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Abstract. In this paper the authors’ recently developed non-perturbative open-shell theory 
is adapted for ‘direct’ evaluation of ionisation potential and excitation energies. Separating 
the ‘core’ contribution from the ‘valence’ part through the use of a multiple-cluster-expan- 
sion operator, the method provides a systematic way of including various core-valence 
interaction and core relaxation components. HF orbitals have been used as the basis 
for facilitating detailed comparison of the method with perturbative and propagator tech- 
niques. It has been shown that the method encompasses all the important second-order 
contributions of the latter formalisms and certain other classes of diagrams in a compact 
manner. An application to a simple 4n electronic problem is discussed to illustrate 
how this method works for real systems. 

1. Introduction 

Many theories have recently been put forward for calculating the ionisation potential 
(IP) and excitation energies (EE) of atoms and molecules which successfully avoid 
the inadequacies of the usual configuration-interaction (CI) procedure. Among these, 
the propagator techniques (see, e.g. Linderberg and Ohrn 1973, Csanak et a1 1971, 
Paldus and Cizek 1974) have the interesting feature that knowledge of the individual 
energy levels is not required and the quantities of interest emerge directly. Simul- 
taneously, attempts have been made (Malrieu et al 1967, Kvasnicka and Hubac 1974) 
in which perturbation expansions of both the energy levels are found relative to 
each other. Consequently, the error sources cancel because the energy of one state 
comes out exactly in terms of that of the other. The difference is then obtained 
simply by dropping the common terms of the two energy expansions. 

Based on our recent non-perturbative approach (Mukherjee et al 1975a, b to be 
referred to as I and I1 respectively) for open-shell systems, we propose in this paper 
a method for calculating the IP and EE of atoms and molecules. The basic objective 
of the work is to explore the extent to which our non-perturbative open-shell formal- 
ism may be looked upon as a ‘direct’ method for calculating the IP and EE, paralleling 

Q Part of the paper presented at the National LJGC Symposium on Theoretical Chemistry held in Bombay, 
December 1977. 
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the features of the propagator and perturbation approaches mentioned above. In 
an earlier paper (Mukherjee et a1 1977a, to be referred to as 111) we employed a 
single-cluster-expansion operator exp( T )  for describing all the states of interest 
required to calculate the IP or EE, and it was shown that the contribution from 
the largest common closed-shell part of all the states vanishes when differences in 
energies are taken. If the ground state of the system is closed-shell, then we could 
choose the ground state Hartree-Fock (HF) configuration itself as the vacuum state, 
and then we would like to have a theory in which the energy part, common to 
all the states of the system, is just the exact ground state energy. This would lead 
to expansions for IP or EE, in which the different terms may be identified as corrections 
to the values of the corresponding quantities in H F  theory. Furthermore, we want 
to decouple the calculation of core correlation from the core-valence interaction 
in the excited/ionised state and core relaxation effects, and this would be achieved 
through the use of a product of cluster-expansion operators for the generation of 
excited or ionic states. The resulting formalism is akin in spirit to the perturbative 
formalisms, and allows systematic inclusion of the various important interactions. 
The most important point is that our formalism includes in a natural way the effect 
of a class of important diagrams for which no well defined algebraic series can be 
found. 

In $2 we outline the formalism as adapted for the present purpose, while for 
the details of diagrammatics and proof of the linked-cluster nature of the diagrams 
we refer to I, I1 and 111. In $3, a 4n: electronic system, the transbutadiene molecule, 
is considered for which we estimate the vertical ionisation potential and the n-n* 
singlet and triplet excitation energies by using the formalism. Section 4 is devoted 
to  a brief comparative study of our theory with the existing methods. In the same 
section, we try to classify the different contributions to the ionisation potential (IP) or 
excitation energies (EE) according to  their representation of the orbital relaxation and 
pair-correlation energies. Section 5 contains the concluding remarks. 

2. Theory 

2.1. General considerations 

We start by conveniently choosing a model space spanned by a small number of 
determinantal states +i(N)  and +i(N - 1 )  which are capable of describing the excited/ 
ionised states of N-particle systems more or less satisfactorily. For the general pur- 
pose, we have to  deal with open-shell problems where the zeroth-order descriptions 
of N and N - 1 particle systems are given as 

where the combining coefficients CKi  and C K S i  may not be known U priori. Further- 
more, we have the N-electron HF determinant +HF in the model space, and-as 
mentioned before-we will choose this as our vacuum state. We shall treat the orbitals 
in +HF as holes; other orbitals will be generally termed particles. The orbitals in 



Non-perturbative open-shell theory 3 

+HF which electrons vacate in creating the determinants + J N )  or $ J ~ ( N  - 1 )  we call 
valence holes, and the particle orbitals present in 4 i ( N )  will be called valence particles. 
We shall collectively designate these two sets simply as valence. Any determinant 
4 , * ( N )  or I$X(N - l), which may be obtained by replacing the spin orbitals in 4i's 
or &F by particle orbitals, or replacing hole orbitals by particle orbitals in I$*, etc, 
belongs to a space orthogonal to the model space. 

Although we shall be considering the problems of direct calculation of IP and 
EE side by side, we should point out here that for practical purposes we focus our 
attention on either IP or EE at any one time. This is, however, not obligatory and 
at the end of this section we shall briefly discuss an organisational scheme in which 
both can be handled simultaneously. The chief difference in these two approaches 
lies in properly selecting the cluster-expansion operators. 

We now define a core-cluster-expansion operator .exp (z), which, acting on $HF(N) 
converts it to the exact ground state tjfir(N): 

$ g r ( N l  = ~ X P  (Tc) 4HF(N) * ( 2 )  

For excited or ionised states, we seek a multiple-cluster-expansion operator 
exp(Tc)exp(T,,) (see, e.g., Mukherjee et a1 1977b, to be referred to as IV), which 
transforms each function of type ( l a )  and ( l b )  to the corresponding exact states: 

$ K ( N  = exp ( T c )  exp (T") W N )  
$ K , ( N  - 1) = exp(Tc) exp (T,) $&(N - 1). 

H $gr(N) = E g r  $gr(N) 

(30)  

(3b) 

The functions $gr, t,hK(N) and i/iK,(N - 1) satisfy the respective Schrodinger equations: 

( 4 4  

$K(N) = E K ( N  $ K ( N  (4b) 

H IkK'(N - 1) = EK(N - 1 )  $K'(N -- 1 ) .  (44 

The Hamiltonian H, written out in occupation number representation, as 

C,D 

is the same for N -  and ( N  - 1)-particle systems. 
To appreciate the effect of the composite operator exp (z) exp (q), let us look 

into the nature of the operators present in T,  and T,. T,  contains excitation operators 
producing excitations from 4 H F  to all the particle (and valence-particle) orbitals. This 
comes about because, according to (2), exp(T,) correlates with the core state +HF quite 
independently of whether or not the particle orbitals are occupied in the actual 
excitedlionised states q5,(N)/4i(N - 1). The operator T,, on the other hand, produces 
excitations from valence to particle and hole to valence-particle, and also mixed types 
of excitation like hole to valence-particle or particle and simultaneously valence- 
particle to particle states. In order to incorporate the effects of core relaxation in 
the excited/ionised states, we have to include, in T, operators, excitations from hole 
to particle in the presence of passive particle-valence orbitals present as spectators 
in $J~. We will discuss this choice in further detail in a more appropriate place. Let 
us only note here that the choice of the operator exp(T,)exp(T.) is perfectly general, 
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since on the one hand it is capable of handling all the excitations that would have 
to be incorporated in an exact t+bK(N) or t+bK,(N - l ) ,  and on the other hand the 
requirement that $'s have to satisfy the appropriate Schrodinger equation causes 
the matrix elements of T, to be adjusted accordingly. Thus the solution of the full 
problem proceeds in two stages: (a)  calculation of T,  entering equation ( 2 ) ;  (b) calcula- 
tion of T, entering either (3a) or (3b), with now known. Thus the core and valence 
problem would be decoupled, and we might call this a 'core-valence separation' in 
the non-perturbative context. The concept of core-valence separation is discussed 
thoroughly by Brandow (1967) in the context of open-shell perturbative theory, where 
the perturbative analogues of diagrams akin to T,  and T, are also succinctly discussed 
(sei e.g. the discussion on p819 of Brandow 1967). Let us again mention here 
that T, would be chosen depending on whether we want to calculate EE or IP, either 
separately or simultaneously. 

Rewriting equations ( 2 )  and (4), we have 

H exP (Tc) exp (Tv) 1 c K ' i  (Pi(N - 1 )  = EK'  exp (T,) exp (T,) 1 CK'i $i(N - 1 ) .  ( 6 ~ )  
i i 

Using the linked-cluster theorem for open-shells (I, II), we can now define an 

H exp(T,) = exp(T,) U, (7)  

U c 4 H F  = 4 H F .  (8) 

(4T(N)I Ucl4HF) = 0 for all 1 (9) 

effective operator U,(H,T,), such that 

and we have 

Projecting (8) to all the states orthogonal to 4HF, we have 

and the solution of the set of equations (9)  would yield us the matrix elements of 
T,  in the orbital basis. 

Let us now consider equations (6b) and (6c). Using (7), we have 

U ,  ~ X P  ( T v )  1 c K i  +i(N = E K  exp (T,) 1 CKi $ i (N)  ( 100) 
i i 

U, exp (T,) 2 C K , i  4 i ( N  - 1 )  = E K ,  exp (T,) 2 CK.i $ i (N - 1 ) .  ( 1 Ob) 

According to LCT (I, 11), U ,  is defined entirely in terms of linked diagrams contain- 
ing matrix elements of the one- and two-electron operators of the Hamiltonian and 
those of T, only and, after solution of (9), may be taken as known. One useful 
characteristic feature of U ,  is that, from (8), 

i i 

E,, = ( ~ H F  I U ,  I ~ H F )  (1 1) 

and we may thus look upon U, as an effective Hamiltonian in which the correlation 
among the core electrons has been incorporated through T,. Equations ( loa )  and 
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(lob) may then be interpreted as valence correlation and core-valence interaction 
problem with 'dressed up' Hamiltonian U,. 

Let us divide U ,  into E,,  and the rest 0,: 

U ,  = E,, + U , .  (12) 
In diagrammatic language, E,, consists of all the diagrams of U ,  having no 

We now make a 'separation' of the core part of the total energy EK/EK, as 
open lines, and 8, contains diagrams having open lines only. 

EK = E,, + AEK 

EKt = E,, + A E K , .  

(134 

(13b) 

Clearly, the quantities A E K / A E K ,  are the EE and IP of interest to us. We can now 
rewrite equations (loa) and (lob) as 

exp (Tv) cKi +i(N) = A E K  exp (Tv) cKi $ i ( N )  
i i 

U, exp (T,) 1 CK,i 4i(N - 1) = AEK, exp (T,) 1 CKpi di(N - 1) 
i i 

Applying LCT once again, we have 

0, exp ( T v )  = exp (T") uc-v 
so that 

u c - v  1 cKi 4dN) = A E K  cKi 4 i ( N )  
i i 

UC-"  C K ' i  $ i ( N  - 1) = AEK, 
i i 

CK'i $ i ( N  - 1).  

Pre-multiplying (16a) by 4 ,* (N)  and (16b) by 4 z ( N  - l), we have 

for all I .  ( # ? ( N ) I  u c - v / 4 i ( N ) ) c K i  = 0 
I 

Similarly projecting onto the model space functions 4 j ( N )  and + j ( N  - l), we 
get from (16a) and (16b), 

1 ( 4 j ( N  - l)i Uc-v l  4i(N - 1)) C K ' i  = AEK, C'KCj. (1 8b) 
i 

Thus the combining coefficients CKi etc, left unspecified until now, form the 
eigenvectors of a set of matrix equations determining A E ,  and are thus linearly 
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independent. Thus, instead of (17a) and (17b), we may write: 

<$:(N)I uC->l41" = 0 for all i and I .  (194 

<&W - 1) luc - " I$ lw  - 1)) = 0 (19b) for all i and m .  

Let us now note that, depending on what we really intend to calculate (EE or 
IP), we would solve (19a) or (19b). Each is a set of simultaneous equations in 
the matrix elements of T,. Having found them, we employ them in (18a) or 
(18b) as the case may be, and obtain A E K / A E K  after the diagonalisation of the matrix 

At this point, let us discuss the useful aspects concerning the choice of &F as 
the vacuum. The orbitals chosen are Hartree-Fock orbitals, and this choice facilitates 
finding the corrections to Koopmans IP (Koopmans 1934) and also relates our results 
to those of perturbative theories. According to our earlier convention we shall label 
the hole states as U, p , . . , and the particle orbitals as p ,  4 , .  . . . Any unspecified orbital 
will be labelled as A ,  B, . . . . The operators X i ,  and X ,  will now transform as 

C < + j I  u c - v I & , > l .  

r, = XJ;  Y, = x, (20) 

Y A I ~ H F )  = 0 for all A .  (21) 

with 

The Hamiltonian, written in normal order, appears as follows 

H < & ~ i  H [ & H F )  -k F + T/ ( 2 2 4  

(224 
1 

I/ = ( A B I V I C D ) , N [ X ~ X $ X , X , I  
2 !  A , B .  

C , D  

where 
In H F  basis, the model-space configurations for the excited states are one-hole 

one-particle states of the type N[Y;Y,t]l$,,),  and for the ionised states, they are 
one-hole type Y i  I&). For the excited states, more than one model-space function 
is needed to construct appropriate singlets or triplets, while for the ionised state 
only one will do. 

So far we have made no special reference to EE or IP. In fact as mentioned earlier, 
we lay more stress on a scheme designed to calculate either EE or IP. Thus, in the 
next two sections, we discuss the details of the choice of T, separately, first for IP 
and then for EE. In the last section we indicate the strategy to be followed in case 
we are interested in a coupled calculation of IP and EE simultaneously. 

is the orbital energy for the orbital A .  

2.2. Ionisation potential 

For IP, the model space includes the state 4HF and the lowest ionised configuration 
Y l l & ~ )  or Y ~ I & F ) .  Accordingly, we must choose T, in such a manner that 
exp (T,) exp (T,) can correlate Y: or Y l  I (6HF) free from unnecessary constraints. 



Non-perturbative open-shell theory 7 

It suffices for this purpose to  include all of the following form in T, :  

with y running over valence holes. It is to be noted that, by virtue of (21), (23a) 
and (23b) will act only on the one-hole state; the first indicates the mixed type 
of excitation and the second is characterised by a passive hole orbital y acting as 
a spectator while 01, p becomes excited to p ,  q. We shall call such T, matrix elements 
‘reducible’ matrix elements. They are thus distinguished from the scattering 
a b . .  . + p q . .  . for the core, characterised by ( p q . .  .it;I01p. . :),. Thus, say, in the 
expansion of exp(T,)exp(T,)t,h;(..(N - l), the weight of the configuration obtained 
by replacing a, p in a & state by p .  q will have contributions from both ( y p q l t J y a B ) ,  
and the ‘irreducible’ (pq1 t i  IC$),. The reducible part thus takes account of the 
change brought about in the core correlation on ionisation and evidently incorporates 
relaxation effects. 

in equations (19b) for the ionised-state problem may 
be written as (I, 11, IV) 

The effective operator 

K 1 + K 2 = m  

In order to appreciate the structure of the matrix elements appearing in (I@) 
and (19b), a diagrammatic language would be very helpful. Following the usual con- 
ventions (I, 11, 111), we represent the Hamiltonian operators and the T, or T,  operators 
by replacing SI, /I in a Cpi state by p ,  4 will have contributions from both (pql t j  I yap), 
full circles refer to H or T,  Hugenholtz vertices (Hugenholtz 1957) and full triangles 
refer to T, vertices respectively. 

The matrix elements of the operator U,-” of the type 

( 4 3 N  - 1)l uc-vI+i(N 1)) 

is then just a sum of contributions coming from appropriate G blocks (I, 11, 111) 
with a composite 8, vertex and various T, vertices. From the basic vertices F ,  I/ 

9 
p- 

ial 

3 
( a i  

(bl icl (dl (el ( f l  (gi ( h l  

Figure 1. Typical basic F or V diagrams. Open circles represent F or V vertices. 

Figure 2. Basic 7, and T, dkngrams. Full circles and triangles represent T, and T, vertices 
respectively. 
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and T,, composite 0, vertices may be constructed as connected diagrams joining 
the vertices F or V with T,  vertices. We denote the U ,  vertices by open triangles. 
In order to write down equations (19b), we pick out the T, diagrams one by one, 
and consider in each case the G block having the same shape as that of the T, 
diagram considered. The sign of a diagram entering a G block and the attendant 
algebraic expression may be written down following the rules in I, except that now 
there is an additional sign ( -  l)hr, where h, is the number of hole lines leaving the 
diagram from the right. 

Now, let us denote the shape of a particular G block by a superscript ‘a’, and 
a particle rank of the block (i.e. number of electrons scattered) by the subscript 
‘p’ .  Depending on the shape of a particular Gp” considered above, we encounter either 
of the following possibilities: 

(i) The block Gp” is an irreducible block, thus having no passive labels appearing 
in both ingoing and outgoing open lines. In this case, there will be as many types 
of equation as there are basic irreducible T i  diagrams, and these will all be of 
the form: 

A Mukhopadhyay, R K Moitra and D Mukherjee 

B;D;(K, ;  K J  = o for each a ,  ( 2 5 4  
K O  and K i  are the sets of labels for outgoing and ingoing lines respectively, 0; 
is a contribution from the G block and B; represents the permutation of equivalent 
outgoing lines and ingoing lines; the sum runs over all such permutations (I). Equival- 
ent lines are those which lie on the same side of a G block, and which have arrows 
in the same sense. 

(ii) The G; is a reducible block containing r passive lines. In this case, the equa- 
tions are of the form 

r 

2 B ; - ~  D ; - , ( K ~ ;  K J  = o 
K = O  

The first sum is over the G blocks having different shapes that may arise as K 
takes up different values between 0 and r (the latter usually represents the maximum 
number of holes in the ionised configuration in the model space; for the one-hole 
state in question, this is 1). The G block, with K = 0 is the reducible block G;, 
and the superscript a refers to this. It might happen that the block with K = r 
would look like a T,  operator (or, better, like a G block having the same shape 
as a T, operator-required for getting the T,  matrix elements). In an exactly similar 
fashion, the matrix elements of the type (4jl Uc. . .v14i)  may be diagrammatically enu- 
merated. Obviously, before constructing the G blocks for U,-,, the calculations of 
core-excitation operators T, have to be done in the same manner by considering 
the G blocks having the same shapes as the T,, but these G blocks would consist 
of F,  V and T, only. To distinguish the G blocks appearing in U,-,, and those 
appearing in U c ,  we draw them as big shaded triangles and shaded circles respectively. 
Typical G blocks considered by us for IP (and also EE) are shown in figure 3. The 
U ,  blocks are G,  and Gz. 

Now for the model space involving the calculations of IP in our case, we consider 
the state Y :  so that 

I P  = Dl0(u;  U) (26) 
and the diagrams entering the block G I o  are shown in figure 5 .  
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GI, +&p- 4 1  --&+,- 
lkl ( J  1 

Figure 3. The G blocks. Subscript numerals are for block numberings. Shaded triangles 
are for G blocks determining T,. The rest are for T,. 

2.3. Excitation energies 

For EE, we must include &F in the model space, and the one-hole one-particle deter- 
minantal states as $ l ( N ) .  The operator exp(T,)exp(T,) must, therefore, be able to 
correlate these $i free of constraints. T,, accordingly, will have to be of the form 
given in (23), and also 

yg yx Ypl 

The reducible operator in (27c) is introduced in order to distinguish the amplitude 
of scattering M ,  fl  to q, r in the one-hole one-particle states with a valence particle 
p .  The effective operator fJPv for this model space will have the same form as in 
(24), but the T, operator would now contain the terms as in (23) and (27). The 
terms in tJ-, can now be enumerated and classified as in $2.2, discussed above. 
Essentially, these will contain the G blocks G 3  to G I 1  of figure 3. The G blocks 
contributing to T, are, as usual, the blocks G1 and G 2 .  For the model space considered 
here, the excitation energies are given by 

where the +/- sign refers to the singlet/triplet excitation energy. 

2.4 .  A coupled scheme for calculation of IP and EE 

We now discuss a scheme for the simultaneous calculation of IP and EE in the same 
structural framework of the present theory. The basic idea may be succinctly summar- 
ised as follows. 
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We start with the $HF as the vacuum, and determine the T,  matrix elements 
from (9). Next, for the ionised states, we define a multiple-cluster-expansion operator 
exp( T,)exp( Tt) ,  such that 

and finally we get 

($:(N - 111 Ut-vI6i(N - 1)) = 0 for all m and i ,  (30) 

as equations for matrix elements of T;.  The choice of the matrix elements of Ti 
is made following the same considerations as outlined in $2.2. U : - ,  has nearly the 
same expression as (24), the only difference being that Ti rather than T, appears 
in its definition. In order to correlate the excited states, we introduce an operator 
exp(T,)exp(TL + T:"), where T:' introduces excitations not covered in T: as well 
as excitations in Ti ,  but with amplitudes containing TC;" as the operator to distinguish 
them from the scattering events from 6i (N - 1). The relevant equations determining 
7': have the form: 

(4T(N)I ~ X ~ v l 4 i ( N ) >  0 for all 1 and i ,  (31) 

where involves an expression akin to that in (24), with TL + T:" replacing T,. 
In equations (31), the T, and T: matrix elements which appear will be taken as 
known-obtained by solving (9) and (30). Thus, determination of T,, Ti  and T;" 
involve decoupled equations (9), (30) and (31), though the total problem of IP and 
EE is tangled in a way; (31) involves a knowledge of Tt matrix elements. If desired, 
a triple-cluster-expansion operator could be used for EE: exp( T,)exp( T;)exp( T","), but 
the basic approach is more or less the same. 

3. Application to the transbutadiene molecule 

In order to test whether the above theory works, we have calculated the vertical 
ionisation potential and the first n-n* singlet and triplet excitation energies of a 
4 n electron system, the transbutadiene molecule. We first performed a H F  calculation 
of the ground state and obtained eight spin-MO's from four MO's which we designate 
as (1, T), (2,2), (3,5) and (4,5) in order of increasing orbital energy. The spin-MO's 
having the same orbital energy are put together in the same brackets. Over this 
basis set, the vacuum is A[1 i 2 21; the singly ionised configurations entering the 
model space for IP calculation are A[1 21 or A[1 T 21; the corresponding deter- 
minants for EE are A[1 i 2 31 and A[1 3 21. A in each case stands for the normalised 
antisymmetrisation operator. Clearly, c( and E in the one-hole states are 2 and 7 
respectively, whereas p ,  c( in (28 )  are 3, 2 and p, Cc are 5, Z respectively. 

Let us now consider the T, and T, matrix elements that enter the calculation 
of IP. For this, we make a list of all the three- and four-particle excited configurations 
that 'may be built out of the given basis set. For example, we have a total of two 
singly excited and seven doubly excited four-particle determinants which can mix 
with the vacuum state. For the time being, we restrict ourselves to at most doubly 
excited configurations. In a similar manner, we make a list of all three-particle excited 
configurations mixing with A[1 T 21. In writing down the corresponding T, matrix 
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elements we use reducible matrix elements whenever necessary. For example, corre- 
sponding to the singly excited three-particle excited configuration A[3TZ], we use 
the reduced matrix element (321 t ;  l12), instead of (31 t ;  Il),. As before, we consider 
up to doubly excited configurations. For the ionised states, this means that there 
are no reducible T, matrix elements of a particle rank greater than three. It may 
be noted that all the 7;. and T, matrix elements together span the configurational 
subspace enumerated above in a completely general manner, free of unnecessary con- 
straints, and maintain the relevant spin and spatial symmetries of the orbitals. There 
are altogether 19 unknowns in the IP calculation (9 T, and 10 T, matrix elements) 
and corresponding to these we have a set of 19 equations-9 containing T,'s only 
and 10 containing T, and 7: (through C7J. The solution of T,  elements is thus un- 
coupled from that of 7;. 

We confine ourself to only those terms in 0, and U,-" which are linear in T, 
and 'c. To maintain this consistently, we take care that the implied product of T, 
and matrix elements never appears anywhere. This would be achieved if we inter- 
pret a 0, vertex as simply an F or a I/ vertex whenever it is connected with a 
T, vertex. The system of equations (9) and (19b) would then, respectively, be of the 
forms 

(32) 

(33) 

A C - C T C  = @C 

A V - V T V  = @ V  - A V - C  T C .  

Solving these sets of equations in the usual manner we get the numerical values 
of T,  and T, matrix elements. Having determined these, we put them in (26), and 
get the IP, shown in table 2. 

Table 1. T matrix elements for EE. 

Nature of the 
state correlated No The T matrix elements Values 

HF ground state 1 
I d H f )  2 

3 
4 
5 
6 
7 
8 
9 

0~00000 
- 0.00252 

0,00436 
- 0.055 14 
- 0.08279 

0.07649 
0,05675 

- 0.04774 
- 0'05788 

Singly excited 
states 

and 
y'3 Y'2 / + H F )  

y'J Y t ' d + H F )  

1 (421t ; i i  T), - 0.00608 
2 ( 3  ~ i t 5 1 2  i), 0,11954 
3 (4  41t;; 1 3), 0,00548 
4 ( 3  ; i l t ' , / 2  3), 0,10565 
5 ( 3  3jt;ji 3), 0.067 13 
6 (4  3 I f j 2  J), 0.005 1 1 
I (4 Zlr;ll J), - 019906 

9 (4  ;i 71t;I 1 i 3)" -0.01282 

11 (3 4 5lt;l2 i 5) ,  - 0.00 147 

8 ( 3  21t;lJ i), 0.27449 

10 ( 3  ;i qt;i  1 2 9), 0.01052 

t The parameters for the calculation are taken from Cizek et al (1969). 
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Table 2. The n-n* singlet and triplet excitation energies and vertical ionisation potential 
of transbutadiene in eV. 

Quantities Present results Full CI  results 

IP 11,6494 11,6830 
Singlet EE 6,5173 6,5480 
Triplet EE 3,5667 3.6858 

For the excitation energies, the T, and T, matrix elements are 
the same manner. There are once again 9 T, matrix elements and 

built in exactly 
this time 11 T, 

matrix elements. In the linear approximation, the equations (9) and (19a) are again 
of the form (32) and (33). We have listed in table 1, the calculated values of the T, 
and T, matrix elements; the calculated EE are given in table 2. 

Let us note that once equations (32) and (33) are obtained, the relevant solutions 
in both cases are exact within the following approximations: 

(i) linear terms in T,  and T, are retained in 0" and U"-,,; 
(ii) irreducible T , ' s  are of ranks p 6 3. 
The solutions of the T, and T, matrix elements give us an idea as to which 

of the excited configurations will contribute significantly towards a correlated ground, 
ionised and excited state in the configuration mixing. It is found that most of the 
contributions are small thus confirming the adequacy of a linear theory. However, 
if one goes in for a non-linear theory, this would certainly improve on the energy 
value as more terms are included and, more importantly as 'unlinked cluster' type 
excitations (in Sinanoglu's terminology, 1962), simulating the quadrupally excited con- 
figurations are taken into account. This is certainly needed for larger systems and 
more realistic calculations. But a primary linear calculation is still essential to guess 
which of the T, and T, matrix elements must be needed in the non-linear calculation. 
In the latter case, equations (32) and (33) would be replaced by 

A c - - " U c  + ED"" U' @ U" + . . . = Bc 

U' + D'-" U" @ U' + ED-'-" U" @ U'@ U' + 
(34) 

(35) 
. . .  A V - V  

- - BV - AV-" TC - A V - C - C  U" 0 UC. 

An interesting feature of the core-valence separation discussed here is that we 
have automatically subtracted the correlated ground energy for the IP or EE calculation 
by simply dropping the closed G blocks (i.e. the G blocks having no open lines). 
In the definition of total ibnised or excited state energy, it might then appear that 
an unphysical correlation correction has been introduced, namely a closed diagram 
in which an excitation from an already vacant hole-state to a particle is attempted. 
This unphysical diagram cannot contribute to the total ionised/excited state energy 
and must therefore be automatically compensated by a counter-diagram. This is in- 
deed the case. We can easily verify that the unphysical core-correlation diagram 
shown in figure 4(a), implicitly present in the definition of the ionised/excited state 
is automatically cancelled by a particular term (figure 4(c)) of the U C - "  diagram 
shown in figure 4(b), if we write out the Uc vertex in figure 4(b) in full in terms 
of F/V and T,  vertices. For EE, all the diagrams of figure 5 contribute. In addition 
there are other G blocks. Of these, some typical diagrams contributing to EE are 
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io) Ib) (C) 

Figure 4. Cancellation of 'unphysical contributions'. Diagrams (a)  and (c) cancel each 
other for any orbital which is vacant in one of the ionised states in the model space. 

(0) ( b )  

Figure 5. Diagrams contributing to IP. 

Y, s3 

Figure 6. Some typical diagrams contributing to EE. 

shown in figure 6. Some of them would be compensating diagrams correcting for 
the unphysical additional core-correlation energy implicitly present. There is some 
further partial cancellation. For example, figure 6(f)  cancels part of figure 5(c). 

4. Relation to perturbation theories 

To see the connection of this formalism with the existing perturbative theories, we 
discuss an iterative method of solving the set of equations (32) and (33). To start 
with, we neglect the off-diagonal. matrix elements of the matrices A"', AV-" etc, and 
find that the first approximations of T, and T, matrix elements are 

T;(i) = B,(i)/A"-"(i, i) (364 
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Since this is tantamount to  neglecting the couplings between the different T matrix 
elements in equations (32) and (33) we shall refer to these solutions as those in 
a decoupled approximation. 

We find that, in this approximation, the energy values include all the important 
perturbation theory contributions up to second order and also up to infinite 
orders with regard to certain ladderings. To demonstrate this explicitly, let us first 
pick out the matrix element T, (2) from table lt 

(321v12~), T32)  N 
E(3,Z; 2, T) ' 

The contribution of this to IP$ is 

E ; ~  = ( ~ ~ I u I ~ T ) ,  ( ~ T I ~ . I ~ z ) , / E ( ~ ,  Z, 2, i) 

where E (3, 2, 2, T) is given by 

(37) 

~ ( 3 , 2 , 2 , i )  = E 2  + ET - E 3  - ET + ( 3 ~ p / 3 2 ) ,  - (2~l t . l2 i ) ,  (39) 
and is a shifted energy denominator of the type discussed by Epstein (1926), Nesbet 
(1955) and Kelly (1968). Thus, the energy given by (38) includes the effect of the 
hole-particle ladder (321 v 1 32), and the hole-hole ladder ( 2  71 v I2i), to infinite 
orders. Expanding out [( 321 U 132), - (2  TI U \2T),] from the denominator, the lowest- 
order (basic) diagram would be like 

This corresponds to figure 5(c) where the T vertex is replaced by a V vertex 

(i) Join the free ends by a fictitious broken line. 
(ii) Assign to it an orbital energy appropriate to whether it behaves as a particle 

(iii) Write down the matrix elements and energy denominator in the usual fashion. 
(iv) Assign a sign factor ( -  l)h+' where the fictitious broken line must be counted 

as forming a loop ( I ) .  

In this fashion, all the lowest-order contributions to IP in the decoupled approxi- 
mation may be generated by replacing the T vertices in the appropriate diagram 
of figure 5. Diagrams thus generated are all the second-order IP diagrams of Hubac 
et al (1973) or of Paldus and Cizek (1975). These also represent the second-order 
irreducibles in the hole-particle formalism of Pickup and Goscinski (1973) or of 
Paldus and Cizek (1974). 

and to which the following rules apply. 

line or a hole line; - e p  for particle p ,  and E, for hole line a. 

In general, these second-order diagrams are of two types 
(i) Diagrams involving intercrossing free hole lines which will correspond always 

to an expression 

t Refers to table 1 footnote. 
1 In IP also, the same T, matrix element appears, but with different amplitude from that in EE. 
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This is the ‘pair removal term’ of Pickup and Goscinski (1973) and accounts 
for the pair correlation energies which disappear upon removal of the spin orbital a. 

(ii) The other type will be the diagrams which do  not contain intercrossing free 
hole lines; of these, many will have a passive internal hole line, and these will corre- 
spond to the expression 

(RPI 0 I R P  >, (as1 V I  UP - >a 

€0 - EP 
c 
PSP 

P + @  

This is the lowest-order ‘orbital relaxation’ part accounting for the reorganisation 
effects of the remaining spin orbitals following the removal of the spin orbital a. 
The remaining part of the diagrams in the category (ii) would correspond to  an 
expression 

and corresponds to the ‘pair relaxation term’ which accounts for the changes in 
the remaining pair correlations due to reorganisation. 

In an exactly similar manner, we can show that the excitation energies, calculated 
in the decoupled approximation of our formalism, include all the important first- 
and second-order contributions of perturbation expansion of the excitation energies. 
If we include all the T, operators of the forms given in equations (23) and (27), 

[ J  1 lk) 

Figure 7. All second-order diagrams to IP and EE in the lowest-order decoupled approxi- 
mation (equation (36) )  of the formalism. Only ( h )  and (i) contributes to Koopmans 
correct ion. 
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these are as shown in figure 7. For evaluating the diagrams, the same set of rules 
have to  be followed; the only difference is that we now have to join the free ends 
of the particle lines also. Figure 7(b), for example, is a second-order irreducible of 
Paldus and Cizek (1974) or the second-order contribution in the perturbation expan- 
sion of EE (Kvasnicka and Hubac 1974, Paldus and Cizek 1975). In a similar manner, 
all the second-order contributions in these formalisms may be obtained from the 
appropriate UC-" diagrams by replacing T vertices by I/ vertices. The diagrams shown 
in figure 7 can in general be classified into two groups, one which includes the 
orbital-relaxation effects (namely 7(a), (b), (e )  to (g), ( i )  and (h)) and the others which 
account for pair-correlation energies (namely 7(b) to (e),  (h) and (i))t. Similar conclu- 
sions have also been reported by Oddershede and J~rgensen (1977a, b). 

We shall now point out a further interesting feature of our formalism. If we 
consider the lowest-order ladder insertion obtained by taking the first power of the 
expanded denominator for the decoupled expression of the T, matrix (4 21t1;/3 l), 
for EE, we have a contribution 

(311~142)~ (4214 31), (32/ul32), 
h ( -  1) 

(€1 + € 3  - €2 - €4)2 

to which corresponds to figure S(a), where the lines with encircled arrows, namely 
the hole line 2 and particle line 3 appear 'folded'. The minus sign comes from this 
single folding of the lines coming from one pair of folded vertices. Such folded 
diagrams are characteristic of all perturbation expansion of energy for open shells 
(Brandow 1967). It is worth mentioning here that these diagrams are those which 
would involve 'dangerous denominators' in Paldus and Cizek (1974, 1975) formalism, 
as can be verified by straightening out the folds. These have been deliberately omitted 
by these authors. In our formalism, however, these diagrams are inherently present 
as 'anomalous diagrams' (I, II), originating from contracting a T, vertex having free 
lines to the right with a V vertex. Transcribed into Goldstone graphology, this folded 
diagram plays a role akin to the so called backward RPA diagram 8(b). 

Another lowest-order term-coming out of the expanded denominator of the same 
TV-i s 

(42) 
( 3 1 14 42 ), (41 I4 4 1 ) a  (421 VI 3 1 >, 

(€1 + € 3  - €2 - €4)2 
E:€ E 

2 3 
IQ1 2 3 1  

(cl 

Figure 8. Higher-order EE diagrams in the decoupled approximation of this formalism. 
(a) is a folded diagram akin to the backward RPA Goldstone diagram (b), (c) corresponds 
to the forward RPA Goldstone diagram ( d ) .  

t These effects appear mixed up in the case of EE. 
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corresponding to diagram 8(c). One of the many possible Goldstone components 
of it is the diagram 8(d) ,  which is the well known forward RPA diagram. 

As we go higher up in the expanded denominators, multiply folded diagrams 
would automatically start appearing. Thus, in the lowest-order calculation in the 
decoupled approximation of our formalism, many types of interactions are present 
to infinite order over and above the basic second-order contributions. Looking back 
at the coupled equations (32) and (33), we may say that they incorporate the effect 
of certain classes of diagrams which, due to their not forming any well-defined series, 
cannot be included in a closed form in perturbation theory. In as much as two 
separate SCF calculations are not required here, the method enjoys all the best traits 
of the so-called direct methods. What is more useful, the method can be applied 
to open-shell problems as well. 

(a1 ( b )  

Figure 9. ‘Unlinked cluster’ and ‘linked cluster’ type triple excitation contributions to 
block G l l .  

We might briefly mention the type of diagrams one would encounter in a non- 
linear theory. A typical core-valence interaction diagram having a product of T, 
and T, vertices is shown in figure 9(a). This is an ‘unlinked cluster type’ of triple 
excitations coming from a T, T, product. A linked triple excitation type of U C - ”  
diagram would have appeared in the linear theory itself if true three particle T, 
involving triple excitations were included in our consideration. This would look like 
figure 9(b). 

5. Concluding remarks 

We have demonstrated that the basic strategy in choosing the T,  and T, matrix 
elements used in this paper plays a crucial role in decoupling the calculation. T, 
involves all excitation from &F independent of the valence occupancies in $ i ( N )  
or $ i ( N  - l), and a set of equations is solved to get the relevant matrix elements. 
For T, matrix elements, one has to include all the true excitations that involve 
both the valence-excitation and orbital-relaxation type of T, operators-effectively 
changing the overall amplitudes of T, type excitations in the ionised/excited levels. 
The procedure is general and thus would lead to decoupling of the equations for 
T, and T, in a more general open-shell case. 

In conclusion, we may point out that, to a given approximation which may be 
suggested by the system itself, the basic key of this formalism i.e. the set of diagrams 
comprising the G blocks, constitute a sort of ‘blue print’. Although we have demon- 
strated the applicability of the formalism by taking a crude semi-empirical calcula- 
tion in a basis set of only 8 spin MO’S, it serves as a guide for other calculations 
involving larger basis sets. For more realistic calculations, T: terms would have 
to be included in the core matrix element calculations, and T t  have to be included 
in the valence part. Such studies are currently being undertaken, and will be reported 
in due course. 
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