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Abstract. Milne’s approach to the numerical solution of the Schrodinger equation via a 
non-linear differential equation and the quantisation of a quantum action is investigated in 
detail. An accurate and efficient computational method is presented which allows a rapid 
second-order convergence onto a desired eigenenergy E,. Numerical sample calculations 
demonstrate the efficiency of the method, which has special advantages for accurate 
calculations of high quantum states. The present method can be easily extended to the 
calculation of quasi-bound levels at resonance (complex-valued) energies. 

1. Introduction 

The non-linear differential equation? 

has the interesting property, that a single solution w ( x )  of (1) can generate the general 
solution of the well known linear differential equation 

u”(x) + k2(x)u(x) = 0 (2) 

by means of 

U ( x )  = cw (x) sin( 1 ~ - ~ ( x ’ )  dx’ - b) (3) 

where c and b are arbitrary constants. 

fundamental set of solutions u~(x) and u*(x) of (2) 
On the other hand it is possible to write the general solution of (1) in terms of a 

w(x) = (Au:(x)+Bu~(x)+2Cul(x)u2(~))~’~ (4) 
where the constants A, B, C are related to the Wronskian W of u1 and u2 by 
A B  - C2 = W-’ (Eliezer and Gray 1976, Ray and Read 1979b, 1980). This connection 
between (1) and (2) has been discovered and rediscovered by various authors. In 
mathematics a short note by Pinney (1950) should be mentioned. Most work, however, 

t Sometimes the right-hand side of equation (1) is written as a 2 / w 3 ( x ) .  The additional factor a’ can easily be 
removed, however, by means of the transformation w ( x )  + a l ’ * w ( x )  and is omitted in the following. 
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can be found in physics, where two main research fields may be distinguished: quantum 
mechanics and classical dynamics of time-dependent harmonic oscillators. 

In quantum mechanics equation (2) appears as the celebrated Schrodinger equation 
with classical momentum 

P ( X )  =[2m(E - V ( X ) ] ” ~  ( 5 )  

( k ( x )  = p ( x ) / h ) .  Here the first reference is-as far as we are aware-an early paper by 
Milne (1930), who derived equation (1) as a starting point for the determination of the 
eigenvalues (see 5 2 of the present paper), which justifies the name ‘Milne’s equation’ 
for (1) used in the following. Equation (1) has been derived independently by Wilson 
(1930) and Young (1931, 1932). The method was used by Wheeler (1937) for the 
determination of scattering phaseshifts, he called it the ‘amplitude-phase method’. 
Plaskett (1953) and Ballinger and March (1954) applied Milne’s approach to an 
extended Thomas-Fermi model, Hecht and Mayer (1957) discussed Milne’s equation 
in connection with an extension of the WKB expansion, and Peacher and Wills (1967) 
used it for the numerical calculation of electron scattering factors. Milne’s original 
method for the determination of eigenvalues was used by Ezawa et a1 (1970) for the 
computation of eigenenergies for the symmetric double-well potential 

V ( X )  = -Ax2 + x4 ( A  > 0). 

More recently Newman and Thorson (1972a, b) developed a method for the numerical 
solution of the Schrodinger equation, which is closely related to Milne’s method (see 
also Wills 1974, Thorson 1974). Light and co-workers developed semiclassical 
approximations to bound-state problems (Starkschall and Light 1973, 1974) and the 
fermion density matrix (Light and Yuan 1973, Yuan and Light 1974, Yuan et a1 1974) 
via Milne’s equation; the application of Milne’s approach to multiple-well potentials as 
well as scattering problems was also investigated (Lee and Light 1974). These papers 
contain a number of useful results concerning Milne’s method. Very recently Killing- 
beck (1980) rediscovered Milne’s approach (with reference to Young’s articles, 
however) as an alternative to JWKB theory, and tried to stimulate further work on this 
subject. 

In classical mechanics the linear second-order differential equation (2) appears for 
instance as an equation of motion of a harmonic oscillator with amplitude U and 
time-dependent ‘frequency’ k ( x ) ,  where the independent variable x stands for the time. 
The study of time-dependent harmonic systems was greatly stimulated by the discovery 
(Lewis 1967a, b, 1968) of a family of exact dynamical invariants 

I = $ [ U 2 /  w 2  + (wu’  - w’u )2 ]  (6) 

where the function w is an arbitrary solution of the auxiliary equation (l), i.e. for a given 
function w the quantity I (the so called Lewis invariant) is a constant of motion. Various 
derivations and applications of the Lewis invariant have appeared in the literature in 
connection with Noether’s theorem (Lutzky 1978a, b, 1979a, b), time-dependent 
canonical transformations (Leach 1977, 1978, 1979, 1980), dynamical algebras 
(Korsch 1979, Kaushal and Korsch 1981) or by means of Ermakov’s technique (Ray 
and Reid 1979a, b, 1980) with reference to an early article by Ermakov (1880). It is 
interesting that the connection between the study of time-dependent harmonic systems 
and the Schrodinger equation is only rarely observed in the literature, with the 
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exception of the articles by Bitoun et al (1973) and Guyard and Nadeau (1976) as well 
as two articles by one of the present authors (Korsch 1979, Kaushal and Korsch 1981). 

The above list of references to the theory of Lewis invariants is far from being 
complete, further references can be found in the articles cited above. 

There are, of course, other problems in physics where the wave equation (2) appears 
and where Milne’s approach is used. We would like to mention the theory of wave- 
guides in electronics (see, for example, North 1979 and Hashimoto 1979). 

In the following we will refer to equation (2) as the Schrodinger equation and discuss 
the quantum mechanical eigenvalues and eigenfunctions. The translation to other 
fields in physics, some of which are mentioned above, is obvious, however. 

The aim of the present article is twofold; first we discuss Milne’s method in more 
detail than before in the literature. The method turns out to be a powerful tool for the 
determination of bound-state energies and wavefunctions, both for single-well and 
double-well potentials, especially for high quantum numbers. The second aim is to set 
the foundations for a new treatment of complex-valued resonance energies. This will 
be treated in a further paper. 

2. Milne’s differential equation and the quantisation condition 

Let w (x)  be an arbitrary solution of the Milne equation (1) with k ( x )  = p ( x ) / h  given by 
equation ( 5 ) .  The general solution of the Schrodinger equation (2) is then given by (3). 
In the following we concentrate on bound-state problems. In this case it is sufficient to 
consider real-valued solutions of the Schrodinger equation at real energies. An 
extension to quasi-bound levels at complex-valued energies will be given in a 
subsequent paper. We furthermore assume that the interval of interest is (-CO, +CO); an 
extension to (0, CO) as in the case of the radial Schrodinger equation is straightforward. 

At  a bound-state energy E,, the wavefunction must satisfy the boundary conditions 
4(&CO) = 0. We observe first that w ( x )  can never be zero on the real axis (there may be 
zeros, however, in the complex plane). This is evident, for instance, from equation (4), 
where the radicant is a quadratic form of the independent solutions u1 and u2. The 
existence of non-trivial zeros of (4) (ul(xo) = uz(xo) = 0 is forbidden, because u1 and uz 
are independent) is determined by the vanishing of the determinant of the coefficient 
matrix, which is AB - C 2  = W-’ (i.e. the Wronskian of u1 and uz)  which is also 
forbidden. In order to satisfy the boundary conditions at infinity, we must therefore 
have 

i o 0  I-, w-’(x) dx = ( n  + 1 ) ~  n = 0 ,1 ,2 ,  . . , (7) 

which is Milne’s quantisation condition for the energy levels E,,. From equations (3) 
and (7) it is furthermore evident that n represents the number of nodes of the 
wavefunction. It should be stressed that there are no boundary conditions on w(x), and 
that the integral also exists for energies different from E,,. The wavefunction (3) is 
independent of the particular choice of w(x), i.e. the initial conditions w(xo) and w’(xo) 
at some point xo. The same is true for the quantisation condition (7). From the 
computational point of view it is desirable for w (x) to show smooth behaviour. This can 
be achieved by choosing classical initial conditions for w ( x ) .  In order to discuss the 
behaviour of w ( x )  in more detail and to obtain more insight into the concept it is useful 
to consider the semiclassical limit of Milne’s equation. 
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The extreme semiclassical limit ( h  + 0) of Milne’s differential equation (1) can be 
obtained by neglecting w”(x) in equation (1) completely. In this case we obtain 

w ( x )  = k(x)-ll2 

w-2(x) -k(x) (86) 

or 

which is valid only in the classically allowed region and breaks down at the classical 
turning points. In this approximation the wavefunction (3) agrees with the WKB 
wavefunction in the classically allowed region and the quantisation condition (7) is 
almost identical with the celebrated WKB quantisation condition 

k(x) dx = ( n  +;)T n = 0 ,1 ,2 ,  . . . (9) 

(the missing 7r/2 accounts for the contribution from the classically forbidden regions). 
For the case of a single turning point at XT a uniform semiclassical approximation 

valid on the whole x axis can be obtained by using the differential equation 

~ ” ( t )  + Z M ( Z )  = ( T 2 ~ 3 ( ~ ) ) - ’  (10) 

(Abramowitz and Stegun 1965, equation (10.4.75)) as a comparison equation. A 
solution of (10) is the modulus of the Airy functions 

M ( z )  = [Ai2(--z) +B~’(--Z)]’’~. (1 1) 

Mapping the solutions of the differential equation (1) onto the known solutions of 
(10) one obtains in the usual way (see, for example, Berry and Mount 1972, 9 4) the 
mapping equation 

S ( x )  = IX: ( - k 2 ( x ’ ) ) ’ / 2  dx’ = $t3/2 (12) 

(classically allowed region x G xT), and the uniform approximation to w (x) is 

Using two single turning point approximations (13) to the w functions and matching 
the wavefunctions u(x) and their derivatives at the mid-phase point xm defined by 

X Z  lx; k(x) dx = IXm k(x) dx 

one regains the modified WKB quantisation formula derived by Miller (1968). In 
addition it should be noted that a two-turning-point uniformisation is possible (see also 
Lee and Light 1975). Returning to equation (13) and using the asymptotic approxima- 
tions for the Airy functions one obtains from (13) the primitive semiclassical approxi- 
mations 
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I , 

The semiclassical approximation justifies the notions of the quantum momentum (Lee 
and Light 1974) P(x)  = K(x)h  with 

K(x)  := w-2(x) (15) 
(also called local momentum (Young 193 1)). 

It should be noted, however, that the quantum momentum P(x)  depends on the 
initial conditions chosen for the solution of Milne’s equation (1). In the following we 
will always choose classical initial conditions for w(x) 

I I 

w(x0) =K-1’2(Xo) = P 2 ( X o )  

w’(x0) = - ~ K - ~ / ~ ( x ~ )  K ‘ ( X ~ )  = o 

0 5.- 

I 

a= 

- 0 5 -  -0 5-  
I 

where xo is the location of the minimum of the potential. Here we assume that the 
potential has a single minimum. The complications arising for double- or multiple-well 
potentials are discussed in § 4. The choice (16) leads to a very smooth behaviour of 
w ( x ) ;  other choices have also been tried and shown to produce much more complicated 
behaviour of w (x). 

Figure 1 shows an example of the quantum momentum P(x)  for a Morse potential 

V(X) = D[exp(-cYx) - 112 (17) 

with units chosen such that m = h = 1 and D = 5 ,  cr = 1/v%. P(x)  was calculated by 
solving Milne’s differential equation (1) numerically (see below), starting with classical 

I 
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initial conditions (16) at the minimum of the potential and integrating to both sides 
( x + f m ) .  The energy was fixed to the exact bound-state energy E,, = 
( n  +i)- 0.05(n + $ ) z  for n = 0 and 3. Also shown in figure 1 are the primitive semiclas- 
sical approximations (14) in the classically allowed and forbidden regions. The lower 
panel in figure 1 shows the corresponding wavefunctions (3), which show an oscillating 
behaviour ( n  > 0) contrary to the smooth decay of the quantum momentum P(x) .  This 
is especially useful for large quantum numbers, where U,, (x) oscillates very rapidly. 

The quantisation condition (7)-rewritten in terms of the local momentum K(x)  
and the quantum number function N(E)- 

I r+O0 

N ( E ) = I J  K ( x ) d x = n + l  n = O ,  1 , 2 , .  . . 
7T -a 

states that at a bound-state energy the area under the K(x )  curve is quantised. The 
close relationship between (18) and the WKB quantisation condition 

1 x 2  NWKB(E) =- k(x) dx +$= n + 1 
X I  

should be noted. The term $ in (19) accounts for the contribution of the classically 
forbidden regions outside the classical turning points XI,  x2 and for the difference 
between the classical and quantum momentum. 

Introducing the quantum action 

@(x, E) = jx: K ( x ’ )  dx’ 

where xo is taken as the location of the potential minimum, and the right-hand and 
left-hand action integrals 

1 
N,(E) =; K(x’) dx’. 

Equation (1 8) reads 

N ( E )  = N+(E) -N-(E) = IZ + 1 n = 0, 1 ,2 ,  , . , (22) 

and the bound-state wavefunction (3) is 
r x  

Cn u,(x) ==sin J K(x‘) dx’. 
JK(x) -m 

Note again the similarity to the WKB wavefunction. 

the density of states, i.e. the energy derivative of N ( E ) .  Using 
For numerical applications (see 0 3) it will be useful to have explicit expressions for 

aK(Xo) sin 2@(x, E )  (24) sin2(@(x‘, E )  - @(x, E)) +--- ~ 

a@(x,E) 2m dx’ -_ 
f i 2  Jx0m 2 K ( ~ o )  aE 

- 
aE 

(Yuan et a1 1974 appendix A, see also Ezawa et a1 1970) and the classical initial 
conditions (16) at xo we find 
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and 

At a bound state the contributions from the second term in equation (25) vanishes and 
we have 

i.e. we have a direct relation between the normalisation constant of the wavefunction 
and the bound-state density 

The semiclassical equivalent of (28) has been derived by Froman (1978) using phase- 
integral methods. 

3. Computational method and numerical results 

Numerous techniques can be found in the literature for solving the Schrodinger 
equation. We would like to mention matrix methods, where the boundary value 
problem of the Schrodinger equation is replaced by a matrix eigenvalue problem by 
means of expansion into a complete set of basis functions (see, for example, Shore 
1973). Other non-iterative methods are the finite differences method (Truhlar 1972) 
and the finite element method (Malik et a1 1980). Another type of method is the 
‘shooting’ method, where an initial estimate for E, is systematically refined. The most 
prominent and efficient method is the Numerov-Cooley technique integrating in two 
directions (in and out) with a matching procedure (Cooley 1961, Cashion 1963) or in 
only one direction (an improvement) (Hajj et a1 1974, Le Roy 1979, Hajj 1980, Talman 
1980). Killingbeck (1977,1979) integrates also in only one direction and uses a simpler 
integrating formula, 

The present method is of the second type, and similar in spirit to the work of 
Newman and Thorson (1972a, b); the method is more efficient than the Numerov- 
Cooley technique, especially for high quantum numbers. 

The numerical technique proposed in the present paper is based on the numerical 
integration of Milne’s equation (1) instead of the Schrodinger equation (2). The 
advantages are as follows: (i) w (x) is slowly varying contrary to u(x), which is especially 
important for high quantum numbers; (ii) a simple second-order scheme for con- 
vergence onto the desired eigenstate is available. 

Milne’s differential equation is solved numerically starting at the minimum of the 
potential at xo and integrating separately to the right-hand and left-hand sides. The 
numerical integration of the non-linear differential equation (1) presents no additional 
difficulties. In our calculations we used a predictor-corrector method suggested by 
Milne (1933). For convenience a brief description of the method is given in the 
appendix. It should be noted, however, that the algorithm uses an equidistant set of 
integration points, which is kept fixed during the calculation, so that the values of 
the potential required need to be calculated only once. Along with w ( x )  = K-”2(x )  
the integrals (21) for N+ and N -  are evaluated using Simpson’s rule as well as the 
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derivatives aN+/JE and aN-/aE via equation (25). For symmetrical potentials we 
make use of the symmetry relation N- = -N+. The evaluation of aNJaE requires the 
intermediate storage of K ( x )  and U ( x )  at the (equidistant) integration points (which are 
few, however, because of the smoothly varying behaviour of w ( x )  and K ( x ) ) .  It should 
be noted, however, that the integrand in (25) is oscillatoryfor higher quantum numbers, 
so that a very accurate integration of (25) would require roughly the same number of 
integration points as the numerical integration of the Schrodinger equation. The level 
density aN/aE is, however, only an auxiliary quantity, which speeds up the iteration 
procedure to locate a bound-state energy. It is therefore not at all necessary to calculate 
aN/aE with the same precision as N ( E ) .  In all our calculations the simple trapezoidal 
rule turned out to be accurate enough. An alternative procedure would be the use of a 
linear interpolation 

aNIaE = (N(E2) -N(E1))/(E2 -El ) -  
This, however, requires two integrations of the Milne equation per step and was found 
to be significantly slower. The final computational procedure is straightforward: 

(i) Calculate N ( E )  at various (typically three) trial energies which span roughly the 
energy region of interest and solve the linear equations 

E,(N,) = alN, +aZN: +a3N; (v = 1 , 2 , 3 )  

for a, (the energy is measured from the potential minimum). 
(ii) In order to locate a desired bound state E, a trial energy is calculated from 

E ( N )  = alN + a2N2 + a3N3 (29) 

w i t h N = n + l .  
(iii) For this trial energy E, Milne’s equation is solved and N ( & )  and aN/aE are 

calculated followed by a Newton iteration to converge on the desired solution of 
N(E,)=n +1. The convergence is of second order. Typically 3-5 iterations are 
sufficient to calculate an energy eigenvalue with a relative accuracy of lo-’, even for a 
rather crude initial guess. 

The computation scheme proved to be very fast and efficient for all the test 
calculations which were performed. Some sample calculations will illustrate the 
method. 

Figure 2 shows the quantum number function N ( E )  as a function of the energy for 
the harmonic oscillator (m = ti = w = 1) and the Morse oscillator (17). Also shown are 
the state densities D ( E )  = aN/aE. The bound-state energies E, satisfying N(E,) = 
n + 1 are marked. It may be interesting to note that the exact quantum number function 
N ( E )  does not agree with the semiclassical NWKB(E) ,  (1 9), in both cases at all energies, 
in spite of the fact that the semiclassical quantisation (19) gives the correct energy 
eigenvalues for these potentials, i.e. we have N(E,)  = NWKB(En).  For other energies 
N ( E )  oscillates about NWKB(E) .  

In order to demonstrate the convergence behaviour of the Milne method in more 
detail table 1 shows the dependence of the calculated bound-state energy on the 
number of integration points in comparison with the numbers obtained by the Cooley 
technique (Cooley 1961). The potential is a Morse potential (17) with the same 
parameters used by Cooley (1961) as a fit to the H: potential energy curve. To obtain 
the results shown in table 1 we used a fixed integration region (-1.3 < x < 1.9) for n = 0 
and (-1.3 < x  < 2.6) for n = 3 and varying numbers of integration points. It is obvious 
that the present method gives very precise results using only a few integration points 
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Figure 2. Quantum number function N ( E )  (full curves) for the harmonic and Morse 
oscillators. The bound-state energies E,, satisfying N(E,)  = n + 1 are marked. Also shown 
is the level density D ( E )  = aN/dE (broken curves). 

Table 1. Dependence of eigenvalues Eo, E3 on the number of integration points. 

Number of 
integration 
points 

50 
100 
150 
200 

Exact 

EO E3 

Cooley (1961) This work Cooley (1961) This work 

-178.810 52 -178.796 58 -126.833 00 -126.278 16 
-178.799 24 -178.798 48 -126.319 18 -126.288 03 
-178.798 66 -178.798 53 -126.29441 -126.288 39 
-178.798 57 -178.798 54 -126.290 31 -126.288 43 

-178.798 54 -126.288 44 

even for the ground state, which is the most favourable state for the Cooley method. For 
higher quantum numbers the present method is even more superior. Table 2 demon- 
strates for the same potential the fast second-order convergence onto an eigenstate, 
starting with a rather bad initial guess. Each iteration step is very fast (the calculation of 
the potential is only required once in the beginning) and we anticipate a significant 
decrease of computation time compared with Cooley’s method. 

As a final example we choose the octic oscillator V ( x )  = i x 8  ( m  = h = 1). Figure 3 
shows the quantum number function N ( E )  up to N = 21, the lowest 21 bound-state 
energies are marked. For this type of potential the N ( E )  function increases mono- 
tonically for E + CO with decreasing slope, i.e. increasing level spacing. 

Figure 4 demonstrates the relatively small number of integration points for the case 
n = 19; 99 points were used equidistantly spaced on the x axis with a spacing of 
Ax = 0.05. The energy eigenvalue obtained in this way E19 = 133.89335, is in good 
agreement with the ‘exact’ value of E I 9  = 133.89228 computed with a smaller step 
length Ax. The smooth behaviour of K ( x )  is obvious from figure 4, in sharp contrast to 
the rapid oscillatory behaviour of the wavefunction u19(x). It should be noted, finally, 
that the calculated wavefunction (23) is automatically normalised by means of equation 
(28). 
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Table 2. Successive iterates obtained with poor first estimates on Eo (200 integration 
points). 

Eo 
Number of 
iterations Cooley (1961) This work 

1 
2 
3 
4 
5 
6 
7 
8 
9 

Exact 

-168.800 00 -168.800 00 
-168.450 00 -177.782 83 
-170.700 20 -178.763 72 
-172.904 49 -178.798 4 9  
-176.702 14 -178.798 54 
-178.624 20 
-178.797 03 
-178.798 56 
-178.798 57 

-178.798 54 

E 

Figure 3. As figure 2 for the octic oscillator V ( x )  = f x 8  ( m  = h = 1).  Note the different 
scales for N ( E )  (full curve) and aN/aE (broken curve). 

‘ A  more careful numerical analysis of the dependence of the energy eigenvalues on 
the steplength Ax showed that the calculated & ( A x )  relates to the true E, as follows 
(see Killingbeck 1977, 1979) 

E,(Ax)==E, + A ( A x ) ~  (30) 

for sufficiently small values of Ax.  Numerically, it was found that the present method 
has N = 5 (the Numerov-Cooley method has N = 4 (Killingbeck 1979)). Equation (30) 
can b e  used to obtain E, by extrapolation from the larger step length results, thus 
avoiding the most time-consuming ‘smallest’ Ax computation. 
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Figure 4. Wavefunction u, (x )  for the octic oscillator V ( x )  = 4 x 8  ( m  = h = 1) and quantum 
number n = 19. Also shown are the quantum momentum function K ( x )  (broken curve) and 
the potential (thin full curve). Note that K ( x )  is quantised,according to N(E,)= 
jTz K ( x )  dx = n t 1. Note also the smooth behaviour of K ( x ) .  The points used in the 
calculations are marked by dots. 

4. Double-minimum potentials 

Potentials containing double (or multiple) wells typically present many more difficulties 
in numerical studies than do single-well potentials (see, for example, Chan and Stelman 
1963, Wicke and Harris 1976, Bohmann and Witschel 1979, Talman 1980). In 
addition there are only a few analytic double-minimum potentials, which can be treated 
in closed form (Morse and Stuckelberg 1931, Manning 1935, Razavy 1980). 

The present method, described above, also leads to rather serious difficulties if it is 
applied naively to double-well potentials-at least for energies below the central 
maximum of the potential. Nevertheless it has been used successfully for the potential 
V ( x )  = - h x 2 + x 4  (Ezawa et a1 1970). 

The difficulties are due to the simple fact that one cannot find a quantum momentum 
function (i.e. initial conditions for the numerical integration of the Milne equation (l)), 
which is slowly varying on the whole x axis. If one starts the integration with classical 
initial conditions (16) in one of the wells, the w ( x )  function is oscillating (and typically 
small) in the second well. This leads to numerical instabilities of the quantum number 
function N ( E ) ,  unless one chooses a very small step length for the numerical integration 
of (l), but which destroys the appealing simplicity and efficiency of the method. To 
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demonstrate the behaviour we performed some sample calculations for the harmonic 
oscillator with a Gaussian barrier 

V(X) = $x2 + 9 exp(-x2) (31) 

(m = rZ = l), which has been studied by Chan and Stelman (1963). Figure 5 shows the 
N ( E )  function for a step length of Ax = 0.002. The integration was started at the 
minimum of the potential on the positive x axis and continued separately towards the 
positive and negative x direction. One observes an unstable behaviour of N ( E )  below 
the barrier VB = 9. In the limit Ax + 0 the instabilities are smoothed out and the ‘true’ 
N ( E )  function is obtained. The N ( E )  function clearly shows the typical appearance of 
the eigenvalue as pairs, where N ( E )  suddenly jumps by one. This behaviour closely 
resembles the energy dependence of scattering phaseshifts at a resonance. 

E 

Figure 5. Quantum number function N ( E )  for a double-well potential (30). N ( E )  shows 
numerical instabilities (thin curve), which are  only tamed by choosing extremely small step 
lengths of integration (bold curve). The bound-state energies satisfying N(E,)  = n +$ are 
marked by dots, V,  denotes the height of the central potential barrier. 

It has thus been demonstrated that the Milne method in its simple form is capable of 
calculating double-well bound-state energies though the efficiency for single-well 
potentials is lost. Alternatively one could start the integration procedure at the central 
maximum of the potential (this was done by Ezawa et a1 1970). For energies above the 
threshold one could again use the classical initial conditions (16). This procedure was 
found to work well for energies considerably above the potential barrier, but for lower 
energies we again found an oscillatory behaviour of the quantum momentum. This 
behaviour is demonstrated in figure 6 for the potential (31) and quantum state n = 8, 
which is the first state above the barrier (EE = 10.12 > V, = 9). One observes that K ( x )  
agrees with the classical momentum k(x) in a small region at the origin and starts to 
oscillate. In this calculation the rather small integration step length of Ax = 0.01 has 
been used to obtain a converged energy eigenvalue of EE = 10.122 34. 
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A simple and appealing modification of the Milne method, which regains efficiency 
has been suggested by Lee and Light (1974); it has, however, apparently never been 
applied practically. In this modification, the integration is started separately from both 
potential minima, and the wavefunctions (3) are matched at an intermediate point, 
which can be taken as the location of the central maximum of the potential. This leads 
to a modification of the quantisation condition. For simplicity we restrict ourselves to 
symmetric potentials with a maximum at x = 0. Defining 

l o  R ( E )  = - I K ( x )  dx 
7r --CO 

and 

(33) 
1 

S ( E )  = -- cot-'(K'(0)/2K2(0)) 
7r 

we obtain different quantum number functions for symmetric ( S )  and antisymmetric (A) 
eigenfunctions 

Ns(E) = N ( E )  + S ( E )  

NA(E) = R ( E )  
(33) 

with the quantisation condition 

NS,,(E) = n + 1. (34) 

A similar result can be obtained for non-symmetric potentials (see Lee and Light 1974). 
In the interval (-CO, 0) K ( x )  is slowly varying, as in the case of a single-well potential. 
The correction term S(E)  is very small for energies far below the barrier and increases 

X 

Figure 6. Classical momentum k ( x )  (- - - -) and quantum momenta K ( x )  for the symmetric 
double-well potential (31) and eigenstate M = 8 ( E ,  = 10.12, which is just above the 
potential barrier V, = 9). Two initial conditions for the calculation of K ( x )  are compared: 
classical starting conditions (16) at the central maximum (- - ) and at one of the potential 
minima (-), 
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E 

Figure 7. Modified quantum number functions for symmetric (Ns)  and antisymmetric (NA)  
states of the double-well potential (31). The bound-state energies are marked by dots. The 
inset shows the rapid increase of S(E)  = Ns(E) -NA(E)  on an enlarged scale. 

Table 3. Double-well eigenvalues for the harmonic oscillator with Gaussian barrier (30). 
The results of the present method are compared with the numbers calculated by Chan and 
Stelman (1963), who used an expansion into basis functions. 

Chan and Stelman (1963) 

n 20 basis functions 40 basis functions Present work 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 

3.075 40 
3.078 51 
5.138 37 
5.164 38 
6.971 47 
7.098 51 
8.576 48 
8.968 53 

10.124 0 
10.825 5 
11.831 4 
12.696 4 
13.663 2 
14.591 6 
15.565 0 
16.521 2 
- 
- 
- 
- 

3.075 40 
3.078 51 
5.138 30 
5.164 37 
6.971 40 
7.098 40 
8.576 21 
8.967 88 

10.122 3 
10.824 2 
11.829 8 
12.695 5 
13.661 9 
14.589 7 
15.551 7 
16.504 6 
- 
- 
- 
- 

3.075 395 
3.078 507 
5.138 300 
5.164 373 
6.971 396 
7.098 398 
8.576 210 
8.967 876 

10.122 34 
10.824 22 
11.829 80 
12.695 54 
13.661 91 
14.589 72 
15.551 72 
16.504 57 
17.470 54 
18.435 54 
19.406 53 
20.378 63 
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to 4 for E + CO, with a steep rise in the vicinity of the barrier E = VB. Setting 1 = 2n for 
symmetric and 1 = 2n + 1 for antisymmetric states we recover for E + CO the single-well 
quantisation condition N ( E )  = 2iif = 1 + 1. 

The quantisation condition (33) was solved numerically by the methods described in 
§ 3; the derivative of K ’ ( x )  at x = 0 in equation (32) was computed by numerical 
interpolation. Test calculations for model potentials, which can be solved in closed 
form (Manning 1935, Razavy 1980) reproduced the exact eigenvalues to any desired 
accuracy. A sample calculation for the potential (31) is shown in figures 6 and 7. Figure 
6 shows the quantum momentum K ( x )  for the present method (starting at the potential 
mihimum) for the eigenstate n = 8. K ( x )  is very smooth and closely follows the classical 
momentum k ( x ) ,  in contrast to the oscillatory behaviour of K ( x )  for different initial 
conditions (starting the integration at the central maximum) as discussed above. The 
NS,*(E) functions are slowly varying in contrast to N ( E )  (compare figure 5 ) .  The inset 
of figure 7 shows the correction S(E)  on an enlarged scale. S(E)  increases from 0 to 0.5 
as the energy passes the barrier VB. The eigenvalues obtained in this manner are given 
in table 3 in comparison with the results of Chan and Stelman (1963). 

Table 4. Some ground-state (n = 0) eigenvalues for the Hamiltonian - A +  r 2  + r-O1 obtained 
by Killingbeck (1981) and reproduced exactly by the present Milne method. The bracketed 
results are those of Detwiler and Klauder (1975). 

A a = 4  a = 6  
~~~~ 

0.01 3.205 07 (3.205 27) 3.505 45 (3.505 74) 
0.005 3.148 35 (3.148 39) 3.422 88 (3.423 02) 
0.0025 3.106 81 (3.106 70) 3.353 92 (3.353 95) 

5. Conclusions 

The results presented here demonstrate that the Milne method offers a powerful tool 
for the calculation of bound-state energies. In addition, it is obvious that the Milne 
approach leads to rather interesting aspects of semiclassical approximations. Work 
along these lines is currently proceeding. The most remarkable finding, however, is the 
fact that the present method can be extended to the calculation of complex-valued 
resonance energies in a straightforward manner. This will be the topic of a subsequent 
paper?. 
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t As a further check of our method we have recently rechecked some eigenvalues obtained by Detwiler and 
Klauder (1975) for the Hamiltonian -A2 + r 2 +  Ar-” (0 < r < CO) using Ezawa’s program (Ezawa et a1 1970). 
Their results have recently been questioned by Killingbeck (1981), who obtained different values. Our Milne 
method calculation identically reproduced Killingbeck’s results, which are given in table 4. 
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Appendix 

Milne’s differential equation (1) can be conveniently solved numerically by a predictor- 
corrector method for the numerical solution of the non-linear second-order differential 
equation 

(Milne 1933). For convenience we give a brief description of the numerical techniques 
which are due to Milne (1933) (for a modern presentation see Lambert (1973) in 
particular ch 9). We assume equidistant integration points x,, i = 0, 1, 2, . . . , with 
spacing Ax = x , + ~  -x,. Let us assume that y, = y(x,) is already known at j = i -3 ,  i -2,  
i - 1, i. Y , + ~  is then predicted by 

y I + i = y z  + ~ [ - 2 - ~ ~ - 3 + ( A ~ ~ / 4 ) ( 5 f ,  +2f,-i + 5 f 1 - 2 )  64.2) 

y ,+ i  = 2yI -yI- i  + (A2x/12)(f1+i + 10fl + f l - i )  

and-after calculation of f,+l = f ( ~ , + ~ ,  y,+l)-corrected by 

(A.3) 

followed by another calculation of f,+l. These equations are then iterated. If more 
values of y, are known, it is worthwhile to use the more accurate higher order formulae 

y I + l  = yI + ~ ~ - 4 -  y,-s + (A2x/48)(67f, - 8fi-i + 122fl-2 - 8 f , - 3  + 67fl-4) (A.4) 

for prediction and 

y,+1 = y ,  +yI -2 -y , -3+(A2~/240) (17f ,+~+232f ,  +222fl-1+232f,-2+ 17L-3) 

for correction instead of equations (A.2) and (A.3). 

Expanding the solution y (x) of the Milne equation (1) 

(A.5) 

In order to start the iteration via (A.2) and (A.3) we have to know the initial values. 

y‘l+ k2(x)y = y-3 (A.6) 

to fifth order about the potential minimum xo 

Y = C AV(x-xo) ’  
5 

U = O  
(A.7) 

calculating y”(x) and expanding k2(x) we obtain by comparison of the coefficients (we 
use classical initial conditions (16)) 

These values are used in (A.7) to calculate yi at the four initial points xi = xo +iAx for 
i = -1, 0, 1, 2. We use (A.2), (A.3) until y i  is available at six points, then we switch to 
the more precise expressions (A.4) and (AS).  
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