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The electronic structure of the noble metals 
I. The energy bands 

R. L. JACOBST 

Cavendish Laboratory, Cambridge 
MS. receiaed 8th A p d  196s 

Abstract. Band structures for the noble metals have been calculated at twelve points 
in 1/4Sth of the Brillouin zone by the Korringa-Kohn-Rostoker method. The bands 
were calculated a t  two values of the lattice constant for copper and silver and at one 
value for gold. The potentials used in this calculation mere constructed by a method 
akin to that used by Abarenkov and Heine and by Animalu and Heine for the non- 
transition metals. The results are presented and compared with exper: lment. 

1. Introduction 
This is the first of two papers on the electronic structure of the noble metals, The 

results presented here are energy bands for copper and silver calculated at two values of 
the lattice constant and for gold at one value. The bands are calculated by the Korringa- 
Kohn-Rostoker (KKR) method (Kohn and Rostoker 1954) at twelve points in 1148th of 
the Brillouin zone of the face-centred cubic lattice. The bands at other points are obtained 
by an interpolation scheme based on the model Hamiltonian (Mueller 1967, Hodges et al. 
1966, Jacobs 1968), which will be reported in the second paper of this series. 

For a given crystalline potential it is now possible to calculate the corresponding band 
structure to any degree of accuracy. Both the KKR and augmented plane wave methods, 
for example, are well known to converge to the same answer. Thus for any substance it 
only remains to determine a suitable potential. This paper examines, in part, the problem 
of determining such a potential. In  a calculation of the change in band structure due to a 
change in the lattice constant the most difficult problem is the self-consistent change in 
the potential, By setting up the potential for both lattice constants in a systematic and 
fundamental way we hope to obtain the correct answer for this change even if the band 
structures are not separately correct. 

Band structure calculations for copper have previously been carried out by Segall 
(1962), Burdick (1963), Wakoh (1965) and Snow and Waber (1967), and for a large number 
of rare earth and transition metals by Mattheiss and Loucks (Loucks 1967). While the 
calculations for copper in general achieve good agreement with experiment, no systematic 
or uniform procedure for setting up the potential is used in these papers. On the other 
hand, Loucks and Mattheiss (Loucks 1967) have developed a systematic procedure based 
on Hartree-Fock-Slater calculations for free atoms which appears to give reasonably good 
results. Empirically this is a highly successful recipe, but it hardly does justice to many 
questions concerning exchange and correlation. Snow and Waber (1967) have carried out 
self-consistent augmented plane wave calculations of the energy bands of copper using the 
Slater p1I3 approximation for the exchange potential and the modification of the Slater 
approximation by a factor of + suggested by Kohn and Sham (1965). They did not include 
any correlation terms. Their object was to start from first principles and determine what 
value of the coefficient of Slater’s approximate exchange potential gave the best agreement 
with experiment. What these many calculations do reveal is that reasonable band structures 
can be obtained but that certain features, in particular the position of the d bands relative 
to the conduction bands, are sensitive to the exact choice of the potential. 

Our aim, in contrast with that of most of the previous workers, is to set up a potential 
by going back to fundamentals. T o  do this we shall take over the three main ideas which 
were used in setting up the model potential for non-transition metals (Abarenkov and Heine 
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1965 a, Heine and Abarenkov 1964, Animalu and Heine 1965). Firstly, the potential seen 
by an electron is divided into two parts: 

The first term contains the Hartree self-consistent potential of the core and all correlation 
and exchange effects of the core on the incident electrons. The  second term includes all 
the effects due to the conduction electrons. Secondly, where convenient we represent 
V,,,, by a relatively weak pseudopotential VM which is equivalent to dropping integral 
multiples of T from the phase shift producing, therefore, a radial pseudo-wave function 
without nodes. Thirdly, all the complications due to exchange and correlation with the 
core and self-consistency are taken into account exactly by fitting some parameters in VM 
or V,,,, to the spectroscopic energy levels of a single electron in the field of an isolated ion 
core. For non-transition metals this procedure is almost trivial in its numerical simplicity 
and is probably better than some other methods because all the interactions with the 
core are fitted exactly. For the noble metals we shall show that it is possible to set up a 
reliable potential along similar lines, but more care and effort are needed. Also a certain 
degree of doubt is introduced in some of the levels in the bands by configurational inter- 
action among the atomic energy levels. In  § §  2 and 3 we set up V,,,, and VGond respectively. 
In  $ 4  i t  e give the resultant band structures and compare them with experiment. 

In  the second paper we shall discuss the description of these bands by a model 
Hamiltonian similar to that of Hodges et al. (1966) and Mueller (1967) with the intention 
of later applying this description to calculating band-structure-dependent experimental 
properties on the lines discussed by Jacobs (1968). 

2. The potential for isolated atoms 
M'e shall use a non-local potential for isolated atoms of the noble metaIs. For the 

1 = 0 and 1 components of this potential it is possible to use a weak pseudopotential. 
The reason for this is that the highest I = 0 and 1 wave functions have several radial 
nodes at relatively large values of the radius. We set up this pseudopotential in exactly 
the fashion of Abarenkov and Heine (1965 a), i.e. we put the pseudopotential equal to an 
energy- and angular-momentum-dependent constant - A,(E)  within a radius R, and 
equal to -Z /r  outside R,. The  parameters A,(E)  are treated as disposable constants. 
They have been evaluated at several energies for various values of RM by Abarenkov and 
Heine (1965 b) from the atomic energy levels corresponding to  the configurations 3d1° 4s, 
3d10 js, 3d1° 6s, 3d1° 4p, 3d10 5p and 3d10 6p for copper and to similar configurations for 
the other metals. As we shall see in § 3 it is convenient to choose R, equal to the radius 
of the inscribed sphere in the Wigner-Seitz cell of the metal. For values of RM chosen 
in this way the constants A,(E)  are easily obtained from the tables of Abarenkov and Heine. 
The  1-alues of R, in each case are given in table 2. 

To obtain the values of the parameters A , ( E )  at other energies we interpolate between 
the values obtained above using the best possible straight line. Unfortunately not all the 
values are reliable because the atomic energy levels of copper corresponding to the 
configurations 3d1° 5p and 3d'O 6p are heavily perturbed by interaction with the energy 
level corresponding to the configuration 3d9 4s4p of the same symmetry (Whitelaw 1933). 
We shall take account of this in 4 3 where we use more information obtained from the 
optical properties of the metal. 

We require that our 1 = 2 potential should be adequate for electrons in the highest 
closed d shell which gives rise to the d bands in the metal. For copper these electrons have 
wave functions with no radial nodes. For gold and silver the nodes are at small values of 
the radius. It follows that the Abarenkov and Heine model potential is very energy 
deper,dent and therefore not very useful. We shall choose instead a model potential with 
an arbitrary parameter which is a good approximation to the true potential seen by the 
d electrons. Since we wish to avoid the difficult effects due to the relaxation of the outer- 
most electron and to obtain a potential which includes interactions with the core electrons 
only, we aim at reproducing the energy levels of the singly ionized atom and choose our 
potential accordingly. 

V = V,,,, + V,,,,. 
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We choose the analytic form of our potential to be in two parts. We provide the first 
part with an adjustable parameter and choose its functional form such that for some 
values of the adjustable parameter it is very close to the calculated atomic potential of 
Herman and Skillman (1963). A suitable functional form turned out to be given by the 
following equation: 

- 2 exp(A(r - RD)'} 
V =  (1) 

Y 

where RD is a fixed radius and A is the adjustable parameter whose value is determined 
from atomic energy levels as we shall see shortly. Since this part of our model potential 
was constructed to resemble the potential of Herman and Skillman it was taken to represent 
the potential seen by an electron outside the closed d shell of the free ion. Since we want 
our model potential to reproduce the energy eigenvalues of an electron in the d shell we 
need to add a term to this which is the self-exchange of an electron in the d shell. We 
calculate this self-exchange term using an analytic fit to the d wave functions of Herman 
and Skillman. For the sake of simplicity we take the spherical average of this as the second 
part of our model potential. This turns out to be 

The values of ,B and n in this function were chosen to make the wave function from which 
V,,,, was calculated a good fit to the wave functions of Herman and Skillman. Our final 
model potential is merely the sum of these two parts. For the values of ,8 and n chosen 
above and for a pre-chosen value of R, we adjust the parameter A so that the first ionization 
energy (Moore 1949) of the free noble metal ion (e.g. Cu 3d10 +) is reproduced exactly. The  
values of this parameter and of the various other constants for the three metals are pre- 
sented in table 1. 

Table 1. The parameters for the d potentials 

Copper Silver Gold 
RD (UBI 2.7 3.0 3 *O 
A 0.4165 0.3957 0.45 16 
B (uB-') 5.0 5 s o  4.61 5 
n 3 5 6 

The  form of the potential given by the sum of equations (1) and (2) was chosen with 
an eye to making the adjustable parameter a slowly varying function of the energy at least 
over the width of the d band and we shall in fact make the approximation that it is energy 
independent. This potential, while it accurately represents the situation in the d shell, 
can be expected to fail for electrons in higher d states for it will no longer have the correct 
exchange terms in it. 

3. The potential in the metal 
Our aim in this section is to construct effective single-particle potentials suitable for 

each metal from the potentials of 0 2. These potentials are constructed for two values of 
the lattice constant for copper and silver and one value for gold. The  normal lattice 
constants were obtained from Pearson (1958) and the lattice constants for the expanded 
materials were chosen large enough to give band structures in which the changes were 
significantly larger than the inherent numerical noise of the calculation. 

We shall now assume that the electrons in the metal may be divided into two classes, 
viz. conduction electrons and core electrons including the d electrons. Then the potential 
seen by any electron may be written 

V(r) = vH core(r) -k V x  c o r d r )  -k V C  core(r) + VJ3 cond(r) -k V x  cond(r) -k VC cond(r) (3 )  
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where V,  core, V, are the Hartree, exchange and correlation potential 
operators due to interactions with the core electrons, and the remaining terms are the 
corrections to each of these terms due to the corresponding interactions with the 
Conduction electrons in the metal. We shall now assume that at any point r the only 
contribution to each term comes from the electrons and the ion core within the same 
Wigner-Seitz cell. The  first three terms in equation (3) may be replaced to a very good 
approximation by the model potentials of the previous section. We shall use local approxi- 
mations for the remaining terms and discuss each of them and the final potential separately. 

3.1. The Hartree term 
T o  calculate VH colld we need some model of the conduction electron charge density. 

The  model we use will consist of a constant charge density outside spheres of radius Ro 
surrounding each atom and a charge density of half that value within the spheres due to 
orthogonalization. The  radius Re is the core radius for conduction electrons, i.e. in copper 
an approximate radius for 3s and 3p orbitals and similarly in the other metals. When 
we increase the lattice constant Re does not change; we only have to take into account the 
change in the charge density which must still satisfy the condition J1 cell n d.r = 1. This 
model is clearly similar to various approximations used by Harrison (1966), Animalu and 
Heine (1965) and others. We estimate Re from tables of wave functions (Herman and 
Skillman 1963). T o  obtain a spherically symmetric potential within each Wigner-Seitz 
cell we replace each cell by a sphere of radius R, of the same volume. The  potential 
we obtain is given by 

and V,  

and 

2x 
= -  

If if Y > Re J 
where the values of the various constants are given in table 2 for each case. 

Table 2. The lattice constants and parameters for VH cond 

Copper Copper Silver Silver Gold 
a ( a B )  6.8088 7.0710 7.6814 7,9195 7.6799 
RM ( a B )  2.4073 2.5000 2.7158 2.8000 2,7153 
Ra (aB) 2.6609 2.7630 3.0017 3.0948 3.0011 
Ro ( a B )  1.6 1.6 1.9 1.9 1 e95 
U 0.1 1 0.10 0.15 0.1 5 0.16 

3.2. The conduction term 

and Sham (1965) 
We shall evaluate V, cond using the effective potential approximation due to Kohn 

(5) 
d 

dn 

where E, cond(n)  is the well-known Hartree-Fock exchange energy for a uniform electron 
gas of density n, and we obtain 

V x  cond = - cond) 

1 a224 

YS 
Vx cond = - I_ (6) 

where rS is the average distance between electrons. The  conduction electrons are spread 
throughout the lattice in regions where there are few core electrons. Therefore for con- 
duction electrons we can put rS equal to the average distance between conduction electrons. 
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The values we obtain are presented in table 3. Since the d electrons are concentrated in 
regions of high charge density the additional exchange with the conduction electrons is 
small. We may obtain a rough estimate from equation (6), which is -0,012 ryd in all 
cases. 

Table 3. Average values for some of the terms in equation (3) suitable for 
constructing the total potentials 

Copper 

0.885 
-0.460 
-0,012 

-0.097 

2.4073 

0 

-0.557 

Copper 
2.5000 
0.852 

- 0.443 
-0,012 

- 0.095 
-0.538 

0 

Silver 
2.7158 
0.784 

- 0.406 
-0.012 

-0.094 
-0.500 

0 

Silver 
2.8000 
0.761 

-0.396 
- 0.01 2 

-0.093 
-0.489 

0 

Gold 
2.7153 
0.783 

- 0.406 
- 0.01 2 

-0.094 
0 

-0.500 

All potentials are in rydbergs. 

3.3, The cowelation term 
The effective correlation potential saturates rapidly with increasing charge density. 

Therefore within the inscribed sphere in each Wigner-Seitz cell the total correlation is given 
to a good approximation by V, core(r), i.e. V ,  cond(r) = 0 in this region. In the interstices 
between these spheres Vc cond(r) may be obtained from the values of E,  cond calculated by 
Hubbard (1958) for a homogeneous electron gas. Animalu and Heine (1965) have tabulated 
V, cond and the values we use are presented in table 3. 

3.4. The total patential 
We shall discuss the l = 0 and 1 potentials and the I = 2 potentials separately. TYhen 

l = 0 and 1 the construction of the potential is very simple. We take the model potential 
of $ 2 for the first three terms of equation (3). We add to this V, cond from $3.1 and 
Vx con6 from $ 3.2, V, cond of course being zero from $ 3.3. This gives a spherically 
symmetric potential for Y < R,. In  order to preserve the essential simplicity of the 
model potential for I? < R, we replace V, cond and V, cond. by suitably weighted averages 
(-4nimalu and Heine 1965). This is valuable because the logarithmic derivatives for the 
KKR method can then be evaluated in terms of spherical Bessel functions and there is 
110 need for numerical integrations. 

When r > R, (i.e. in the interstices between the inscribed sphere and the boundary 
of the Wigner-Seitz cell) the potential VH rand is very nearly Z/Y and the model potential 
is -21~.  Hence the sum of these terms is, to a good approximation, zero and the net 
potential between the inscribed spheres is 

= Vx cond + V C  cond (3 
which is easily evaluated from $ $  3.2 and 3.3 and is a constant, the muffin-tin constant. 

For the KKR method we choose our energy zero at V, so that the final potential is 
obtained by adding Vo to V from equation (3) and by evaluating the model potential at 
E+ V,. Thus our l = 0 and 1 potentials are finally in the form of square we!Is with 
energy- and I-dependent depths which are the values without asterisks given in table 4. 

We now note that the 1 = 1 model potential for copper and gold is very uncertain except 
at the lowest energy value because the energy levels of the free atom from which the 
potential at other energy values is derived suffer heavily from configuration interaction 
(Whitelaw 1933). We can nevertheless obtain more information about the behaviour of 
the model potential in the metal from the optical data of Cooper et al. (1965) for the 
bulk metal. These data fix the highest d level at L relative to the lowest p level at L (i.e. 
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1 = 0  

1 = 1  

l = O  

1 = 1  

Table 4. The total potentials for I = 0 and 1 

Copper 
R M  = 2.4073 a B  RM = 2'5000 U B  

E V ( E )  (Y < R d  E V ( E )  (Y < RM) 
0.4141 -0.1223 0.3794 -04389 
0.8072 0.0075 0.7725 - 0.0208 
0.8957 0.0404 0.8610 0.0108 

0.6939 -0.4514 0.6592 -0.4202 
0.2250 -0.6150* 0,1952 -0.6116" 

Silver 
R, = 2.7158 aB R,r = 2.8000~B 
E V ( E )  (Y < RM) E V(E)  (Y < RM) 

0.3196 -0.1494 0.2976 -0.1572 
0.7074 0.0004 0.6854 -0.0174 
0.7924 0.0407 0.7704 0.0214 

0.5945 -0.3319 0.5725 -0.3126 
0.7609 - 0.2648 04420 -0.4868t 
0.8125 -0.2492 

Gold 
R, = 2.7153 aB 

E V(E)  (Y < RM) 
1 = 0 0.1978 -0.3526 

0.6943 -0.1752 
0.7878 -0,1281 

I = 1 0.5614 -0.4719 
0.0898 - 0.7481 * 

All energies and potentials are in rydbergs. 

the level at the bottom of the conduction band gap). We may then adjust the model 
potential to give these levels correctly relative to each other provided of course that the 
d level is first corrected for spin-orbit coupling (Friedel et al. 1964). 

This procedure gives us an I = 1 model potential for copper and gold with the normal 
lattice constant which is correct at the energy corresponding to the lowest p state of the 
free atom and which is also correct at an energv corresponding to that of the p conduction 
band state at L in the metal. The  potential at other energy values is obtained by inter- 
polation. A little care is needed to ensure that the potentials for expanded copper are 
consistent with these. This is done by requiring that when all the metallic corrections 
are removed the potentials for both values of RhI give the same logarithmic derivatives at 
a given energy and value of r. These corrected potentials for both values of the lattice 
constant are given in table 4 and are marked by asterisks. This same procedure is carried 
out for expanded silver and gives the value marked by a dagger. 

For the 1 = 2 potential when Y < R,: we take as before our model potential from 4 2 
and add to this V ,  cond, V,  coria and V,  as prescribed in $ 4  3.1, 3.2 and 3.3. We are 
no longer allowed to approximate VH cond by its average since the strongly peaked d wave 
functions sample VHsond over a narrow range of values of Y .  We use equation (4) for 
V, cond. For Y > R, the potential is put equal to the muffin-tin constant obtained for 
the 1 = 0 and 1 potential. This is a good approximation because any electron in the 
interstices must see very nearly the same potential and because the strongly localized nature 
of the d wave functions makes the energy eigenvalues rather insensitive to the value of the 
muffin-tin constant for d electrons. 

4. Calculation, results and discussion 
The  band structure was calculated at twelve points in 1/48th of the Brillouin zone by 

means of the KKR method using tables of the structure constants compiled by Ham and 
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Segall. At other points in the Brillouin zone the bands have been obtained from the model 
Hamiltonian (Mueller 1967, Hodges et al. 1966, Heine 1967) which will be discussed in 
the second paper of this series. 

The  calculated band structures for copper and silver are presented in figures 1 and 2 
for the normal values of the lattice constant. The  band structures for copper and silver 
at both normal and expanded lattice constants and for gold at the normal lattice constant 
are also presented in table 5 .  

We shall compare our calculated band structures for the noble metals with the following 
experimental evidence: (i) measurements of the Fermi surfaces of the noble metals by 
Shoenberg (1962) and Roaf (1962); (ii) measurements of the change in the Fermi surface 
when the metals are subjected to a uniform hydrostatic pressure (Templeton 1966); 

-0.41 I , I I 

r K x r  X w r  L K 

Figure 1. The band structure of copper with the normal lattice constant. The full 
curve is the band structure interpolated between the KKR points using the model 

Hamiltonian. 

Figure 2. The band structure of silver with the normal lattice constant. The full 
curve is the band structure interpolated between the KKR points using the model 

Hamiltonian. 
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(iii) the analysis by Cooper et a1 (1965) of the optical data on the noble metals; (iv) the 
measurements of the transverse neck effective mass by Koch et al. (1964) and Shoenberg 
(1962). I n  table 6 we present a comparison between the experimental quantities and the 
calculated quantities for a constant-energy surface corresponding to an energy E,. This 
energy is chosen so that the gap E, - E(&’) is equal to the experimental gap EF - E(L,’) 
obtained by Cooper et al. (1965). We also present for purposes of comparison the results 
of calculations carried out for copper by Snow and Waber (1967). 

Firstly, we note that the experimental gap E(&’) - E(&,) for silver is in reasonable 
agreement with the calculated gap when this is corrected for spin-orbit coupling (Friedel 
et al. 1964). The  agreement is very good for copper and gold because the 1 = 1 potential 

Table 5. The ’calculated band structures 

Copper (Rbl = 2.4073 u B ,  a = 6.8088 a,) 
k Band 1 Band2 Band 3 Band4 Band 5 Band 6 Band7 

- 0.277 - 0.004 
-0.194 -0.030 
-0,048 -0.043 
-0.102 -0.085 
-0.238 -0.021 
-0.136 -0.059 
- - 

-0.132 -0.110 
-0.243 -0.008 
-0.162 -0.008 
- - 0.000 

-0.128 -0.004 

-0.004 -0.004 
0.008 0,017 

-0.026 0.036 
0.017 0.077 
0.004 0.004 
0.051 0.051 
0,102 0.102 
0.111 0.128 
0.008 0.008 

- o*ooo - 0.000 
- 0.000 0.102 
- 0.004 0.1 11 

0.060 
0,038 
0.068 
0.102 
0.051 
0.060 
0.102 
0.128 
0.060 
0.068 
0.102 
0.1 11 

0.060 - 
0.076 - 
0.307 - 
0.73 2 0.873 
0.061 - 
0.085 - 
0.251 - 
0.468 0.960 
0.060 - 
0,068 - 
0.110 - 
0.230 0.758 

Copper ( R M  = 2.5000 uB, a = 7.0710 uB) 
k Band 1 Band2 Band3 Band4 Band 5 Band6 Band 7 

- 0.243 
-0.182 
-0,102 
-0.132 
-0.213 
-0.146 

-0.162 
-0.221 
-0.158 

-0446 

- 

- 

-0.057 
- 0.076 
-0.090 
-0.118 
-0.070 
-0*108 

-0.152 
-0.063 
-0.049 
-0,057 
-0.069 

- 

- 0.057 
- 0.040 
-0.055 
-0,037 
- 0.045 
-0,014 

0.026 
0.034 

-0,053 
- 0,049 
-0.057 
-0.069 

-0.057 
- 0.040 
- 0,026 

0.006 
- 0.045 
-0,014 

0.034 
0.049 

-0,053 
-0.047 

0,026 
0.034 

-0.008 
-0.022 
- 0.001 

0.034 
-0,016 

0.016 
0.034 
0.049 

- 0.006 
0,002 
0.026 
0.034 

- - 0.008 
0.008 - 
0.229 - 
0.652 0.792 
0.002 - 
0.018 - 
0.197 - 
0.41 1 0.871 

-0.006 - 
0.002 - 
0.055 - 
0.181 0.640 

Silver ( R M  = 2.7158 aB, a = 7.6814 uB) 
k Band1 Band2 Band3 Band4 Band 5 Band6 Band 7 

-0.291 
-0.288 
-0.297 
-0.341 

-0.321 

-0.365 
-0.290 
-0.315 

- 

- 

- 
-0.348 

-0.277 -0.277 
- 0.281 - 0.254 
-0.294 -0,253 
-0.321 -0,234 
- -0.261 

-0,298 -0.221 
- - 

-0.361 -0.167 
-0,268 -0.268 
-0.265 -0.265 

-0.278 -0.278 
- - 

-0,277 
-0.234 
-0.236 
-0.201 
-0,261 
-0.221 

-0.149 
-0,258 
- 0.207 

-0.161 

- 

- 

-0.214 
-0.231 
- 0.207 
-0.164 
-0.218 
-0.194 

-0.149 
-0,215 
- 0.207 

- 

- 
-0.161 

-0.214 - 
-0.164 - 

0.164 - 
0.579 0.696 

-0.211 - 
-0,089 - 

0447 - 
0,361 0.800 

-0.215 - 
-0.151 - 

0.027 - 
0.164 0.572 
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Table 5 (cont.) 

Silver ( R M  = 2.8000 u B ,  a = 7.9195 u B )  

k Band 1 Band2 Band3 Band4 Band 5 Band6 Band 7 

-0.302 
-0.321 
-0.318 
-0,356 
- 

-0.340 
- 

-0.384 
-0.309 
-0.327 
- 

-0.359 

-0.302 
-0.308 
-0.315 
-0.337 
-0.292 
-0.315 
- 

-0.371 
-0.296 
-0.292 
- 

-0.302 

-0,302 
-0.283 
-0.272 
-0.265 
-0.292 
-0.253 
- 

- 0.208 
-0,296 
-0.292 
- 

-0.302 

- 0.277 
-0.260 
-0.262 
-0.229 
- 0.280 
-0.253 
- 

-0492 
-0.252 
-0.239 

-0.212 
- 

-0.258 
-0.258 
-0.243 
-0.207 
-0.245 
-0.227 
- 

-0492 
-0.252 
-0.239 

-0.212 
- 

-0.258 - 
-0483 - 

0.126 - 
0.527 0.648 

- 0.227 - 
-0.096 - 

0.126 - 
0.331 0721  

- 0.246 - 
-0448 - 

0,006 - 
0.151 0.501 

Gold (RM = 2'7153 u B ,  U = 7'6799 u B )  

k Band 1 Band2 Band 3 Band4 Band 5 Band6 Band 7 

- 0.442 
- 

-0.287 
-0.338 
- 

-0.325 

-0.365 

-0.351 

- 

- 

- 
-0,361 

-0.251 
- 

-0.274 
-0.308 
-0.261 
-0.305 
- 

-0.358 
-0.271 
- 0.234 

- 0.248 
- 

-0.251 
-0.234 
-0.234 
-0.197 
-0.234 
-0481 
- 

-0.109 
-0.248 
-0.234 
- 

-0.248 

-0.251 
-0,221 
-0.198 
-0.152 
-0,234 
-0.181 
- 

-0.087 
-0.248 
-0.224 
- 

-0,109 

-0.171 
-0.211 
-0.164 
-0.106 
-0494 
-0.161 
- 

-0.087 
-0474 
-0.157 
- 

-0409 

-0.171 - 
-0.137 - 

0.107 - 
0.502 0.602 

-0.161 - 
-0440 - 

0.054 - 
0.261 - 

-0.174 - 
- 0.1 57 
- 0.070 

- 
- 

0.094 0.462 

The  energies are in rydbergs and the k vectors in units of 27q'u. 

was adjusted to make this agreement good. This adjustment was not made for silver. 
We next note that all the features of the experimental Fermi surface of silver are in 
excellent agreement with those of the calculated constant-energy surfaces. In  copper and 
gold the belly radii of our constant-energy surface are rather small compared with the 
experimental belly radii. Nevertheless, in copper the ratio of the belly radius in the r X  
direction to that in the TK direction is close to the experimental ratio. This is not true 
in gold, presumably because we have ignored spin-orbit coupling. The  disagreement 
between the experimental and calculated belly radii for these two metals arises ultimately 
from the fact that the d band is too low relative to the conduction band. The  values of the 
neck radii of our constant-energy surface are in moderately good agreement with the neck 
radii of the experimental Fermi surfaces. The agreement is closest in the case of silver. 

The  calculated transverse neck effective masses which are obtained from the inter- 
polated band structures are not very close to the experimental values. Part of the dis- 
agreement may be due to the effects of the electron-phonon interaction. In  table 6 we 
also present calculated values for copper and silver of d(lgAn)/d(lgAs), the ratio of the 
relative change of the neck cross-sectional area to the relative change of the cross-sectional 
area of a nearly-free-electron Fermi surface when the metal is subjected to a uniform 
dilation or contraction. In  calculating this we have made use of the band structures and 
the values of m,(L,') for two values of the lattice constant for both metals and the 
experimentally determined quantities d(lgA,)/d(lgA,). The  calculated and experimental 
values of d(lgA,)/d(lgAs) are in very reasonable agreement for both copper and silver. 

We conclude that our method for calculating the band structures has worked well for 
silver, but that the band structures for copper and gold are not so reliable possibly because 
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Table 6. Comparison of the calculated band structures with experiment 

Belly radius of constant energy 
surface along I’K in units of k, 

Belly radius of constant energy 
surface along I’X in units of k, 

Neck radius of constant energy 
surface along L K  in units of k, 

mL(L,’) (A.u.) 
for normal lattice constant 
mL(L2’) (A.u.) 
for expanded lattice constant 

d(kAb) 
d(kAs) 
d ( I d  n) 

d(lgAs) 

Experimental 
Calculated 
Calculated with 
spin-orbit coupling 
Experimental 

Calculated 

Experimental 

Calculated 

Experimental 

Calculated 

Experimental 
Calculated 
Calculated 

Experimental 

Experimental 
Calculated 

Copper 
0.109 
0.119 
0.112 

0.943 
(0,872 
{ 0.939* 
10.83 6 t 
1 a076 

{::’,”,* 
11.0561- 
0.20 

{ 0.16” 
10.281- 

0.46 
0.29 
0.31 

(0.16 

Silver Gold 
0.270 0.144 
0.325 0.203 
0.308 0.150 

0.965 0,945 

0.938 0.926 

1.029 1.129 

1,012 1 -046 

0.14 0 4 8  

0.12 0.14 

- 0.35 
0.28 
0.35 

- 
- 

0.91 hO.01 0.84 f0.03 0.78 f0 .08  

4.2 +0*2 7.3 f0 .7  5.4 f0 .2  
- 4.5 9.5 

All Fermi surface dimensions are given in units of K ,  = 4*912/a, the radius of a one-electron 
free Fermi sphere. The calculated results marked with asterisks and daggers have been obtained 
from a self-consistent method using the Slater exchange potential with coefficients of 1 and 8 
respectively (Snow and Waber 1967). 

of the uncertainties due to configuration interaction discussed in 4 3.4. I t  is notable that 
in copper we nevertheless obtain the correct answer for d(lg A,)/d(lg A,) which depends 
only on the way in which the band structure changes when we change the lattice constant. 
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