/ No plain classification possible. 
7 Depending on the collision model. 

probe voltage. (A weak dependence i s  due to the finite 
sheath thickness (cf equation (105)) increasing the effec- 
tive probe radius.) 

This simple model i s  essentially complicated if a 
finite ion temperature is taken into account. The angu- 
lar momentum connected with the thermal motion acts 
like a repulsive (centrifugal) force and hinders a part 
of the ions attracted by the electric field from reaching 
the probe surface; moreover there may exist trapped 
ions on 'planetary' orbits. The pioneer work tackling 
this problem is due to Bernstein and Rabinowitz 
(1959). In this famous investigation the thermal motion 
i s  represented by monoenergetic ions with random 
direction. An extension to a full Maxwellian ion dis- 
tribution was given hy Laframboise (1966). The 

numerical results for finite AD/R show a considerable 
influence of the ion energy on the probe current. Lam 
(1965) supplemented the monoenergetic model by a 
systematic asymptotic theory AD/R -+ 0 distinguishing 
four different model regions (see section 5, table 1). 
Despite using the kinetic approach he obtained the 
linear field singularity (6 = 1) and the scaling of 
the transition layer typical for a fluid approach (see 
equation (103)). This i s  obviously due to the artificial 
monoenergetic ion assumption. Parrot et a1 (1982) pre- 
sented a presheath analysis accounting for a full 
Maxwellian ion distribution. Their numerical results 
seem to confirm the square root field singularity (6 = 
4, cf equations (73) and (103)) expected for a kinetic 
analysis with a regular source. 
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Figure 12. Intermediate transition layer solution (bold full 
curve) of the 'cold C-X model (106) matching the 
presheath and sheath approximations (fine full curves). For 
5 and w see equation (108). 

Figure 11. Presheath potential variation and sheath edge 
ion distribution function for the 'cold C-X model (equation 
(106)) of the collisional presheath (a= 0). The curves 
a> 0 account for specular ion reflection at the wall. 

(source function, cf equations (46) and (76)) allow one- 
dimensional ion kinetics (see, e.g. Biehler et a1 1988). 

(a) C-X with cold neutrals, constant mean free 
path: 

s- = U  (106) s+ or, y) = y : P [  ji S(yj - f + ( x ,  yjj 

(b) C-X with constant collision frequency: 
6.2. Collisional presheath 

The collision dominated plasma is usually described in 
terms of diffusion and mobility. For the quasi-neutral 

m 3 y )  = n i ( x ) f N w  -~:LY,Y). (107) 
Model (a) was treated first with numerical methods 
and iterative approximations by Bakhst et (1969), 

plasma this approach breaks down near the boundary since there are ions undergoing collisions 
with a potential tending to infinity (Schottky 1924). 
This is also true if the decreasing mobility in the high 
field Of the boundary layer is accounted for (Boyd 1951, 
Frost 1957). To avoid this breakdown Boyd 
used the Bohm criterion to define a cut-off, where he 
merged the quasi-neutral mobility controlled region 
('extra sheath') with the collision free sheath. Of 
cnllrse, this crude approach can yield qualitative 

(resulting in zero velocity!) near the sheath edge these 
authors claimed that Bohm.s criterion could not be 
satisfied, and a monotonic sheath potential could only 
be obtained if a finite initial field and co~lisions were 
considered in the sheath, 

In a later investigation the self-consistent presheath 
problem was solved anaiyiically (Riemann 1977, 
1981); the resulting potentia[ variation and sheath edge 

results. Persson (1962) was apparently the first to 
recognize the crucial role of ion inertia also in the 
sheath transition of the collision dominated plasma. 

ion distribution function are plotted in figure 11 (a= 
o), In to the above claim and in accordance 
with the discussion in section the analytic results 

His fluid approach results in the appropriate sheath proved that the kinetic Bohm holds exactly 
edge stricture. A rigorous Of the inhomo- with the equality sign, The potential variation starts 
geneous, inertia influenced boundary layer from a weak plasma field (due to the ion friction) and 
(presheath), which has a typical extension of an ion runs into a linear sheath edge field singularity ( b  = 1, 
mean free path, should, however, use kinetic methods. see equations (73) and (103)), which is typical for the 

As discussed in section 4.2 half kinetic methods 6 singularity in the function (106). A~~~~~~~~ 
based on discontinuous Maxwellian distributions (e.g. to (99) and (103) the intermediate scale of the tran- 
Chekmarev et a1 1983, 1984) are not suitable to des- sition layer linking the presheath and sheath is given 
cribe the sheath edge correctly. The full  kinetic treat- by the transformation 
ment accounting for the self-consistency problem 
deoends on a sufficientlv tractable ion collision term. A x = E W y [  X = E 4 p W .  (108) 
suitable model distinguished both by physical relevance The zero-order basic equation describing the transition 
and by mathematical simplicity is provided by sym- layer and numerical approximations have been given 
metric charge-exchange (C-X) with neutral atoms. by Riemann (1978, 1979). Figure 12 shows the inter- 
Two reasonable specifications of the collision term mediate solution together with the leading terms 
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(97) of the sheath solution and (98) of the presheath 
solution. Physically, the transition layer is charac- 
terized by the first space-charge formation due to the 
high density contribution of slow ions emerging from 
collisions. In comparison with that, the loss of fast ions 
due to collisions can be neglected. Therefore, collisions 
on the intermediate scale have the same effect as ion- 
ization processes. This is the intrinsic reason why the 
scaling (equation (108)) agrees with that of the col- 
lisionless Tonks-Langmuir model (Franklin and Ock- 
endon 1970, see section 6.3). 

In section 4.5 it has been seen that specular ion 
reflection without emission has no influence on the 
Bohm criterion. This fact was used to construct an 
approximation for the chargeeexchange presheath with 
reflecting walls (Riemann 1985). To exhibit the effect 
more distinctly figure 11 shows results for extremely 
high reflection coefficients, CY= 0.2 and 0.4. With 
increasing CY the ion current to the wall and the driving 
electric field in the plasma decrease. Nevertheless, to 
fulfil the Bohm criterion, the field immediately in front 
of the sheath edge must be increased. The resulting 
steep (nearly collisionless) potential variation is 
reflected in a sharp peak of the sheath edge ion dis- 
tribution function. 

The C-X model (b), which is suitable to account 
for a finite neutral gas temperature, was first inves- 
tigated by Ecker and co-workers (1966) and sub- 
sequently by Shcberbinin (1972), but a self-consistent 
numerical solution was only obtained by Biehler et ol 
in 1988. The results show a decrease of the presheath 
potential drop with increasing neutral temperature, 
which can be understood from the contribution of the 
tkrmal  motion to  the velocity average required by the 
Bohm criterion. All potential curves run into a sheath 
edge field singularity. The type of the singularity was 
not discussed by Biehler et ol and the resolution of the 
numerical grid was not sufficient to verify the expec- 
tation 6 = 112 (see equations (73) and (103)). 

6.3. Ionizing presheath: the Tonks-Langmuir modei 

The famous model of Tonks and Langmuir (1929) is 
the oldest problem of the plasma-sheath transition, the 
one most investigated, and-in a certain sense-the 
most important problem. The whole plasma is not only 
influenced by its boundary, but the whole plasma is the 
presheath. The model refers to the collision free 
(A 9 R )  low-pressure column. Physically it is charac- 
terized by the free fall of ions originating from ion- 
ization of (cold) neutrals. The problem was 
investigated in cylindrical and in plane geometry. The 
plane model, originally designed to elucidate the basic 
mechanism in a simplified analysis, has attracted new 
interest as a simple model for the one-dimensional 
plasma flow in magnetic flux tubes (Emmert et al1980, 
Stangeby 1984b). 

Tonks and Langmuir treated the problem 
kinetically, introduced the subdivision in separate 
plasma and sheath regions and solved the plasma 

x-  

Figure 13. Presheath potential variation and ion 
distribution function for the 'cold Tonks-Langmuir model 
(1 09), U = const. The arrows refer to Emmelt's 'warm' 
plasma model (equation (1 10)) TOIT. > 0. 

equation by series expansion. Harrison and Thompson 
(1959) found the closed analytic solution in plane 
geometry and Caruso and Cavaliere (1962) rein- 
vestigated the plane problem with emphasis on a sys- 
tematic two-scale formalism. Self (1963) and Parker 
(1963) presented numerical solutions (in plane and cyl- 
indrical geometry) for finite Ao/L avoiding the sub- 
division in plasma and sheath regions and Self (1965) 
obtained numerical solutions to the asymptotic prob- 
lem AD/L + 0 in various geometries. Woods (1965) 
and Kino and Shaw (1966) showed that a simple fluid 
approach is suitable to describe basic features of the 
system with reasonable agreement. This provided a 
basis for numerous subsequent investigations account- 
ing for various additional effects. The quasi-neutral 
Harrison-Thompson solution, which is based on the 
singular source function (cf equations (46) and (76)) 

S + ( X , Y )  = d x ) G c v ' b  s- = O  (109) 

is (for U =  constant) presented in figure 13. The poten- 
tial curve starts with zero field at the centre of the 
symmetric plasma (only one half-space is shown) and 
ends with a sheath edge field singularity. The ion dis- 
tribution function shows a singularity representing the 
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ions generated in the plasma centre. This singularity 
disappears in more realistic geometries (Self 1965). 
Despite the completely different shape of the sheath 
edge ion distribution (cf figures 11 and 13) the plasma 
sheath transition has the same structure as that of the 
cold C-X model (cf (103) and discussion in section 
6.2)). The electric field shows a linear singularity ( b  = 
l), the sheath edge transition layer is characterized by 
a &*I9 scaling (Franklin and Ockendon 1970) and the 
kinetic Bohm criterion is fulfilled marginally. 

The relevance of the Bohm criterion for the model 
was questioned by Auer (1961) with arguments based 
on the seeming contradiction of < and > signs resulting 
from the presheath and sheath considerations. For- 
mally such ‘contradictions’ are resolved if the equality 
sign in Bohm’s criterion is observed (cf Section 2.5). 
From specific physical considerations (already indi- 
cating the role of a transition layer) Auer’s criticism 
was discussed by Franklin (1962). 

A surprising aspect entered the discussion of the 
Tonks-Langmuir model (and of the plasma-sheath 
transition in general), when Emmert et a1 (1980) pre- 
sented their investigation of a ‘finite ion temperature’ 
plasma based on the regular source function 

T,  
s+(x,y) =s-(x,y)  = o tx )y l~exp  ( - E y j .  (110) 

Emiiieii and co-workers were able io iednie the 
resulting ‘warm’ plasma equation by a similarity trans- 
formation to the ‘cold plasma equation of Harrison 
and Thompson. By this transformation the old 
( T ,  = 0) potential curve was cut off at a new ( T ,  > 0) 
sheath edge as indicated by small arrows in figure 13. 
Obviously this result was the first example of a sheath 
edge without field singularity. As shown by Bissel 
(1987), the kinetic Bohm criterion is again fulfilled with 
the equality sign. 

Physically, the factory’/* in equation (110) appears 
to be somewhat artificial. Bissel and Johnson (1987) 
presented numerical results for a Maxwellian source 

again showing the usual sheath edge singularity. The 
type of the singularity was not discussed, the plots seem 
to confirm the expectation b = 1 (cf equations (73) 
and (103)). For a detailed discussion of the source 
models (equations (110) and (111)) and for a com- 
parison with fluid theories reference is made to the 
review by Bissel et al (1989). 

The analysis made by Bissel and Johnson used the 
equality form of the kinetic Bohm criterion as a bound- 
ary condition. Scheuer and Emmert (1988b) criticized 
this imposition of the Bohm criterion and rein- 
vestigated the Maxwellian source problem without this 
boundary condition and reproduced the results of Bissel 
and Johnson. Simultaneously, they uerified (within the 
numerical accuracy) the equality form of Bohm’s cri- 
terion and left the reason for the equality both for this 
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problem and for Emmert’s model as ‘an interesting open 
question’. From the discussion of equations (76) and (77) 
in section 3.3 we know the reason. Interestingly, the 
equality sign can be attributed in the usual way to  a field 
singularity only for the Maxwellian source (equation 
(111)) with s(0,O) # 0. For Emmert’s source (equation 
(110)) it is exclusively due to the symmetry s+ = s- and 
no longer holds if this symmetry is disturbed in any way. 
This can he seen explicitly from an asymmetric modi- 
fication of Emmert’s model accounting for a super- 
imposed plasma drift (van den Berg et a[ 1991): in 
contrast to the symmetric case the upstream facing 
sheath-edge shows a field singularity ( b  = 1 in this case). 
At the downstream facing sheath-edge the field re- 
mains finite, but Bohm’s criterion is oversatisfied. 

Another example is a generalization of Emmert’s 
model tothe flow inmagneticflux tubeswithanopenfield 
configuration dB/& < 0 (Sato et al 1989, Hussein and 
Emmert 1990). Again, the field remains finite and the 
Bohm criterion is oversatisfied. The same is true if 
Emmert’s model is supplemented by a collision term of 
theform(76)with 40)  = O(ScheuerandEmmert 1988a). 
If, on the other hand, a more realistic collision model 
with 40)  + 0 is used (Koch and Hitchon 1989) or if the 
problem is described hydrodynamically (Scheuer and 
Emmert 1990) the sheath edge again exhibits the field 
singularity and Bohm’s criterion holds marginally. 

7. Summary 

The potential distortion caused by a negative wall is 
shielded by a positive space-charge layer (‘sheath’), 
whose thickness is characterized by the (local) electron 
Debye length AD. Usually the Debye length is the 
smallest characteristic length and the ‘thin’ sheath is 
planar and collision free. Necessary conditions for the 
formation of a thin shielding sheath is the validity of 
Bohm’s criterion, which demands-in its simplest 
form-that the ions enter the sheath region with at 
least the velocity of ion acoustic waves (section 2.1). 
To fulfil this condition the ions must be pre-accel- 
erated in a quasi-neutral ‘presheath’ region (section 
2.2), which is, apart from the crucial role of ion inertia, 
dominated by (at least) one of the following processes: 

(a) geometric current concentration (sections 2.3 
and 6.1); 

(b) collisional ion friction (sections 2.3 and 6.2); 
(c) ionization (sections 2.3 and 6.3); 
(d) magnetic ion deflection (section 2.6). 

The mechanism of the presheath acceleration can 
be illustrated from a simple fluid model (section 2.3). 
The magnetic presheath remains poorly understood; 
an additional condition of supersonic plasma flow along 
the magnetic field lines postulated in literature is ques- 
tioned (section 2.6). Depending on the presheath 
mechanism the characteristic extension L of the pre- 
sheath is determined by the system geometry, by the 
ion. mean free path, the ionization length or by the 
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ion gyroradius. In the case of a collision-free hounded 
plasma the presheath may extend over the whole 
plasma. 

Except for very special cases, the sheath edge, i.e. 
the presheath-sheath interface, is indicated by a formal 
singularity of the presheath electric field, which is 
closely related to the marginal validity (equality form) 
of the Bohm criterion (sections 2.3, 3.3 and 4.4). 
Because of this singularity the plasma and sheath can- 
not be smoothly matched without introducing an 
additional transition layer (sections 2.4 and 5). 

Bohm’s original criterion refers to the simplified 
model of monoenergetic cold ions. It can he gen- 
eralized to its kinetic form accounting for the full ion 
distribution function (section 4.1). The usual way to 
derive this kinetic form was criticized with math- 
ematical reasons. A rigorous kinetic analysis, however, 
confirms the result (section 3.2). The kinetic Bohm 
criterion depends decisively on the contribution of slow 
ions and demands that the sheath-edge ion distribution 
function tends to zero sufficiently rapidly for vanishing 
ion energy. Distribution functions with artificial cut- 
offs (e.g. truncated Maxwellian distributions) cannot 
account for this contribution and give no reliable 
results (section 4.2). 

The decisive influence of slow ions results in a deli- 
cate dependence of the sheath edge structure on the 
formation of slow ions by elementary processes. This 
is clearly seen from the type of sheath edge singularity 
and from the scaling of the sheath edge transition layer 
(section 5, equation (103)). For vanishing collision fre- 
quency and ionization rate at zero ion energy, the field 
edge singularity can disappear; in such cases the Bohm 
criterion may be oversatisfied (scction 3.3 and 6.3).  
In all other cases the sheath edge exhibits the usual 
singularity and the Bohm criterion holds marginally. 
The equality form of the criterion may then he used as 
a boundary condition both for the sheath and for the 
presheath (sections 4.4 and 6.3). 

The kinetic analysis generalizing Bohm’s original 
criterion (section 3) is not restricted to absorbing walls, 
hut can also account for reflecting and emitting walls. 
Specular ion reflection has no, or only indirect, inHu- 
ence on the Bohm criterion. By diffuse reHection and 
ion emission (contact ionization) the requirements of 
the criterion are relaxed and can, in principle, even he 
cancelled (section 4.5). This relaxation, however, does 
not alter the above statements concerning the marginal 
validity of the sheath condition and its relation to a 
sheath edge field singularity. 

Arguments questioning the relevance or the validity 
of the Bohm criterion are in most cases based on a mis- 
interpretation of the accurate meaning or on a confusion 
with respect to the model regions (section 2.5). Bohm’s 
criterion refers to the sheath edge, which is uniquely 
defined (only) in the asymptotic limit Au/L+ 0. It defi- 
nitely does not refer to a (more or less arbitrary) ‘sheath 
boundary’ where such an analysis begins to use Poisson’s 
equation. Due to the asymptotic limit it is restricted to 
collisionless sheaths hut not to collisionless plasmas. The 

name ‘criterion’ (and particularly the terms ‘criterion for 
a stable sheath’ and ‘criterion for a monotonic potential 
variation’) are somewhat unfortunate if not misleading: 
Bohm’s criterion governs the local structure of the solu- 
tion at the sheath edge and cannot guarantee the global 
monotonic nature or stability of the sheath. (If a mon- 
otonic nature is required to exclude trapped ion orbits, 
additional conditions depending on the specific proper- 
ties of the system must he considered.) 

The Bohm criterion expresses a necessary condition 
for an electrostatic sheath field fading away in the 
plasma region, or considered from the other end, a 
necessary condition for an electrostatic potential grow- 
ing up to fulfil the boundary condition at the wall. An 
oversatisfied Bohm criterion results in an exponential 
sheath potential variation; in the usual case of the 
marginal validity of the criterion the sheath potential 
decays according to some power law (sections 2.1 and 
3.2). This decay refers to the (strong) electrostatic field 
on the ‘small’ Dehye-scale kU of the sheath and does 
not exclude a penetrating (weak) quasi-neutral field on 
the ‘large’ scale L of the presheath. The violated Bohm 
criterion in the presheath region does not hinder the 
build-up of a monotonically growing (presheath) 
potential accelerating a subsonic plasma flow. On the 
contrary, this is established exactly by the presheath 
mechanism in order to fulfil the Bohm criterion at the 
sheath edge. The existence of oscillatory solutions in 
this region is no contradiction, hut indicates the stab- 
ility of the quasi-neutral solution with respect to elec- 
trostatic disturbances (sections 2.5 and 2.6). 

The singularity characterizingthe plasmasheath tran- 
sition is no sign of an oversimplication, but indicates the 
transition toa ‘smaller’scale governedbydifferent physi- 
cal processes. Of course, the singularity can he resolved 
if Poisson’s equation is used everywhere-just as the dis- 
continuity of the material wall can be resolved, if the 
whole system is described on an atomic scale using 
Schrodinger’s equation. This uniform description, how- 
ever, is hardly suitable to  deepen the physical insight. 
With present computers it is no evidence of superior 
mathematical skill to produce uniformly valid solutions 
starting from Poisson’s equation-n the contrary, in 
most cases it is far easier toohtainnumerical solutionsfor 
special finite values AD/L > 0 than to find the asymptotic 
solution AD/L = 0. The value of asymptotic methods is 
based to a great extent on universal structures revealed 
by the limiting process. The universal structures of the 
wall sheath formation are closely related to the equality 
form of Bohm’s criterion. 
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Appendix 1. Expansion of the ion density 

To evaluate the singular integral 

in equation (54) we represent f (y)  in the form 

originating from Laplace-transformation technique ( y  
is a suitable constant). interchanging the sequence of 
integrations and using the expansion (Abramowitz and 
Stegun 1967, p 302 and 297) 

we obtain 

with 

G(n) = - /y+iz s"K(s)  ds. (A5) 
y - i r  2ni -. ine characrerisric Euncrion G(n) is relared IO rhe 

derivatives and moments of the distribution f, from 
equations (A2) and (A5) we find 

f("(0) = (-l)mG(m + 1) m = 0 ,  1,2,. . . 
('46) 

and 

fnm y'"f(y) dy = m!G(-m) m # -1, -2,. . . . 

647) 
Since for negative m the moments (A7) do not necess- 
arily exist, one applies the more general relation 

obtained formally by partial integration of equation 
(A7). Especially with m = -n  - 1 and k = n this yields 

From (A4), (A6) and (A9) we obtain 

J(x )  = c ."X"/2 
" = n  

with 

exactly the coefficients of the formal Taylor series. 
They can conveniently be combined with the expansion 
coefficients of the second integral in equation (54) 
which have the same form. Observing the identity 

I+.-  2 
I - .  --f(y)+l-,g(y + x w ) = f + ( O , Y )  +f-(O,y)  

(A l l )  
then results in the density expansion given in equation 
(56 ) .  

Appendix 2: Integration of Boltzmann's equation 

integrating Boltzmann's equation (46) along the 
characteristics x - y = q of the LHS (lines of constant 
total energy - q )  yields 

X ~ ~ ( q , V - q ) d V + h ' ( v )  ('412) 
where the integration 'constants' h', which depend on 
q ,  must be determined from the boundary conditions. 
From (70) we obtain 

h - ( q )  = @ h + ( q )  + g ( x w  - 7). (A13) 

A secoiid ieliitioii is obiairred fioiii ihe boiiiidiiiy CUII- 

dition (48) in the turning points q = x which results in 

(A141 

S ( X 3 Y )  = s + ( x . y )  + s - ( X > Y ) .  (A15) 

with 

Strictly speaking a further boundary condition is 
needed relating fc and f; at 'the other end' of the 
plasma, because (48) and (A14) are restricted to those 
'orbits' which have a turning point in the plasma, i.e. 
to q > xmin if xmin designates the potential minimum in 
a bounded plasma. (Observe further that the 'orbits' 
q = constant are not necessarily the real ion orbits, 
because S = C + R contains phase space convection 
terms, see equation (42) .) Because we are only inter- 
ested in slow ions near the sheath edge let us restrict 
ourselves to kinetic energies y < x - xmin which are 
correctly represented by equation (A14). 

Solving (A13) and (A14) for h'(q) we obtain from 
(A14 

Note that the coefficients with an even index are 
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At the sheath edge especially x = 0, TJ = - y  which 
yields 

1 
I -o l  + - d x w  - 

or (see equations (55) and (57)) 

Using the ansatz (72) and (73) we find to lowest order 
in y 

1 

x t b ( l  - t)"-( ' I2) d t  (A191 

resulting in equation (74). 
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