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The electronic structure of the noble metals
I. The energy bands

R. L. JACOBSt

Cavendish Laboratory, Cambridge
MS. veceived 8th April 1968

Abstract. Band structures for the noble metals have been calculated at twelve points
in 1/48th of the Brillouin zone by the Korringa—Kohn-Rostoker method. The bands
were calculated at two values of the lattice constant for copper and silver and at one
value for gold. The potentials used in this calculation were constructed by a method
akin to that used by Abarenkov and Heine and by Animalu and Heine for the non-
transition metals. The results are presented and compared with experiment.

1. Introduction

This is the first of two papers on the electronic structure of the noble metals. The
results presented here are energy bands for copper and silver calculated at two values of
the lattice constant and for gold at one value. The bands are calculated by the Korringa—
Kohn-Rostoker (KKR) method (Kohn and Rostoker 1954) at twelve points in 1/48th of
the Brillouin zone of the face-centred cubic lattice. The bands at other points are obtained
by an interpolation scheme based on the model Hamiltonian (Mueller 1967, Hodges et al.
1966, Jacobs 1968), which will be reported in the second paper of this series.

For a given crystalline potential it is now possible to calculate the corresponding band
structure to any degree of accuracy. Both the KKR and augmented plane wave methods,
for example, are well known to converge to the same answer. Thus for any substance it
only remains to determine a suitable potential. This paper examines, in part, the problem
of determining such a potential. In a calculation of the change in band structure due to a
change in the lattice constant the most difficult problem is the self-consistent change in
the potential. By setting up the potential for both lattice constants in a systematic and
fundamental way we hope to obtain the correct answer for this change even if the band
structures are not separately correct.

Band structure calculations for copper have previously been carried out by Segall
(1962), Burdick (1963), Wakoh (1965) and Snow and Waber (1967), and for a large number
of rare earth and transition metals by Mattheiss and Loucks (Loucks 1967). While the
calculations for copper in general achieve good agreement with experiment, no systematic
or uniform procedure for setting up the potential is used in these papers. On the other
hand, Loucks and Mattheiss (Loucks 1967) have developed a systematic procedure based
on Hartree-Fock—Slater calculations for free atoms which appears to give reasonably good
results. Empirically this is a highly successful recipe, but 1t hardly does justice to many
questions concerning exchange and correlation. Snow and Waber (1967) have carried out
self-consistent augmented plane wave calculations of the energy bands of copper using the
Slater p'/® approximation for the exchange potential and the modification of the Slater
approximation by a factor of § suggested by Kohn and Sham (1965). They did not include
any correlation terms. Their object was to start from first principles and determine what
value of the coefficient of Slater’s approximate exchange potential gave the best agreement
with experiment. What these many calculations do reveal is that reasonable band structures
can be obtained but that certain features, in particular the position of the d bands relative
to the conduction bands, are sensitive to the exact choice of the potential.

Our aim, in contrast with that of most of the previous workers, is to set up a potential
by going back to fundamentals. To do this we shall take over the three main ideas which
were used in setting up the model potential for non-transition metals (Abarenkov and Heine
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1965 a, Heine and Abarenkov 1964, Animalu and Heine 1965). Firstly, the potential seen
by an electron is divided into two parts:

V= Vcore + Vcond-

The first term contains the Hartree self-consistent potential of the core and all correlation
and exchange effects of the core on the incident electrons. The second term includes all
the effects due to the conduction electrons. Secondly, where convenient we represent
Voore by a relatively weak pseudopotential ¥y, which is equivalent to dropping integral
multiples of 7 from the phase shift producing, therefore, a radial pseudo-wave function
without nodes. Thirdly, all the complications due to exchange and correlation with the
core and self-consistency are taken into account exactly by fitting some parameters in
or V... to the spectroscopic energy levels of a single electron in the field of an isolated ion
core. For non-transition metals this procedure is almost trivial in its numerical simplicity
and is probably better than some other methods because all the interactions with the
core are fitted exactly. For the noble metals we shall show that it is possible to set up a
reliable potential along similar lines, but more care and effort are needed. Also a certain
degree of doubt is introduced in some of the levels in the bands by configurational inter-
action among the atomic energy levels. In §§ 2 and 3 we set up Vegre and Voonq respectively.
In §4 we give the resultant band structures and compare them with experiment.

In the second paper we shall discuss the description of these bands by a model
Hamiltonian similar to that of Hodges et al. (1966) and Mueller (1967) with the intention
of later applying this description to calculating band-structure-dependent experimental
properties on the lines discussed by Jacobs (1968).

2. The potential for isolated atoms

We shall use a non-local potential for isolated atoms of the noble metals. For the
[ =0 and 1 components of this potential it is possible to use a weak pseudopotential.
The reason for this is that the highest / = 0 and 1 wave functions have several radial
nodes at relatively large values of the radius. We set up this pseudopotential in exactly
the fashion of Abarenkov and Heine (1965 a), i.e. we put the pseudopotential equal to an
energy- and angular-momentum-dependent constant — A4,(E) within a radius Ry and
equal to —2/r outside Ry. The parameters 4,(E) are treated as disposable constants.
They have been evaluated at several energies for various values of Ry by Abarenkov and
Heine (1965 b) from the atomic energy levels corresponding to the configurations 3d1° 4s,
3d1035s, 3d*0 6s, 3d*%4p, 3d*° 5p and 3d'° 6p for copper and to similar configurations for
the other metals. As we shall see in § 3 it is convenient to choose Ry; equal to the radius
of the inscribed sphere in the Wigner—Seitz cell of the metal. For values of Ry chosen
in this way the constants 4,(E) are easily obtained from the tables of Abarenkov and Heine.
The values of Ry in each case are given in table 2.

To obtain the values of the parameters A,(E) at other energies we interpolate between
the values obtained above using the best possible straight line. Unfortunately not all the
values are reliable because the atomic energy levels of copper corresponding to the
configurations 3d° 5p and 3d!° 6p are heavily perturbed by interaction with the energy
level corresponding to the configuration 3d® 4s4p of the same symmetry (Whitelaw 1933).
We shall take account of this in § 3 where we use more information obtained from the
optical properties of the metal.

We require that our / = 2 potential should be adequate for electrons in the highest
closed d shell which gives rise to the d bands in the metal. For copper these electrons have
wave functions with no radial nodes. For gold and silver the nodes are at small values of
the radius. It follows that the Abarenkov and Heine model potential is very energy
dependent and therefore not very useful. We shall choose instead a model potential with
an arbitrary parameter which is a good approximation to the true potential seen by the
d electrons. Since we wish to avoid the difficult effects due to the relaxation of the outer-
most electron and to obtain a potential which includes interactions with the core electrons
only, we aim at reproducing the energy levels of the singly ionized atom and choose our
potential accordingly.
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We choose the analytic form of our potential to be in two parts. We provide the first
part with an adjustable parameter and choose its functional form such that for some
values of the adjustable parameter it is very close to the calculated atomic potential of
Herman and Skillman (1963). A suitable functional form turned out to be given by the
following equation:

_ —2exp{d(r—Ro)?)

¥

14

(1)

where Ry, is a fixed radius and A4 is the adjustable parameter whose value is determined
from atomic energy levels as we shall see shortly. Since this part of our model potential
was constructed to resemble the potential of Herman and Skillman it was taken to represent
the potential seen by an electron outside the closed d shell of the free ion. Since we want
our model potential to reproduce the energy eigenvalues of an electron in the d shell we
need to add a term to this which is the self-exchange of an electron in the d shell. We
calculate this self-exchange term using an analytic fit to the d wave functions of Herman
and Skillman. For the sake of simplicity we take the spherical average of this as the second
part of our model potential. This turns out to be

exp(—pr) L (n—D)(Br)
nqu'

=1

2

Vise = = = | {1 —exp(—fr)} - @
The values of 8 and # in this function were chosen to make the wave function from which
V4 sa was calculated a good fit to the wave functions of Herman and Skillman. Our final
model potential is merely the sum of these two parts. For the values of 8 and » chosen
above and for a pre~-chosen value of Ry, we adjust the parameter 4 so that the first ionization
energy (Moore 1949) of the free noble metal ion (e.g. Cu 3d?°*)is reproduced exactly. The
values of this parameter and of the various other constants for the three metals are pre-
sented in table 1.

Table 1. The parameters for the d potentials

Copper Silver Gold
RD (aB) 2-7 3.0 3.0
A4 (az~?) 0-4165 0-3957 0-4516
B (az %) 5:0 50 4-615
n 3 5 6

The form of the potential given by the sum of equations (1) and (2) was chosen with
an eye to making the adjustable parameter a slowly varying function of the energy at least
over the width of the d band and we shall in fact make the approximation that it is energy
independent. This potential, while it accurately represents the situation in the d shell,
can be expected to fail for electrons in higher d states for it will no longer have the correct
exchange terms in it.

3. The potential in the metal

Our aim in this section is to construct effective single-particle potentials suitable for
each metal from the potentials of § 2. These potentials are constructed for two values of
the lattice constant for copper and silver and one value for gold. The normal lattice
constants were obtained from Pearson (1958) and the lattice constants for the expanded
materials were chosen large enough to give band structures in which the changes were
significantly larger than the inherent numerical noise of the calculation.

We shall now assume that the electrons in the metal may be divided into two classes,
viz. conduction electrons and core electrons including the d electrons. Then the potential
seen by any electron may be written

V(r) = VH core(r) + Vx core(r) + VC core(r) + VH oond(r) + Vx cond(r) + VC cond(r) (3)
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where Vi cores Vi core aid Vi ore are the Hartree, exchange and correlation potential
operators due to interactions with the core electrons, and the remaining terms are the
corrections to each of these terms due to the corresponding interactions with the
conduction electrons in the metal. We shall now assume that at any point r the only
contribution to each term comes from the electrons and the ion core within the same
Wigner—Seitz cell. The first three terms in equation (3) may be replaced to a very good
approximation by the model potentials of the previous section. We shall use local approxi-
mations for the remaining terms and discuss each of them and the final potential separately.

3.1. The Hartree term

To calculate Vi o,nq we need some model of the conduction electron charge density.
The model we use will consist of a constant charge density outside spheres of radius R,
surrounding each atom and a charge density of half that value within the spheres due to
orthogonalization. The radius R, is the core radius for conduction electrons, i.e. in copper
an approximate radius for 3s and 3p orbitals and similarly in the other metals. When
we increase the lattice constant R, does not change; we only have to take into account the
change in the charge density which must still satisfy the condition [; o, #dr = 1. This
model is clearly similar to various approximations used by Harrison (1966), Animalu and
Heine (1965) and others. We estimate R, from tables of wave functions (Herman and
Skillman 1963). To obtain a spherically symmetric potential within each Wigner—Seitz
cell we replace each cell by a sphere of radius R, of the same volume. The potential
we obtain is given by

1+a 7\2
VH cond = _R:' {3 - (E‘) } - Vorth
and .
% =i{3_(i)} ifr <R 4)
orth Rc Rc (¢
2% .
= lf v > RC

b4

where the values of the various constants are given in table 2 for each case.

Table 2. The lattice constants and parameters for VH cond

Copper Copper Silver Silver Gold
a (as) 6-8088 7-0710 7-6814 7-9195 76799
Ry (as) 2-4073 2-5000 2-7158 2-8000 2-7153
R. (az) 2-6609 2-7630 3-0017 3.0948 3.0011
R, (ap) 16 1-6 19 1.9 1.95
® 0-11 0-10 0:15 0-15 0:16

3.2. The conduction term
We shall evaluate V, .4 using the effective potential approximation due to Kohn
and Sham (1965)

d
Vx cond = E}; (”Ex oond) (5)

where E, ,nqa(#) is the well-known Hartree-Fock exchange energy for a uniform electron

gas of density #, and we obtain
1-224

7

(6)

Vx cond =
5

where 7, is the average distance between electrons. The conduction electrons are spread
throughout the lattice in regions where there are few core electrons. Therefore for con-
duction electrons we can put r; equal to the average distance between conduction electrons.
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The values we obtain are presented in table 3. Since the d electrons are concentrated in
regions of high charge density the additional exchange with the conduction electrons is
small. We may obtain a rough estimate from equation (6), which is —0-012 ryd in all
cases.

Table 3. Average values for some of the terms in equation (3) suitable for
constructing the total potentials

Copper Copper Silver Silver Gold
Ry (as) 2:4073 2-5000 2:7158 2-8000 2:7153
V4 cona 0-885 0-852 0-784 0-761 0-783
Vi ooma (! =0,1) —-0-460 —0-443 —0-406 —0-396 —0-406
Vs cona (I =2) —-0:012 -0:012 —0-012 —-0-012 —0.012
V¢ cona (r < Ry) 0 0 0 0 0
Vo cona (r > Ry -0-097 —0-095 —0-094 —0-093 —0-094
Vo=V5x cona+ Ve cona —0:557 -0.538 —0-500 —0-489 —0-500

(7' > Rm,l = O, 1)
All potentials are in rydbergs.

3.3. The correlation term

The effective correlation potential saturates rapidly with increasing charge density.
Therefore within the inscribed sphere in each Wigner—Seitz cell the total correlation is given
to a good approximation by Ve core(®), 1.0 Vi cona(t) = 0 in this region. In the interstices
between these spheres Vg cona(t) may be obtained from the values of Eg .4 calculated by
Hubbard (1958) for a homogeneous electron gas. Animalu and Heine (1965) have tabulated
V¢ cona and the values we use are presented in table 3.

3.4. The total potential

We shall discuss the / = 0 and 1 potentials and the / = 2 potentials separately. When
[ = 0 and 1 the construction of the potential is very simple. We take the model potential
of §2 for the first three terms of equation (3). We add to this Vy e from §3.1 and
Vi cona from §3.2, Vi onqa Of course being zero from §3.3. This gives a spherically
symmetric. potential for » < Ry. In order to preserve the essential simplicity of the
model potential for v < Ry we replace Vi sonq and Vy oona by suitably weighted averages
(Animalu and Heine 1965). This is valuable because the logarithmic derivatives for the
KKR method can then be evaluated in terms of spherical Bessel functions and there is
no need for numerical integrations.

When 7 > Ry (i.e. in the interstices between the inscribed sphere and the boundary
of the Wigner—Seitz cell) the potential Vi conq is very nearly 2/r and the model potential
is —2/r. Hence the sum of these terms is, to a good approximation, zero and the net
potential between the inscribed spheres is

VO = x cond T VC cond (7)

which is easily evaluated from §§ 3.2 and 3.3 and is a constant, the muffin-tin constant.

For the KKR method we choose our energy zero at 1V, so that the final potential is
obtained by adding V', to V' from equation (3) and by evaluating the model potential at
E+V, Thus our / = 0 and 1 potentials are finally in the form of square wells with
energy- and /-dependent depths which are the values without asterisks given in table 4.

We now note that the / = 1 model potential for copper and gold is very uncertain except
at the lowest energy value because the energy levels of the free atom from which the
potential at other energy values is derived suffer heavily from configuration interaction
(Whitelaw 1933). We can nevertheless obtain more information about the behaviour of
the model potential in the metal from the optical data of Cooper et al. (1965) for the
bulk metal. These data fix the highest d level at L relative to the lowest p level at L (i.e.
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Table 4. The total potentials for / = 0 and 1

Copper
RM = 24073 asg M = 25000 as
E V(E) (r < Ry) E V(E) (r < Rw)
04141 —-0-1223 0:3794 —0-1389
0-8072 0-0075 0-7725 —-0-0208
0-8957 0-0404 0-8610 0-0108
0-6939 —0:4514 0-6592 ~0-4202
0:2250 —0-6150* 0-1952 —0-6116%*
Silver
RM = 27158 as M = 28000 as
E V(E) (r < Ry) E V(E) (r < Ryw)
0:3196 —0-1494 0-2976 —0:1572
07074 0-0004 0-6854 -0-0174
0-7924 0-0407 0-7704 00214
0:5945 —0-3319 0-5725 —0.3126
0-7609 —0-2648 0-1420 —0-4868F
0-8125 —0-2492
Gold

RM = 2:7153 [75:

E V(E) (r < Ry)
=0 0-1978 —0-3526
0-6943 -0-1752
0-7878 —0-1281
[ =1 0-5614 —-0-4719
0-0898 —0-7481%

1301

All energies and potentials are in rydbergs.

the level at the bottom of the conduction band gap). We may then adjust the model
potential to give these levels correctly relative to each other provided of course that the
d level is first corrected for spin—orbit coupling (Friedel et al. 1964).

This procedure gives us an / = 1 model potential for copper and gold with the normal
lattice constant which is correct at the energy corresponding to the lowest p state of the
free atom and which is also correct at an energy corresponding to that of the p conduction
band state at L. in the metal. The potential at other energy values is obtained by inter-
polation. A little care is needed to ensure that the potentials for expanded copper are
consistent with these. This is done by requiring that when all the metallic corrections
are removed the potentials for both values of Ry give the same logarithmic derivatives at
a given energy and value of 7. These corrected potentials for both values of the lattice
constant are given in table 4 and are marked by asterisks, This same procedure is carried
out for expanded silver and gives the value marked by a dagger.

For the / = 2 potential when » < Ry we take as before our model potential from § 2
and add to this Vi genas Vi cona 80d Vg cong 88 prescribed in §§ 3.1, 3.2 and 3.3. We are
no longer allowed to approximate Vy onq by its average since the strongly peaked d wave
functions sample Vi oong Over a narrow range of values of 7. We use equation (4) for
Vi conaw For 7 > Ry the potential is put equal to the muffin-tin constant obtained for
the / = 0 and 1 potential. This is a good approximation because any electron in the
interstices must see very nearly the same potential and because the strongly localized nature
of the d wave functions makes the energy eigenvalues rather insensitive to the value of the
muffin-tin constant for d electrons.

4. Calculation, results and discussion

The band structure was calculated at twelve points in 1/48th of the Brillouin zone by
means of the KKR method using tables of the structure constants compiled by Ham and
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Segall. At other points in the Brillouin zone the bands have been obtained from the model
Hamiltonian (Mueller 1967, Hodges et al. 1966, Heine 1967) which will be discussed in
the second paper of this series.

The calculated band structures for copper and silver are presented in figures 1 and 2
for the normal values of the lattice constant. The band structures for copper and silver
at both normal and expanded lattice constants and for gold at the normal lattice constant
are also presented in table 5.

We shall compare our calculated band structures for the noble metals with the following
experimental evidence: (i) measurements of the Fermi surfaces of the noble metals by
Shoenberg (1962) and Roaf (1962); (ii) measurements of the change in the Fermi surface
when the metals are subjected to a uniform hydrostatic pressure (Templeton 1966);

-2

N

|

WML

-0-4]
k

K X r X W r L K

Figure 1. The band structure of copper with the normal lattice constant. The full
curve is the band structure interpolated between the KKR points using the model

Hamiltonian,
I~2t
0-8F ‘ F \/
Zo.4- \/
W /
E.F =
o+
r K X r X w T L K

Figure 2. The band structure of silver with the normal lattice constant. The full
curve is the band structure interpolated between the KKR points using the model
Hamiltonian.
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(iii) the analysis by Cooper et al (1965) of the optical data on the noble metals; (iv) the
measurements of the transverse neck effective mass by Koch et al. (1964) and Shoenberg
(1962). In table 6 we present a comparison between the experimental quantities and the
calculated quantities for a constant-energy surface corresponding to an energy E,. This
energy is chosen so that the gap E,—E(L,") is equal to the experimental gap En— E(L,’)
obtained by Cooper et al. (1965). We also present for purposes of comparison the results
of calculations carried out for copper by Snow and Waber (1967).

Firstly, we note that the experimental gap E(L,")— E(Lgy) for silver is in reasonable
agreement with the calculated gap when this is corrected for spin-orbit coupling (Friedel
et al. 1964). The agreement is very good for copper and gold because the / = 1 potential

Table 5. The ‘calculated band structures

Copper (Ry = 2-4073 as, a = 6-8088 az)

k Band 1 Band 2 Band 3 Band 4 Band 5 Band 6 Band 7
000 -0:277 —-0-004 —0-004 —0-004 0-060 0-060 —_
130 —-0-194 —-0-030 0-008 0-017 0-038 0-076 —
$1 30 —0-048 —0:043 —-0-026 0036 0-068 0-307 —
220 -0-102 —0-085 0-017 0-077 0-102 0:732 0-873
010 —0-238 —-0-021 0-004 0-004 0-051 0-061 —
030 —-0-136 —0-059 0-051 0-051 0-060 0-085 —
0%0 — — 0102 0-102 0-102 0-251 —
010 —0-132 —0-110 0-111 0-128 0-128 0-468 0-960
¥ 33 —0-243 —0-008 0-008 0-008 0-060 0:060 —
112 -0-162 —0-008 —0-000 —0-000 0-068 0-068 —
33 — —0-000 —-0-000 0-102 0-102 0-110 —_
3+ 33 —-0-128 —0-004 —0-004 0111 0-111 0-230 0-758

Copper (Rum = 2:5000 gz, a = 7-0710 as)

k Band 1 Band 2 Band 3 Band 4 Band 5 Band 6 Band 7
000 —0-243 —0-057 —0-057 —0-057 —0-008 -0-008 —_
110 —0-182 —-0-076 ~0-040 —-0-040 —-0:022 0-008 —_
330 —-0-102 —-0:090 —0-055 —0:026 —0-001 0-229 —
220 -0:132 -0-118 —-0-037 0-006 0-034 0652 0:792
0%0 —0-213 —-0-070 ~0-045 ~0-045 ~0-016 0-002 —_
010 —-0-146 -0:108 —-0.014 —-0-014 0-016 0-018 —
0320 — — 0-026 0-034 0:034 0-197 —
010 —-0-162 -~0-152 0-034 0-049 0-049 0411 0-871
33 —-0-221 —0-063 —0-053 —0-053 —0-006 —0-006 —_
111 -0-158 —0-049 —0:049 —0-047 0-002 0-002 —
34 —_ —-0-057 —0-057 0026 0-026 0-055 —
333 —0-146 -0-069 —0-069 0-034 0-034 0-181 0-640

Silver (Ry = 2-7158 az, a = 7-6814 as)

k Band 1 Band 2 Band 3 Band 4 Band § Band 6 Band 7
000 -0-291 -0:277 —-0.277 —-0:277 -0-214 —-0-214 —
t1i0 —0-288 —-0-281 —0-254 -0:234 —-0-231 —-0-164 —
330 -0-297 —0-294 —-0.253 —0-236 —-0:207 0-164 —
$4320 -0-341 -0-321 —-0-234 —-0:201 —-0-164 0-:579 0:696
030 — — —-0-261 —-0-261 -0-218 —-0-211 —
0310 -0-321 -0-298 -0-221 -0-221 —0-194 —0-089 —_
030 — — — — — 0.147 —
010 —-0-365 —0-361 —-0-167 —0-149 —-0-149 0:361 0-800
+ 33 -0:290 —0:268 —-0-268 —-0-258 -0.215 -0:215 —
113 -0.315 —-0:265 —0-265 -0-207 -0-207 —-0-151 —
£33 — — —_ — — 0-027 —
133 —0-348 -0-278 —0-278 ~0-161 —-0-161 0-164 0-572



1304 R. L. Jacobs

Table 5 (cont.)

Silver (Ry = 2-8000 a5, a = 7-9195 as)

k Band 1 Band 2 Band 3 Band 4 Band 5 Band 6 Band 7
000 -0-302 —-0-302 -0-302 —-0-277 —0-258 —-0-258 —
130 -0-321 —0-308 -0-283 -0-260 —0-258 -0-183 —
3130 —-0-318 —~0-315 -0:272 —-0-262 ~0-243 0-126 -—
$430 -0-356 —0-337 —0-265 —0-229 —0-207 0-527 0-648
010 — —-0-292 —-0-292 —0-280 —0-245 —0-227 —
030 ~0-340 -0-315 -0-253 -0-253 —0-227 —0-096 —
030 — — — — — 0-126 —
010 —0-384 —-0-371 —0-208 —0-192 —-0-192 0-331 0-721
113 -0-309 —-0-296 —0:296 -0-252 —~0-252 —0-246 —_
P14 —0-327 -0-292 —-0-292 -0:239 —0-239 —0-148 —
2% ¢ — — — — —_ 0:006 —
PR —0-359 —-0-302 —-0-302 —-0-212 —-0-212 0-151 0-501

Gold (Ry = 27153 ay, a = 7-6799 as)

k Band 1 Band 2 Band 3 Band 4 Band 5 Band 6 Band 7
000 —-0-442 —-0-251 —0-251 —-0-251 —-0-171 -0-171 —_
310 — — —-0-234 -0-221 —-0-211 —-0-137 —
3130 —-0-287 —-0-274 —0-234 —0-198 ~0-164 0-107 —
230 ~0-338 —0-:308 —-0-197 ~0-152 —0-106 0-502 0-602
010 — -0:261 —~0-234 —0-234 —0-194 —-0-161 —
030 —-0-325 —0-305 —0-181 ~0-181 —-0-161 —0-140 —
0320 — — — — — 0-054 —
010 -0-365 —0-338 —0-109 —-0-087 —0-087 0-261 —
' — —0:271 —0-248 —0-248 -0-174 —-0-174 —
113 —-0-351 —0-234 —0-234 —-0-224 —-0.157 -0-157 —
34 &3 — — — — —_— -0-070 —_
33 —-0-361 —~0-248 —0-248 —-0:109 -0-109 0-094 0462

The energies are in rydbergs and the k vectors in units of 27/a.

was adjusted to make this agreement good. This adjustment was not made for silver.
We next note that all the features of the experimental Fermi surface of silver are in
excellent agreement with those of the calculated constant-energy surfaces. In copper and
gold the belly radii of our constant-energy surface are rather small compared with the
experimental belly radii. Nevertheless, in copper the ratio of the belly radius in the I'X
direction to that in the I'K direction is close to the experimental ratio. This is not true
in gold, presumably because we have ignored spin-orbit coupling. The disagreement
between the experimental and calculated belly radii for these two metals arises ultimately
from the fact that the d band is too low relative to the conduction band. The values of the
neck radii of our constant-energy surface are in moderately good agreement with the neck
radii of the experimental Fermi surfaces. The agreement is closest in the case of silver.
The calculated transverse neck effective masses which are obtained from the inter-
polated band structures are not very close to the experimental values. Part of the dis-
agreement may be due to the effects of the electron—phonon interaction. In table 6 we
also present calculated values for copper and silver of d(lg4,)/d(Ig4,), the ratio of the
relative change of the neck cross-sectional area to the relative change of the cross-sectional
area of a nearly-free-electron Fermi surface when the metal is subjected to a uniform
dilation or contraction. In calculating this we have made use of the band structures and
the values of m,(Ly") for two values of the lattice constant for both metals and the
experimentally determined quantities d(lg4,)/d(lg4s). The calculated and experimental
values of d(lgA,)/d(lg4,) are in very reasonable agreement for both copper and silver.
We conclude that our method for calculating the band structures has worked well for
silver, but that the band structures for copper and gold are not so reliable possibly because
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Table 6. Comparison of the calculated band structures with experiment

Copper Silver Gold
E(L.)—E(L3) (ryd) Experimental 0-109 0-270 0-144
Calculated 0-119 0-325 0-203
Calculated with 0-112 0-308 0:150
spin—orbit coupling
Belly radius of constant energy Experimental 0-943 0-965 0:945
surface along 'K in units of & f0'872
Calculated < 0-939* 0-938 0-926
|0-836%
Belly radius of constant energy Experimental 1:076 1.029 1-129
surface along I'X in units of ks 0-982
Calculated 0-998* 1-012 1-046
[[1-0567
Neck radius of constant energy Experimental 0-20 0-14 0-18
surface along LK in units of & (0-16
Calculated < 0-16* 0-12 0-14
[ 0-28%
my(Ly’) (a.U) Experimental 0:46 0:35 —_
for normal lattice constant Calculated 0-29 0-28 —
m:(Lz") (A.U0.) Calculated 0-31 0:35 —
for expanded lattice constant
ddgA) Experimental 0-91 £0-01 0-84 +0-03 0-78 +0-08
d(lg4.) - - -
d(igd.) Experimental 42402 73x£07 5402
d(lgds) Calculated 4.5 95 —_

All Fermi surface dimensions are given in units of ks = 4.912/a, the radius of a one-electron
free Fermi sphere. The calculated results marked with asterisks and daggers have been obtained
from a self-consistent method using the Slater exchange potential with coefficients of 1 and %
respectively (Snow and Waber 1967).

of the uncertainties due to configuration interaction discussed in § 3.4. It is notable that
in copper we nevertheless obtain the correct answer for d(lg A4,)/d(lg 4A;) which depends
only on the way in which the band structure changes when we change the lattice constant.
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