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Electronic structure based on the local atomic 
environment for tight-binding bands 

R HAYDOCK, VOLKER HEINE and M J KELLY 
Cavendish Laboratory, Cambridge, UK 

MS received 23 June 1972 

Abstract. Some new methods are presented for calculating the density of states n(E) and 
other aspects of electronic structure in a tight-binding band, without use of Bloch’s theorem 
or the band structure E(k) .  The methods are therefore applicable to calculating the local 
density of states at surfaces, impurities etc and relate the electronic structure to the local 
atomic environment. They depcnd on developing the Green function as an infinite continued 
fraction. There is no difficulty in obtaining n(E) in a few minutes computing time correct to 
the first 50 moments for an s band and 10 moments for d bands. The present paper discusses 
the methods and ideas, with specific applications to follow. 

1. Electronic structure and local environment 

The present work concerns calculating the electronic structure of a solid when this can 
be represented in a tight-binding formalism (or the lattice vibrations in a force constant 
model). The method does not involve the use of Bloch’s theorem or the band structure 
E(k)  in any way. Instead, the electronic structure at one atomic site is related to the local 
environment of near neighbouring atoms. The method can therefore be applied to the 
electronic structure at a surface, with or without an adsorbed atom, or at an impurity 
in the bulk. Even for the bulk properties of a perfect crystal the method may have some 
advantages. Firstly the density of states n(E)  is obtained as an analytic expression 
without sampling E(k). Secondly the electronic structure is related to the chemical bond- 
ing of an atom to its near neighbours, and the variation of the bond order through the 
band can be obtained for example. The transport properties of solids are most naturally 
discussed in terms of E(k) with the machinery of Fermi surfaces, effective masses, electrons 
and holes. But in other situations the wavevector k may be irrelevant, a given property 
depending perhaps on just the density of states. Our method will be used to discuss how 
large a cluster of similar atoms is required before the central atom behaves the same way 
as in bulk material. It is equally applicable to a finite cluster with a small number of 
atoms, as to an infinite solid. It seems the method might also be used for disordered alloys 
and random structures. Specific applications currently under study in Cambridge include 
the electronic structure of transition metals at a surface, the relatihe energies of different 
phases for transition metals, in particular some complex alloy phases, the atomic 
moments in magnetic alloys, and lattice vibrations at surfaces. 

In order to discuss electronic structure when perfect periodicity is lacking, Friedel 
introduced the ‘local density of states’ (Friedel 1954, Kittel 1963, p 339. Heine and 
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and the other properties can also be expressed in terms of the Green function G or resol- 
vent ( E  - H ) - ' .  Analogous expressions can be written down relevant to a tight-binding 
hamiltonian H .  In order to explain our ideas and discuss their relation to previous work, 
we shall write down our method for the present in its simplest possible form. We shall 
assume that the electronic structure arises from a set of similar s states I j )  centred on the 
atomic sites j .  The hamiltonian H represents a constant interaction energy k between 
nearest neighbour atoms (only), and the zero of energy has been chosen sc that the diag- 
onal matrix elements of H are zero. Clearly for realistic calculations the method has to be 
generalized to several states on each atom, not s states. to mgre distant overlaps. to 
different types of atoms with different diagonal energies: all this is straightforward and 
has been discussed by F Cyrot and co-workers in their study of the same problem (see 
below). For transition metals it is also possible to include the hybridization of the local 
d states with a free-electron sp band (Cyrot-Lackmann et al 1970, Haydock 1972). We 
also assume the basis states k) have been orthogonalized or that H is a pseudo-hamil- 
tonian where the overlap between the states 1) does not arise (Anderson 1958, Pettifor 
1969). With these simplifications, the analogue of (1.1) becomes 

n,(E) = - n - l  lim ImG,,(E + ie) 
€ - + O  

where 

GCj(E) = ( i l ( E  - H ) - ' l j )  

(1.24 

(1.2b) 

and we have labelled as atom zero the particular atom we are interested in. For a crystal 
with periodic boundary conditions, nl(E) is of course the same on all atoms j and equal 
to the total density of states n(E) normalized to one per atom: in such cases we shall drop 
the suffix 0 on n(E) and G. Our recursion method ($3) and the simpler selfconsistent 
method (4 2)  both evaluate n(E) by a continued fraction expression for (1.2b). 

Other authors have developed the 'method of moments' for solving the same prob- 
lem, that is producing an approximation to n(E) without calculating the eigenvalues E,, 
(Cyrot-Lackmann 1967, 1968, 1970, Cyrot-Lackmann and Ducastelle 1970, 1971a, b, 
Allan and Lenglart 1970, Gerl 1970). Their methods use the moments p, of the density 
of states distribution n(E) ; 

,uy = 1, E'n(E) dE 

= Tr {H ' }  = 1 Q1H'Jj). 
j 

(1 .3~)  
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The corresponding result for the rth moment of the local density of states on atom 0 is 

= (OIH'IO) 

= H O g H a b H b c " * H k O  
ab' ... k 

(1.3bl 

(1.4) 

where the last step follows by simple matrix multiplication. Since the matrix elements 
H I ,  are zero except for nearest neighbour overlap, the only nonzero contributions to 
(1.4) come from 'chains' of neighbouring atoms Oabc . . . kO. These must be closed chains 
starting and finishing at atom zero. Thus p r  or por can be calculated by counting the 
number of such chains of length r. The moment method basically consists of obtaining 
all moments up to some maximum order m, and then fitting a suitable function n(E) to 
these by one of several means. 

In practice the moment method works well if one has moments up to a high order, 
but these become tedious to evaluate beyond about the tenth, particularly when for 
d bands one has to sum over all five d states at every intermediate atom along each chain. 
By contrast with our recursion method ($3) we obtain formulae for the densities of 
states which reproduce the first 50 moments exactly for s bands and the first 10 moments 
for d bands, in about 3 minutes of computing time, although in practice we do not 
evaluate or use the moments themselves (figure 1). The moment method is less satis- 

0 -0.1 0 0.1 
( 0 )  ( b )  

Figure 1. Density of states ford band in face centred cubic structure. Histogram-exact results 
from sampling E(k) after Pettifor (1970): (a) full line, recursion method correct to tenth 
moment: (b) broken line. selfconsistent method correct to fourth order. 

factory if one only has a small number of moments, for as is well known, there is a very 
wide diversity of functions which have, say, the first four moments identically the same. 
However this fact itself presents a paradox which provided the original stimulus to 
the present work. A variety of experimental evidence and theoretical ideas (see for example 
Heine and Weaire 1970, p 436) suggests that n,(E) on one atom on the whole does not 
depend strongly on the atomic environment beyond first or second nearest neighbours. 
It should therefore not be necessary to consider long chains to distant neighbours. One 
tentatively concludes that the largest contribution to the high moments comes from 
chains that wind around the central atom in multiple repetitions of simple loops (figure 
2). We shall return to this question in $ 2  and in future work on finite clusters. 
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Figure 2. Multiple repetition of small irreducible chains around a central atom. (a) the 
reducible chain C,CsC, is gene:a!cd by 

I 

(b)  A reducible 14th order chain consisting of four irreducible subchains. 

2. The selfconsistent method, the cluster method and other ideas 

The present section serves several purposes. Our best method, the recursion method, 
is described in 4 3 which is logically selfcontained and may be read without reference to 
the present section. However some aspects of it must appear rather arbitrary without a 
certain background of ideas which we have gleaned from the work of others mostly in 
quite different contexts including lattice vibrations, the Ising model, disordered materials, 
Pad6 approximants, and the classical moment problem. These ideas we present briefly 
here. They have led us to explore various methods of calculating Goo (1.2) and we in- 
clude an outline of the two best: the selfconsistent method and the cluster method. 
Indeed there is no finite set of particular methods but rather a series of ideas which can 
be combined in various ways. They are sufficiently inviting that others will feel bound to 
explore them if we do not publish our experience with them. Although on the whole we 
feel now that the recursion method ( $ 3 )  supersedes the rest, the selfconsistent method 
gave results (figure 1) which we found very gratifying at the time and the cluster method is 
probably better. In some ways the methods of this section are somewhat simpler than the 
recursion method, certainly close to physical intuition in concept, and they may find 
application on that count. 

The resolvent operator in (1.2) may be expanded as a power series in HIE involving 
the moments: 

Goo(E) = E-'(Oll + Hm/Em/O)  
m 

With the interpretation (1.4) of the moments, we see that Goo@) is a sum over all chains 
from atom zero. Alternatively Goo(E) can be written in terms of the eigenstates In) of H, 
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which shows that G,,(E) is analytic in the complex E plane except for poles at the eigen- 
values on the real axis. For an infinite solid the line of poles becomes a cut, which is of 
finite extent around E = 0 since we are considering a single tight-binding band. Thus 
(2.1) converges as a power series in E-’ around the point E = cc with circle of conver- 
gence reaching E,,,, the maximum I En 1. The series (2.1) diverges outside this region, in 
particular along the cut where we would wish to evaluate it in (1.2). The problem is to 
develop a systematic approximation to G,,(E) which is a Herglotz function (Shohat 
and Tamarkin 1943. Akhiezer 1965) in the entire complex E plane. A Herglotz function 
f (E)  has 

Im f > OforImE < 0 Imf < OforImE > 0 (2.3) 

which guarantees a positive definite density of states and no poles (or cut) except on the 
real axis, so that it corresponds to some hamiltonian (Akhiezer 1965). 

The first step is to apply a ‘linked cluster’ type of summation to (2.1): 

Here pOm is the sum of all ‘irreducible’ chains of type (1.4), that is those which do not 

Truncating (2.4) at some finite order n does not yield a Herglotz function. For example 
return to atom 0 at any of the intermediate steps ubc . . . k (see figure 2). 

we have for the simple cubic structure with overlap integral h 

truncated at the fourth order. This can be resolved into partial fractions when it is seen 
to have two poles on the real axis and two at complex E. However a continued fraction 

I 

bl 
G,,(E) = 

E - u , -  
E - a , - - - - -  b2 

E - . . .  
is a Herglotz function if all the bn are positive, even when truncated at any finite order 
(Shohat and Tamarkin 1943). Unfortunately the renormalized perturbation expansion 
for G(E)  (Economou and Cohen 1971), while rather similar to (2.6), does not seem to 
share this property. Only for a one dimensional chain, Economou’s expression reduces 
to the form (2.6) and an exact solution for G(E) is obtained. as recognized earlier by 
Anderson and others. 

One way of obtaining sensible results from (2.5) is to turn it into a continued fraction: 

6h2 - E -  
6h2 54h4 

E E 3  E(l  + 9h2/E2)-’ 

6h2 = E  - 
9h2 
E 

E - - + O(E-2)  

We now drop the higher order terms in (2.7), which is equivalent to supplying some higher 
order terms in (2.5) in place of the truncated exact ones. (2.7) gives a density of states 
consisting of four delta functions with the correct moments up to fourth order. The 
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procedure can be applied to (2.4) truncated at any given order and kept exact to that 
order. 

An alternative approach is to write down a ‘Dyson’ type of selfconsistent equation 
for G. A simple type of chain is shown in figure 3a, involving a step It to atom-1, then 

I- n 
Figurc3. (a) An irreducible chain from atom zero. (b)  Excursicns from atom 1, avoiding atom 
zero. (c) A ’tree’ included in (2.8). 

some unspecified path (avoiding atom zero) returning to atom 1, and finally back to atom 
zero. Let S be the sum of all the intermediate excursions from atom 1. Using again the 
decomposition of reducible chains as in (2.4) (2.5), we can write approximately 

( 2 . 8 ~ )  

which includes all chains of the type shown in figure 3a, together with all ‘reducible’ 
chains consisting of a succession of such irreducible subchains. Figure 3b shows that 
S can itself‘ be written in similar form 

1 
5h2 

1 - --(E) 
E 2  

S(E)  = (2.8bj 

yielding a selfconsistent equation for S for substitution in (2.8). In general in ( 2 . 8 ~ )  
the coefficient 6 would be replaced by z ,  the number of nearest neighbours, whereas 
z - 1 appears in (2.8b) because a step back to atom zero would give a reducible chain 
which is already counted in (2.8a). The approximation (2.8) for G,,(Ej includes all tree- 
like chains (figure 3cj: actually there is some double counting of long chains which in our 
prescription can curl around back through atom zero but the error starts at quite a high 
order. The results are shown in figure 4. No such looping back can occur for the one 
dimensional problem, where squares and other shaped chains are also absent. so that 
(2.8) gives the density of states exactly (Anderson et a1 1970). 

The expression (2.8) for G can be evaluated in two different ways. The obvious one is 
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~ . / I  

- 6 Ihl 6lhl E 

Figure 4. Density of states for simple cubic s band by selfconsistent method. Dotted line, 
correct to second order from (2.8); broken line, correct to fourth order from (2.12); full line, 
exact results calculated from the band structure. 

to solve the quadratic equation (2.8b), 

E - ( E 2  - 4(z - l)h2)'12 
E - ' S ( E )  = 

2(z - l)h2 

where we have written down the general solution for z nearest neighbours. The density 
of states is zero outside the range of the cut 

lEl 6 2(z - 1)1/2h (2.10) 

produced by the square root. Alternatively one can substitute the whole expression 
(2.8b) in place of the S ( E )  in the denominator of (2.8b), and so on repeatedly, thus generat- 
ing an infinite continued fraction. Conversely we note that an infinite continued fraction 
(2.6) with constant coefficients gives a rather featureless density of states (figure 4) having 
no interior van Hove singularities but with the correct behaviour 

'('1 ( E  - E m a x  mln ) U 2  (2.1 1) 

at the band edges. (The case z = 2 yields a special cancellation between (2 .8~)  and (2%) 
resulting in the inverse square root singularity in n(E) appropriate to one dimensional 
bands.) 

It should be pointed out that (2.8) can be given a physical interpretation. If in ( 2 . 8 ~ )  
we set S = 1, we have an exact solution to the finite cluster of seven atoms: for the simple 
cubic lattice none of the six neighbours are nearest neighbours to one another and so no 
triangular etc chains are possible. The factor S in ( 2 . 8 ~ )  represents the interaction of the 
neighbour with the surrounding solid, which can of course be varied. In our case we 
know that the band extends over the range 1 E 1 < 6h: for s states on any lattice the most 
bonding state always has energy - zh. We could therefore use this fact to improve our 
results by employing the form (2.9) for S but adjusting the coefficient in (2.9) to give the 
correct bandwidth instead of (2.10). 

We can now put these various ideas together to obtain what we call the selfconsistent 
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method. Let us extend (2.8) to the next order, still for the simple cubic lattice. 
1 
1 

Goo(E)  = E - 6h2g,  - 24h4g:g2 

1 
g l ( E )  = E - 5h2g, - 16h4g:g2 

(2.124 

(2.12b) 

(2.12c) 

Here we have written g(E)  for E - ' S (E) .  the partial propagators, and distinguished be- 
tween g, and g2 according to whether excursions to z - l or z - 2 nearest neighbours 
are allowed. For example from atom 3 in figure 5, we must avoid atom zero to keep the 
chain irreducible, and we must not make an excursion via atom 2 because that gives a 
chain which would already have been classified and counted as an excursion from atom 2. 
In (2.124 the coefficient 24 derives from the number of square chains, all other fourth 
order chains being 'trees' and thus generated by g1 in the second order term as in (2.8). 

Solving (2.12b), (2 .12~)  as quartic equations for g,, g, does not yield Herglotz func- 
tions for similar reasons as for (2.5): it only works for quadratic equations as in (2.8b). 
(2.9). We therefore must turn our equations into a continued fraction as in (2.7). Moreover 
we do not just wish to keep accuracy to fourth order in the final result for Goo:  almost 
anything we did with the equations would do that. If we had some extension of (2.8b) 
correct to fourth order, then we would be keeping that accuracy at every iteration of that 
equation, that is we would be keeping fourth order accuracy in some sense at every level 
of the infinite continued fraction. Let us take the latter point of view as our guide. The 
algebra proceeds by noting that 9,. g2 are of order E-'  as E -+ x, and pulling out a 
factor of E- '  at every stage. First g1 is abbreviated to ( E  - P1)-' where P ,  is a poly- 
nomial in g,, g,. We have 

(2.13) 
with a similar form for g2, and use this to substitute symmetrically for one factor of g 
or g, in each term of G, obtaining 

E Q ,  = 1 + P , Q ,  

(2.14) 

Here Q is a polynomial in gl ,  g2 starting with the first power, the constant term having 
been taken out as shown. (2.14) becomes 

(2.15) 1 
b '  G,,(E) = 

E(l + Q)--' 
E -  

In the last line (1 + Q)-I  can be expanded to any accuracy desired, our procedure being 
quite general. The first term in E is retained, and the rest of the series - EQ + E Q 2  - . . . 
is turned into a new polynomial in g,, g2 by taking one factor of g, or g2 symmetrically 
from each term and using (2.13). We recover an expression of the same form as the 
denominator of (2,12a), which completes one cycle of turning Goo(E)  into a continued 
fraction. The algebra of this process has been programmed intc the computer and after 
about 30 stages uc find that the coefficients a,, b, of the continued fraction have settled 
down to effectively constant values. The stages beyond that are equivalent to the solu- 
tion of a quadratic equation, as discussed in connection with (2.8b), (2.9), which can 
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therefore be inserted at that point. There appears to be no guarantee that the coefficients 
bn all turn out positive, as is necessary for a positive definite density of states, but this has 
in fact been so in all the cases we have calculated. 

The results for the s band on a simple cubic lattice are shown in figure 4, derived from 
(2.12) and kept correct to fourth order at every step. There is a substantial improvement 
over the second order results (figure 4). Indeed it is interesting that the very simple chains 
of figure 5 give already such good results. For d bands it is necessary to sum over all 
five d states at atom zero in (1.2) and at all atoms a b c . . . on the chain in (1,4), the exact 
mechanics of which will be discussed elsewhere (Haydock to be published). The results 
have already been shown in figure 1. 

0 B 
W 

Figure 5 .  Irreducible chains contributing to (2.12). 

Finally we indicate a further improvement on the selfconsistent method which we call 
the cluster method. As before, the problem is to obtain a Herglotz function. In this method 
we note that G,,,(E) must turn out Herglotz if we write it down exactly for a real system, 
even though it does not have the manifestly Herglotz form of a continued fraction. Let us 
consider the two dimensional square lattice and pick out a cluster of 9 atoms Oab , . , gh 

W 
Figure 6. Diagram representing the effective hamiltonian in the cluster method 
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shown in figure 6, where g1 and g2 represent the sum of all excursions into the surround- 
ing medium only and returning to the same atom. We ignore the fact that one can get 
from one atom to another via the medium though this could be included in a further stage 
of elaboration. Let us define Ga as the sum of all chains from atom a and returning there 
without passing through atom zero; G, as the sum from atom b not passing through 
atoms 0 and a :  Gc from atom c avoiding atoms 0, a, b :  etc. The following equations are 
then exact as regards all chains 

1 
G,,(E) = E - 4h2Ga - 8h4GaG,Gc - 8h6G,GbGcG,Ge 

- 8hgG,G,GcG,GeG,Gg 

1 
1 
-- - 2h2Gb - 2hgG,SG,GeG,GgG, 
91 

1 
1 

1 

- - h2G, 1 
- - h2Gc 
g2 91 

1 
1 

1 

- - h2G, 
1 
- - h2G, 
92 91 

1 1 

G, = 

Gi = G, = 

Ge = G, = 

G, = G,= 1 
- - h2Gg - -  k2G, 
g2 91 

G, = g2’ (2.16) 

Now g1 and g2 have to be approximated to by some set of equations analogous to 
(2.12b and c). However if they are Herglotz, no matter what the approximation, they 
correspond to some real hamiltonian, that is to some real set of atoms which we can 
imagine hung on to each of the points in figure 6 instead of the real lattice. For example 
(2.8), (2.9) corresponds exactly to an ever branching snow crystal (see figure 4 of Weaire 
and Thorpe 1971). Thus the equations (2.16) are exact for some realizable system and 
G,,(E) should turn out Herglotz. It can be evaluated starting at the bottom and working 
upwards through the set of equations. 

3. The recursion method 

We proceed now to describe the best method of calculation we have arrived at. the 
‘recursion method’. 

We define a mutually orthogonal set of states I n}  on the lattice, and assume for the 
present that we are dealing with an s band though the crystal structure can remain 
unspecified. As the first state I l} we take the s state IO) on the atom we are considering 
in (1.20). The next state 12) is defined by 

12) = HI11 - 4 1 }  (3.1) 
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where the coefficient a1 is chosen to orthogonalize 12) to 1 l}. The higher 1.1 are defined 
similarly by repeated operation with H and orthogonalizing to all previous i r} .  r < n. 
We have 

In + l} = H / n }  - anin} - b n - l l n  - 1). (3.2) 
The interesting point about this formula is that H 1 n}  is automatically orthogonal to all 
the states 1 m }  with m < n - 1 so that these do not occur in (3.2). To prove this, consider 
{ m  1 H 1 n) ,  the overlap of HI n )  with 1 m}.  Now the same matrix element can be regarded 
as the overlap of {mlH with {.I. Since {mi H generates a linear combination of { m  + 1 I 
and other ( r  I with r d m. ( m  I H I n )  is zero if m + 1 < n. Note that the states 1.3 defined 
by (3.2) are not normalized. 

Some simple manipulation establishes the matrix elements H,, of H in this basis, and 
the formulae for evaluating the a,, and bfl. Taking the product of (3.2) with {nl and { n  - 11 
we have 

( 3 . 3 4  

The latter matrix element can also be evaluated by operating { n  - 11 H 1 n}  with H to the 
left, 

whence comparison with (3.4) gives 

bn.. = 
{nIn3 

{ n  - l / n  - l} (3.3b) 

The basis functions 1 n }  can be expressed in terms of the atomic orbitals I r ) ,  

1.1 = CAnyI r )  (3.6) 

and stored as column vectors Ally. Then In + l} is obtained from (3.2) where a, and bn- 
are defined by (3.3a), (3.3b). 

All other matrix elements Hnm are zero, as follows also from (3.2). 

HHm = 0 for In - wt( > 1. (3.3d) 

Thus the matrix Hnm defined by (3.3) has tridiagonal form, and it follows quite simply 
by various arguments that the corresponding Go, equals the continued fraction (2.6) 
(Akhiezer 1965). Perhaps the easiest way in terms of the concepts of $ 2  is to note that 
Hnm is the hamiltonian of a fictitious line of 'atoms' with local orbitals In}, diagonal 
energies a, and overlap matrix elements [ b n ] l ' z  to 'atom' n + 1 (figure 7). The important 
property of this fictitious line of 'atoms' is that for any given length, the contribution of 
closed walks on the original lattice, and on the (weighted) linear chain is the same. 
Because at each stage of the definition of the states In} the hamiltonian operates on all its 
nearest neighbours, exact computation of the states up to 1 N j  is equivalent to knowing 
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01 

Figure 7. A line of fictitious 'atoms', equivalent to the hamiltonian in the representation (3.3) 

the first 2N moments. In the terms of $2,  we have summed over all irreducible paths of 
length up to 2N and all reducible paths that can be built up out of these. The argument 
of figure 3 and (2.8) then gives the following set of equations which are exact because the 
system is one dimensional: 

1 

The substitution of these equations into one another immediately generates the continued 
fraction (2.6), which provides an exact solution to Goo(E) from which the density of states 
may be calculated using (1.2). As in the selfconsistent method, when the a ,  bn have settled 
down to essentially constant values a, b, we can terminate the fraction with the function 

4b 
2b 

analogous to (2.9), obtained by solving 

1 
= E - a - bg' 

( 3 . 8 ~ )  

(3.8b I 

If we make this replacement at level n, the first 2n moments of n(E) remain exact. Actually 
the limiting factor in the calculation is the number of atomic states that become involved 
as n increases, and we find much better than using (3.8) after n = 4, say, is to continue the 
process of (3.3) with a finite cluster of about 200 atoms to n of the order of 50. This catches 
long irreducible chains that wind around in the neighbourhood of the central atom, while 
ignoring a smaller number that would extend outside the cluster. For d bands in a FCC 
structure, we find agreement with the best conventional k-space calculations for the 10 
main peaks in n(E). The extension of the method to d bands will be published with results 
on surfaces (Haydock and Kelly 1972). 

One minor mathematical point: in a system with symmetry, the functions In} do not 
form a complete basis set. By construction they all belong to the same irreducible repre- 
sentation of the symmetry group as Il} = IO) does, and they span the space of such func- 
tions on the lattice completely. Eigenfunctions of other symmetry have zero amplitude on 
atom zero and hence from (2.2) do not contribute to Goo. Our construction of Goois 
therefore complete. 

The representation of H in terms of the one dimensional array of figure 7 IS not 
without physical significance. Since Hlr)  generates the set of neighbouring orbitals to 



Electronic structure and local environment 2857 

l r ) ,  the An? in (3.6) are zero beyond the planes of atoms n - 1 steps from the origin. For 
the simple cubic lattice these define an octahedron. Thus In} represents the orbitals on 
this octahedral shell of atoms, its amplitude on the interior atoms being relatively small 
because of the orthogonalization. The representation (3.3) and figure 8 may be thought 
of as the one dimensional radial wave equation between shells. f l l  

I 
I ? 3h 

( 0 )  ( b )  

Figure 8. (a) Representation of the basic function in} in terms of the amplitudes Anr on the 
atoms r .  Those marked ? are irrelevant to the argument. (b) The same for In ~ 13, the atoms 
denoted by heavy dots being the same as in (a). 

One interesting small point remains to be tidied up. The simple cubic s band extends 
6h as already discussed in $2. Thus CI and b in (3.8) must be given by between the energies 

a = O  b = 9h2 (3.9) 
but it is not at first obvious how these limiting values arise from our recursion process 
(3.2,3.3). The following didactic argument is not intended to be rigorous, merely to dispel 
any mystery. The result that all a, are zero derives from the fact that only chains of even 
order exist on the simple cubic lattice. Thus all odd terms in (2.4) are zero and Goo(E) 
has to be an even function of E.  The result for b is really (i x 6h)’ where 6 is the number of 
nearest neighbours. Figure 8a shows the outer set of coefficients Anr. Actually they are 
not exactly equal, but are proportional to the number of paths reaching a given atom 
from the origin and this is slowly varying at the centre of one of the faces of the octahedron. 
Also the outer Anr do not have the value unity iis shown, but some other constant: but 
since In} is an unnormalized function this does not matter: only the relation of In + 1) to 
in} matters in determining b, from (3.3b). Figure 8b now shows the result of operating with 
H and this correctly represents the outer shell of In + l} because the orthogonalizing 
terms in (3.2) do not affect the outermost shell. We see from figure 8b that In + l} is a 
function of the same form as 1.3 but with amplitude 3h. The number 3 derives from the fact 
that a given outermost atom in In + 1) (large circle) can be reached from three outermost 
atoms of In}, two shown by arrows and the third from the third dimension. Then (3.3b) 
gives the value (3.9). 
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