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Antiferromagnetic model with known ground state 

C. K. MAJUMDAR? 
Tata Institute of Fundamental Research, Colaba, Bombay 5 ,  India 
M S .  received 24th September 1969 

Abstract. The ground state of the one-dimensional antiferromagnetic model, with the 
Hamiltonian 

N N 

i = l  i = l  
H = 35 ui .u i f l  + $J ui .u i+2  

(J > 0, N even, N + 1 = 1, N + 2 = 2)  can be given explicitly in terms of spin eigen- 
functions. Various properties of the ground state are studied. An approximate deter- 
mination of the low-lying excited states shows the usual linear frequency-wave-vector 
relationship. 

1. Introduction 

are well known. For the linear chain of spin-3 particles with the Hamiltonian ( J  > 0) 
There are not many antiferromagnetic models for which the properties of the eigenstates 

the ground state energy is well known, and the structure of the ground state, as proved by 
Yang and Yang (1966a), is given by the Bethe ansatz. The form of the wave function is 
fairly complicated. It is known that the antiferromagnetic ground state of (1.1) has total spin 
S = 0 for even N (Lieb and Mattis 1962), but this feature is not apparent in the Bethe 
result. Several other antiferromagnetic models have been explicitly solved (Lieb et al. 1961, 
Katsura 1962) by transforming the spin problem into one of fermions, and then investigating 
the properties of these particles. To get a clearer understanding of the antiferromagnetic 
ground state, it is worth while to discuss a model for which the ground-state wave function 
can be simply written down in terms of ct and f i  where c( and fi are the usual up and down 
spin eigenfunctions respectively. Unfortunately the model we are describing is one-dimen- 
sional, so many interesting and pertinent questions about long-range order cannot be 
answered. Also only an approximate determination of the low-lying excited states can be 
given. 

2. Ground state 
Consider the Hamiltonian of a chain of N spin4 particles ( N  even, N + 1 = 1, N + 2 = 2) 

The second neighbours interact with a strength exactly half that of the nearest neighbours. 
Such a Hamiltonian with second-neighbour interaction present in varying fractional 
strength relative to that of the first neighbours has been studied in detail by Majumdar and 
Ghosh (1949). From their work the following result for (2.1) follows. Introduce the notation 

(2.2) [ l  ml = 40 P ( 4  - P ( 0  
t Now at Department of Theoretical Physics, University of Manchester. 
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Construct the functions 

41 = [ 1 2 ]  [34] . . . [  N - 3 N - 2 1  [ N - l N ]  
4 2  = [23] [45] . . .  [ N  - 2 N  - 11 [ N l ] .  

(2.3) 

(2.4) 

H 4 1  = iJI?!41, H 4 2  = - gJN4,. (2.5) 

Then by direct calculation 

A study of short chains provides convincing evidence that - :NJ is indeed the ground-state 
energy.? Of course, any linear combination of 41 and 42 will belong to the same eigenvalue. 

The ground-state wave function, however, must also diagonalize the translation operator 
simultaneously with the Hamiltonian. Let T be the operator which translates the chain by 
one unit distance. This is equivalent to the cyclic permutation 

(1 2 3 . . :  N i l  N )  

2 3 4 . .  1 

Notice that 

T41 = 4 2 ,  T42 = 41. (2.6) 
Hence the lowest energy state of the chain can be described either by the function YJ such 
that 

Y t  = q51 + 42, TY',+ = Yo', H Y :  = -$NJY',+ (2.7) 

'3'; 41 - 4 2 ,  TYG = -Y;, HYG = -aNJYC.  (2.8) 

or by the function 

Since the functions 41 and are built out of products of singlet combinations, the total 
spin must be zero, and of course the total S ,  = +Cia; = 0. Each spin is coupled in a singlet 
pair to its neighbour. The wave function is quite different from the alternating up and down 
spins often associated with the description of antiferromagnets; that such a picture is 
grossly inadequate for a Hamiltonian like (1.1) was noted by Marshall (1955). 

One can now calculate the various correlation functions in the ground state. By straight- 
forward calculation one can show that in the limit N -+ CO, 

(a;a;)+ = (afoi)+ = ... = 0. 

Also 

and 

.. 

(2.9) 

(2.10) 

= 0. (2.11) 

Clearly the ground state has only short-range order and no long-range order. It is true that 
(of?:)+ = -3 is finite, but this is a result of periodic boundary conditions. 
vanishes again. In other words the correlation falls off in either direction from any partlcular 
spin. The sign of the short-range order indicates that on the average an up spin is flanked by 
down spins. 

:I Dr J. Pasupathy has proved (private communication) that the ground state energy E, 2 - $NJ 
for arbitrary N in (21). 
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Thouless (1967) studied a parameter 

Rij = +((e$ + o~o~)) (2.12) 

to characterize the antiferromagnetic state. This gives zero when the two spins i and j are 
parallel but exchanges the spins when one is up and the other down. For the antiferromag- 
netic wave function considered by Marshall (1955) for the Heisenberg Hamiltonian Rij 
is expected to have appreciable expectation value even when i and j are well separated. In 
our case we find that in the limit N + CO 

R13 = R14 = . . . = 0. (2.13) 1 
R12 = -2, 

The Thouless parameter is closely related to the off-diagonal long-range order discussed 
by C. N. Yang (Yang 1962, Yang and Yang 1966 b). This involves the calculation of averages 
(o+a;) where o* = ox id' .  We get, in the limit N + CQ, 

<o:o;>, = -1 ,  (a:a;), = (o:fs4)* = . . . = 0. (2.14) 
The correlation falls off as the separation increases. Since the model is one dimensional the 
absence of long-range order is not surprising, and the model tells us nothing about the 
corresponding quantities in higher dimensions. 

3. Low-lying excited states 
The determination ofthe excited states of (2.1) turns out to be difficult. One can check that 

the standard antiferromagnetic spin-wave approximation (Anderson 1952) breaks down and 
the spin waves do not have real frequency. The starting ground state in this approach is a 
poor representation of the ground states (2.7) and (2.8). An approximate determination of 
the low-lying excited states is possible, however, by the linearized equation of motion 
technique. 

One may guess that the lowest excitations will be states with total spin S = 1. This is true 
of the short chain data of Majumdar and Ghosh (1969). For the standard linear chain (l.l), 
des Cloizeaux and Pearson (1962) made the same guess and obtained the exact dispersion 
law for these states by utilizing the Bethe ansatz. 

and 42. 
Three operators which break one pair and produce a state of spin S = 1 are clearly 0' and 
0; for a particular i. One notices, for instance, that ~ + c # I ~  for various i will be +N states of 
spin 1, in each of which exactly one ground state singlet pair has been broken. The states 
with one ground pair broken do not span the complete space of excited states of spin 1. 
Take the commutator 

The spin-1 states can be produced by breaking one or more singlet pairs in 

[cT+,H] = J(o++, + o:-,)af - Jo:(4+l + 6-1) ++J(fT:+, + o:-,)rJf 
- $ J ~ l ( 4 + 2  + 6 - 2 ) .  (3.1) 

Consider both sides of (3.1) operating on 41. Some terms on the right side clearly break up 
two pairs. Unlike the ferromagnetic case, where the fully aligned state is an eigenfunction 
of the individual 4, the equation does not linearize. An attempt to replace 4 by its ex- 
pectation value is meaningless, because this expectation value in the ground state is easily 
checked to be zero. 

Intuitively one feels that the states with one ground singlet pair broken will form the 
dominant part of the wave function of the very low-lying states. So we try to get a linear 
equation for o* and oz. One knows that 

= 1, a:o; = 2 + 2 4 ,  a;o: = 2 - 20;. (3.2) 
We take a commutator of (3.1) with H ,  and use (3.2). All terms containing three o are dropped, 
and only the constant term of 0'0- or 0-0' is retained. The latter means that some terms 
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like a+af+ I which may break up one pair in the ground state are also dropped. Their 
retention proves rather awkward. Hence the linearized equation we are going to get is 
more restrictive than one pair break-up approximation. This also means that the calculation 
does not have any variational character. With these remarks we may write down the 
equation 

(3.3) [ [ c + , H ] , H ]  = 2J2[20:  - (oi+l + + 0:-1) + i o +  - i(a[+2 + 0:-2)]. 
The equations for of and a; are obtained by replacing a+ by a' and a- throughout, 
respectively. Take the matrix element of both sides of (3.3) between an exact eigenstate $ 
of excitation energy ho and the ground state Yo'. Let 

(3.4) <IC/ j 0: 1% > = f ( 0  
Then w is determined by the appropriate equation 

h 2 ~ ' f ( l ) = 2 J 2  [2f( l ) -  { f ( l +  l ) + f ( l -  I)} +ff(l)-i  ( f ( l + 2 ) + f ( l - 2 ) ) ]  .(3.5) 

The solution is obviously 

f ( l )  = exp (i kl)  (3.6) 
k being determined by the periodic boundary condition, and 

hZOZ -- - 2 ( 1  - COS k )  + &(1 - C O S ~ ~ ) .  
2J2  (3.7) 

The same eigenvalue is obtained from the a' and a- equations. The result is expected to  
be fair only for very low energy and for small k,  Hence 

hw N 2 J l k l .  (3.8) 
If one applies the same method to the Hamiltonian (Ll), one gets 

h o  = 1.414JIkI (3.9) 
compared with the exact result hw = n J l k l  and the spin-wave result ho = 2Jlk l .  In 
contrast to the spin wave theory, however, we get all the three states of spin 1, and they are 
degenerate in energy. The spin-wave theory gives two states with S ,  = k 1 ; the S ,  = 0 
state is collective in character in terms of the spin-wave variables and does not appear (des 
Cloizeaux and Gaudin 1966). For large k values the dispersion relation (3.7) is not correct. 

($Ioll'Yi) = g( l )  = ( - 1)' eik' (3.10) 

One can also look for solutions of (3.3) near the ground state 'Pi. Here we put 

and the spectrum is 

h 2 o 2  = 25' (2  + 2 COS k + & - 3 COS 2k). (3.11) 

As k + n, 

h~ = 2 J ( d  - k) ,  k < n. (3.12) 

The correct spectrum very probably has the familiar doubly periodic structure, but our 
approximation certainly cannot bring out the connection between the branches, one 
starting at k = 0 and another emerging at k = n. 

4. Discussion 
The explicit form of the ground state wave functions of (2.1) clarifies some features 

about antiferromagnetism, but because of the one-dimensional nature, fails to throw light 
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on the interesting question of long-range order. The knowledge of the wave function was 
obtained by direct calculation on short chains, but a more systematic method, such as the 
Bethe-Hulthtn method for (1.1) should be found for describing the ground and excited 
states. Starting with the fully aligned state and studying the successive spin deviations, one 
gets linear equations, but the appropriate generalization of the Bethe ansatz is not known. 
Perhaps variational calculations exploiting the knowledge of '4': would yield better 
answers for the excited states. Because of the linear co-k relationship near o = 0, the low- 
temperature thermodynamic properties would not be qualitatively different from that of 
the ordinary linear chain. 
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