This site uses cookies. By continuing to use this site you agree to our use of cookies. To find out more, see our Privacy and Cookies policy.

Magnetism in cupric oxide

, and

Published under licence by IOP Publishing Ltd
, , Citation J B Forsyth et al 1988 J. Phys. C: Solid State Phys. 21 2917 DOI 10.1088/0022-3719/21/15/023

0022-3719/21/15/2917

Abstract

Single-crystal neutron diffraction measurements have been used to study the long-range magnetic ordering in cupric oxide, CuO. An incommensurate antiferromagnetic structure forms below the Neel temperature on 230(1) K, with a propagation vector (0.506(1)a*-0.483(1)c*) which remains constant down to a magnetic phase transition at 213(1) K. Below the latter temperature, the structure remains antiferromagnetic with a commensurate propagation vector (1/2 0-1/2), and this structure persists to the lowest temperature reached in the investigation (20 K). The arrangement of the copper moments in both phases is such that the n-glide perpendicular to the b axis of the monoclinic cell, space group C2/c, does not reverse the direction of the spin. The two magnetic sublattices related to the C-face-centring scatter in phase quadrature and the relative directions of the spin on them could not be determined. Good agreement is obtained for the commensurate phase with a multipole model for the copper magnetisation density and spins of 0.65(3) mu B directed parallel to b. The lower sublattice magnetisation in the incommensurate phase precluded a meaningful multipole fit, but a reasonable agreement is obtained with a model in which the spins rotate in the a-c plane following an elliptical envelope with major axis directed 33(2) degrees to c in beta obtuse and a maximum moment of 0.38(2) mu B at 215 K. The paramagnetic scattering at ambient temperature and 550 K was measured to try to find the origin of the peak in the susceptibility. No significant paramagnetic scattering could be obtained from a powdered sample although the sensitivity of detection was some five times that required to observe the scattering from a Cu2+ ion in an ideal paramagnet.

Export citation and abstract BibTeX RIS

10.1088/0022-3719/21/15/023