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Abstract. An equation is presented which describes the conductivity (resistivity) of a wide 
variety of binary macroscopic mixtures as a function of the conductivities (resistivities) of 
the components, thevolume (area) fractionofeach, and two parameters. Unlikein anearlier 
version, the granular shape of at least one component is no longer required to be roughly 
spherical (circular). One parameter is the critical volume (area) fraction. The other, the 
exponent, is a combination of effective demagnetisation coefficients and the critical fraction. 
The equation, which is valid for all volume fractions, is shown to fit a variety of experimental 
data very well. Some deductions about the shape of the grains in the media can be made by 
analysing the experimental results. 

1. Introduction 

In a recent paper (McLachlan 1986a), I proposed two equations to describe the con- 
ductivity (resistivity) of isotropic binary macroscopic mixtures as a function of the 
conductivity (resistivity) of the components, the volume fraction of each, the space 
dimension and a single morphology parameter, that determine a critical volume fraction. 
These equations are interpolations between Bruggeman’s symmetric- and asymmetric- 
media theories. The symmetric theory is based on a random mixture of spheres and the 
asymmetric theory on a dispersion of spheres of the one component coated with the 
other (host) component. Good agreement was found with a wide range of two- and 
three-dimensional data. 

In this paper a more general form of these equations is proposed, which should be 
valid where neither the grains of the symmetric random medium nor the coated disper- 
sion in the asymmetric media can be characterised by spheres. This equation requires 
two parameters. The first is the critical volume fraction (fc) at which a medium, with the 
same characteristic morphology, but consisting of conducting and insulating 
components, would undergo a metal-insulator transition (the parameter obviously still 
has a physical significance when both the components have finite conductivities). The 
second is an exponent ( t )  which depends on fc and a characteristic demagnetisation 
coefficient for the dispersion. This coefficient depends on the shape of the particles and 
whether the dispersion is oriented, partially oriented or random. In the case of a ‘metal- 
insulator’ mixture, the equation can be put in the same mathematical form as the 
percolation equation for conductivity. It must however be noted that, unlike the per- 
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colation expressions, this equation should be valid at all volume fractions and not only 
near the metal-insulator transition. 

In McLachlan (1986a) and the less general versions given in McLachlan (1985) the 
equations were all written in terms of a morphology parameter or dimension D and the 
spatial dimension d ,  which together determinedf, and the exponent. In this paper it will 
be shown that a single parameter works because the exponent is a combination offc and 
the fixed demagnetisation coefficient of a sphere (4 or l /d) or a circle (i or l/d). 

In the next section grounds are given for the extension of the equations, \,sed in 
McLachlan (1985,1986a), to arbitrary shapes. In a later section the data used in McLach- 
lan (1986a) plus some additional data are fitted using the new equation and the results 
from this analysis are discussed. The last section contains a brief summary and some 
conclusions. 

2. Theory 

Bruggeman’s symmetric theory (see Landauer 1978, and the references therein) treats 
the two (or more) constituents, with conductivities u1 and u2 and volume fractions f l  

andf, on a completely symmetrical basis. The theory, which is based on the expression 
for the polarisation of a sphere, is for a random mixture of ‘spherical’ grains of the two 
constituents, in the correct volume ratio, which together completely fill the media. The 
case for d = 1 , 2  and 3 dimensions can be combined in the equation 

fl(al - a m > / [ G ,  + ( d  - 1 ) ~ ~ m l  +fi(a2 - am>/[az + (d  - 1 ) a m I  = O .  (1) 

Here a, is the conductivity of the medium and iffl = f ,  o1 = 0 and u2 = a h ,  equation (1) 
becomes 

um/‘h = [l - df/(d -,l>1 = (l -f/fc). ( l a >  
Note the metal-insulator transition when the insulator volume (area) fraction f = fc = 
d/ (d  - 1) i.e. fc is 3 in three dimensions and 4 in the dimensions. Alternatively for u1 = 
x or p1 = 0 and l/a2 = ph 

wheref’ is the conductor volume (area) fraction and the metal-insulator transition is at 
fi = l/d, which is 4 in three dimensions and f in two dimensions. 

Bruggeman’s asymmetric theory, where the dispersion (conductivity a d )  consists of 
an effectively infinite size range of spheres (discs), each of which remains coated with 
the host constituent (conductivity a h )  at all volume fractions, is discussed in Landauer 
(1978, and the references therein) and McLachlan (1985,1986a). The more general case 
for oriented ellipsoids, with a demagnetisation coefficient L in the direction of current 
flow, can be found in Sen et a f  (1981) or in an extensive review of asymmetric theories 
by Meredith and Tobias (1962). Here the dispersion consists of an infinite size range 
of oriented ellipsoids (conductivity ad) coated at all levels by the host component 
(conductivity a h ) .  This equation can be written as 

(0,  - a d )  ‘ I L  /a, = (1 - f )  ‘ I r .  ((5, - ah)1iL / a h  (2) 

a m / ( J h  = (1 -f)l’(l-L’. (20) 

When a d  = 0, equation (2) becomes 
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If the conductivity of the ellipsoidal dispersion is much higher than that of the host, 
equation (2) can be rewritten in terms of the resistivity (p,  = l/ux) and in the limit pd = 
0, equation (2) becomes 

P m I P h  = (1 -Y>"L. 
The expressions for dispersions of spheres and discs can be obtained by putting L = f 
and 1 respectively in equations (2), (2a) and (2'a). In all these expressions fc (or f;) is 
equal to one. 

For the case of randomly oriented ellipsoids equations (2a) and (2 'a)  can be written 
as 

o m / o h  = (1 -f)" (3) 

P m l P h  = (1 -f')"'. (3') 

or 

Values of m and m' have been obtained by evaluating equation (23) in Meredith and 
Tobias (1962) in the limits 0, tends to zero and a d  tends to infinity, respectively. These 
results are shown in figure 1. This plot is for ellipsoids of rotation with a # b = c or L, # 
Lb = L, and the aspect ratios given in the figure are c/a. Note that in all cases, except 
for that of randomly oriented insulating rods, m tends to infinity at the extremes of 
platelets (L,  = 0) and rods (L ,  = 0.5). Values of m for (3) have also been obtained by 
Mendelson and Cohen (1982). 
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Figure 1. The exponents m and m' for random ellipsoids of revolution plotted against 
the demagnetisation coefficient L,  = Lb # Lo. These values are obtained by evaluating 
equation (23) in Meredith and Tobias (1962) in the limits ad = 0 and U, = x ,  
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The expansion for small f o r f '  of equations (la),  (2a) and (3) or equations (l 'a) ,  
(2'a) and (3') are 

o m / o h  = 1 - f/(l - L )  and 1 - mf (4) 

Pm/Ph = -f 'lL and 1 - m'f (4') 

or 

respectively. These dilute-effective-media expressions are valid for any dilute dispersion 
of ellipsoids, irrespective of whether the medium will later show a metal-insulator 
transiton or not. 

McLachlan (1985) proposed that the equation 

om/'h = ( l  -f/fc>dfc/(d - 1> ( 5 )  

(or (1 - f/fc)fci(l-L) for a spherical (or circular) insulating dispersion imbedded in a 
conducting medium) should hold not only for symmetric and asymmetric morphologies 
but for all intermediate morphologies. Experimental evidence was presented to show 
that this equation fitted some experimental data very well. For a perfectly conducting 
spherical (or circular) dispersion the equation proposed was 

Pm/Ph = (1 -f'/f:)df;. ( 5 ' )  
For spheres (3D) and discs (2D) this can be written as P,,,/Ph = (1 - f'/fL)fgL. 

are oriented ellipsoids are therefore 
The obvious extensions to equations ( 5 )  and ( 5 ' )  for the cases where the dispersions 

o m / o h  = (1 - f / fc ) fc ' ( l -L)  or (1 - f / f C Y  (6) 

Pm/Ph = ( l  -f'/fi)f''L or (1 - f'/fi 1". (6') 

These equations obviously reduce to the symmetric and asymmetric theories for the 
appropriate values of L ,  fc and f:. For randomly oriented, ellipsoidal dispersions, 
equations (3) and (3') can be generalised to 

o m / o h  = (1 -f/fc)mfc or (1 - f / f c Y  (7)  

Pm/Ph = (1 -f'/fi>"f' or (1 -f'/f:)". (7 ' )  

For small f(f') equations (6) and (7) ((6') and (7')) reduce to equation (4) ((4')) and are 
therefore rigorously valid in the dilute-effective-media region. 

Equations (6) and (7) have the mathematical form of the percolation equation (see 
for instance Landauer (1978)) and have been shown by McLachlan (1986b) to fit a wide 
variety of percolation (0, = 0 )  conductivity results which have inexplicably large critical 
regimes. The values of L or m, obtained from fitting these results to equations (6) and 
(7 ) ,  correspond to what can be expected from the morphologiesof the particular medium. 

An extended version of equation (6) for the case where both components have finite 
conductivities and the better conductor is host was given in McLachlan (1986). This is 

where C x  = U $ ~ - ' ) / ( ~ ~ C ) .  For ellipsoidal dispersions this definition of Cx is now replaced 
by C, = a;/[. This equation obviously reduces to equation (1) for L = 4 (1) and fc = 4 (1). 
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It can be shown to be equivalent to equation (2a) when u d  = 0 ,  fc = 1 and L = (4). It 
also reduces to (6) or (7) when a d  = 0. This equation should allow one to treat anisotropic 
systems when a h  B ad. 

It is interesting to note that the termf,/(l - f,) = (1 - fl)/fL in (8) has been shown 
by Leath (1976) to be the limit, for an infinite system, of the surface to volume (perimeter 
to surface) ratio at or near the percolation threshold, orf, in this case. This implies that, 
at least in some systems, there is a relationship betweenf,(f;) and the fractal dimension. 
Effective-media theory for binary resistor networks gives (1) with ( d  - 1) replaced by 
4Z - 1 where Z is the number of bonds at each node of the network (Yonezawa et a1 
1981, Kirkpatrick 1971). In (8), which is a continuum formula, aZ - 1 should probably 
be replaced not by the average number of contacts between the conducting ‘grains’ but 
by the number of contacts multiplied by their areas i.e. an effective contact area per unit 
volume fraction. This concept is best illustrated at the extremes. For an asymmetric 
insulator host medium f; = 1 and ( 1  -fL)/fh = 0 (i.e. zero effective contact area 
between the conducting grains for f’ # 1) while for an asymmetric conductor host 
mediumf, = 1, f: = 0 and (1 -fA)fs = x (i.e. an effectively infinite contact area per 
unit volume for the continuous conducting host component with embedded isolated 
insulating grains f o r f s  1). 

Equation (8) also implies that the symmetric effective-media equation ( t  = 1) for 
random ellipsoids is 

While this is true for L = 4 (3D) and 4 (2D) and also for L = 0 and 1 (if written in terms 
of p l ,  p2 and p,,,), this has not been proved in general. For very smallfl orf2, equation 
(9) gives the same values for U,,, as the Cohen et a1 (1973) version of the Clausius-Mossotti 
relationship for ellipsoidal cavities. 

In McLachlan (1985,1986a) all the equations are written in both the conductor host 
( a h  > a d ;  0 < fc s 3 for 3D) and resistor host (ph > pd; 0 < fs s 4 for 3D) versions using 
a morphology parameter D (f, = ( d  - 1)/D andf; = l / D ) .  This was necessary in order 
to keep D S d ,  which is essential if D is to have any significance as a dimension, 
fractal or otherwise. Here the morphology parameter D determined the metal-insulator 
transition composition for a system where the dispersion could be characterised by an 
effective N of 4 (3) if oriented and an m of 1.5 (2) if random. The one-parameter 
equations work remarkably well, possibly because 1.5 S m 6 1.67 for many randomly 
oriented ellipsoidal systems ( figure 1). 

Equation (8) may also be written in the form 

where P, = ai.’r’. This equation reduces to equations ( l ’a) ,  (2 ’a ) ,  (6‘) or (7’) in the 
appropriate limits and may be obtained directly from equation (8). The data, where 
both a h  and a d  (or p h  and Pd) are finite, treated in the next section show that either (8) 
or (8’) may be used. The same values off, t’ andf,/( 1 - f c )  = (1 - f ; ) / fA are obtained 
in all cases. As it is not intuitively obvious that tis always equal to t’ they have until now 
been treated as different parameters. In all the media examined tis found equal to t’, so 
henceforth they will be taken to have the same value i.e. t = t’. Therefore, except where 
a d  = 0 or pd = 0 ,  the choice of equations is somewhat arbitrary. An examination of (6) 
and (6’) shows that in order to find the effective L of the insulating dispersion in the low- 
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insulator-fraction region, t = fc/(l - L )  and to get the effective L’ of the conducting 
dispersion in the low-conductor-fraction region, t = f i / L ’ .  Equations (8) and (8’) may 
also be written as quadratic equations and solved directly for a,,, or pm. Examples of the 
mathematical form of (8) when plotted as U,,, against Ifc - f l  are given in the next section. 
This emphasises the undoubted validity of effective-media theory in both (f and f ) 
dilute limits. 

Equations (8) and (8‘ ) should also apply to dielectric, magneticpermeability, thermal 
conductivity and gaseous diffusion experiments. 

3. Experimental evidence 

3.1. General remarks 

As (8) and (8’) presented in the previous section are, except at certain extremes, 
phenomenological, they are justified by comparison with experiment in this section. 
Other than for the bismuth film, which was measured in the author’s laboratory, the 
data are digitised from enlargements of the graphical data presented in the literature. 
The computer uses the experimental (conductivity) resistivity and variable parameters 
to calculate an area or volume fraction, called fit, from (8) or (8’). Fit is then compared 
with the given (or calculated) area or volume fraction (Frn) and the quantity x2 = 
Z,\ [(Fit-Frn)/O.Ol]’ is minimised by the program by varying the non-fixed parameters. 
If S = [ z 2 / ( N  - P)]’ ’ = 1, where N is the number of experimental points and P is the 
number of variable parameters, it is claimed that data have been fitted to an accuracy of 
0.01 in the area or volume fraction. S and the errors given with the fitted parameters in 
the text are calculated by the program. A single value of the conductivity of each 
component is sufficient to fit the data with S S 1.6 and no composition- or size-dependent 
conductivities are necessary, as was the case in McLachlan (1986a). 

In the next section the results of fitting the data with one parameter (f, = (d  - 1)/D 
orfi  = l /D and X x  = ay‘ where t = dfc/(d - 1) = d / D  or P, = pi’‘ where t =dfr = 
d / D ) ,  as was done in McLachlan (1986a), are given first. (All these results are for 
composition- or size-independent us or ps). These data are not discussed but can be 
compared with the results from a two-parameter fit. Note that the gold and bismuth films 
are ‘two-dimensional’ systems. 

The results for the two-parameter fits using (8) or (8’) are given after those for one- 
parameter fits. All the parameters, other than for the nickel-vanadium oxide composite, 
are given asf; , t and resistivities. The parameters obtained using (8) and (8’) are always 
related to each other by f h  + f c  = 1, Pd = l/ud, Ph = l/uh, t = t’ and the 6 values are 
found to be the same. Notefandf, are the fractions for the more resistive (‘insulating’) 
component ( a d  or a h )  andf’  and fl are the fractions for the less resistive (‘conducting’) 
component (ph or pd). The values of L (‘insulator’ particles) and L’ (‘conductor’ 
particles) are calculated from the formulae L = 1 - f c / t  and L‘ = f i  / t .  It should be noted 
that in an asymmetric medium with the conductor as hostf, = 1,fi = 0 and L’ = 0 (i.e. 
the current (or flux) will always remain in the host sponge for a d  = 0). In an asymmetric 
medium with the insulator as host f i  = l , fc  = 0 and L = 1 (i.e. the current (or flux) tries 
to avoid the continuous sponge for Ph 9 Pd). m and m’ are found from m = t/fc and m’ = 
t‘/fc. Note L and m are characteristic for the insulating dispersion in the low-flimit and 
L‘ and m’ of the conducting dispersion in the low-f’ limit. 

As, unless one component has an immeasurably low conductivity (0, = 0) or res- 
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istivity ( p d  = 0), either (8) (with a h  > ad) or (8’) (with ph > pd) can be used, the results 
are graphed in the form U, against Ifc - f 1 .  The immediate striking feature, for media 
where the ratios of the component conductivities (resistivities) are large, will be seen to 
be the straight line regions near each end of the composition range. The intercept of the 
two lines will be found to be opposite the conductivity of the medium whenf = fc. When 
the ratio is very large ( o h  + a d )  the slope of both lines is found to be close to the given 
value oft but decreases rapidly as the values of the conductivities approach each other. 

3.2. Details of results 

The experiments of Laibowitz et a1 (1983) on the resistivity as a function of the directly 
measured area fraction for gold films provide a good starting example of a two-dimen- 
sionalsystem.Theone-parameterfitsare 6 = 1.8, f: = 0.763 f 0.001,t = 1.52 k 0.001, 
p(go1d) = 8.3 f 0.01 R,p(substrate) = (1.8 i 0.1) x lo7 R.Thetwo-parameterfitsare 
6 = 1.0, f l  = 0.755 ? 0.008, t = 1.75 ? 0.17, p(go1d) = 6.6 ? 2.0 R ,  p(substrate) 
( 2 . 8 t 1 . 5 ) x 1 O 7 R ,  L=0 .86?0 .09 ,  L’=O.43?0.05,  m = 7 . 1 k 0 . 7  a n d m ’ = 2 . 3  

The raw data for the bismuth film consisted of the resistance between two gold 
pads on a glass substrate, as a function of time, measured during the formation of an 
ion-beam-sputtered bismuth film. Liang et a1 (1976) performed a similar experiment 
on evaporated bismuth films, but show no data between lo9 and lo4 R as their resistive 
transition was too rapid to observe. Their transition occurred at about 90 A and using 
an electron micrograph they estimated the area fraction at this crossover point to be 
0.67. They determined their other area fractions from the formulae X =  
1 - exp( - N,r2) and effective thickness = (3)N,r i  with N ,  adjusted to give X = 0.67 
at their critical effective thickness (90 A). The area fractions for bismuth were therefore 
determined from the formula. 

f 0.3. 

X = 1 - exp[ - N,(rate x time)2!3] 

where N ,  is a variable parameter. 
For the one-parameter fit it was found (McLachlan 1986a) that in order to get 

physically meaningful resultsf: had to be fixed. The value off: = 0.667, as determined 
by Liang and co-workers, was found to give reasonable results for both one- and two- 
parameter fits. These are 6 = 0.47, f: = 0.667, t = 1.33, p(bismuth) = 3358 ? 15 R 
and p(substrate) (1.6 ? 0.3) X lo9 R and 6 = 0.34, f: = 0.667, t = 1.88 I 0.05, 
p(bismuth) = 185 k 15 Q, p(substrate) = (1.44 ? 0.02) x 10l1 S2, L = 0.82 ? 0.02, 
L’ = 0.354 k 0.009, m = 5.7 ? 0.1, m’ = 2.8 f 0.1 and N ,  = 0.084 A-2. However 
for the two-parameter formula a second, statistically better, fit was found when N ,  
and fc were allowed to vary. These values are 6 = 0.27, f: = 0.798 ? 0.002, t = 
2.04 ? 0.21, p(bismuth) = 287 f 40 52, p(substrate) = (4.9 * 4.0) x 1011 52, L = 
0.90 f 0.04, L’ = 0.39 * 0.04, m = 10.1 & 0.4, m‘ = 2.5 f 0.3 and N ,  = 0.1238,-2. 
Using a model where all the initially evaporated material in a given area goes to form 
a hemisphere, together with the computer determined values of N ,  = 0.084 A-2 (fc = 
0.667) and 0.123 A-* (fc = 0.798), these areas are found to be 11 900 A2 and 3800 A* 
respectively. This leads to characteristic structure sizes of 109A and 6 2 A  which is 
what is observed for many soft-metal films. These are somewhat smaller than Liang 
et a1 (1976) value of 200 8, but it is well known that ion-beam sputtering produces 
smaller crystallites than evaporation. Plots of the two-dimensional data are shown in 
figure 2. 
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Figure 2. The conductivity of a gold (e) and a bismuth (0) film as a function of fc - f o n  
the upper 'conducting' side and f -  fc on the lower 'insulating' side. f is the non-coated 
area fraction and fc the critical value (fc = 0.245 (gold) and 0.202 (bismuth)). The full 
curves are equation (8) using the parameters given in the text. The broken lines are 
extrapolations from the dilute linear (or power law) linear regions. 

An evaluation of m or m' in two dimensions does not exist but the minimum values 
of m and m' are certainly 2. The values of m' = 2.3 to 2.8 therefore correspond to 
random prolate ellipses, as most micrographs of evaporating films show prolate-shaped 
metallic islands. Because there is no reason to believe the metal particles should not 
be randomly oriented, no analysis is made in terms of L and L ' .  Note that in this 
model a finite sheet resistivity for the surface of the substrate (Si3N, for the gold and 
glass for the bismuth) is postulated. 

The data of Smith and Anderson (1981) for a thick arc-sprayed film of Ni (U = 
5565 ( S 2  cm)-') and V 2 0 5  (U = 0.485 (S2 cm)-'), in which there are only one or 
two variable parameters, gives the following results: 6 = 2.1, fc = 0.826 2 0.007, t = 
1.24 +. 0.01. a(Ni) = 5565 (52 cm)-', a(V205) = 0.485 ( S 2  cm)-' and 6 = 1.6, fc = 
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0.884 +- 0.015, t = 1.44 * 0.1, a(Ni) = 5565 (a cm)-', a(V205) = 0.485 (Q cm)-', 
L = 0 . 4 1 6 t 0 . 0 4 5 ,  L ' = 0 . 1 0 8 + 0 . 0 1 3 , m = 1 . 7 * 0 . 2 a n d m ' = 9 . 2 ~  1.1. Smithand 
Anderson (1981) remark that 'the deposited particles tend to form platelets' so the 
oriented interpretation is probably correct for their results. The value of L = 0.416 
indicates slightly oblate V z 0 5  particles with the nickel particles partially wrapped 
around them at the metal-rich end; which is a conductor-host-type situation. An L' 
of 0.108 indicates that for small volume fractions of nickel, nickel threads or platelets, 
with their axis perpendicular to the net current direction, play a significant role. The 
results are plotted in figure 3. 

1 o - ~  10-2 10" 1 
f -  f c  

Figure 3. The conductivity of an arc sprayed Ni-V20, film (+) and a sputtered W-A1203 
film (e) as a function of fc -f on the upper 'conducting' side and f - f c  on the lower 
'insulating' side. f i s  the insulator volume fraction andf, the critical value (fc = 0.844 for 
Ni-V203 and 0.586 for W-A1203). The full curves are equation (8) using the parameters 
given in the text. The broken lines are extrapolations from the dilute linear (or power 
law) linear regions. 

The tungsten-alumina cermet systems analysed in McLachlan (1986a) are re- 
analysed with some interesting results. The as-prepared tungsten-alumina system 
(Abeles et af 1975) fits (8') remarkably well. The parameters are S = 3.4, fl = 
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0.474 t 0.007, t = 1.42 t 0.02, p(W) = (4.1 f 0.2) X Q cm, p(A1203) = 
(1.0 +_ 2.0) x lo9 Q cm and 6 = 0.24, fs = 0.424 t 0.004, t = 3.14 t 0.08, p(W) = 
(4.53 k 0.04) x Q cm, p(Al,03) = (1.0 k 0.4) x lo4 S2 cm, L = 0.82 t 0.01, 
L' = 0.135 t 0.02, m = 5.5 t 0.1 and m' = 7.4 S 0.1. The results are plotted in figure 
3. The calculated values of L = 0.819 and L' = 0.135 indicate that there is no clear 
host and dispersion component but that the medium consists of interpenetrating 
matrices of plates and threads. This is why the one-parameter fit is so poor. However, 
the as-prepared W-Al,03, if it shows no orientation effects due to sputtering onto a 
plane surface, is probably a random medium. As m = 5.5 for the insulating particles 
this corresponds to random alumina platelets in tungsten-rich media but m' = 7.4 
could correspond to plates or threads of tungsten in an alumina-rich media. m' = 7.4 
corresponds to an aspect ratio of 4 for threads or about 7 for platelets. All Abeles et 
a1 (1975) say is that the grains in the as-prepared film are less than 20 A.  This probably 
means that their shape was not or could not be determined. This conjecture is 
somewhat speculative as the data analysed come from the tungsten-rich side. 

The annealed tungsten-alumina samples give 6 = 2.1, f s  = 0.474 t 0.002, t = 
1.421 S 0.006, p(W) = (8.2 ? 0.1) x Q cm, p(A1203) = (1.0 t 1.6) X lo9 Q cm 
and 6 = 1.0, f l  = 0.484 t 0.005, t = 1.36 t 0.06, p(W) = (7.7 S 0.3) x 10-6S2 cm, 
p(A1203) = (1.0 f 0.7) X lo4 Q cm, L = 0.626 S 0.034, L' = 0.355 t 0.02, m = 2.7 +_ 

0.15 and m' = 2.8 t 0.15. This clearly indicates nearly spherical metal spheres (L'  = 
0.355) surrounded by a non-continuous sponge or jointed platelets. The spherical 
metal particles, which appear after annealing, are clearly shown in a photograph given 
in Abeles et a1 (1975). At low insulator concentrations the alumina would appear to 
be platelets embedded in tungsten ( L  = 0.63). 

Finally, two emulsions (Meredith and Tobias 1961), where the given ratio of the 
resistivities of the components is not very large, are analysed and plotted in figure 3. 
For the ratio 15.7 emulsion the parameters are 6 = 3.5, f: = 0.48 S 0.01, t = 
1.42 t 0.03, p(host)/p(disp) = 15.7 and 6 = 0.42, f: = 0.536 t 0.005, t = 1.63 t 0.1, 
p(host)/p(disp) = 15.7, L = 0.72 +_ 0.01, L' = 0.328 * 0.046, m = 3.5 t 0.05 and 
m' = 3.0 ? 0.4. For the ratio 101 emulsion the parameters are 6 = 5.0, f s  = 0.45 t 
0.07, t = 1.35 k 0.2, p(host)/p(disp) = 101 and 6 = 0.89, f: = 1.00 s 0.04, t = 
3.7 s 0.08, p(host)/p(disp) = 101, L = 1.00 S 0.06, L' = 0.267 t 0.016, m = and 
m' = 3.7 t 0.2. (There is also a two-parameter minimum near the one-parameter 
values with 6 = 3.2, fs = 0.57 k 0.07, t = 1.2 t 0.1.) The single-parameter results are 
very poor in both cases. The 6s from the two-parameter fits are well within the 
expected inaccuracies. The first (ph/pd = 15 -7) indicates emulsified spherical particles 
(L' = 0.33) of the more conducting component which come into continuous contact 
at a volume fraction of 0.536. This could be indicative of the phase inversion (host to 
dispersion and vice versa) which occurs at higher emulsion (dispersion) fractions 
(Meredith and Tobias 1961). The two-parameter fit of the emulsion with a conductivity 
ratio of 101 indicates random slightly prolate ellipsoidal conducting particles (m' = 
3.7) surrounded at all volume fractions by the more insulating component. This result 
shows no sign of the phase inversion previously mentioned but the experiments do 
not go to quite so high a volume fraction of emulsion as for the previous (ratio 15.7) 
sample. Both results are plotted in figure 4; also shown are the lines with slope t and 
-t going through the extreme composition points off = 0 and 1. The intercept is again 
opposite the conductivity at f = fc. 

Figure 1 shows the inability of effective-media theory to distinguish between 
random conducting oblate and prolate ellipsoids in an insulating host. This has dramatic 
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Figure 4. The relative conductivity of two emulsions u,,/u, = 15.7 (e) and u,/u, (+) 
plotted as a function of fc - f on the upper ‘conducting’ side and f - fc on the lower 
‘insulating’ side. f i s  the insulator (uh component) volume fraction and fc the critical value 
[fc = 0.464 for the first and 0 for the second emulsion). The full curves are (8) using the 
parameters given in the text. The broken lines are extrapolations from the dilute linear 
[or power law) linear regions using the derived value of t .  

consequences in models for the conductivity of rocks. The most commonly used 
equation to characterise the conductivity of rock formations, is a modified Archie’s 
law u,/uw = ap,‘ where U, is the conductivity of the ground water, p, the porosity or 
water conduction fraction (1 -f=f’), t is called the cementation index and a is a 
constant of the order of unity. (See for instance Keller and Frischknecht 1966.) 
The results for sandstones and other consolidated rocks fit this equation in a semi- 
quantitative way (see for instance Keller and Frischknecht 1966). Many attempts to 
justify this equation start from the asymmetric conductor host situation, visualising a 
situation like unconsolidated sand surrounded by water (q = 0.3). The decrease in a, 
with p, and the lack of qC (f:) in the asymmetric model implies that sheets of water 
coat the rock grains for all p, > 0. This is obviously a most unsatisfactory model for 
consolidated or cemented rocks. If, however, one assumes an undetectably small qC 
or f: (say 0.001 to 0.01) together with a t of about 2 (Keller and Frischknecht 1966), 
an equally valid interpretation of the low results is a highly insulating rock component 
penetrated by randomly oriented threads of ground water. m’ = t/fL for the threads 
is then in the range 200 to 2000 corresponding to an L, from about 0.4992 to about 
0.49992 (La (along the axis) = 0.0016 to 0.00016). This corresponds to ‘length to 
diameter’ ratios in the range 200 to 1000 for extremely low values of p,. As the rock 
grains, in a highly consolidated medium, are cemented together over most of their 
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surface area, this model is obviously more correct than the water-coated grains of a 
conductor host asymmetric-media theory. In fact it is the only way that an effective- 
media model can correspond to the real situation in consolidated media. 

Preliminary results using (8) or (8’) to analyse the magnetic permeability of 
mixtures are given next. The two-parameter results for a sample consisting of insulator- 
coated permalloy flakes (Veinberg 1967) are 6 = 1.50, fi = 1.0, t = 21.4 and m’ = 
21.4. The permeability of the pure permalloy was given as 1287 and the permeability 
of the insulator was taken as 1. These results correspond perfectly to the known 
morphology of the system. Cemented tungsten carbide-cobalt is a commercial drilling 
and cutting product in which the WC grains are cemented together by the Co. The 
lowest volume fraction of CO used commercially is about 0.1 and photo-micrographs 
show these and higher-volume-fraction specimens to consist of WC grains interspersed 
by CO layers and lumps. Magnetic susceptibility results (McLachlan and White 1987) 
in the 0.1 to 0.27 CO volume fraction range were analysed and gave 6 = 0.74,fC(Co) = 
0.088, t = 0.436 and m‘ = 4.95. The permeability of the CO (contaminated with W 
and C) is found to be 25.6 and that of the WC grains was fixed at 1. These parameters 
correspond to the observed morphology of magnetic CO layers coating the WC grains. 
According to this analysis the CO layers become interconnected at 0.088 volume 
fraction Co. A more extensive publication of these and other magnetic susceptibility 
results is to be published (McLachan and White 1987). 

4. Discussion 

The semi-phenomenological equations (8) and (8’) have been shown to fit a surprising 
variety of two- and three-dimensional experimental data. In many cases the total error 
is well within the original experimental error plus the inherent errors in digitising the 
data. This success is also surprising because in many instances the systems do not have 
a very wide range of differently sized grains, so that theories based on scaling should 
not strictly apply. Milton (1984) has shown that (1) should be valid if the size range 
of the grains of components 1 and 2 is very large. The derivation of (2) implies a 
nearly infinite size range of the dispersion spheres. This is emphasised in the more 
modern derivation of Sen et a1 (1981) who also arrive at ( 3 ) .  Nonetheless it is very 
useful to have an equation such as (8) (or (8’)) which accurately fits such a wide variety 
of data and from which qualitative data regarding the shape of the particles can be 
obtained. 

The amount of information against which (8) and (8’) are tested is not extensive 
and further experiments should be analysed in order to ascertain exactly how well and 
under what constraints these equations fit the data. It is also very gratifying that a 
single exponent ( t )  appears to fit the data on both sides of the critical composition in 
the few cases where this could be tested. This too should be further investigated. 

It may well be argued that in all cases, except where fc and f: are one, the host 
and dispersion cannot be clearly distinguished because for very small values of f  the 
conductor is host but for values of f  very close to one the insulator plays the role of 
host and vice versa. The difference between host and dispersion is however always 
clearly distinguished if one component is either a perfect insulator or perfect conductor, 
The equations may be used in the context that in (8) a h  > a d  and in (8’) Ph > Pd. 

As previously stated (8) and (8’) should apply to dielectric constant, magnetic 
permeability, electrical conductivity and thermal conductivity as well as gaseous 
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diffusion experiments. In this paper the equations have been primarily tested using 
electrical conductivity experiments but preliminary results for magnetic susceptibility 
measurements have also been given. An application for gaseous diffusion is mentioned 
in McLachlan (1986). Further experiments to test the validity of these ideas are being 
carried out in the author’s laboratory. 
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