You may also like

Absolute differential cross sections for elastic scattering of electrons by helium, neon, argon and molecular nitrogen

To cite this article: R H J Jansen et al 1976 J. Phys. B: Atom. Mol. Phys. 9185

View the article online for updates and enhancements.

A comparison of balmer, , emission in collisions between $\mathrm{H}_{1}{ }^{+}, \mathrm{H}_{2}{ }^{+}, \mathrm{H}_{3}{ }^{+}$and He . Ne, Ar Pan Guangyan, Lei Ziming, Yang Feng et al.

Differential excitation studies of quasi-oneelectron systems. III. Be $112^{2} \mathrm{P}$ excitation alignment and orientation in $\mathrm{Be}^{+}-\mathrm{He}, \mathrm{Ne}$. Ar collisions
N Andersen, T Andersen, J Ostgaard Olsen et al.

Methods and progress in studying inelastic interactions between positrons and atoms R D DuBois

Absolute differential cross sections for elastic scattering of electrons by helium, neon, argon and molecular nitrogen

R H J Jansent, F J de Heer, H J Luyken, B van Wingerden and H J Blaauw
FOM-Instituut voor Atoom- en Molecuulfysica, Kruislaan 407, Amsterdam/Wgm, The Netherlands

Received 9 April 1975, in final form 8 September 1975

Abstract

An electron spectrometer has been constructed for the study of elastic and inelastic electron scattering processes. Up to now the apparatus has been used to measure differential cross sections of electrons elastically scattered by $\mathrm{He}, \mathrm{Ne}, \mathrm{Ar}$ and N_{2}. Direct absolute cross section measurements were performed on N_{2} at 500 eV impact energy and at scattering angles between 5° and 9°. Relative cross section measurements were done on $\mathrm{He}, \mathrm{Ne}, \mathrm{Ar}$ and N_{2} at impact energies between 100 and 3000 eV and scattering angles between 5° and 55°. The relative cross sections were put on an absolute scale by means of the apparatus calibration factor derived from the absolute measurements on N_{2}. The experimental apparatus and procedure are described in detail. The results are discussed and compared with those of other experimental and theoretical groups. Analysis of the exponential behaviour of the differential cross section as a function of momentum transfer yielded apparent polarizabilities of the target.

1. Introduction

One might say that in the last six years in the field of atomic collisions there has been a kind of renaissance with respect to elastic and total scattering of electrons, both experimentally and theoretically. Experimentally, because most data were considered to be not accurate and were only available in a limited energy and angular range. Theoretically, because new methods have been introduced, some of which were already known in nuclear physics. Examples are the Glauber theory, the eikonal Born series, the optical model and the use of second-order potentials. From a fundamental point of view the problem has become even more interesting because of the study of dispersion relations.

In this paper we present absolute differential cross sections for elastic scattering of electrons by $\mathrm{He}, \mathrm{Ne}, \mathrm{Ar}$ and N_{2} in the primary energy range of $100-3000 \mathrm{eV}$ and the scattering angle range of $5^{\circ}-55^{\circ}$. Previously we have reported (Jansen et al 1974) our results on relative differential elastic cross sections made absolute by normalization to the absolute N_{2} data of Bromberg (1970). The major difference between this report and the present paper is that we have now measured the absolute differential cross section for N_{2} at 500 eV between 5° and 9°, and this has enabled

[^0]us to determine an absolute apparatus calibration factor for normalization of the relative cross sections. The absolute data thus obtained supersede the data of Jansen et al (1974) and Jansen and de Heer (1973). For an extensive literature survey and a more detailed descriptiôn of our apparatus and procedures than given below the reader is referred to the thesis of Jansen (1975).

Measurements on the heavier noble gases, krypton and xenon, will be published in a following paper.

2. Experimental apparatus

2.1. Introduction

The apparatus used (see figure 1) is an electron spectrometer consisting of a primary beam source, a gas cell as collision chamber and a rotatable analysing system of the Kuyatt-Simpson type (Simpson 1964, Kuyatt and Simpson 1967). The differential cross section $\mathrm{d} \sigma / \mathrm{d} \Omega$ is measured by rotating the analysing system around the collision centre in a plane containing the incident beam and the scattered 'beam'. The scattering angle θ is defined as the angle formed by the line through the centres of the collimating apertures for the incident beam and the line through the centres of the acceptance apertures in front of the energy analyser; the collision centre is defined as the intersection of these lines. Having passed the acceptance apertures the scattered electrons are energy analysed by a hemispherical energy analyser and are finally detected.

Figure 1. Electron spectrometer: horizontal cross section (schematically). I high-vacuum chamber; 2 collision chamber, consisting of static outer cylinder C_{1} with entrance channel A_{4} and rotatable inner cylinder C_{2} with exit channels A_{5} and $A_{5}^{\prime} ; 3$ electron gun; 4 beam collimating system with pinholes A_{1} and A_{2}, secondary electron stop A_{3} and electric quadrupole $Q_{1} ; 5$ Faraday cup 1 with suppressor ring; 6 rotatable analysing system; 7 spherical analyser; 8 channeltron multiplier replaceable by a Faraday cup 3;9 Faraday cup $2 ; \mathrm{A}_{6}$ and A_{7} acceptance slit-pinhole pair; A_{8} secondary electron stop; $\mathrm{Q}_{2}, \mathrm{Q}_{3}$ electric quadrupoles; 10 mu-metal shielding; 11 wall of high-vacuum chamber; 12 to gas inlet; 13 to membrane manometer.

2.2. Vacuum system

The electron beam source, collision chamber and analysing system are situated together in one high-vacuum chamber (HVC). The HVC is a cylinder 25 cm high with internal diameter 45 cm pumped by a $24001 \mathrm{~s}^{-1}$ NRC oil diffusion pump, backed by a $1751 \mathrm{~s}^{-1}$ oil diffusion pump and a mechanical pump, providing a residual gas pressure of 10^{-7} Torr. The vacuum system is sealed with Viton O-rings.

The collision chamber (CC) in the centre of the HVC is a gas cell consisting of static cylinder C_{1} and moving cylinder C_{2}, sliding over C_{1} so that they form together a kind of gas-tight seal. The support of the analysing system is connected with C_{2}. The inner height of the CC is 80 mm and the inner diameter 40 mm . The CC is pumped by way of three channel-shaped apertures A_{4}, A_{5} and A_{5}^{\prime} allowing the incident and scattered electrons to pass.

The target gas is supplied by a bakeable gas inlet system consisting of a gas reservoir at 5 atm and a needle valve to reduce the over pressure to work pressure, usually 10^{-3} Torr. With helium as target gas a molecular sieve is also used to purify the gas in the inlet system.

The electron optical elements and other parts close to the electron path were made of NiCr V and gold plated to prevent the formation of non-conductive layers. All other parts in the HVC were made of stainless steel or copper. The primary beam system and the analysing system are frequently baked out to $100^{\circ} \mathrm{C}$ by means of quartz lamps and radiation shields mounted above.

The high-vacuum pressure is measured with a calibrated ionization gauge and the target gas pressure in the CC with an MKS-Baratron membrane manometer type $77 \mathrm{H}-1$, calibrated with an apparatus based on the continuous flow method (Bannenberg and Tip 1968, Bannenberg et al 1969) to below about 2% accuracy.

2.3. Magnetic fields

A mu-metal shielding inside the HVC and a supplementary pair of Helmholtz coils outside the HVC reduce the earth's magnetic field in this chamber to less than 1 mG in the direction parallel to the rotation axis of the analyser system and to about 5 mG in the plane perpendicular to this axis.

2.4. Primary beam system

A Soa-type electron gun is used to produce the primary electron beam. The oxyde cathode is indirectly heated and gives an energy spread of 0.6 eV (FWHM). A 6 kV John Fluke power supply provides the accelerating voltage for the cathode. A collimating system, consisting of two pinholes (A_{1} and A_{2} in figure 1) of 0.6 mm diameter at a relative distance of 60 mm , confines the beam divergence half angle to about 0.5°. The gun is adjustable from outside by means of a mechanical device for translation and rotation. This enables us to bring the gun on one line with the line determined by $\mathrm{A}_{1}, \mathrm{~A}_{2}$ and the collision centre. The beam is additionally adjusted with an electrostatic quadrupole Q_{1} behind A_{1}. This is done by determining the maximum ratio of elastically scattered intensity and primary beam intensity at the smallest scattering angle used, about 3°.

After collimation the beam passes the secondary electron stop A_{3} (a 2 mm diaphragm), enters the collision chamber by way of A_{4}, a 15 mm channel of 2 mm
internal diameter, and ends opposite to A_{4} on the inner wall of $\mathrm{C}_{2} . \mathrm{C}_{2}$ is made of copper and coated with aquadag to prevent surface charging.

The primary beam current is measured by a Faraday cup in the collision chamber. The cup is a 23 mm cylinder with 4 mm aperture. In front of the cup is mounted a ring of 14 mm external diameter and 3 mm internal diameter which can be given a negative voltage to suppress secondary electrons coming from the cup when the beam current is measured. The cup is movable up and down, out of and into the beam.

2.5. Scattering angle and geometry

Electrons scattered with scattering angle under $\theta \pm \Delta \theta$, where $\Delta \theta$ is the angular spread due to the finite acceptance apertures A_{6} and A_{7}, can leave the collision chamber by way of A_{5} in C_{2}. When C_{2} rotates A_{5} moves in a slot of C_{1} while a slot in C_{2} allows the primary beam to enter the collision chamber after it has passed A_{4}. This construction limits the range of rotation to 70°. However, the presence of a second exit channel, A_{5}^{\prime} at an angular distance of 70° from A_{5}, allows an angular scan between -55° and $+90^{\circ}$ in two stages: $-55^{\circ}<\theta<+15^{\circ}$ and $+20^{\circ}<\theta<$ $+90^{\circ}$. In this experiment we measured only in the first interval. The angular rotation is made possible by means of a rotational feed-through. The angular rotation of C_{2} together with the analysing system is made possible by a feed-through which is connected with the axis of a highly linear potentiometer. To adjust a particular scattering angle a second potentiometer is set at the desired value; a servo-system measures the voltage difference between the two potentiometers and drives the rotational system until the voltage difference vanishes. The reproducibility of the relative angular adjustment is $10^{\prime} . \mathrm{A}_{6}$ and A_{7} are the acceptance apertures of the analysing system. A_{6} is a slit of width $w=0.626 \mathrm{~mm}$ and height $h=1.387 \mathrm{~mm} ; \mathrm{A}_{7}$ is a pinhole of diameter $a=0.538 \mathrm{~mm}$ at a distance $y=5.988 \mathrm{~cm}$ from A_{6} and at a distance $R=10.525 \mathrm{~cm}$ from the collision centre. The slit-pinhole pair A_{6} and A_{7} define an angular resolution $\Delta \theta \simeq 0.5^{\circ}$ in the plane of rotation. The scattering volume is determined by the scattering path length l and the mean diameter d of the primary beam; l varies as a function of θ. The beam diameter d is controlled by focusing and is of the order of 1 mm as determined by beam profile measurements. With the dimensions of the apertures used the smallest scattering angle is about 2.5°. At $\theta<2.5^{\circ}, l$ becomes larger than the collision diameter and even the primary beam might enter A_{6}.

With the analysing system in the zero-angle position $\mathrm{A}_{1}, \mathrm{~A}_{2}$, the collision centre, A_{6} and A_{7} were carefully aligned using a laser beam in the place of the electron gun. With mechanical precision instruments we checked that the analysing system moves correctly in the scattering plane. The determination of the precise zero-angle position is based on the symmetry of the scattering signal in the equivalent intervals $-15^{\circ}<\theta<-3^{\circ}$ and $+3^{\circ}<\theta<+15^{\circ}$ and is carried out before each measuring run (see also \$3.2.1).

2.6. Energy analyser

The analysing system (see Kuyatt and Simpson 1967) consists of two rows of cylinder symmetrical electrodes and a spherical analyser (S) formed by two concentric hemispheres with radii of 2.175 and 2.825 cm . The electrodes of each row are tightened against a pair of parallel ceramic rods in order to centre and isolate each electrode with respect to the others. A field-free region extends from A_{1} to $A_{7} . A_{6}$ and A_{7}
act respectively as entrance window and entrance pupil of the field lens between A_{7} and S, imaging the physical slit A_{6} to a virtual slit at the entrance of S. The energy analysis in S is based on the focusing properties of a spherical condenser (Purcell 1938). The elastically scattered electrons filtered out by S are focused by a second field lens from the virtual exit slit of S to the entrance cone of channeltron multiplier M. Secondary electrons are stopped by aperture $A_{8}(1.2 \times 2.5 \mathrm{~mm})$. Electric quadrupoles Q_{2} and Q_{3} are used for additional correction of the electrons path. The voltage applied to the Herzog electrode in front of S is electronically derived from the acceleration (cathode) voltage and chosen so that elastically scattered electrons are decelerated to the desired analysing energy $\left(E_{0}\right)$, typically 100 eV . The voltages supplied to all other electrodes between A_{7} and M are superimposed to the tension of the Herzog electrode. The energy resolution $\Delta E_{1 / 2} / E_{0}$ ($\Delta E_{1 / 2}$ is FWHM of the analyser transmission measured as a function of energy) is equal to $w / 2 r$ (w is the width of A_{6} and r the mean radius of S) and about 1%.

2.7. Detector

The energy-analysed scattered electrons are detected by a channeltron electron multiplier (Mullard, type B318 BL) with a channel of 3 mm internal diameter and an acceptance cone of 5.8 mm internal diameter. The multiplier pulses are inductively coupled from the analysing system at high voltage potential into a pre-amplifier at earth potential; the pulses further pass a pulse-height discriminator, pulse shaper and counter, all connections being triaxial.

The count rate as a function of the overall multiplier voltage showed the characteristic steep rise as the voltage was increased followed by a plateau. To ensure a long multiplier lifetime the multiplier was operated at the lowest plateau voltage, 2200 V . We have the experience that it is necessary to check repeatedly the shape of the plateau curve because in the course of time the starting voltage of the plateau shifts to higher values.

The multiplier efficiency is not uniform over the entrance plane. If eg an electron enters along the channel axis it may penetrate into the multiplier over quite a distance before detaching secondary electrons, resulting in a smaller gain. Using the electric quadrupole Q_{3} we scanned the multiplier entrance plane and found an interval of deflection voltages (corresponding to a ring at the entrance plane) where the count rate was constant and maximal. The efficiency as a function of the energy at which the electrons strike the multiplier varies slowly between 50 and 500 eV showing a maximum at about 100 eV .

The dark current is about 0.2 pps . The count rate is not allowed to exceed 3000 pps in order to avoid saturation effects in the multiplier.

3. Experimental procedure

3.1. The differential cross section

The absolute differential cross section for elastic scattering, $\mathrm{d} \sigma / \mathrm{d} \Omega$, is defined as

$$
\begin{equation*}
I_{\mathrm{s}}=I_{\mathrm{b}} \frac{\mathrm{~d} \sigma}{\mathrm{~d} \Omega} N / \mathrm{d} \Omega \tag{1}
\end{equation*}
$$

where I_{s} is the intensity of the electrons elastically scattered into the solid angle $\mathrm{d} \Omega$ at scattering angle $0, I_{b}$ the primary beam current, N the target gas density and l the length of the scattering volume. In our geometry (see figure 1) $\mathrm{d} \Omega$ is the solid angle subtended by the pinhole $A_{7} . \mathrm{d} \Omega$ is not constant over l and in fact it drops to zero at the ends of the scattering volume. One must therefore average $\mathrm{d} \Omega$ over l. This procedure results in an effective value of scattering length times solid angle, $(l \mathrm{~d} \Omega)_{\text {eff }}$. Kuyatt (1968) has reviewed the solutions of this problem for various geometrical situations. If w, a, y, R and d are the geometrical dimensions as given in $\$ 2.5$ then $l \mathrm{~d} \Omega$ of (1) may be replaced, to first order, by

$$
\begin{equation*}
(l \mathrm{~d} \Omega)_{\mathrm{eff}}=\int_{1} \mathrm{~d} \Omega \mathrm{~d} x=\frac{\pi a^{2} w}{4 R y \sin \theta} \tag{2}
\end{equation*}
$$

In our geometrical set-up we have $w \simeq a \ll y$ and $d \ll R$ so that second-order corrections to (2) are negligible. Substitution of the numerical values of w, a, y and R into (2) yields

$$
\begin{equation*}
(l \mathrm{~d} \Omega)_{\mathrm{eff}}=\frac{2.258 \times 10^{-6} \mathrm{~cm}}{\sin \theta} \tag{3}
\end{equation*}
$$

The target gas density N is related to the target gas pressure in the collision chamber P_{c} by

$$
\begin{equation*}
N=9.654 \times 10^{18} \frac{P_{\mathrm{c}}}{T_{\mathrm{c}}} \mathrm{~cm}^{-3} \tag{4}
\end{equation*}
$$

where T_{c} is the temperature of the target gas in the collision chamber; N is in units of $\mathrm{cm}^{-3}, P_{\mathrm{c}}$ in Torr and T_{c} in K. P_{c} is related to the actually measured pressure P in the membrane manometer at temperature T_{m} as

$$
\begin{equation*}
P_{\mathrm{c}}=\left(\frac{T_{\mathrm{c}}}{T_{\mathrm{m}}}\right)^{1 / 2} P \tag{5}
\end{equation*}
$$

Combining (1) and (3)-(5) we may express $\mathrm{d} \sigma / \mathrm{d} \Omega$ into experimental quantities:

$$
\begin{equation*}
\frac{\mathrm{d} \sigma}{\mathrm{~d} \Omega}=n g \frac{\left(T_{\mathrm{c}} T_{\mathrm{m}}\right)^{1 / 2} I_{\mathrm{s}} \sin \theta}{I_{\mathrm{b}} P} \tag{6}
\end{equation*}
$$

where $\mathrm{d} \sigma / \mathrm{d} \Omega$ is in units of $\mathrm{cm}^{2}, T_{\mathrm{c}}$ and T_{m} in K, I_{s} and I_{b} in A, P in Torr, the density factor is $n=1.036 \times 10^{-19} \mathrm{~cm}^{3}$ Torr K^{-1} and the geometrical factor is $g=4.429 \times 10^{5} \mathrm{~cm}^{-1}$. Applying the conversion $1 \mathrm{~cm}^{2}=3.5712 \times 10^{16} a_{0}^{2}$ we obtain $\mathrm{d} \sigma / \mathrm{d} \Omega$ in atomic units.

3.2. Relative measurements

3.2.1. General procedure. Let us examine the experimental quantities of (6).

In the relative measurements the pulse count rate S is measured instead of the current I_{s} :

$$
\begin{equation*}
I_{\mathrm{s}}=\frac{e S}{\eta \tau} \tag{7}
\end{equation*}
$$

where I_{s} is in units of A and S in pps; e is the electron charge, η the counting efficiency and τ the analyser transmission.
I_{b} is measured with the Faraday cup in the collision chamber and has to be replaced by $I_{\mathrm{b}} / \epsilon$, where ϵ is the collection efficiency of the cup.
T_{c} is indirectly measured by three temperature probes in the high-vacuum chamber at positions very close to the collision chamber. The probes consist of a platinum resistor of well known temperature coefficient. The average temperature in ${ }^{\circ} \mathrm{C}$ of the three probes was constant within a few per cent during a complete measurement of the angular distribution of the cross section. With gun and pumps in operation T_{c} was about $10^{\circ} \mathrm{C}$ above room temperature.

The absolute target gas pressure P is measured with the membrane manometer. The pressure head is connected with the collision chamber by a 120 cm long pipe of 4.7 mm internal diameter. T_{m} is kept constant at $49^{\circ} \mathrm{C}$ by a thermostat in the pressure head.

Accounting for these considerations (7) has to be replaced by

$$
\begin{equation*}
\frac{\mathrm{d} \sigma}{\mathrm{~d} \Omega}=\left(\frac{e \epsilon n g\left(T_{\mathrm{c}} T_{\mathrm{m}}\right)^{1 / 2}}{\eta \tau}\right) \frac{S \sin \theta}{I_{\mathrm{b}} P} . \tag{8}
\end{equation*}
$$

The factor in brackets contains only constants so that we may write for the absolute differential cross section, at given impact energy E and scattering angle 0 , the proportion

$$
\begin{equation*}
\frac{\mathrm{d} \sigma}{\mathrm{~d} \Omega}(E, \theta) \propto \frac{S(E, \theta) \sin \theta}{I_{\mathrm{b}} P} . \tag{9}
\end{equation*}
$$

The right-hand side of (9) is defined as the relative differential cross section. It is measured by scanning the angular dependence of the scattering signal $S(E, \theta)$ at fixed E. In one scan $S(E, \theta)$ was measured many times at each θ and averaged. At each θ the primary beam current I_{b} is measured before and after the determination of $S(E, \theta)$ and also averaged. A measurement was rejected if I_{b} had changed more than 1%. Reproduction was checked by performing several angular scans at the same impact energy E . The relative scattering angle is adjusted by setting a ten-turn potentiometer (as discussed in $\S 2.5$); 1 division corresponds to 0.36°. The $\theta=0^{\circ}$ position is roughly known on the relative scale. θ was varied in the intervals $+3^{\circ}<\theta<+15^{\circ}$ and $-3^{\circ}<\theta<-55^{\circ}$. $S(E, \theta)$ was scanned in steps of 0.36° for $3^{\circ}<\theta<7^{\circ}, 1.8^{\circ}$ for $7^{\circ}<\theta<20^{\circ}$ and 3.6° for $20^{\circ}<\theta<55^{\circ}$.

A computer program by Baas and Jansen (1975) was used (a) to determine the exact position of the zero angle from the equivalent areas $\theta>0$ and $\theta<0$, (b) to determine the absolute angle from the relative one, (c) to calculate the relative differential cross section from the measured variables according to (9), (d) to fit the best curve through the calculated points by means of a high-order polynomial and (e) to take from this curve the values at angles from 5° to $\theta_{\max }$ in steps of 1°. $\theta_{\max }$ was somewhere near $54 \cdot 5^{\circ}$; the precise value depends on the exact zero angle and maximum relative angle position.
3.2.2. Background correction. In the case of helium it was important to correct both for the background signal due to the background pressure in the collision chamber and for the additional signal due to impurities in the admitted target gas. Therefore we measured the energy-loss spectrum of electrons scattered by the background gas in the collision chamber at several primary energies and angles. We observed an inelastic pattern for energy losses $\Delta E>6 \mathrm{eV}$. The same was done with helium gas in the collision chamber. The energy spread of the elastic helium peak was less
than 2 eV (FWHM) and the first inelastic helium contribution would appear at an energy loss $\Delta E \simeq 20 \mathrm{eV}$, so one should not expect that the inelastic pattern between $\Delta E=6 \mathrm{eV}$ and $\Delta E=20 \mathrm{eV}$ as found for the background should change by admitting helium to the collision chamber. We found however that the intensity of this inelastic pattern changed and that the form remained the same. This change was found to be proportional to the helium gas pressure in the collision chamber. From this we concluded that with the helium gas an impurity was also introduced into the collision chamber and that the composition of this impurity must be the same as the background gas. From the angular distribution of the differential elastic cross sections measured for the background gas we know that the background gas and consequently the impurity consists mainly of N_{2} and O_{2}. The differential elastic cross sections for these gases are at small angles 20 to 50 times larger than for helium. This means that contamination of the target gas and a background pressure too high in the collision chamber may seriously increase the apparent cross sections at small angles. We have made experimental provisions to minimize the contamination and the background applying a molecular sieve in the bakeable gas inlet system (see $\S 2.2$) and increasing the gas-flow conductivity of the collision chamber by removing exit channel A_{5}.

At small angles we measured the background signal B and extrapolated this towards larger angles using the measured angular distribution of the relative differential cross section for N_{2}. The correction factor Q_{B} for the remaining additional background due to impurities in the helium gas was determined by measuring the signal at a certain energy loss ΔE between 6 and 20 eV both with and without helium gas in the collision chamber and taking the ratio

$$
\begin{equation*}
Q_{\mathrm{B}}=\frac{S_{\mathrm{B}}\left(P_{\mathrm{Hc}}\right)}{S_{\mathrm{B}}\left(P_{\mathrm{Hc}}=0\right)}, \tag{10}
\end{equation*}
$$

where $S_{\mathrm{B}}(P)$ is the inelastic scattering count rate measured at a certain ΔE as a function of the helium pressure P_{He}. Hence in (9) S has to be replaced by $S^{\prime}-Q_{\mathrm{B}} B$, where S^{\prime} is the uncorrected count rate for He. In practice B was always smaller than 3% of S^{\prime} at the smallest measuring angle and decreased monotonically towards larger angles. Q_{B} was typically 1.3 at $P_{\mathrm{He}}=10^{-3}$ Torr. For the other gases no background correction was necessary.
3.2.3. Absorption correction. On its way through the collision chamber the primary electron beam is attenuated due to absorption by the target gas. Along the path electrons are continuously scattered out of the beam because of total scattering, ie the sum of all possible elastic and inelastic scattering processes. Electrons scattered from the scattering volume towards the analyser experience the same absorption effect.

According to the scattering analogue of the Lambert-Beer law as given by Bromberg (1969a) we may write the scattered count rate as an exponential function of the target gas pressure:

$$
\begin{equation*}
S(P)=A_{1} I_{\mathrm{b}} P \exp \left(-A_{2} P L\right), \tag{11}
\end{equation*}
$$

where A_{1} is a constant proportional to the differential elastic cross section, A_{2} is a constant related to the total scattering cross section and $P L$ the effective product
of target gas pressure P and path length L in the target gas. Equation (11) may be rearranged to

$$
\begin{equation*}
\ln \left(\frac{S(P)}{I_{\mathrm{b}} P}\right)=\ln A_{1}-A_{2} P L \tag{12}
\end{equation*}
$$

Plotting $\ln \left[S(P) / I_{\mathrm{h}} P\right]$ against P, where P was varied from 0.5 to 8 mTorr , we found a straight line with intercept $\ln A_{1}$ and slope $-A_{2} L$. In the limit $P \rightarrow 0$ where no absorption can take place we find the unaffected relative differential cross section A_{1}; so we take as absorption correction factor

$$
\begin{equation*}
F(E, 0)=\frac{A_{1}}{S\left(P_{1}\right) / I_{\mathrm{b}} P_{1}} \tag{13}
\end{equation*}
$$

where P_{1} is the actual target gas pressure during the measurement of the angular distribution of $S(E, \theta)$. To obtain the correct relative differential cross section one has to multiply the measured cross section by $F(E, \theta)$. The latter is a very slowly varying function of θ and in nearly all cases it was sufficient to take one fixed value for all angles. However, $F(E, \theta)$ varied with E as explained by Bromberg (1969a) and was larger for smaller E. For $\mathrm{N}_{2} F(E, \theta)$ varied over the range $1 \cdot 02-1 \cdot 12$, for Ar 1.01-1.10 and for Ne $1.01-1 \cdot 05$. For He it was approximately constant at 1.01 .

3.3. Absolute measurements

To put the relative cross sections on an absolute scale we need an apparatus calibration factor. We have determined this factor by measuring absolute cross sections for N_{2} at 500 eV .

The channeltron used in the relative measurements was replaced by a Faraday cup (cup 3) of the same dimensions as the Faraday cup for the primary beam (cup 1) (see also figure 1). The scattering current collected by cup 3 was measured with a Cary vibrating reed electrometer calibrated according to the instructions of the manufacturer.

Starting from the basic cross section equation, (6), I_{s} has to be replaced by $\left(I_{\mathrm{s}}-I_{\mathrm{B}}\right) / \tau$ where I_{s} is the scattered current with target gas present in the collision chamber, I_{B} the background current measured in the absence of target gas and τ the analyser transmission. Because both Faraday cups have identical dimensions the collection efficiencies for primary and scattered current cancel out. Finally we apply the absorption correction factor $F(E, \theta)$ and find for the absolute cross section at impact energy E and scattering angle θ

$$
\begin{equation*}
\frac{\mathrm{d} \sigma}{\mathrm{~d} \Omega}(E, \theta)=\left(\frac{n g\left(T_{\mathrm{c}} T_{\mathrm{m}}\right)^{1 / 2}}{\tau}\right)\left(\frac{I_{\mathrm{s}}(E, \theta)-I_{\mathrm{B}}(E, \theta)}{I_{\mathrm{b}}}\right) \frac{\sin \theta}{P} F(E, \theta) . \tag{14}
\end{equation*}
$$

The noise level of the vibrating reed electrometer was about $2 \times 10^{-16} \mathrm{~A}$. For a reliable measurement we required that $I_{\mathrm{B}} \ll I_{\mathrm{s}}$. We chose N_{2} as target gas because of its large cross section at small angles and took an impact energy of 500 eV for direct comparison with literature (Bromberg 1970). To keep I_{s} sufficiently above noise level, θ was varied between 3° and 11°. With $I_{\mathrm{b}} \simeq 5 \times 10^{-7} \mathrm{~A}$ and $P=2 \times 10^{-3}$ Torr, I_{s} varied from 1.5×10^{-13} to $2.5 \times 10^{-14} \mathrm{~A}$ as a function of $\theta . I_{\mathrm{B}}$, containing background scattering and electrometer noise, varied from 7% to 1.5% of I_{s} over the angular range.

The transmission τ of the analyser is defined as the ratio of the current entering the spherical analyser and the current entering cup 3 replacing the channeltron M in figure 1 . For the determination of τ we measure the beam current in three differently located Faraday cups of identical dimensions: I_{1} is the primary beam current collected by cup 1, without target gas in the collision chamber. I_{2} is the fraction of I_{1} that passes aperture A_{7} and is collected in Faraday cup 2 in the wall of the high-vacuum chamber just behind the channel in the outer hemisphere of the analyser at $\theta=0 . I_{3}$ is the current that passes the analyser and is collected by cup 3 . If the appropriate voltages are applied to the hemispheres, I_{3} is measured and if the spherical analyser is turned off I_{2} is measured. In this way we determined at constant I_{1} and E the transmission $\tau=I_{3} / I_{2}$ as a function of (a) the deceleration voltage and (b) the voltage of the inner hemisphere in both cases for analysing energies E_{0} equal to 50,100 and 200 eV . In all cases we found trapezium-like transmission curves with a flat top at $\tau=1 \cdot 00$, showing an analyser transmission of 100%.
$\left(I_{\mathrm{s}}-I_{\mathrm{B}}\right) / I_{\mathrm{b}}$ was measured in angular steps of 0.72°. Applying (14) and using the computer program mentioned in $\$ 3.2 .1$ we obtained absolute differential cross sections $\mathrm{d} \sigma(500, \theta) / \mathrm{d} \Omega$ at $\theta=5^{\circ}, 6^{\circ}, 7^{\circ}, 8^{\circ}$ and 9° as shown later in table 11 .

3.4. Apparatus calibration factor and normalization

3.4.1. Procedure. To convert our relative cross sections into absolute ones we applied the following procedure.

The relative cross section as a function of angle θ at fixed impact energy E was measured according to (9). Let us indicate that cross section by $\sigma_{\text {rel }}(\theta)_{E}$. Including the absorption correction we obtain as the correct relative cross section $\sigma_{\text {rel }}(\theta)_{E} F(E, \theta)$. In order to obtain a consistent set of relative cross sections we measured for each gas the relative cross section as a function of E at fixed θ (θ was 10° and 30°) according to (8). Let us indicate this cross section as $\sigma_{\mathrm{rel}}(E)_{\theta}$. For each gas this energy dependence was measured under completely the same experimental conditions. As discussed in the preceding section we measured for N_{2} the absolute cross section according to (14). Let us indicate this direct measured absolute cross section by $\sigma_{\mathrm{abs}}(500, \theta)$.

We now define the apparatus calibration factor f_{c} as

$$
\begin{equation*}
f_{\mathrm{c}}=\frac{1}{5} \sum_{\theta}\left(\frac{\sigma_{\mathrm{abs}}(500, \theta)}{\sigma_{\mathrm{rel}}(500)_{\theta} F(500, \theta)}\right)_{\mathrm{N}_{2}}, \quad \theta=5,6,7,8,9^{\circ} . \tag{15}
\end{equation*}
$$

For each gas and energy the absolute cross section at $\theta=10^{\circ}, \sigma_{\mathrm{abs}}(E)_{10}$, follows from the relative one by

$$
\begin{equation*}
\sigma_{\mathrm{abs}}(E)_{10}=f_{\mathrm{c}} \sigma_{\mathrm{rel} 1}(E)_{10} F(E, 10) . \tag{16}
\end{equation*}
$$

Since absolute cross sections are concerned we have

$$
\begin{equation*}
\sigma_{\mathrm{abs}}(10)_{E}=\sigma_{\mathrm{abs}}(E)_{10} . \tag{17}
\end{equation*}
$$

The relative cross section $\sigma_{\text {rel }}(\theta)_{E}$ is made an absolute cross section, $\sigma_{\text {abs }}(\theta)_{E}$, by

$$
\begin{equation*}
\sigma_{\mathrm{abs}}(\theta)_{E}=\frac{\sigma_{\mathrm{abs}}(10)_{E}}{\sigma_{\mathrm{rel}}(10)_{E} F(E, 10)} \sigma_{\mathrm{rel}}(\theta)_{E} F(E, 0) . \tag{18}
\end{equation*}
$$

From (16)-(18) we finally obtain

$$
\begin{equation*}
\sigma_{\mathrm{abs}}(\theta)_{E}=f_{\mathrm{c}} \frac{\sigma_{\mathrm{rcl}}(E)_{10}}{\sigma_{\mathrm{rel}}(10)_{E}} \sigma_{\mathrm{rel}}(\theta)_{E} F(E, \theta) . \tag{19}
\end{equation*}
$$

Using (15) we calculated $f_{c}=0.0787$ which is only 0.25% larger than the corresponding factor used by Jansen et al (1974) normalizing their relative N_{2} cross sections on Bromberg's (1970) absolute N_{2} cross sections.

Comparing the value of f_{c} obtained with the proportion constant in (9) between the relative and absolute cross section according to (8), we may estimate the unknown efficiencies ϵ of the primary beam cup and η of the channeltron. Transforming that proportion constant into the same units as f_{c} and dividing by f_{c} we find $\epsilon \eta=1.04$. The value of this ratio might be explained by the estimation: $\epsilon=1.00$ and $\eta=0.96$.

3.5. Error discussion

If, in this section, we speak about errors and the combination of errors we mean fractional errors, respectively the square root of the sum of the squared fractional errors. A survey of the experimental errors involved in the relative and absolute differential cross sections is given in table 1.

The error in the relative cross section corrected for absorption, ie in $\sigma_{\text {rel }}(\theta)_{E} F(E, \theta)$, is the combination of the random errors in $I_{\mathrm{b}}, P, S(E, \theta)$ and $F(E, \theta)$ (see also (9)). The uncertainty in θ has been taken into account in the error of $S(E, \theta)$. The error in the absolute differential cross section $\sigma_{\mathrm{abs}}(\theta)_{E}$ (see (19)) is the combination of the errors in $\sigma_{\mathrm{rel}}(\theta)_{E} F(E, \theta), \sigma_{\mathrm{rel}}(E)_{10} / \sigma_{\mathrm{rel}}(10)_{E}$ and f_{c}. The error in the apparatus calibration factor f_{c} is the combination of the RMS error of the averaging and the systematic errors involved in $\sigma_{\text {abs }}(500, \theta)$ (see (15)). According to (14), the fractional error in $\sigma_{\mathrm{abs}}(500, \theta)$ is a combination of both random and systematical errors in I_{b}, P and $I_{\mathrm{s}}(500, \theta)-I_{\mathrm{B}}(500, \theta)$ and the errors in $g, T_{\mathrm{c}}, T_{\mathrm{m}}$ and $F(500, \theta)$ as given in table 2.

4. Summary of the results

The absolute differential cross sections, obtained according to (19), are summarized in tables $3-6$ for respectively $\mathrm{He}, \mathrm{Ne}, \mathrm{Ar}$ and N_{2}. The cross section data are in units of $10^{-3} a_{0}^{2}$ for He and in a_{0}^{2} for the other gases. For convenience the data are only shown at every 5°. The numbers quoted in parentheses behind the cross section values are the plus and minus fractional errors expressed as a percentage of the absolute cross section.

Table 1. Survey of experimental errors involved in the relative and absolute differential cross sections.

Quantity	Fractional error			
	He	Ne	Ar	N_{2}
I_{6}	$0 \cdot 010$			
P	0.005			
$S(E, \theta)$	0.012-0.021	0.013-0.020	0.0140 .024	0.014-0.027
$F(E . \theta)$	0.006-0.009	0.003-0.005	0.005-0.007	0.005-0.008
$\sigma_{\text {rel }}(\theta){ }_{E} F(E, \theta)$	0.019-0.025	0.018-0.023	0.019-0.027	$0 \cdot 020-0.030$
$\sigma_{\text {rel }}(E)_{10} / \sigma_{\text {rel }}(10)_{E}$	$0 \cdot 026-0.036$	0.027-0.037	0.032-0.039	0.032-0.045
$f_{\mathrm{c}}\{$ random	0.019			
f_{c} (systematic	$0 \cdot 046$			
$\left.\sigma_{\text {abs }}(\theta)\right)_{E}$	0.059-0.067	0.059-0.067	0.062-0.069	0.062-0.074

Table 2. Survey of experimental errors involved in the directly measured absolute differential cross section for N_{2} at $E=500 \mathrm{eV}$ and $5^{\circ} \leqslant \theta \leqslant 9^{\circ}$.

	Fractional error	
Quantity	Random	Systematic
$\int_{\{ }^{w}$		0.008
a		0.008
y		0.005
R		0.007
T_{c}	0.01	
T_{m}		0.01
$F(500, \theta)$	0.009	0.02
I_{b}	0.01	0.03
P	0.003	$0.019-0.027$
$I_{s}(500, \theta)-I_{\mathrm{B}}(500, \theta)$	0.02	
$\sigma_{\mathrm{abs}}(500, \theta)$	$0.051-0.054$	

5. Discussion

5.1. Helium

In table 7 we compare the present He results with those of other experimental and theoretical groups.

At energies above 500 eV and angles above 10° the present work is in agreement with the eikonal Born series (EBS) calculations of Byron and Joachain (1973a,b, 1975) which differ very little in this angular and energy range from the pure first Born approximation. This suggests that our absolute scale is correct. Besides scattering by the static potential up to third order, the EBS theory includes also (i) exchange of the incident electron and an atomic electron, (ii) polarization of the target by the incident electron and (iii) absorption; the latter effect arises from the fact that a certain number of incident electrons excite or ionize the target; these electrons are therefore removed from the incident (elastic) channel.

Between 200 and 700 eV , in general the present work and the absolute measurement of Bromberg (1974b, 1975 and private communication) are in agreement with each other and with the ebs theory of Byron and Joachain, except at angles below 10° where our experimental data are 10 to 20% lower than theory. Byron and Joachain estimate their possible theoretical error to be 20% at $100 \mathrm{eV}, 5 \%$ at 500 eV and 1% at 2000 eV .

Between 200 and 500 eV the $a b$ initio optical model (om) theory of Byron and Joachain $(1974,1976)$ yields at small angles $\left(\theta<20^{\circ}\right)$ values lower than the ebs theory; above 200 eV it is in excellent agreement with the present work and Bromberg. The om theory also includes scattering by the static field, plus exchange, polarization and absorption.

The experimental error in Bromberg's data is about 3%, where it is about 6% in the present work. The largest deviation between our results and Bromberg is 8% and appears at 700 eV and 5°, where Bromberg is closer to the eBs result. Recently Dillon and Lassettre (1975), of the same group as Bromberg, checked the angular trends of the helium cross section at 400 and 700 eV . They found a less steep rise
Table 3. Absolute differential cross sections of electrons elastically scattered by helium (in units of $10^{-3} a_{0}^{2}$, with errors in per cent).

0 (deg)	$E(\mathrm{eV})=100$	150	200	300	400	500	700	1000	2000	3000
5	2320(6.0)	2010(6.0)	1680(6.0)	1280(6.1)	1060(6.1)	$906(6 \cdot 1)$	706(6-2)	585(6.2)		
10	$1700(6.0)$	$1360(6.0)$	1080(6.0)	$787(6.0)$	644(6.0)	$550(6.0)$	$436(61)$	$338(62)$	$435(6 \cdot 4)$ $195(6 \cdot 4)$	$\begin{aligned} & 367(66) \\ & 127(6.6) \end{aligned}$
15	1240(6.0)	944(6.0)	$739(6.0)$	$538(6.0)$	$430(6 \cdot 0)$	$355(6-0)$	$260(6 \cdot 1)$	183(62)	$81 \cdot 6(6 \cdot 3)$	$45.1(6.5)$
20	932(5.9)	682(5.9)	528(5.9)	$365(6.0)$	289(6.0)	229(6.0)	154(6.0)	97.7(6.1)	$35 \cdot 4(6 \cdot 3)$	$18.3(6 \cdot 5)$
25	$709(6.0)$	503(6.0)	385(6.0)	247(6.0)	192(6.0)	146(6.0)	$90.6(6 \cdot 1)$	54.0(6.2)	$17 \cdot 3(6 \cdot 4)$	8.39(6.5)
30 35	$549(6.0)$	375(6.0)	281(6.0)	169(6.0)	128(6.1)	$93 \cdot 3(6 \cdot 1)$	$55 \cdot 6(6 \cdot 1)$	$31 \cdot 2(62)$	$9 \cdot 38(6.4)$	$4.33(6.6)$
35	$425(6.0)$	283(6.0)	$205(6.0)$	121(6.1)	$86.4(6 \cdot 2)$	$61 \cdot 2(6 \cdot 2)$	35-2(6.2)	$19.0(62)$	5.39(6.4)	$2.44(6.6){ }^{\text {. }}$
40 45	$330(6 \cdot 1)$	$215(6 \cdot 1)$	151(6.1)	$88 \cdot 5(6.1)$	$59.7(6.2)$	$41 \cdot 2(6 \cdot 2)$	$23.0(6.2)$	11.9(62)	3.33(6.4)	$1 \cdot 46(6.6)$
45 50	$263(6 \cdot 1)$ $216(6.2)$	$168(6 \cdot 1)$ $135(6 \cdot 2)$	114(6.1)	$60 \cdot 1(6 \cdot 2)$	42.2(6-2)	- $28.5(6.2)$	$15 \cdot 9(6 \cdot 2)$	7-87(6.3)	$2 \cdot 16(6 \cdot 5)$	0.904(6.6)
50 $>50+$	$216(6 \cdot 2)$ $189(6.2)$	135(6.2)	88.5(6.2)	$45.0(6.2)$	$30.6(6.2)$	$20.3(6 \cdot 2)$	$11 \cdot 1(6 \cdot 2)$	$5 \cdot 59(6 \cdot 3)$	$1.40(6.5)$	$0.584(6.6)$
$>50 \dagger$	$189(62)$	113(6-2)	74.2(6.2)	38.4(6.2)	24.0(6.3)	$16.5(6 \cdot 3)$	8.89(6.2)	$4 \cdot 31(6 \cdot 3)$	1-10(6.5)	0.506(6.6)
$\dagger \mathbf{A t} \theta=$	$53 \cdot 8$	54.0	53.8	$54 \cdot 2$	54.2	$54 \cdot 2$	$53 \cdot 8$	$53 \cdot 8$	$53 \cdot 8$	53.8

Table 4. Absolute differential cross sections of electrons elastically scattered by neon (in units of a_{0}^{2}, with errors in per cent).

θ (deg)	$E(\mathrm{eV})=100$	150	200	300	400	500	750	1000	2000	3000
5	10-4(5.9)	9.57(5.9)	9.44(5.9)	8.63(6.0)	8.21(6.0)	7.51(6.0)	6.75(6.0)	6.30(6.1)		
10	$7.75(5 \cdot 9)$	$678(5.9)$	$6.20(5.9)$	$5 \cdot 48(6.0)$	$4.97(6.0)$	$4.61(6.0)$	$6.75(6.0)$ $3.96 .0)$	$6 \cdot 30(6.1)$ $3.48(6.1)$	$5 \cdot 44(6.4)$ $2-41(6.3)$	$5.08(6.6)$ $1.84(6.5)$
15	$5 \cdot 71(5 \cdot 9)$	$4.66(5.9)$	4.12(5.9)	3.46(6-0)	3.02(6.0)	$2 \cdot 72(6.0)$	2.17(6.0)	1.78(6.0)	$0.992(6.3)$	$0.662(6.5)$
20	$4.15(5.9)$	3-21(5.9)	2.75(5.9)	$2 \cdot 19(60)$	1-84(6.0)	$1.60(6.0)$	1.19(60)	$0.908(6.0)$	$0.442(6.2)$	0.277(6.4)
25	$2.95(6.0)$	$2 \cdot 17(6.0)$	$1.82(6.0)$	1-39(6.0)	1-12(6.0)	$0.956(6.0)$	$0.670(6-1)$	0.498(6.1)	0.223(6.3)	$0 \cdot 135(6.4)$
30	$2 \cdot 11(6 \cdot 0)$	$1.50(6.0)$	1-20(6.0)	$0.877(6.0)$	$0.693(6.0)$	$0.583(6.0)$	0.401(6-1)	0.293(6.1)	0.127(6.3)	0-0727(6.5)
35 40	I $-51(6.0)$ $1 \cdot 10(6.0)$	$1.03(6.0)$ $0.715(6.0)$	$0.790(6.0)$	$0-568(6.0)$	0.445(6.1)	$0.368(6 \cdot 1)$	0.256(6-2)	$0 \cdot 188(6 \cdot 2)$	$0.0784(6.4)$	0.0433(6.5)
40 45	${ }^{1} \cdot 10(6.0)$	$0.715(6.0)$	$0.533(6.0)$	$0.383(6.0)$	$0 \cdot 301(6 \cdot 1)$	$0 \cdot 247(6 \cdot 1)$	0.174(6.2)	0.128(6-2)	$0.0513(6.4)$	$0.0276(6.5)$
45 50	$0 \cdot 822(6 \cdot 1)$	0.499(6.1)	0.371(6.1)	0.272(6.1)	0-217(6.2)	$0.180(6.2)$	0.128(6-2)	$0.0906(62)$	$0.0354(6.4)$	$0.0184(6 \cdot 6)$
50 >50	$0.633(6 \cdot 1)$	$0.361(6.1)$	$0.273(6.1)$	0-203(6.1)	0-166(6.2)	$0.140(6.2)$	$0.0978(6 \cdot 2)$	$0.0683(6 \cdot 2)$	$0.0253(6.4)$	$0 \cdot 0132(6 \cdot 6)$
$>50 \dagger$	$0 \cdot 516(6 \cdot 2)$	0.284(6.2)	0.218(6-2)	$0 \cdot 160(6 \cdot 2)$	$0.137(6.2)$	$0 \cdot 116(6.2)$	$0.0798(6 \cdot 3)$	$0.0560(6.3)$	$0.0207(6.5)$	$0.0100(6.6)$
+ A1 $0=$	53.9	53.9	54.0	54.0	54.1	53.9	53.9	54.0	53-8	53.9

Table 5. A bsolute differential cross sections of electrons elastically scattered by argon (in units of a_{0}^{2}, with crrors in per cent).

0 (dcg)	$E(\mathrm{eV})=100$	150	200	300	400	500	750)	1000	2000	3000
5	47.6(6.4)	47.1(6.4)	42.6(6.4)	37.2(6.4)	34.3(6.4)					
10	$28.6(6.3)$	$23.8(6.3)$	$21 \cdot 1(6 \cdot 3)$	$18.3(6.3)$	$16.5(6 \cdot 4)$	$32.8(6.4)$ $15.3(6.4)$	$30 \cdot 5(6 \cdot 5)$ $12 \cdot 8(6 \cdot 4)$	$29.4(6.5)$ $11.0(6.4)$	$24.6(6.7)$ $6.31(6 \cdot 6)$	$19.8(6.9)$ $3.98(68)$
15 20	$16.2(6 \cdot 3)$	$12 \cdot 5(6 \cdot 3)$	$10 \cdot 7(6 \cdot 3)$	$8.81(6.3)$	$7.42(6-4)$	6.59(6.4)	$12 \cdot 8(6 \cdot 4)$ $4 \cdot 87(6.4)$	$11.0(6.4)$ $3.88(6.4)$	$6.31(6.6)$ $1.866 .6)$	$3.98(6.8)$ $1 \cdot 17(6.7)$
20 25	$9 \cdot 13(6.2)$ $5 \cdot 11(6 \cdot 3)$	$6.65(6.2)$	$5.34(6.2)$	$4 \cdot 18(6.2)$	$3 \cdot 40(6-3)$	2.94(6.3)	2.07(6.3)	$3.88(6.4)$ $1.64(6.4)$	$1.8666)$ $0.781(6.5)$	$1 \cdot 17(6 \cdot 7)$ $0.484(6.6)$
25 30	$5 \cdot 11(6 \cdot 3)$	3-49(6.3)	$2 \cdot 71(6 \cdot 3)$	2.08(6.3)	$1.72(6.3)$	$1 \cdot 48(6.4)$	$1.09(6.4)$	0.865(6.4)	$0.781(6.5)$ $0.407(6.5)$	$0.484(6.6)$ $0.245(6.6)$
30 35	$2 \cdot 87(6.3)$ $1.60(6.4)$	$1.89(6.3)$	1-47(6.3)	$1 \cdot 17(6 \cdot 3)$	$1.01(6.4)$	$0.881(6.4)$	$0.668(6.4)$	$0.518(6.4)$	$0.22666 .6)$	$0.245(6.6)$ $0.139(6.6)$
40	$1.60(6.4)$ $0.899(6.4)$	$1.07(64)$ $0.666(6.4)$	$0.885(6.4)$ $0.609(6.4)$	$0.766(6 \cdot 4)$	$0.688(6.4)$ $0.515(6.4)$	$0.605(6.4)$	$0.442(6.4)$	$0.331(6.4)$	$0 \cdot 136(6 \cdot 6)$	$0.0857(6.7)$
45	$0.521(6.4)$	$0.462(6.4)$	0.472		$0.515(6.4)$	$0.446(6 \cdot 4)$	$0 \cdot 301(6.4)$	0.221(6.4)	$0.0930(6.6)$	$0.0574(6.7)$
50	0.327(6.4)	$0 \cdot 369(6 \cdot 4)$	0.406(6-4)		$0 \cdot 394(6 \cdot 4)$	$0 \cdot 327(6 \cdot 5)$	$0.209(6.5)$	$0 \cdot 155(6.5)$	0.0630(6.6)	$0.0409(6.7)$
$>50 \dagger$	0.223(6.5)	0.331(6-5)	$0.363(6.5)$	$\begin{aligned} & 0.365(6.4) \\ & 0.089(6.5) \end{aligned}$	0.305(6.4)	$0 \cdot 241(6 \cdot 5)$	$0 \cdot 156(6.5)$	0.116(6.5)	$0.0416(6.6)$	$0.0301(6.7)$
		(1)	0363 (6.5)	$0 \cdot 289(6.5)$	$0 \cdot 253(6 \cdot 4)$	0-207(6.6)	$0.124(6.6)$	$0.0924(6.5)$	0.0403(6.6)	$0.0230(6.7)$
\dagger At $\theta=$	$54 \cdot 7$	54.5	$54 \cdot 1$	54.1	54.0	54.)	54.0	$53 \cdot 8$	$53 \cdot 8$	3.4

Table 6. Absolute differential cross sections of electrons elastically scattered by molecular nitrogen (in units of a_{0}^{2}, with errors in per cent).

$\theta(\mathrm{deg})$	$E(\mathrm{eV})=100$	150	200	300	400	500	750	1000	2000	3000
5	$61 \cdot 2(6 \cdot 3)$	$58.9(6 \cdot 3)$	$54 \cdot 5(6 \cdot 4)$	47.0(6.4)	42•8(6.4)					
10	$35 \cdot 7(6 \cdot 3)$	$30 \cdot 9(6 \cdot 3)$	$27.1(6.3)$	$21 \cdot 6(6.4)$	$18 \cdot 1(6 \cdot 4)$	$39 \cdot 6(6.4)$ $15 \cdot 5(6.4)$	$33.6(6.5)$ $10.8(6.5)$	$29.9(6.6)$ $8.01(6.6)$	$20.8(7.0)$ $3.59(6.9)$	12.4(7.4)
15	$20 \cdot 3(6 \cdot 2)$	$15.7(6.2)$	$12 \cdot 7(6 \cdot 3)$	$9 \cdot 00(6.3)$	$18 \cdot 1(6.4)$ $6.80(6.4)$	$15 \cdot 5(6 \cdot 4)$ $5 \cdot 40(6.4)$	$10 \cdot 8(6 \cdot 5)$ $3.38(6.4)$	$8.01(6.6)$ $2.64(6.5)$	$3.59(6.9)$ $1.63(6.8)$	$2.47(7.2)$ $0.837(7.2)$
20	$10 \cdot 9(6 \cdot 2)$	7.54(6.2)	5•75(6-2)	3-81(6.3)	$2 \cdot 95(6.3)$	$2 \cdot 41(6.4)$	$3.38(6.4)$ $1.73(6.4)$	$2.64(6.5)$ $1.50(6.4)$	$1.63(6.8)$	$0 \cdot 837(7.2)$
25 30	$5 \cdot 73(6 \cdot 3)$	3.74(6.3)	$2 \cdot 82(6 \cdot 3)$	$1.88(6.4)$	1.61(6-4)	$2.41(6.4)$ $1.44(6.4)$	$1.73(6.4)$ $1.15(6.4)$	$1.50(6.4)$ $0.886(6.5)$	$0.664(6.7)$	$0 \cdot 289(7.0)$
30 35	$3 \cdot 11(6 \cdot 3)$	$1.99(6.3)$	$1.57(6 \cdot 3)$	1-19(6.4)	1.09(6.4)	$1.44(6.4)$ $1.02(6.4)$	$1.15(6.4)$ $0.725(6.5)$	$0.886(6.5)$ $0.474(6.5)$	$0.278(6.8)$ $0.161(6.8)$	0.128(7.0)
35	$1 \cdot 83(6 \cdot 4)$	1.22(6.4)	1.04(6.4)	0.917(6.4)	$0.822(6.4)$	$0.740(6.4)$	$0.725(6.5)$ $0.410(6.5)$	$0.474(6.5)$ $0.261(6.6)$	$0 \cdot 161(6.8)$	$0 \cdot 725(7 \cdot 1)$
40	$1 \cdot 18(6 \cdot 4)$	0.845(6-4)	$0.778(6.4)$	$0.753(6.4)$	$0.622(6.4)$	0.498(6.4)	$0 \cdot 242(6.5)$	$0 \cdot 261(6.6)$	$0.0994(6.9)$	$0.0434(7.1)$
45	$0.833(6.4)$	$0.662(6 \cdot 4)$	$0 \cdot 630(6.4)$	0.570(6.5)	$0.435(6.5)$	$0.498(6.4)$ $0.310(6.5)$	$0.242(6.5)$	0176666	$0.0591(6.9)$	$0.0267(7.1)$
50	$0.636(6.4)$	0.548(6.4)	$0.516(6.4)$	0.406(6.5)	$0.296(6.5)$	0.209(6.5)	$0.169(6.6)$	$0 \cdot 135(6 \cdot 6)$	0.0429(6.9)	$0 \cdot 0183(7.2)$
$>50{ }^{\dagger}$	0.541(6.5)	0.485(6.5)	0.462(6.5)	$0 \cdot 361(6.6)$			$0 \cdot 137(6 \cdot 6)$	0.0930(6.6)	$0.0305(6.9)$	$0.0125(7.2)$
			(62)	O361(6.6)	$0 \cdot 225(6.6)$	$0 \cdot 188(6.5)$	$0 \cdot 116(6 \cdot 6)$	0.0728(6.7)	$0.0224(7.0)$	$0.010277 .2)$
\dagger At $\theta=$	54.0	54.1	$54 \cdot 1$	$53 \cdot 4$	54.0	$53 \cdot 3$	53.9	53.9	53.9	

of the cross section for angles below 15°; at their smallest angle 7° the deviations from Bromberg are $-4 \cdot 4 \%$ for 400 eV and $-2 \cdot 2 \%$ for 700 eV .

At low energies the present results at 5° are in excellent agreement with Chamberlain et al (1970) who measured the absolute cross section only at 5° for energies between 100 and 400 eV . Chamberlain's data are often used as normalization of relative cross sections and also for renormalization of the data of Vriens et al (1968). Previously Jansen and de Heer (1973) questioned this procedure because the original data of Vriens et al (1968) (normalized by measuring the ratios of the elastic to $2^{1} \mathrm{P}$ cross sections) were in agreement with the ebs theory of Byron and Joachain, whereas the data of Chamberlain et al (1970) were not. The present results however confirm Chamberlain's data at 5°, and differ in absolute value as well as in slope with the data of Vriens et al (1968) and with the renormalized data of Vriens at angles other than 5°.

Compared to our data, the eBS and om calculations of Byron and Joachain overestimate the small-angle cross sections at 100 eV . At 5° our value is 33% smaller than EBS and 31% smaller than OM .

We also compared with the plane wave approximation of Khare and Shoba (1971) (including polarization and exchange) which shows smaller values than Byron and Joachain at low energies. Khare and Shoba agree quite well with our experiment. Examination of the graphs in LaBahn and Callaway (1969a,b) and Winters et al (1974) indicates that the results of these theoretical groups often lie close to our experimental results. Unfortunately we have at this moment no numerical data from these groups and therefore they are not shown in table 7 . The recent experimental data of Sethuraman et al (1974) seem also to be in favour of the present work.

The absolute data of Crooks (1972) and Kurepa and Vuskovic (1975) overestimate the cross sections at smaller angles. The absolute data of Oda et al (1972) are in excellent agreement with the present work at 500 eV .

Buckley and Walters (1974), applying their so-called static exchange corrected simplified second Born approximation (SESSBA 2), obtained larger values than the EBS theory. At 500 eV however we show their static corrected simplified second Born approximation (SCSSBA 1) which agrees excellently with Bromberg and the present work.

Fink and Yates (1970), applying a partial-wave method to solve the Dirac equation numerically, do not include exchange, polarization and absorption effects. Their calculations therefore can never yield correct cross section values at lower energies and small angles. At higher energies and larger angles however the agreement with our experiment is very good.

From the foregoing we may conclude that at the moment Bromberg (1974b, 1975) and the present work yield the best cross sections for He. Above 200 eV the most preferable theory is the OM theory of Byron and Joachain at lower energies and the EBS theory of the same authors at higher energies. The fact that our cross sections below 10° are systematically compared with Bromberg's stresses the need for additional accurate measurements at small angles. We believe that our lower values at angles below 10° result from the fact that we have reduced the N_{2} contributions to the He cross section and have corrected for the remaining part, as discussed in $\$ 3.2$.

5.2. Neon

In table 8 our results for neon are compared with the results of other groups (again we have omitted the groups from which we do not have numerical data at our disposal).

	20	229	198	228	264	226	206	186	204	226	225	224
	30	93.3	79.3	92.2	(100)	91.5	87.3	71.6	85.0	90.6	90.0	$92 \cdot 3$
	40	41.2	407	42.8	46.5	41.0	41.6	34.9	38.0	40.2	39.7	41.7
	50	20.3	$20-4$	20.5	21.4	20.2	20.3		18.9	20.2	19.8	21.1
700	5	706	-			768			553	765		
	10	436	420			461			394	457		
	20	154	130	(148)		157			147	156		
	30	55.6	44.3	46.6		55.7			53.2	55.5		
	40	23.0	19.7	(19.5)		$23 \cdot 3$			220	22.9		
	50	$11 \cdot 1$	8.22	(9.30)		11.3			10.4	11.0		
1000	5	585			786		(525)		525	636		
	10	338			407		333		331	360		
	20	97.7		85-2	114		98.6		97.2	101		
	30	31.2		27.3	(32.2)		31.5		30.6	31.5		
	40	11.9		11.0	11.8		12.3		11.8	122		
	50	5.59		(5.10)	5.72		$5 \cdot 70$		$5 \cdot 40$	$5 \cdot 65$		
2000	5	435							445	475		
	10	195							202	208		
	20	35.4							$\begin{gathered} 202 \\ 36 \cdot 3 \end{gathered}$	368		
	30	9.38							9.21	9.35		
	40	3.33							3.23	3-30		
	50	1.40							$1 \cdot 42$	1.46		
H		$\begin{aligned} & \text { es et } \\ & \text { ured a } \end{aligned}$	$\begin{aligned} & \text { (1932), } \\ & \text { earby } \end{aligned}$	malize	fitt	$\text { the } 70$	ieory	mbe	re gr:	an	ation	tweet
V		et al	968), г	ized	$2^{1} \mathbf{P}$ cr	section						
Ch		berlai	t al (1	at 5°	norm	d valu) at 0					
Cr		s (19										
O		$\begin{aligned} & \text { et al } \\ & \text { ired a } \end{aligned}$	$\begin{aligned} & 72): 50 \\ & \text { earby } \end{aligned}$	ate co	munic	$\text {): } 700$	$\mathrm{rs} \text { in }$	nthe	re g	in		
J		t al	$3)$, rela	theory	Fink	Yate	erpol	betw	data	${ }^{\circ}$ and		
Br		berg	4b, 19									
KV		a and	uskovi									
MP		nkey	Pres	ment	maliz	20°	s ren	alize	Cha	an e	970)	
FY		and Y	(1970)	d bet	n data	4° an						
KS		and	bha (1									
B												
EBS		al Bo	series	73a, b	75,19							
OM		tio op	mod									
BW		ey and	alters	500	scssba	therw						

Table 8. Comparison of experimental and theoretical differential cross sections for electrons elastically scattered by neon (cross sections in units of a_{0}^{2}, angles in degrees and energies in eV).

		Experimental							Theoretical		
E	0	This work	$\begin{aligned} & \text { Arnot" } \\ & \text { (1931) } \end{aligned}$	Hughes and McMillen ${ }^{\text {b }}$ (1933)	Jost et al (1973)	$\begin{aligned} & \text { Bromberg } \\ & (1974 \mathrm{~b}, 1975) \end{aligned}$	Kurepa al al (1975 private communication)	Gupta and Rees ${ }^{1}$ (1975)	Fink and Yates" (1970)	Walker (1974 private communication)	Byron and Joachain (1974, 1976)
100	5	10.4		10.3	(11.3)		-		(2.98)	$4 \cdot 40$	143
	10	7.75		7.23	7.98		$9 \cdot 33$	8.18	2.80	4.06	$10 \cdot 1$
	20	4.15		$3 \cdot 28$	4.15		4.86	4.48	2.21	3.02	4.37
	30	2.11		1.75	2.11		$2 \cdot 70$	2.16	1.56	1.94	1.70
	40	$1 \cdot 10$		$1 \cdot 12$	$1 \cdot 12$		1.36	1.22	1.03	1.15	0.623
	50	0.633		0.530	0.622		0.786	0.679	0.645	0.675	0.240
15	5	9.57		13.3			-				
	10	6.78		7.39			6.89	7.11			
	20	3.21		2.96			2.75	3.32			
	30	1.50		1.50			1.38	1.54			
	40	0.715		0.773			0.679	0.771			
	50	0.361		0.417			0.357	0.382			
200	5	9.44	-			9.75	-	--		496	11.2
	10	6.20	6.01			6.42	6.68	6.32		435	7.07
	20	$2 \cdot 75$	3.76			2.82	$2 \cdot 64$	$2 \cdot 50$		2.67	$2 \cdot 68$
	30	$1 \cdot 20$	$1 \cdot 27$			1.17	0.983	1.19		1.35	0.992
	40	0.533	0.553			0.538	0.447	0.523		0.639	0.384
	50	0.273	$0 \cdot 287$			0.273	$0 \cdot 220$	0.285		0.324	0.177
300	5	8.63				8.95		-			9.52
	10	$5 \cdot 48$		$5 \cdot 62$		5.47		5.65			5.72
	20	2.19		1.97		$2 \cdot 12$		208			$2 \cdot 05$
	30	0.877		0.883		0.839		0.865			0.729
	40	0.383		0.354		$0 \cdot 368$		0.386			0.294
	50	0.203		0195		0.196		0.229			0153

Relative measurement, normalized to the present work at 400 eV and 24°; the data at 200 and 400 eV were actually measured at 205 eV and 412 eV respectively; numbers in parentheses are graphical interpolations between data measured at nearby angles.
${ }^{\text {b }}$ Relative measurement, normalized to the present work at 400 eV and 20
${ }^{c}$ Relative measurement, normalized to the present work at 20°; at 5° linearly interpolated between data at 4° and 6°.
${ }^{\text {d }}$ Relative measurement on He-Ne mixture, normalized by comparing with ebs theory of Byron and Joachain (1973b). * At 5° linearly interpolated between data at 4° and 6°.

400	5	$8 \cdot 21$	-	-	8.48
	10	4.97	-	6.51	$5 \cdot 16$
	20	1.84	(2.15)	1.84	1.86
	30	0.693	(0.574)	0.658	0.685
	40	$0 \cdot 301$	(0.287)	0.309	0.301
	50	$0 \cdot 166$	$(0 \cdot 157)$	0.153	0.165
500	5	7.51			7.87
	10	4.61			4.65
	20	1.60			1.56
	30	0.583			0.563
	40	0.247			0.246
	50	$0 \cdot 140$			0.138
1000	5	630			
	10	3.48			
	20	0.908			
	30	0.293			
	40	0.128			
	50	0.0684			

Table 9. Comparison of experimental and theoretical differential cross sections for electrons elastically scattered by argon (cross sections in units of a_{0}^{2}, angles in degrees and energics in eV).

		Experimental								Theoretical				
E	0	This work	Arnot ${ }^{2}$ (1931)	Webb ${ }^{\text {b }}$ (1935)	Jost et al ${ }^{\text {c }}$ (1973)	Bromberg (1974b)	DuBois and Rudd (1975)	Williams and Willis (1974, 1975)	Vusković and Kurepa (1975 private communication)	Fink and Yates ${ }^{\text {d }}$ (1970)	Walker Ex	$\begin{aligned} & 1971)^{e} \\ & \text { NEx } \end{aligned}$	Lewis et al (1974)	Joachain et al $(1975,1976)$
100	5	47.6		-			----	---	43.2	(17.6)	22.0		48.6	$59 \cdot 2$
	10	$28 \cdot 6$		$26 \cdot 9$			--	-	27.6	$15 \cdot 3$	18.8		33.9	34.5
	20	$9 \cdot 13$		9.13			8.33	11.2	8.79	8.73	$10 \cdot 4$		11.0	8.99
	30	2.87		$3 \cdot 60$			2.59	3.11	$2 \cdot 80$	$3 \cdot 65$	$4 \cdot 24$		$2 \cdot 52$	1.95
	40	0.899		1.55			0.815	0.890	0.886	$1 \cdot 14$	$1 \cdot 39$		0.668	$0 \cdot 549$
	50	0.327		0.770			$0 \cdot 284$	0.330	0.372	0.314	$4 \cdot 26$		0.294	0.289
150	5	$47 \cdot 1$		-				-	34.7				48.2	
	10	$23 \cdot 8$		23.8				-	21.7				30.0	
	20	6.65		6.65				5.80	6.43				$7 \cdot 47$	
	30	$1 \cdot 89$		2.47				1.82	1.84				$1 \cdot 43$	
	40	0.666		1.08				0.575	0.661				0.515	
	50	0.369		0.668				$0 \cdot 294$	$0 \cdot 379$				0.292	
200	5	$42 \cdot 6$			(50.7)	$41 \cdot 3$	-	-			23.3	$31 \cdot 2$	$45 \cdot 7$	48.5
	10	$21 \cdot 1$			21.4	20.7	-	-			17.7	$22 \cdot 3$	26.4	$24 \cdot 2$
	20	$5 \cdot 34$			$5 \cdot 34$	5.09	4.75	3.98			6.63	7.26	$5 \cdot 32$	5.09
	30	1.47			$1 \cdot 50$	-	1.27	$1 \cdot 34$			1.91	2.04	0.968	1.08
	40	0.609			0.641	-	0.532	0.510			0.797	0.852	$0 \cdot 461$	$0 \cdot 449$
	50	0-406			$0 \cdot 427$	-	0.361	0.313	.		0.536	0.587	0.278	0.294

[^1]As in the case of helium (also for neon) our results are in excellent agreement with the absolute data of Bromberg (1974b, 1975), all deviations being smaller than 5%. The recent absolute data of Gupta and Rees (1975) are in agreement with the present work to within 10%. There is less agreement with the absolute results of Kurepa et al (1975 private communication).

The preliminary relative measurement of Jost et al (1973 and private communications), normalized to the present work, shows good agreement in shape. The early relative data of Arnot (1931) and Hughes and McMillen (1933), also normalized to the present work, show reasonable agreement in shape for some energies.

The theory of Fink and Yates (1970) only agrees to some extent with experiment at higher energies, but fails completely at small angles for the same reason as discussed for helium (\$5.1). The relativistic exchange calculations of D W Walker (1974 private communication) at 100 and 200 eV show the same picture as Fink and Yates, far too small cross sections at small angles.

On the other hand, between 100 and 300 eV , the $a b$ initio optical model theory of Byron and Joachain (1974, 1976), including both exchange and polarization and absorption, overestimates the cross sections at small angles and underestimates those at larger angles. However, at 400 and 500 eV their calculation agrees reasonably well with the experiment of Bromberg and the present work for angles above 30° and even very well for angles below 30°.

5.3. Argon

For argon the situation is similar to that for neon. We are again in excellent agreement with Bromberg (1974b) who has up to now only Ar data available at angles below 25° (see table 9).

At 100 and 200 eV our results are systematically about 12% larger than the absolute data of DuBois and Rudd (1975), whereas at 500 eV they agree excellently. They report an experimental error of 12%.

Williams and Willis (1975) measured relative cross sections above 20° and obtained absolute cross sections by a phaseshift analysis of the relative distributions of electrons elastically scattered from resonant states in Ar. They quote experimental errors between 8 and 12%. Compared with the present work their data at 100 eV agree quite well at large angles but at larger energies their cross section values are substantially smaller than ours, showing besides different angular dependences.

The preliminary absolute results of Vusković and Kurepa (1975, private communication) at 100 and 150 eV are in excellent accordance with the present work except at 150 eV and 5° where their cross section is 26% smaller than ours.

The theory of Fink and Yates (1970) agrees quite well with experiment at 1000 eV . The relativistic non-exchange calculation of Walker (1971) yields better cross section values at small angles than his relativistic exchange calculation.

The calculations of Lewis et al (1974), at 100 and 200 eV , are based on the phenomenological optical model theory of Furness and McCarthy (1973), which contains three adjustable parameters and accounts for exchange, polarization and absorption. Lewis et al (1974) reported their calculations to be in good shape agreement with the relative measurements of the same authors. Compared with Bromberg's and the present experiment these calculations agree well at 5° but show in general too large values at the smaller angles and too small values at the larger angles.

The preliminary $a b$ initio optical model results of Joachain et al (1975, 1976 and private communication) show a considerably different slope compared to the present work. The optical model overestimates the cross section at smaller angles and underestimates it at larger angles.

5.4. Nitrogen

The comparison with the absolute data of Bromberg (1970) is limited to his energy range from 300 to 500 eV . The agreement is very good. The largest deviations are found at 20° and 40° where our cross sections are 5 to 11% larger than Bromberg's, but we have to take into consideration the experimental errors being about 4% for Bromberg and about 7% for the present work (see table 10).

Kambara and Kuchitsu (1972) report relative measurements between 50 and 500 eV , for each energy separately normalized to their relative cross sections at 30°. They estimate their experimental error to be about 10% for angles smaller than 20° and about 5% for angles between 20° and 50°. We have put their relative cross sections on an absolute scale by multiplying with our absolute cross section value at 30°. The overall agreement with both the present work and Bromberg is quite good. Their cross sections at angles below 10° tend to be too large. For 300 and 500 eV and 40° their cross section is better in agreement with Bromberg.

The relative measurement of Herrmann (1974 and private communication), carried out with the same apparatus as used by Jost et al, has been fitted to an independent atom model theory at 90°, using atomic scattering amplitudes of Fink and Yates. Herrmann's results show a similar angular dependence as found by Jost et al for the other gases, a too strongly forward peaked cross section in the small angle region. At angles larger than 20° the agreement in shape is very good.

The apparatus calibration factor f_{c}, as discussed in $\$ 3.4$, basically depends on the directly measured absolute differential cross section for N_{2} at 500 eV and between 5° and 9°, as described in $\$ 3.3$. Table 11 compares our directly measured absolute cross sections with the absolute cross sections obtained from our relative cross sections by applying f_{c}. In the same table we further compare with the absolute cross sections of Bromberg (1970) and with the relative cross sections of Kambara and Kuchitsu (1972). The latter relative values were normalized to the present absolute cross section value at $30^{\circ}: 1 \cdot 02 a_{0}^{2}$, which equals Bromberg's value at the same angle. In spite of the steep rise of the cross section towards small angles the agreement between the various results is extremely good. Table 11 illustrates the correctness of the calibration procedure used for making our relative cross sections absolute.

6. Apparent polarizabilities

In figure 2 we have made semi-logarithmic plots of $\mathrm{d} \sigma / \mathrm{d} \Omega$ against K, where K is the momentum transfer, ie the difference between the momentum of the incident electron and the momentum of the scattered electron, given by

$$
\begin{equation*}
K=\left(8 m E / \hbar^{2}\right)^{1 / 2} \sin \frac{1}{2} \theta=0.5422 E^{1 / 2} \sin \frac{1}{2} \theta(\mathrm{au}) \tag{20}
\end{equation*}
$$

where E is the impact energy in eV . In the plots for He, Ne and Ar we have also included the theoretical curve we obtained by calculating the simple first Born approximation which is a uniform function of K and thus independent of E. The atomic form factors for this calculation were taken from the International Tables

Table 10. Comparison of experimental differential cross sections for electrons elastically scattered by molecular nitrogen (cross sections in units of a_{0}^{2}, angles in degrees and energies in eV).

E	θ	This work	Arnot ${ }^{2}$ (1931)	Bromberg (1970)	Kambara and Kuchitsu ${ }^{\text {b }}$ (1972)	Herrmann ${ }^{\text {c }}$ (1973)
100	5	$61 \cdot 2$			(72.2)	114
	10	$35 \cdot 7$			39.2	62.2
	20	10.9			$10 \cdot 9$	17.0
	30	$3 \cdot 11$			$3 \cdot 11$	4.54
	40	$1 \cdot 18$			$1 \cdot 17$	1.64
	50	0.636			0.653	0.854
150	5	58.9				99.3
	10	$30 \cdot 9$				$50 \cdot 7$
	20	7.54				12.4
	30	1.99				3.21
	40	0.845				1.33
	50	$0 \cdot 548$				0.840
200	5	$54 \cdot 5$	-			98.3
	10	$27 \cdot 1$	19.6			44.7
	20	5.75	4.50			8.86
	30	1.57	1.53			$2 \cdot 32$
	40	0.778	0.794			$1 \cdot 16$
	50	0.516	0.574			0.793
300	5	47.0		47.0	(51.2)	$75 \cdot 8$
	10	21.6		21.0	$22 \cdot 4$	$32 \cdot 8$
	20	$3 \cdot 81$		3.63	3.69	5.36
	30	$1 \cdot 19$		$1 \cdot 16$	$1 \cdot 19$	1.69
	40	0.753		0.680	0.645	1.00
	50	$0 \cdot 406$		0.402	0.364	0.582
400	5	$42 \cdot 8$	-	$43 \cdot 6$		75.4
	10	18.1	$12 \cdot 1$	$18 \cdot 1$		28.8
	20	2.95	$3 \cdot 11$	2.73		$4 \cdot 11$
	30	1.09	1.43	1.08		1.62
	40	0.622	0.689	0.580		0.847
	50	$0 \cdot 296$	0.354	0.287		$0 \cdot 400$
500	5	$39 \cdot 6$		$40 \cdot 8$	(39.4)	57.9
	10	$15 \cdot 5$		15.5	16.8	21.4
	20	2.41		2.23	2.44	3.03
	30	1.02		1.02	1.02	1.33
	40	$0 \cdot 498$		0.450	0.454	0.582
	50	0.209		0.211	0.214	0.269
1000	5	29.9				$44 \cdot 7$
	10	8.01				$10 \cdot 8$
	20	1.50				1.98
	30	0.474				0.554
	40	$0 \cdot 176$				0.212
	50	0.0930				$0 \cdot 110$

[^2]Table 11. Comparison of absolute differential cross sections for the elastic scattering of electrons by N_{2} at 500 eV impact energy and angles between 5° and 9° (cross sections in units of a_{0}^{2}).

$\begin{aligned} & \theta \\ & (\mathrm{deg}) \end{aligned}$	This work		Bromberg (1970)	Kambara and Kuchitsu (1972) ${ }^{\text {c }}$
	Direct ${ }^{\text {a }}$	Using $f_{\mathrm{c}}^{\mathrm{b}}$		
5	39.8	39.6	$40 \cdot 8$	(39.4)
6	$33 \cdot 3$	$34 \cdot 2$	$34 \cdot 4$	$34 \cdot 2$
7	28.4	28.7	28.4	(29.1)
8	24.1	$23 \cdot 7$	23.4	24.0
9	19.5	$19 \cdot 2$	$19 \cdot 0$	(20.4)
Error ${ }^{\text {d }}$ (\%)	5	6	3	10

${ }^{\text {a }}$ Directly measured absolute cross section.
${ }^{\mathrm{b}}$ Relative cross section made absolute using the apparatus calibration factor f_{c}.
${ }^{c}$ Relative measurement, normalized to the present work at 30°; numbers in parentheses are linear interpolations between data at angles differing 2°.
${ }^{\text {a }}$ Experimental error as given by the author(s).

Figure 2. Absolute differential cross section for electrons elastically scattered by He, Ne, Ar and N_{2} plotted against momentum transfer at impact energies of $100(\mathrm{O}), 300(\square)$, $1000(\Delta)$ and $3000(\mathrm{eV})$; broken curve: first Born approximation.
for X-ray Crystallography (1962). The effect of exchange between atomic and incident electrons and the effect of charge-cloud polarization of the atoms by the incident electrons have not been included in this simple approximation. For sufficiently high energy this approximation is valid.

The helium plot (see figure 2) indeed confirms the validity of the first Born approximation for $E \geqslant 1000 \mathrm{eV}$ at all measured angles and within the experimental accuracy $(\sim 6 \%)$ (see also $\$ 5$ and table 7). For smaller E the curves deviate from the Born curve at small K, while the curves for the lower energies lie above those for the higher energies. This deviation from the uniformity in K is due to the increasing effects of electron exchange and charge-cloud polarization as E decreases. The polarization effect, as it is due to long-range interactions, will dominate in the region of small θ.

The plots for Ne, Ar and N_{2} (figure 2) show a K dependence completely different from that for He . Here the curves lie just in reversed order compared with He : the curves for the higher energies lie above those for lower energies. This behaviour for Ne, Ar and N_{2}, according to van Wingerden et al (1975), can be explained by a classical model for scattering. We note that the 3 keV curve for Ne approaches the Born curve at large K, whereas for Ar the Born limit is not yet reached at 3 keV . In contrast to He , the curves for each of the other gases tend to merge in the limit $K \rightarrow 0$.

The curves in the semi-logarithmic plots of $\mathrm{d} \sigma / \mathrm{d} \Omega$ against K show a very remarkable linear behaviour in the region of small K. This means that the cross section in that area can be described by the expression

$$
\begin{equation*}
\sigma(K)=\sigma_{0} \exp (-\beta K) \tag{21}
\end{equation*}
$$

where σ_{0} is the cross section at $K=0$ and β is the slope of the straight line in the semi-logarithmic plot of $\mathrm{d} \sigma / \mathrm{d} \Omega$ against K.

Previously Bromberg (1969b, 1970, 1974a) has found that in the case of $\mathrm{Hg}, \mathrm{N}_{2}$, $\mathrm{CO}, \mathrm{O}_{2}$ and CO_{2} for 300,400 and 500 eV the semi-logarithmic plots for each gas show a linear dependence on K and merge for $K<1$. From this uniform behaviour he concluded that a Born approximation might be valid in the limit $K \rightarrow 0 . \mathrm{He}$ derived that the quantities σ_{0} and β of (21) could then be related to an empirical effective long-range potential (Bromberg 1969b, 1974a):

$$
\begin{equation*}
V(r)= \pm \frac{2 C B}{\pi\left(r^{2}+B^{2}\right)^{2}} \tag{22}
\end{equation*}
$$

where $C=\sigma_{0}^{1 / 2}$ and $B=\frac{1}{2} \beta$. In the limit $r \rightarrow \infty$ (22) is identical in form to the polarization potential $-\alpha / 2 r^{4}$, where α is the apparent polarizability of the target. Based on Bromberg's model α is given by

$$
\begin{equation*}
\alpha=\frac{4 C B}{\pi} . \tag{23}
\end{equation*}
$$

For the energy region from 300 to 500 eV Bromberg found the ratio of apparent polarizability α over static polarizability α_{0} to be $0.51,0.97,1.03,0.96$ and 1.28 for respectively $\mathrm{Hg}, \mathrm{N}_{2}, \mathrm{O}_{2}, \mathrm{CO}$ and CO_{2}.

A detailed analysis concerning effective long-range potentials has been done by Huo (1972) who has shown the limitations of Bromberg's model, as well as that under certain conditions $\alpha \simeq 0.5 \alpha_{0}$ and under other conditions $\alpha \simeq \alpha_{0}$.

Table 12. Apparent and static polarizabilities for $\mathrm{He}, \mathrm{Ne}, \mathrm{Ar}$ and N_{2} (in units of a_{0}^{3}, errors, in brackets, in per cent).

$E(\mathrm{eV})$	He	Ne	Ar	N_{2}
100	$1.57(20)$	$3.09(20)$	$14.8(12)$	$17.9(7)$
150	$1.51(25)$	$2.88(20)$	$13.9(10)$	$16.6(10)$
200	$1.37(20)$	$2.82(18)$	$12.2(10)$	$15.6(10)$
300	$1.15(30)$	$2.62(16)$	$10.6(10)$	$13.5(10)$
400	$0.91(23)$	$2.48(10)$	$9.57(10)$	$13.3(10)$
500	$0.74(20)$	$2.26(8)$	$8.44(10)$	$12.6(10)$
$750 \dagger$	$0.57(10)$	$1.98(8)$	$7.77(10)$	$11.4(10)$
1000	$0.49(15)$	$1.88(8)$	$7.55(10)$	$11.2(13)$
2000	$0.49(20)$	$1.86(10)$	$7.40(10)$	$12.1(20)$
3000	$0.49(18)$	$1.78(10)$	$7.53(15)$	$12.7(35)$
Static \ddagger	1.46	2.69	11.0	11.9

\dagger For $\mathrm{He}: 700 \mathrm{eV}$.
\ddagger Landolt-Börnstein (1950).
The apparent polarizibilities obtained from our cross section measurements are listed in Table 12. The static polarizabilities α_{0} obtained from dielectric constants and refractive index measurements (Landolt-Börnstein 1950) are also shown in this table. α decreases with increasing impact energy and becomes a constant above 500 eV , where we find $\alpha \simeq \frac{1}{3} \alpha_{0}$ for $\mathrm{He}, \alpha \simeq \frac{2}{3} \alpha_{0}$ for Ne and Ar and $\alpha \simeq \alpha_{0}$ for N_{2}. We have $\alpha=\alpha_{0}$ for He at about 170 eV and for Ne and Ar at about 270 eV .

Acknowledgments

We are greatly indebted to Dr L Vriens for the basic design of the apparatus and to Mr R Ch Baas for writing the computer program. We are grateful to Professor F W Byron and Professor Ch J Joachain for the useful discussions concerning theory.

We would like to thank the various investigators for communicating their results prior to publication and for sending tabulated numerical data of their experiments or theories.

This work is part of the research program of the Stichting voor Fundamenteel Onderzoek der Materie (Foundation for Fundamental Research on Matter) and was made possible by financial support from the Nederlandse Organisatie voor ZuiverWetenschappelijk Onderzoek (Netherlands Organisation for the Advancement of Pure Research).

References

Arnot F L 1931 Proc. R. Soc. A 133 615-36
Baas R Ch and Jansen R H J 1975 Comp. Phys. Commun. to be published
Bannenberg J G and Tip A 1968 Proc. 4th Int. Vacuum Congress (London: The Institute of Physics and Physical Society) pp 609-12
Bannenberg J G, Saris F W and Tip A 1969 Ned. Tijdschr. Vac. Techn. 7 81-5
Bromberg J P 1969a J. Chem. Phys. 50 3906-21

- 1969b J. Chem. Phys. 51 4117-22
- 1970 J. Chem. Phys. 52 1243-7
- 1974a J. Chem. Phys. 60 1717-21
- 1974b J. Chem. Phys. 61 963-9
- 1975 J. Chem. Phys. to be published

Buckley B D 1974 PhD Thesis University of Manchester
Buckley B D and Walters H R J 1974 J. Phys. B: Atom. Molec. Phys. 7 1380-400
Byron F W and Joachain C J 1973a Phys. Rev. A 8 1267-82

- 1973b Phys. Rev. A 8 3266-9
- 1974 Phys. Lett. 49A 306-8
- 1975 FOM Report No. 37521
- 1976 Phys. Rev. to be published

Chamberlain G E, Mielczarek S R and Kuyatt C E 1970 Phys. Rev. A 2 1905-22
Crooks G B 1972 PhD Thesis University of Nebraska, Lincoln
Dillon M A and Lassettre E N 1975 J. Chem. Phys. 62 2373-90
DuBois R D and Rudd M E 1975 J. Phys. B: Atom. Molec. Phys. 8 1474-83
Fink M and Yates A C 1970 Atomic Data 1 385-456
Furness J B and McCarthy I E 1973 J. Phys. B: Atom. Molec. Phys. $62280-91$
Gupta S C and Rees J A 1975 J. Phys. B: Atom. Molec. Phys. 8 1267-74
Herrmann D 1974 Verhandlungen der DPG, Frühjahrstagung, Stuttgart (Weinheim: Physik-Verlag) p 413
Hughes A L, McMillen J H and Webb G M 1932 Phys. Rev. 41 154-63
Hughes A L and McMillen J H 1933 Phys. Rev. 43 875-82
Huo W M 1972 J. Chem. Phys. 56 3468-81
International Tables for X-ray Crystallography 1962 vol 3 (Birmingham: Kynoch Press) \& 3.3
Jansen R H J 1975 PhD Thesis University of Amsterdam
Jansen R H J and de Heer F J 1973 Proc. 8th Int. Conf. on the Physics of Electronic and Atomic Collisions, Belgrade (Belgrade: Institute of Physics) Abstracts pp 269-70
Jansen R H J, de Heer F J, Luyken H J, van Wingerden and Blaauw H J 1974 FOM Report No 35693
Joachain C J, Winters K H and Byron F W 1975 J. Phys. B: Atom. Molec. Phys. 8 L289-92

- 1976 J. Phys. B: Atom. Molec. Phys to be published

Jost K, Fink M and Herrmann D 1973 Proc. 8th Int. Conf. on the Physics of Electronic and Atomic Collisions, Belgrade (Belgrade: Institute of Physics) Abstracts p 277
Kambara H and Kuchitsu K 1972 Japan J. Appl. Phys. 11 609-16
Khare S P and Shobha P 1971 J. Phys. B: Atom. Molec. Phys. 4 208-14
Kurepa M V and Vuskovic L D 1975 J. Phys. B: Atom. Molec. Phys. 8 2067-78
Kuyatt C E 1968 Methods of Experimental Physics vol 7, ed L Marton, part A (New York: Academic Press) pp 1-43
Kuyatt C E and Simpson J A 1967 Rev. Sci. Instrum. $38103-11$
LaBahn R W and Callaway J 1969a Phys. Rev. 180 91-6

- 1969b Phys. Rev. 188 520-1

Landolt-Börnstein 1950 Zahlenwerte mad Funktionen vol 1 (Berlin: Springer-Verlag) \& 1 p 401 and \$3 p 510
Lewis B R. Furness J B, Teubner P J O and Weigold E 1974 J. Phys. B: Atom. Molec. Phys. $71083-90$ McConkey J W and Preston J A 1975 J. Phys. B: Atom. Molec. Phys. 8 63-74
Oda N, Nishimura F and Tahira S 1972 J. Phys. Soc. Japan 33 462-7
Purcell E M 1938 Phys. Rev. 54 818-26
Sethuraman S K, Rees J A and Gibson J R 1974 J. Phys. B: Atom. Molec. Phys. 7 1741-7
Simpson J A 1964 Rev. Sci. Instrum. 35 1698-704
Vriens L, Kuyatt C E and Mielczarek S R 1968 Phys. Rev. 170 163-9
Walker D W 1971 Adv. Phys. 20 257-323
Webb G M 1935 Phys. Rev. 47 379-83
Williams J F and Willis B A 1974 J. Phys. B: Atom. Molec. Phys. 7 L51--5

- 1975 J. Phys. B: Atom. Molec. Phys. 8 1670-82
van Wingerden B, de Heer F J, Jansen R H J and Los J 1975 Proc. in Honour of Ugo Fano, 1975, Stirling ed H Kleinpoppen and M R C McDowell (New York: Plenum Press)
Winters K H, Clark C D, Bransden B H and Coleman J P 1974 J. Phys. B: Atom. Molec. Phys. 7 788-98

[^0]: \dagger Present address: Waterloopkundig Laboratorium, Postbus 177. Delft, The Netherlands.

[^1]: ${ }^{\text {a }}$ Relative measurement, normalized to the present work at 20°; actually measured at an energy of 49 eV .
 ${ }^{\text {b }}$ Relative measurement, for each energy separately normalized to the present work at 20°; data at 500 eV were actually measured at 510 eV . Relative measurement, normalized to the present work at 20°; at 5° linearly interpolated between data at 4° and 6°. ${ }^{\circ}$ At 5° linearly interpolated between data at 4° and 6°
 e Ex: with exchange; NEx: non-exchange.

[^2]: "Relative measurement, normalized to the present work at 400 eV and 19°; numbers are graphical interpolations between data at nearby angles; data at 200 eV and 400 eV were actually measured at 205 eV and 410 eV respectively.
 ${ }^{\mathrm{b}}$ Relative measurement, for each energy separately normalized to the present work at 30°; at 5° linearly interpolated between data at 4° and 6°.
 ${ }^{\text {c }}$ Relative measurement, fitted to independent atom model theory at 90°, using atomic scattering amplitudes of Fink and Yates (1970).

