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Abstract. It was noted previously (Date and Andrews 1969) that the expression 
2/E+ l/G=constant applied to some polycrystalline cubic metals, as it would to bar 
specimens cut from single crystals. The value of the constant would be somewhat 
different. Reynolds (1970) showed that the relationship was one of a number connected 
with the rotated average moduli for bar specimens. It was thought that these relation- 
ships would be sufficient to enable the elastic constants to be determined from measure- 
ments on polycrystalline specimens. These would be true or modified single-crystal 
constants. 

The present paper represents a further stage and aims to clarify and extend the 
previous work. It is shown that the orientation-independent relationships referred to 
are not in fact independent of each other and are insufficient to enable the constants to 
be found. Some useful results do, however, follow. Thus, the methods of Reuss, Voigt 
and Hill lead to the same calculation of bulk modulus for polycrystalline materials 
and show that it should be identical with the single-crystal value. 

It is also shown why polycrystalline cubic metals behave in an isotropic manner 
when the grains are completely randomly oriented. Departures from randomness 
(development of an orientation texture) render increasingly invalid the widely accepted 
relationship between E, G and v (Poisson’s ratio), viz. E= 2G(1+ v). The effect is more 
pronounced, the greater the anisotropy of the single crystals. As a consequence values 
of v obtained by the engineering formula may be spurious and unreliable. If, however, 
practical values of E and G are used to reveal such values of U, a knowledge of the 
average value of the ratio can be used to provide values of E and G for untextured 
materials. 

1. Introduction 

The problem of relating the fundamental elastic properties of anisotropic single crystals 
to those of polycrystalline bulk materials has been the subject of a considerable research 
effort but there are still a number of unresolved problems. In general it is accepted that 
the properties of the polycrystalline material will be represented by the single-crystal 
values averaged over all orientations and secondly that some accommodation is needed 
due to the change in properties from grain to grain across grain boundaries where there 
is a change in orientation. The approximation of Voigt (1928) assumed uniform strain 
throughout the material and this gives relationships in terms of elastic stiffness (ctj). 

The alternative ‘uniform stress’ approach of Reuss (1929) leads to expressions in terms of 
elastic compliances (sij). Practical measurements appear to lie in between and Hill 
(1952) suggested that the average should be taken of the two approximations. Further 
contributions have been made, for example, by Markham (1962) and Schreiber et al 
(1973). Experimental work has generally relied on a comparison between measured and 
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calculated properties, requiring a knowledge of the single-crystal constants (see for 
example Davies et aZ 1972). 

The present paper extends the conclusions of earlier work by Date and Andrews 
(1969) and Reynolds (1970). It is intended to facilitate the interpretation of the properties 
of polycrystalline materials, particularly where the single-crystal constants are not neces- 
sarily known or are conceivably modijied by the incorporation into polycrystals and by 
alloying. Such for example is the case with inmy steels whether based on the body- 
centred cubic a-iron structure or the face-centred y-iron structure. Alloy elements in 
solid solution have systematic effects on increasing or decreasing the moduli E and G, 
which are generally not large but can, as in the case of Ni or C ,  alter the moduli by 
amounts up to 7 %  of the value for pure Fe. The subject was investigated in detail by 
Speich et aZ(l972). It is recognised that the presence of second-phase particles may also 
have an effect depending on their type, quantity and distribution of the particles. 

The present approach is that, if the elastic properties of polycrystalline bars are 
deduced on the basis of either the Voigt or the Reuss assumptions, then certain copbina- 
tions of these properties lead to an elimination of the orientation dependence. Some of 
these properties and the combinations correspond to, and may in certain cases be equal 
to, measured values expressed in terms of E, G or v (Poisson’s ratio). Where the equality 
does not apply directly the implication is that the measured values should lie between 
those indicated by the two approximations (in the manner noted in the first paragraph). 
Alternatively the true values of the elastic constants cgj, or compliances sij, may not be 
known, as in the case of many practical alloys such as steels. The experimentally measured 
values, and the derived relations might therefore be used to determine ‘quasi-single-crystal 
constants’ for the polycrystalline material. 

A related problem arises from the use of formulae strictly only applicable to isotropic 
materials, to  polycrystalline materials in which the individual grains are markedly 
anisotropic. A notable example is the use of a common relationship between E, G and v 
which becomes increasingly invalid if the polycrystalline metal develops a texture. This 
problem was noted previously (Date and Andrews 1969) but is further considered here 
and some practical applications are indicated. 

2. Basic and derived relationships 

The basic average moduli for cubic materials based on the two assumptions referred to 
were given by Reynolds (1970) and are summarised here for convenience of reference in 
table 1. The practically determined moduli which have been indicated are not necessarily 
exact equalities and cannot be simultaneously so for both approximations (unless 
c=s=O). They refer to bar axes along 02 (subscript 33). In this table and table 2, the 
orientation factor A is the sum (Pin2 + m2n2 + n V )  when I, m, n are the direction cosines 
for the axis of the specimen with reference to the crystal axes. 

Equations (1)-(6) in table 1 may then be used to give the derived relationships (1 3)-( 18) 
on the left-hand side of table 2. The equivalent derivations for expressions in terms of 
Cij or ctj are on the right-hand side, viz. equations (19)-(24) derived from (7) to (12). 

In table 2, equation (13) is the expression noted by Date and Andrews (1969) and 
confirmed by Armstrong and Mordike (1970). The expression was found to apply to 
single crystals and also to polycrystalline steels. It was used to relate elastic moduli for 
different directions in a material with a partially developed orientation texture. It also 
enabled the variation of moduli with composition to be established when the results were 
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Table 1. Basic average moduli for cubic materials. 

(a) Uniform stress averages of 
block compliances (Reuss) 

(b) Uniform strain approximation 

Stj, Ctj refer to the polycrystalline material and sfj, to the single crystals. 

likely to  be alTected by varying degrees of texture. In the paper by Reynolds (1970), it 
was pointed out that equation (13) was one of a number of expressions eliminating the 
orientation factor A. It was thought that it would be possible to determine the constants 
szg or c6g from practical measurements by using these relations. 

It is found however that they are not independent, and so insufficient to give a com- 
plete solution for all the constants. At the same time it is noted that the constant for 
equation (13) (i.e. (2sll+sgq) in the single crystal) was not the same for the steels for 
which the expression was established as for pure iron. The difference could be due to the 
error between results calculated on the uniform stress average (Reuss) and the polycrystal- 
line properties. In this case, therefore, 2/E+ 1/G (polycrystalline) constant represents a 
value modified from (2311 + 844) for the single crystal of pure iron. The difference could 
be due to the inherent limitation of the Reuss assumption, plus any modifications due to 
the alloying effects. 

In connecting the two equations (13) and (19) in table 2 it is seen that the latter must 
also contain Poisson’s ratio v and so is not so readily applicable unless independent 
measurements of v can be made as well as of E and G. 

Thc equations in the second row of table 2, viz. (14) and (20), are more directly 
related. The conversions from compliances to constants or vice versa are achieved by 
formulae given in a number of textbooks, e.g. those by Nye (1957), Hearmon (1941), and 
Schreiber el a1 (1973). From these conversions it is easily seen that inter alia 

(c11+2cl2)-~=(s11+2s12). 

It follows lhat equations (14) and (20) are directly related and interchangeable. The 
two approximations (and also Hill’s mean) therefore lead to the same results. It is thus 
reasonable to make these expressions as equal to (rather than equivalent to) the practical 
quantities given on the right-hand side in terms of K, E and v. If K could be determined 
experimentally (on bar material) this would give a correct value of‘ v and of the SUMS 
equated above. 

It also follows that if the single-crystal constants are known, 3 K can be calculated 
for these and thus is also a true value for the polycrystalline material. The implication 
of equation (20) is that that the bulk modulus is unaltered by asscmbling single crystals 
into a polycrystalline mass. This is a significant conclusion and may have some useful 
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consequences except that the direct experimental measurement of K for a polycrystalline 
metal would be very difficult. 

In table 2, it is also readily seen that equations (13), (14) and (15) are not independent. 
An expression eliminating A from equations involving s11, and depending on strains 
normal to OZ, leads to equation (16) which is not independent of (15). There are thus 
only two independent relationships. Parallel results are obtained in terms of the Voigt 
approximation on the right-hand side of the table. Reynolds’ expectation of being able 
to use orientation-independent relations to  determine separate values of c(j and stj is 
therefore not fulfilled. 

Another relationship involving three (rather than two) of the rotated averages in 
table 1 is, however, derived and appears in equation (17) and in equation (23) for the two 
conditions respectively. These equations show why a polycrystalline material will show 
isotropic properties even when the single crystals are anisotropic. The expressions 
equate to  zero if either: 

(a) s = c = 0 (isotropic single crystals) ; or 
(b) A = 0.2, as it does for random orientation. 

In both cases the expression is then identical with the formulation 

or 
E=2G(1+ v )  

1. E 
2G 

v=-- 

Attention may also be drawn to the practical equivalent moduli given in relation to 
equations ( 8 )  and (9) in table 1. These expressions depend on 
ships: 

But a3 = E63 and €1 = - ~ € 3 .  Therefore 
a3=C13€1+C23E~fC33€3=C33€3+2C13€1 

E= C33-2~C13. 

the stress-strain relation- 

(cl3 = c23, €1 = €2). 

By treating (20) and (26) as simultaneous equations for C33 and c13, one obtains the 
expressions in (8) ,  (9), containing E and v.  One may also write 

a3 = c13( €1 + €2 + €3) + ( c 3 3  - c13) €3 

E e+--- €3. 
V E  - - 

(1 + v ) ( l -2v )  (1 + v )  

Equation (27) is a more general form of the equation for isotropic materials containing 
Lam6 constants. The constants no longer refer to isotropic materials and so E/(l  + v )  is 
not to be equated to  2p or 2G. 

Also from equations (2) and (3) and from ( 8 )  and (9), the final equations in table 2 
follow. These give two different values of Poisson’s ratio derived from the otherwise 
fundamentally correct use of strain ratios. 

3. The problem of Poisson’s ratio 

The two values of the ratio given by equations ( 1 8 )  and (24) in table 2 may be regarded 
as correct values. If, however, equation (25) is used in conjunction with separate calcula- 
tion of E and G from the basic constants, two further values of v result. The equations 
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for these are indicated in a footnote to table 3. There are thusfour. dif€erent calculations 
of Poisson’s ratio. 

The numerical values in table 3 illustrate how the calculations would apply in a 
concrete case for which the single-crystal constants are known-viz. a-iron. This table 
illustrates the amount o i  variation possible between the extreme limits of the orientation 
function A. This is zero for the directions (100) and has a maximum value of 3 for 
(1 11). The random value of 0.2 gives an identical value of v for the Reuss approxima- 
tion whether the strain ratio or isotropic formula (25) is used. The Voigt approximation 
gives a corresponding identity at a somewhat different value. 

Table 3. Derivations of Poisson’s ratio illustrated by numerical values for pure a-iron. 

(a) Equations in terms of sij (b) Equations in terms of czj 
-__ . -________~ ____-__--.___________ 

Values of v for A Values of v for A 
Equation and - Equation and ~ 

derivation 0 0.2 0,333 derivation 0 0.2 0.333 

(18): see table 1;  ratio 0,366 0.303 0.212 (24): see table 1;  ratio 0.366 0,269 0.212 
in terms of true strains 

(28): see belowi; ratio -0.437 0.303 1,364 (29): see below?; ratio -0,437 0.269 0.993 
from equation (25) 
assuming E and G in 
terms of compliances. 

in terms of true strains. 

from equation (25) 
assuming E and G in 
terms of constants. 

i Equation (28) requires v=(E/2G)- 1 or 

Correspondingly, for the right-hand columns, equation (29) depends on the use of (3) and elimination of 
E and G in terms of the C’s. Thus: 

Also from the table, it is seen that at the extreme limits of A, the two approximations 
give the same values of v for the strain-ratio derivation. On the other hand, the applica- 
tions of the isotropic formula to the anisotropic condition clearly leads to absurd values 
of v at these extremes. 

The results in table 3 are thus seen to confirm and justify further the view previously 
expressed that the engineering (isotropic) formula, expressing v in terms of measured 
values of B and G, should be used with very much caution. This is particularly the case 
when the polycrystalline material may not be completely isotropic, as when an orientation 
texture has developed. An evident case where unusual values of the ratio have been 
obtained in this way is to be found in recent work of Wawra (1973, 1974a,b). 

4. Practical applications 

Apart from the fact that the appearance of dubious values of Poisson’s ratio may be used 
as a direct indication of the presence of some degree of anisotropy in the polycrystalline 
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metal, other practical procedures may follow. Extensive determinations have been made 
of elastic moduli for many types of steel and it is expected that these results will be 
published (K W Andrews, M Atkins and E H F Date unpublished results). 

The use of an equation based on (13) in table 2, in the form 

for these steels and other polycrystalline materials, implies that the moduli arc more 
strongly affected by the conditions required for the Reuss approximation. The fact that 
the constant SO differs from a single-crystal value may be partly due to an effective change 
in s11 and s44 which would close the gap between the Reuss and Hill approximations. 
There could also be a contribution from the presence of alloy elements or second phases. 
More than one of these factors may influence the final results. 

In cases where considerable numbers of steels of the same or similar types have been 
studied and there is very little variation in the values of Poisson’s ratio which are con- 
sistent with random orientation although determined from E and G, then an average 
value is recognised as the ratio for random orientation. Subsequently any unusual values 
of the ratio differing significantly from this value may be used to modify the values of 
E and G. As determined, these are appropriate to the material with some degree of 
orientation texture and can go on record for this condition. The modified or adjusted 
values, then, correspond to completely random orientation for the same material- 
the adjusted values are obtained by the formulae 

In these expressions V I  is the value established or assumed for random orientation. 
Alternatively, when the value of Poisson’s ratio derived from E and G directly differs 

considerably from the random value, a true or corrected value can be obtained from a 
formula of the type 

vz=a-b,vl  (32) 
where the subscript 1 refers to thc original value and 2 to the corrected value. Some 
values of the constants a and b which have been obtained are listed in table 4. In these 
cases the constants for the pure metals were used to  arrive at approximate constants for 
the steels, which corresponded to observed values of VI and SO. Analytical expressions 
for the constants n and b can be derived from single-crystal or other values of the szj 
from the formulae (28) and (29) at the foot of table 3. 

Table 4. Constants in the equation m = a -  bw for correcting Poisson’s ratio. 

Material a b Value of v when 
v1= 112- vr t  

Pure a-iron 0.329 0.0856 0.303 
Average of ferritic steels 0.306 0.0972 0.279 

Pure nickel 0.336 0.0819 0.311 
Average of austenitic steels 0.3075 0.0962 0.280 

t The subscript 1 refers to  the value calculated from equation (25), the subscript 2 to 
the corrected value and r to the value for random orientation with A = 0.2. 
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