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Abstract. Lattice dynamics of PdD, and PdH, are analysed with reference to the coherent 
neutron scattering experiments of Rowe et a1 and incoherent neutron scattering lineshape 
reported by Rahman et al. Disorder in the octahedral interstitial sublattice is treated within 
a coherent potential approximation format suitable for treating both ‘on-site’ and ‘off- 
diagonal’ randomness. Our results lead to a substantial readjustment (upwards) in the 
accepted values of the D-D potential. Moreover, an adjustment (downwards) is also indi- 
cated in the published value of the Pd-H potential. 

1. Introduction 

Investigations of metal hydrides have received a great impetus as a result of the widening 
technological application of these systems (see for example, Reilly and Sandrock 1980). 
In particular, the mixed system palladium-hydrogen (deuterium) displays a great rich- 
ness of interesting physical phenomena. For example, amongst its properties are the 
following that have elicited careful attention: the incoherent response of the diffusing 
hydrogen atoms (Sankey and Fedders 1979); dynamics of spinodal decomposition (Man- 
chester 1982); and its fascinating superconducting behaviour (Stritzker 1982). Not 
surprisingly, the superconductivity of the Pd-H and Pd-D system is found to be strongly 
dependent upon their phonon spectra. Accordingly, it is interesting to examine the 
phonon density of states of these mixed systems. 

Palladium has FCC structure. When deuterium (or hydrogen) is introduced, it occu- 
pies interstitial octahedral sites. PdD, presents two phases: namely, the so-called &and 
/3 phases, each with its own different lattice parameter and deuterium content. The 
phase has approximately the same lattice parameter as that of pure Pd and obtains at 
low D concentration. The /3 phase appears at high concentration of D and the relevant 
lattice parameter is about 5% larger than that for the aphase (see for example, Mueller 
et al1968) .  

An important feature of interstitial mixtures is that the impurity atoms generally do 
not replace the host atoms. Rather, they arrive as an addition which increases random- 
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ness in the system as well as its available degrees of freedom. Accordingly, it is both 
more convenient and more accurate to evolve a formulation for treating interstitial 
randomness as distinct from one which only handles substitutional disorder. 

For the particular case of palladium-hydrogen or palladium-deuterium alloy, with 
its attendant vast differences in the masses of the two constituent atoms, the presence 
of hydrogen or deuterium atoms gives rise to prominent optical branches in the phonon 
spectra. In addition to this important effect, the lattice itself experiences substantial 
local strain due to the light-atom occupancy, which gets felt beyond the nearest-neigh- 
bour shell. Consequently, the PdD, and PdH, systems involve both 'diagonal' and 
'off-diagonal' disorders, the latter being carried farther than the neighbouring shell. The 
bulk of the diagonal disorder, however, is specific to the single site itself, related as it is 
to mass randomness. Accordingly, the 'environmental dependence' of the diagonal 
disorder has the following rather desirable characteristics: (a) much of the diagonal 
disorder, related to mass randomness, has no environmental dependence; and, ( b )  the 
component with environmental dependence has a large number of effective neighbours. 
Consequently, the latter is amenable to a mean-field-like approximation of the environ- 
ment. These features make it possible to treat the PdD, problem in a simple framework, 
constructed from a generalisation of the Blackman, Esterling and Berk (1971) version 
of the coherent potential approximation (BEB-CPA). For notational convenience the 
present generalisation is referred to as ISCPA, meaning a CPA which can be applied to 
systems with interstitial as well as substitutional disorder. An alloy with simple substi- 
tutional randomness has recently been studied by two of us (Sansores and Taguefia- 
Martinez 1981). Here it is convenient to develop a formulation applicable to the general 
case in which substitutional as well as interstitial disorder may be present. Such a 
formulation is essential for treating mixed systems of the variety PdYAgl-,D, (to be 
discussed in a forthcoming paper). On the other hand, in the present paper we shall 
restrict ourselves to the analysis of the somewhat simpler systems, PdD, and PdH,, 
which contain only interstitial disorder. 

2. Formulation 

It is convenient to work within a two-sublattice framework, familiar in the context of 
antiferromagnetism. One of the sublattices is reserved for the host lattice and the other 
for the interstitials. Whenever the interstitial sublattice is either empty (i.e. all its sites 
are vacant) or is completely full (i.e. has no vacancies) and the host sublattice includes 
substitutional randomness (due to the replacement of some of the host atoms by impur- 
ities), we recover the case of substitutional disorder treated within the BEB-CPA. On the 
other hand, if the interstitial sublattice is random, but the host sublattice possesses 
translational symmetry, we have the case of simple interstitial disorder. Both for such 
a system and for the more general one where randomness occurs in the host as well as 
the interstitial sublattices, the following generalisation of the BEB-CPA, i .e.  ISCPA, may 
be used. 

We write the Hamiltonian in its harmonic form: 

X ( t )  = E a0 3(P",L t))2/Mtl(l) + nd E(1, t)&(l,  l f )U$(Zf ,  t) .  (1) 
od 
11' 

1 

Here 1 denotes atomic location, a i s  the sublattice index (i.e. 0 = 1 or 2) and arepresents 
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the Cartesian component, i.e. a = x ,  y ,  z .  It is convenient to define the following 
commutator Green function (see for example, Elliott et a1 1974). 

G:$(I, I ' ;  t )  = (2Jt/h)((Uz(l, t ) ;  U$(I ' ,  0))). 

Using the Hamiltonian (l), we can readily find the relevant equation of motion for G,  
i.e. 

(3) M",(I)co~G~$((I, 1 ' ;  CO) = S n d S u d S i ~  + 2 q$$(I, l")G$$(l", 1 ' ;  CO). 
d'd 

i" 

It is, however, convenient to recast this as follows: 

G;$(l, 1 ' ;  CO) = gz(l)daJjoddip + & ( I )  &$,(l, Z")G$$(l", 1 ' ;  CO), (4) 
d'd 

I" 

where the notation g g l )  is used to indicate the bare locator, i.e. 

&(l) = [M",l)o2]-'. ( 5 )  

Note that so far the type of occupancy of the site 1 is implicit in the label 1. It is, however, 
both necessary and convenient to introduce specific notation for the variety of atoms we 
may be dealing with. To keep the formulation general, we assume the host sublattice 
(henceforth to be called 1) to be composed of 'A' atoms originally and to admit 'A'' 
atoms as substitutional impurities. (Of course, if necessary, more than one type of 
substitutional impurity could be similarly treated.) The interstitial sublattice is con- 
sidered to be composed of 'B' type of atoms. Finally, we denote the interstitial impurities 
as being of atomic variety 'B". (Once again, more than one type of such impurity could 
be treated.) 

Within such a format, for brevity we denote the various interparticle potentials as 
follows: 

qg$z)( i ,  j )  = a11(22)(i , j)  if sites i and j  are both occupied by A or (B) atoms 

= /311(22)(i, j )  if sites i and j are both occupied by A' or (B') atoms 

= q11(22)(i, j )  if site i is occupied by A or (B) atom and site j is occupied by 

= d 2 ( i , j )  if site i is occupied by an A atom and j  is occupied by a 

= B 2 ( i ,  j )  if site i is occupied by an A atom and j is occupied by a 

= qI2(i ,  j )  if site i is occupied by an A' atom and j is occupied by a 

= /3"(i, j )  if site i is occupied by an A' atom and j is occupied by a 

A' or (B') atom, or vice versa 

~ $ ~ ( ( i ,  j )  
B atom, or vice versa (6) 

B' atom, or vice versa 

B atom, or vice versa 

B' atom; or vice versa. 

(6) 
(To avoid confusion, Cartesian labels a ' ,  a" have been suppressed in the terms on the 
right-hand side of equation (6).) Moreover, it is convenient to introduce the following 
atomic occupation variables, Xu(Z) and Yu(o: 
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X l ( l )  = 0 ,  Y1(l)  = 0 ,  X z ( l )  = 0 ,  Y2(1) = 1, if1 is occupied by a B’ atom; 

X l ( l )  =O,Yl(I) =O,X2(1) =1,Y2( l )  = 0 ,  if l isoccupiedbyaBatom; 

X l ( l )  =O,Y1(l) =1,X2(1)  = 0 , Y 2 ( l )  = 0 ,  if1isoccupiedbyanA‘atom; 

Xl (Z)=l ,Y l (Z )  =0,X2(1) =O,Yz( l )  =0, if l isoccupiedbyanAatom. 

These occupation variables have the following important properties: 

(7) 

X,(I)Yd(l) = 0 ;  XU(l)Xd(l> = XU(1) 47d ; Y,(OYd(~) = Y U ( 0  8od 
(8) 

(Xl(1)) = CA; (x2(1)) = C B ;  (Yl(1)) = CA’; (y2(1)) = CB’  

It is to be noticed that our choice of the occupation variables prevents atoms B and B’ 
from being found in sublattice 1. Similarly, atoms A and A‘ cannot be present in 
sublattice 2. 

If we now pre- and post-multiply equation (4) by XAI) and YAI) we obtain the 
following set of equations. Written in a compact matrix form they become: 

G,d(l ,  1 ‘ ;  W )  = d,dga(l) + ga(l) 2 fo#(l, p‘) Gai~a(Y, 1 ’ ;  0). (9) 
d‘l‘ 

For this representation we have utilised the notation given below: 

X1(1)G”(1, 1 ‘ ;  w)X1(l’) = GgA(I, 1 ’ ;  w); X1(l)Gl2(1, 1 ’ ;  w)X2(Z‘) = G&(1, 1 ’ ;  w) 

X2(1)G2l(1, 1 ’ ;  ~)X1(1’ )  = G&(l, 1 ’ ;  U); X2(1)G22(1, 1 ‘ ;  ~ ) X 2 ( l ’ )  = Gi$(l, 1 ’ ;  CO) 

Y1(l)Gl1(1, 1‘; w)Y1(1’) = G f c ~ ( 1 ,  1 ’ ;  w); Yl(l)Gl2(1, 1 ‘ ;  w)Y2(1’) = GfJB,(1,  1 ’ ;  U) 

Y2(1)GZ1(1, I ’ ;  w)Y1(1‘) = Gi:~’(1 ,  1 ‘ ;  CO); Y2(I)G2’(1, 1 ’ ;  ~)o)y;?( l ‘ )  = GS$*(Z, l ’ ;  W )  

Xl(Z)G1l(l, 1’; w)Y1(l’) = G ~ A , ( Z ,  1 ’ ;  w); X1(1)G12(1, 1 ‘ ;  w)Y2(Z’) = GfB,(1,  1 ‘ ;  w) 

X2(l)GZ1(1, 1 ’ ;  o)Y1(1’) = G&c(I, 1 ’ ;  U); X2(I)GZZ(1, 1 ‘ ;  0)Y2(1’) = G;$t(I, 1 ’ ;  U )  

Y1(1)G1l(1, 1 ‘ ;  w)X1(l‘) = G f , ~ ( l ,  1’ ;  0); 

Y1(I)G1’(l, 1 ’ ;  ~)X2(1 ’ )  = Ggc~(1, 1 ’ ;  0); 

Y2(I)Gz1(1, 1 ’ ;  w)X1(l’) = G2BA(l, 1 ’ ;  U) 

Y2(l)G22(1, 1 ’ ;  w)X2(1’) = Gi;B(l’l;  w) 

X1(i)g1(4 = g m ;  

Y&)g’(O = g m  ; Y2(l)g2(1) = g m .  (loa) 

X2(r)g2(1) = gi(0 

G f A  GgB ~ 2 ~ ’  GgB, 

GiA Gi$ GiL, Gi$, 
GgrA GgJB GgnA, Gg,B, (1, 1 ’ ;  U), (lob) 

(10c) 

Gffd(l, 1 ’ ;  U) = 

(1, l“), 
B” B12 

tffd(l, p’) = 
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(Again, it was convenient to suppress the Cartesian labels in equation (loa). Note, in 
equation (10d), the possible occupancy of site 1 is reflected in the relevant matrix element 
that it entails.) 

Once the compact relationship (9) has been evolved, it is straightforward to achieve 
a "type configurational averaging. To this end we rewrite equations (3.11)-(3.13) of 
Blackman et a1 (1971) as follows: 

UO[Yl = Y-'[GEYltlo (11) 

G k [ Y ]  = [I -k Y(uO[Y] - f k ) ] - l y *  (13) 

The averaging process implicit in the above equations is now used in a similar fashion 
for the problem in hand. The only differences lie in the 4 x 4 dimensionality of the 
present formulation as well as the changes in the definition of the relevant matrices (see 
equations (loa)-( 10d)). 

As mentioned earlier, the above 4 X 4 formulation is essential to the analysis of 
systems such as Pd,Agl-,D, (forthcoming). However, since in the present work the 
simpler systems PdD, and PdH, are being discussed, we particularise the remaining 
analysis to these systems. Consequently, the above system of equations can be cast into 
a set of three coupled equations: 

= (L) 3N k, j  [Q - $2 BB( k , j ) W ( k ,  j ) ,  (14a) 

(Note, the unknown Uis determined self-consistently for each frequency w. In equations 
(14a)-(15), j indicates a Cartesian label and atomic species B represents the light atom.) 

The weighted particle densities of states are 

PA = - (2/n) Im r"; PB = - (2/n) Im YB, (17) 

and the total density of states is their sum, i.e. 

p = P A  + PB.  
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3. Results 

The self-consistent equations (14a)-(14c) have been solved numerically on Temple 
University CYBER 174. The force constants used were primarily those reported by 
Rahman et a1 (1976). However, as will become clearer later, our calculations enabled us 
to compute an improved set of force constants which were then used to calculate our 
final set of results. 

In figure l(a) we show the phonon partial density of states (PPDS) due to palladium 
in the alloy PdD, for x = 0.63-0.9. It is observed that the density of states is hardly 
affected by such a change in deuterium content. Of course, this fact is largely the result 
of our model in which the Pd-Pd interaction has been chosen to correspond with that 
known for the PdD0.63 system, without allowing it to change over the range of concen- 
tration studied, i.e. x = 0.63-0.9. Despite this obvious feature, figure l(a) does contain 
one useful piece of information: namely, that the deuterium modes seemingly do not 
mix significantly into the Pd vibrational spectrum for this range of concentration. 

In figure l(b) the deuterium PPDS is plotted for concentrations 63%, 75% and 90%. 
Besides the obvious increase in weighting, which is linear with deuterium content, we 
also see the following effect in operation. An increase in D concentration shifts the 
upper band edge of the deuterium density of states towards higher energies. Addition- 
ally, the high-frequency shoulder becomes more prominent and (at the largest D con- 
centration studied, i.e. x = 0.90) is seen to be developing additional structure, heralding 
translational symmetry. This is consistent with the picture that excitations associated 
with the deuteriumsublattice get broadened withincreaseinvacancies (i.e. withdecrease 
in the deuterium concentration). For the sake of convenient comparison, the total 
phonon density of states (TPDS) for the PdD, system is given in figure l(c). 

The lattice dynamics of a single crystal of PdD0.63 has been carefully studied in a 
series of coherent neutron inelastic scattering experiments by Rowe et a1 (1974). (See 
also, Bergsma and Goedkop 1961, Chowdhury and Ross 1973.) To make contact with 
these data, we have used the ISCPA to analyse the phonon dispersion curves for this 
system. It should, however, be pointed out that the force constants used by Rowe et a1 
were obtained by fitting a stoichiometric (i.e. non-random) alloy Born-von Kgrmiin 
model (valid, say, for PdD) to their experimental results for PdD0.63. (Also see Rahman 
et a1 (1976), who analysed PdH0.63.) Shortcomings of such fitting procedures include the 
neglect of shifts in the scattering spectrum to lower frequencies as well as any changes 
in widths of the resonances, both caused by increase in randomness by the introduction 
of vacancies into PdD. To improve on such a mean-field-like fitting procedure, we have 
performed an iterative analysis based on the ISPCA, and recalculated the force constants 
for the palladium-deuterium system by searching for a ‘best fit’ (see figure 2) to the 
experimental phonon dispersion curves for PdD0.63. It has turned out that the data are 
most satisfactorily fitted with essentially the same force constants as used previously 
(Rowe et a1 1974, Rahman et a1 1976) but with the salient difference that the D-D force 
constants have to be increased by 10% or so. Our results are as follows: 

first neighbour [110] 

296 2075 2432 0 0 

second neighbour [200] 



6913 

10.00- 

8 00- 

6 00- 

Qo 

4.00.. 

2.00.- 

0 

/-; 
I [  ' I  

' I  
1 1  
I t  
I 1  (6) 
1 ,. 1 
I ::,I 
1 ! : I  
I i  i I  
I !  ' j  
1 :  
, ;  :I 
I !  : I  
1 :  ! I  

: I  
I j ;I 

4.00 



6914 L E Sansores, J Tagiiefia-Martinez and R A Tahir-Kheli 

0 5- 1 + 3  0 5- 0 5  

Figure 2. Phonon dispersion curves for PdDo 63. Experimental results of Rowe et a1 (1974) 
are fitted well by the curves shown obtained by us. Here and in the other figures the 
wavevector is measured in units of (2n/a), where a is the elementary cube edge. 

It should be mentioned that since the earlier works (Rowe et a1 1974, Rahman et all976), 
Glinka et a1 (1978) have given an account of a simulation of non-stoichiometric 
palladium-deuterium system using a variant of the Born-von KBrmdn method on 
enlarged cubic cells designed to include some of the dynamical effects of randomness. 
The present results are in accordance with these authors' observation in that the effective 
D-D interaction is found to be larger than initially assumed. 

To compare with the experimental results for the coherent response, S(k ,  w) for 
PdD0.63 (Rowe et a1 1974), we have used the above potentials (which gave the best fit for 
phonon dispersion curves) to compute the same, i.e. 

S(k ,  w) = (20) 

Here the weighted Green functions are given as: 

16'1 ( E d  I exp[-Wdk)] exp[- Wd(k)](ks$) x (ksjd) Im Gid(k ,  w). 
ad j 

G,Y(k, U) = [Q - &dk, j )YD(k , j )  

G$B(k, w) = [R - a L ( k , j ) ] / D ( k , j )  

(21a) 

(21b) 

GfB(k, = [~FBB(~ ,  j )  - U]/D(k, j )  

(compare equations (14a)-(14c)). As usual, Wdk)  denotes the Debye-Waller factor, 
and 16'1 represents the coherent scattering length. Our results for S(k ,  w) are given in 
figure 3. In order to achieve a direct comparison with experimental results of Rowe et a1 
(1974), we show selected phonon groups in figures 4(a)-(c). It is observed that our 
calculations underestimates the widths slightly. This, unfortunately, is a well known 
shortcoming of the CPA (Elliott et all974). However, it does not appear to be too serious 
in the present case. It should also be mentioned that the present results have not been 
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w ITHzl 

Figure 3. Coherent response function for PdD, is calculated for wavevectors along the 
(((() direction (L branch) for x = 0.63 (curves A) and x = 0.9 (curves B). - ( = 0.2; 
_.- <=  0.3; -. .- ( = 0.4; --- ( = 0.5. 
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Figure 4. Our results for selected phonon groups in PdD0.63 observed via coherent neutron 
response are given (full curves). The corresponding experimental results of Rowe etaZ(1974) 
are shown as full circles. The relevant wavevectors, noted in the figures, are in terms of the 
(notation. 
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convoluted with the experimental resolutions since the latter were not reported in the 
literature. 

Finally, in figure 5 we present results for the PdH0.63 system. The double differential 
incoherent scattering cross section is calculated and compared with the corresponding 
experimental results reported by Rahman et a1 (1976). For this part of the calculation, 
we have made the usual assumption (Rahman et a1 1976) of equality between the D-D 
and the H-H force constants, using our equation (19) for the former. Furthermore, in 
order to test the usually accepted hypothesis that the Pd-H force constant is approxi- 
mately 1.2 times that between Pd-D, we have used the Pd-H force constant given by 

Figure 5.  For comparison with the experimental results of Rahman eta1 (1976) on incoherent 
response from PdHo.63, we have plotted our theoretical results for the double differential 
scattering cross section (full curve). Experimental results are given as dots. 

Rahman et a1 (1976). From figure 5 ,  it is clear that while our calculation reproduces the 
shape and the width of the incoherent response reasonably well, it is seen to be shifted 
somewhat towards higher frequencies. This shift, however, is readily corrected if the 
Pd-H interaction is assumed to be several per cent smaller than that estimated 
by Rahman et al. Accordingly, we conjecture that a conversion factor of 1.1 for the 
Pd-H/Pd-D force constants is likely to be more accurate than 1.2 usually suggested in 
the literature. 
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