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Abstract. An approximation scheme for the one-particle Green’s function referred to as the 
two-particle-hole Tamm-Dancoff approximation (2ph-TDA) is introduced by means of a 
well defined infinite partial summation of the perturbation expansion for the so-called self- 
energy part. A spin-free formulation of the working equations is presented for molecular 
applications. It is demonstrated that the 2ph-TDA is a useful tool for a theoretical 
treatment of inner valence ionisation processes. A discussion of the physical content and 
the relationship to other approaches shows the central role of this approximation. 

1. Introduction 

The usefulness of one-particle Green’s functions and related many-body methods for 
calculating electron ionisation and attachment spectra has been amply demonstrated 
by many authors. For an account and references the reader is referred to a recent 
review article by Cederbaum and Domcke (1977). In particular, accurate ionisation 
potentials, electron affinities and spectral strengths have been obtained for the energy 
region of outer valence electrons of atoms and molecules by Cederbaum et a1 (1975) 
and von Niessen et al (1977). These accurate calculations result from an approximation 
scheme for the Green’s function specially devised for the valence region (Cederbaum 
1973, 1975a). This method makes use of the fact that the ionisation and attachment 
process is well described by the creation of a quasi-hole and a quasi-particle, respectively. 
In contrast to the outer valence region, the interesting inner valence region has not as yet 
proved to be accessible even qualitatively. Here, the quasi-particle picture is no longer 
valid and, correspondingly, new classes of approximation become essential in order to 
describe the phenomena which occur. 

Approximation schemes which are adequate beyond the quasi-particle picture have 
been proposed and investigated by several authors. Pickup and Goscinski (1973) and 
Purvis and Ohrn (1974) have used the super-operator formalism of Goscinski and 
Lukman (1970) to obtain decoupled equations for the one-particle Green’s function. 
An alternative approach via the equations-of-motion formalism of Rowe (1968) was first 
proposed by Simons and Smith (1973) and later completed by Purvis and Ohrn (1975) 
and J~rgensen and Simons (1975). Approximations for the so-called self-energy part 
E, related to the Green’s function via the Dyson equation, have been derived by means 
of infinite partial summations of the perturbation expansion of I: (Cederbaum 1974, 
1975b, Schirmer 1977). A thorough discussion of the latter methods is given by 
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Cederbaum and Domcke (1977). It should be noted that related work in the field of 
nuclear physics has been reported by Schuck et al (1973) and by Ring and Schuck 
(1974). 

In spite of the theoretical effort, only a few many-body calculations for the inner 
valence and core region have been carried out (see, for example, Cederbaum 1974, 
Purvis and Ohrn 1974). Furthermore, these calculations remain considerably behind 
the theoretical achievements since crude additional approximations are introduced in 
order to meet the severe computational difficulties arising from the large dimension of 
the resulting system of equations. It is the aim of this work to describe an 
approximation scheme called the two-particle-hole Tamm-Dancoff approximation 
(2ph-TDA) and to demonstrate that this method provides us with useful information 
for the whole energy scale. Although this method or closely related approximations 
emerge from a variety of approaches already quoted, no rigorous application has 
hitherto been carried out. The numerical evidence arising from the calculations for a 
number of molecules shows that the outer valence ionisation energies are fairly well 
reproduced, i.e. better than by Koopmans’ theorem (Koopmans 1933). The most 
important point, however, is the qualitatively correct description of the inner valence 
region, where some striking features are revealed. It is found that in general complete 
break-down of the molecular-orbital picture occurs. Instead of one line arising due to 
the ionisation of an electron in a given shell, there often appear two or more lines with 
comparable strengths so that it is no longer possible to discern main and satellite 
lines (Cederbaum et al 1977, Schirmer et al 1977). 

The present work is divided into two parts. In this paper we shall establish the 
theoretical foundations of the 2ph-TDA method. In the following paper we report on 
its numerical application to three diatomic molecules containing a second-row atom. 

In 92 of this paper the 2ph-TDA equations are introduced by means of a well 
defined infinite partial summation of Feynman diagrams in the perturbation expansion 
of the self-energy part Z. A spin-free formulation of the 2ph-TDA equations representing 
the starting point for molecular calculations is presented in 93. In 94 we investigate the 
2ph-TDA from a wavefunction point of view in order to provide some further physical 
insight into this approximation. A discussion of the 2ph-TDA in comparison with these 
approaches (in particular, with the work of Simons and Smith (1973), Pickup and 
Goscinski (1973) and Parvis and Ohrn (1974)) will conclude this article. 

2. Derivation of the 2ph-TDA equations 

We start from the Hamiltonian 

of an electronic system in second quantised notation. Here ci (c:) is a destruction 
(creation) operator for a one-particle state Iqi) of a suitably chosen one-particle basis. 
The other quantities are the one-particle energies ei, the Coulomb matrix elements 

‘Vijki = dv1dv2 ~ T ( v 1 ) q T ( v 2 )  ~ ( Y I  - ~ ~ ) ( P ~ ( ~ I ) ( P I ( Y Z )  J 
and additional one-particle matrix elements ui j .  In the case of a Hartree-Fock basis 
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the latter quantities are given by 

k 

T / r j [ k l ]  = vcjkf  - 

The summation runs over occupied states only, due to the occupation numbers nk = 1 , O  
for occupied and unoccupied states, respectively, with respect t o  the Hartree-Fock 
ground state i40). It is also useful to introduce the quantity T?k = 1 - n k .  

The one-particle Green's function G is defined by (Thouless 1961) 

GPq(t' t ') = - i<yol  T c p ( t )  c i ( t ) I y o )  ( 3 4  

where lYo) is the exact ground state, T is Wick's time-ordering operator and 
cq( t )  = eiHtcq e-1Ht denotes the destruction operator in the Heisenberg picture. The 
Fourier-transformed Green's function is easily obtained from equation (3a) and reads 

Xb")XY* 
X ( m )  ( m ) +  
P X q  

G P q ( w j  = 1 + Ebb" - E(h'f1) + ill + 1 + , v ; N - ~ )  - E(N) - ' 
(3b) 

m m 0 1Y 

P I C P  I Yo) 
X(m) = X(N = (y;N-lJ 

p ( ~ o l c p l ~ L N + l ) )  

where y denotes a positive infinitesimal. and EIMJ are the exact eigenstates and 
energies of the interacting M-fermion system. G is related to the so-called self-energy 
part C by the Dyson equation which, in matrix notation in w space, is given by 

G(w) = G 0 ( o )  + Go(w) X(w)G(w). (4) 

The 'free' Green's function Go introduced here refers to the diagonal one-particle 
Hamiltonian and the unperturbed state I$o).  In the w representation one obtains 

n P  np  + 
w - e P - i y  w - e p + i y  

As is well known, there exists a perturbation expansion of E(w) in terms of the 
interaction matrix elements Vijkl and u i j  represented by Feynmann (or Abrikosov) 
diagrams. The rules for constructing and evaluating the corresponding diagrams are 
discussed extensively in several works (Abrikosov et a1 1965, Csanak et a1 1971). 

For our purpose we recall the contributions up to second order. In first order 
(given diagrammatically in figure l(a)j we have a constant (w-independent) contribution 

= v p q  f vpk[qk]nk 
k 

which vanishes for the case of a Hartree-Fock basis as can be seen from equation (2). 
Corresponding to the two (time-ordered) diagrams in figure l (b) ,  the second-order 
contribution 

is composed of two parts, the sums of simple poles in the upper and lower complex 
planes, respectively. 

It is interesting to note that the exact self-energy part possesses the same analytical 
structure as that exhibited by the second-order expression (7). As can be shown from 
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i c )  

Figure 1. Goldstone diagrams for the self-energy part in Abrikosov notation. (a) First-order 
contribution. The x vertex represents the one-particle interaction matrix elements ui,, 
(b) The diagrams of second order. (e)  The 2hlp  diagrams up to fourth order. The 2plh 
diagrams are obtained by drawing the diagrams upside down. 

the spectral resolution of G and the Dyson equation, C(o) can be written as a sum 
(Cederbaum 1975b) 

C(O) = ~ ( C O )  + M(w) (8) 

of a constant part Z(E) and an w-dependent part M(w) which is the sum of simple 
poles. In analogy to the second-order contribution we write M(u) as a sum 

M(o) = M(”(w) + M(”)(w) 

where M(’) (,(I1)) is analytic in the lower (upper) complex plane. 
By expanding the self-energy part up to second order one clearly obtains an 

approximation going beyond the one-particle (Hartree-Fock) level. As is suggested by 
the poles of M(”(w), new processes occur which are associated with the removal 
(addition) of an electron accompanied by a particle-hole excitation. In the following 
the two kinds of process will be referred to as two-hole-one-particle (2hlp) excitations 
and two-particle-one-hole (2pl h) excitations, respectively. Diagrammatically, the 2hlp 
excitations are associated with two hole lines (lines pointing downwards) and one particle 
line (line pointing upwards) connecting two subsequent interaction points, this being 
the case in the first diagram of figure l(b). There exists a well distinguished class of 
diagrams (2hlp diagrams) up to infinite order where only 2hlp excitations are present, 
i.e. where for all diagrams any two subsequent interaction points are connected by two 
hole lines and one particle line. The 2hlp diagrams up to fourth order are shown in 
figure l(c). Analogously, there is a class of 2plh diagram related to the 2plh excitations. 
In this case two subsequent interaction points are connected by two particle lines and 
one hole line. Due to the simple construction principle both claises of diagram can 
be summed exactly as will be outlined in the following. 

We restrict ourselves for the moment to the 2hlp case (I). It is convenient to 
separate the two outer interaction points by introducing the so-called kernel P: 

The matrix r(I) (r$l,j,k,lr) is restricted to the sets of indices ( j ,  k ,  1) and ( j ’ ,  k’, 1’) with 
iijnknl = i i j ,nk.nl,  = 1. is chosen to be antisymmetric with respect to the indices k ,  1 
(and k‘, l’). Now the construction principle for the 2hlp diagrams can easily be converted 
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Figure 2. Graphical representation of the summation of 2hlp  diagrams. 

into a recursion relation for I?). Its graphical representation is given in figure 2. The 
corresponding equation reads 

with 
( 1 0 4  

( 1 Ob) 

(104 

r(I) = (wl - ~ ( 1 ) ) -  1 + - ~ ( 1 ) )  - 1 C(l)r(l) 

K y J l , j , k , i ,  = ( - E j  f Ek + E l ) d j j , d k k ! d l [ ,  

(?) J k l , J  ., k , I , = L v  2 k l [ k ' l ' I d j j '  - dU' v j l ' [ j ' l ]  - d k k '  v j k ' [ j ' k ]  

f i j f f k n ,  = f i j , t ? k s f f l s  = 1. 
The matrix y o  is a unit matrix antisymmetrised with respect to k ,  1 (k'l'),  

,bo / j k l , j ' k ' f '  = d j j ' ( d k k ' d l l '  - f i k l ' d l k  (1 1) 

guaranteeing the correct symmetry (with respect to index exchange) of I?'). The formal 
solution of equation (loa) is given by 

(12) r(1) = (01 - K(1) - c ( I ) ) - l y o .  

An analogous treatment applies for the 2plh case (11). Here the sets of indices 
( j ,  k,  I )  and ( j ' ,  k', l') are restricted by n j f i k  f i l  = 1. The corresponding equations are 

with 

It should be noted that for the case of non-vanishing first-order contributions 
have to be supplemented by an additional E{;) f 0, the constant matrices 

matrix s(I) (s'")) given by 

S y i f f ] ' k ' l '  = - d k k , d l l , s j j ,  + f i j j ' d k k ' s l l '  + d j j I S I 1 , S k k .  

s . .  I J  = E<?). I J  

(154 

(15b) 

with f i jnkn l  = f i j , n k , n l .  = 1 for case (I) and njf iknl  = n p f i , ,  fi,. = 1 for case (II), where 

Due to the close analogy of the infinite partial summations in (12) and (14) with 
the Tamm-Dancoff approximation (TDA) for the particle-hole propagator (see, for 
instance, Lane 1964) the approximation described above for M(o) will be referred to 
as 2ph-TDA. 

The remaining task is to determine the corresponding constant part I;( "0). The exact 
constant part satisfies the relation (Cederbaum and Domcke 1977) 
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which follows from the diagram of figure l(a) by inserting the full G line instead of the 
free Go line. The contour integral has to be closed in the upper complex plane. 

Expressing G by the solution of the Dyson equation 

G = [ (Go)- '  - C ( X )  - M(w)]-' (17) 

one obtains an implicit equation for I;(=), once M(w) or an approximation to it is 
given. 

The final 2ph-TDA result for the self-energy is thus given by 

C(O) = E(=) + M("(w) + M("'(o) (18) 

where M(') and M(") are the 2hlp and 2plh summations described above and C ( x )  
follows from equations (16) and (17) with M(o) = M(')(o) + M(")(w). The Green's 
function obtained by solving the Dyson equation (4) with the 2ph-TDA self-energy 
part of equation (18) will be referred to as the 2ph-TDA Green's function. 

3. Spin-free formulation of the working equations 

For numerical calculations it is important to reduce the space of the 2hlp and 2plh 
problems (given by equations (12) and (14), respectively) by making use of the inherent 
symmetry properties. For molecular calculations, in particular, it is essential to obtain 
a formulation of the equations in terms of spin-free orbitals. Such a symmetry 
reduction is presented in the following. Since the procedure applies to both 2hlp and 
2plh problems, we simplify the notation by omitting the superscripts (I) and (11) 
whenever unessential. 

As a first step the index space ( j k l )  will be restricted to k < 1. One simply makes 
use of the antisymmetry property of r with respect to exchange of k and 1 (k' and 1') 
and the related properties of and yo.  The resulting equations are 

is antisymmetrised with respect to k, 1 (k', 1') and all quantities are reduced to k < I 
(k' < 1').  

It is convenient to reformulate the inversion problem of equation (20) as a matrix 
diagonalisation. Let and x$)l denote the nth eigenvalues and the amplitudes of the 
corresponding eigenvector, respectively, for the following eigenvalue problem : 

Then r is given by 

and the corresponding self-energy part reads 
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with the amplitudes 

As will become clear from $4 the amplitudes x$] can be regarded as the coefficients 
of the term cjckcfI$h(,) in an expansion of an ( N  - 1)-particle state ( C ~ C ~ C ~ ~ $ ~ )  in an 
analogous expansion of an ( N  + 1)-particle state). In order to get symmetry reductions 
one has to construct linear combinations of the amplitudes such that they correspond 
to eigenstates ofthe symmetry operators of the system, in particular of the spin operators 
s2 and 3,. These symmetry-adapted amplitudes are denoted by .siMS’. 

In what follows we split the spin-orbital indices into a spin-free orbital index 
denoted by an italic letter and a spin index denoted by a greek letter, namely j - j y .  
As is the common notation, CI and j stand for spin projection m, = +f and -4, 
respectively. For the orbital indices j ,  k,  1 there occur eight amplitudes X j y k x f n .  Let us 
first consider the amplitudes with the spin indices j a a :  

Jkl  - X j p k a l z  k < 1. (26)  x ! 3 / 2 ,  - 3/21 - 

In accordance with the fact that C J p C k a C l a I $ h O )  is an eigenstate of 9 and 9, with 
S = 3 and M s  = -2, one obtains a decoupled equation for these amplitudes. However, 
since no quartet state can arise from a one-particle transition of a closed-shell ground 
state, there result no contributions to the self-energy part. This can be seen explicitly by 
noticing that the matrix elements by which the amplitudes of equation (26)  are 
multiplied according to equation (25) vanish: 

v p y j p [ k z l a ]  = O. (27 )  

Therefore, one can leave out the decoupled block of the eigenvalue equation for the 
quartet amplitudes. 

Next we look at the three amplitudes X j a k a l a ,  X j p k a l p  and x j p k p l a  corresponding to 
M s  = -4 (for k = 1 only X j p k z k g  has to  be considered). Due to the coupling rules of 
three particles with spin f there are two independent states with S = f and the 
M s  = -4 component of the quartet state. Associated with the latter state are the 
amplitudes 

The decoupled equations for these amplitudes are identical to those of the amplitudes 
(26),  and again no contribution for the self-energy part arises because of the identity 

The two remaining independent linear combinations corresponding to the two S = f 
states are not determined uniquely. There exists, however, a distinct choice leading to 
antisymmetric amplitudes x$/”- l i Z )  and symmetric amplitudes x$:”*- ’”) with respect 
to exchange of the spatial indices k and E :  

The remaining amplitudes correspond to M s  = 3 and M s  = 5 and provide no new 
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equations. Thus we have reduced the eight spin-dependent amplitudes x j y k x f j .  for a given 
triplet of spatial indices to the two (spin-independent) amplitudes of equation (30). 
In matrix notation the resulting equations for these amplitudes are given as follows: 

-") (i) = 0. 
o l - K - F  

( -H -  ~ l '  - K' - D 

Here (the prime on K and 1 indicates that the index space is restricted to k + I )  

F j k f , j ' k ' f '  = F j k f , j ' k ' f '  + F j k f , j ' f r k '  

F j k k , j ' k ' f '  $ F j k k , j ' k ' l '  k' < I' 

F j k l , j ' k k '  = $ F j k f , j ' k ' k '  k < l  

k < l , k < I '  

F j k k , j ' k ' k '  = Fjkk , j 'k 'k '  

H j k f , j ' k ' f '  = R j k f , j ' k ' f '  - B j k f , j ' f % '  

H j k k , j ' k ' f '  = 4 R j k k , j ' k ' f '  

D jk l , j ' k ' l '  = D j k l , j ' k ' f '  - D j k l , j ' f ' k '  

k < 1, k' < 1' 

k' < I' 

k < 1, k' < 1' 

with 

In these expressions for F, D and 
lower sign for the 2plh case. 

the upper sign applies for the 2hlp case and the 

Having solved the secular equation (31), the self-energy part is easily obtained via 

with 

Equations (31)-(34) constitute the spin-free formulation of the 2 h l p T D A  and 
2plh-TDA for the self-energy part. In a similar way one can make use of the spatial 
symmetry to achieve further reductions. In the case of atoms one has to consider the 
angular momentum coupling schemes for three particles. For molecules one has to 
construct the irreducible representations out of the three-fold products of the symmetry 
orbitals. This analysis is particularly simple for the case of a symmetry group (or a 
subgroup) possessing only one-dimensional representations. Here each amplitude 
corresponds to an irreducible representation and amplitudes with different irreducible 
representations decouple. 
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4. Physical interpretation of the 2ph-TDA equations and discussion 

For a further understanding of the 2ph-TDA method an interpretation in terms of wave- 
functions seems useful. Expanding the ( N  - 1)-particle wavefunction in terms of 2hlp 
excitations on the unperturbed (Hartree-Fock) ground state 

and considering the expansion coefficients as variational parameters, one obtains a 
secular equation which is identical to equation (22), where the constant matrix C is the 

Eo denoting the (Hartree-Fock) energy corresponding to 10,). An analogous result is 
obtained for the expansion 

matrix C") of equations (21) and (1Oc) and the excitation energies are = E;''- - E 0 ,  

of the ( N  + 1)-particle state in terms of 2plh excitations. 
The energies and wavefunctions resulting from the expansions (35)  and (36) ,  

respectively, are unphysical in the sense that the coupling to the one-hole and one- 
particle excitations have been left unconsidered. Instead of equations (35) and (36)  one 
should deal with the following expansions: 

Let us consider the 2hlp case given by equation (37).  The variation of the l h  parameters 
x ( ~ )  and the 2hlp parameters x(phh) leads to a secular equation which, in matrix 
notation, reads 

Here the submatrix A = 01 - E corresponds to the occupied orbitals (ak = l), E denot- 
ing the diagonal matrix of one-particle energies. The submatrix A,, = 01(') - K(') - C(') 
corresponding to the 2hlp part has already been considered (see equations (10) and 
(20)). The coupling between the h and the 2hlp part is due to the coupling matrix 
A,, = - V with elements 

(V)p, jkl  = Vpj[kl]. (40) 

From equation (3b) it is seen that, once the ground-state and ionic-state wave- 
functions are given, one can easily obtain the Green's function explicitly. The Green's 
function which corresponds to equations (37)  and (39) is clearly given by 



1898 J Schirmer and L S Cederbaum 

Here xr) are the variational coefficients in equation (37) and w(") = ') - E o ,  where 
the ionic energies Etv- ') are the eigenvalues of equation (39). By inverting the matrix 

it is straightforward to show that 

G = (A-')l1. 

On the other hand, the transformation of equation (39) into a partitioned form leads to 

(43) (A - ' ) l I  = [ol - E  + Vt(wl'" - K(') - C('))- 'V]-' .  

Clearly, equations (42) and (43) can be identified with the Dyson equation (17), where 
the self-energy part is given by the 2hlp result of equation (9), 

UVI)  = M(')(co) (44) 
as can be seen by inspection of equations (19), (20) and (10). 

Thus, equations (42) and (43) constitute an approximation for the one-particle 
Green's function G-referred to as the h-2hlp approximation-that is fully equivalent 
to a wavefunction description where the ground state is given by the unperturbed 
(Hartree-Fock) state I@,,) and the ( N  - 1)-particle states are constructed from all h 
and 2hlp excitations on I@,). For the sake of completeness, we mention that an 
analogous approximation (p-2plh) results for the (N + 1)-particle case. 

In this particular form the h-2hlp (p-2plh) excitations have been regarded by Arita 
and Horie (1971), Ring and Schuck (1974) and Schuck et al (1973) with the objective 
of calculating (N f 1)-particle excited states of nuclei. For the direct calculation of 
ionisation energies the h-2hlp approximation of equation (43) has obviously the 
disadvantage that-whereas reorganisation and correlation effects for the ionic states 
are partly taken into account-the ground-state correlation remains completely out of 
consideration. 

In contrast to the h-2hlp approximation it is an essential property of the 2ph-TDA 
that both the 2hlp and the 2plh parts M(') and M(") are combined within the self- 
energy part according to equation (18) and that there is no decoupling into hole or 
particle states for the Dyson equation (17). The 2ph-TDA does not allow for a simple 
description by means of a wavefunction picture. Although related to the h-2hlp (p-2plh) 
approximation according to the common equations for the self-energy contributions 
M(') (M'")) the 2ph-TDA obviously goes beyond the h-2hlp approximation at least in 
that an important amount of ground-state correlation is taken into account. This is 
drastically confirmed by the numerical results when one compares both approximations. 

It should be stressed that the 2ph-TDA only partially accounts for the ground-state 
correlation effects. As the derivation in $2 has shown, the exact self-energy part C(o) is 
only incompletely represented by the 2ph-TDA self-energy part for contributions higher 
than second order. For the third-order self-energy part C(3)(o),  in particular, the 
contributions of the diagrams in figure 3 which have been shown to be mainly 
associated with ground-state correlation (Cederbaum and Domcke 1977 5III.D) are 
missing. In order to incorporate ground-state correlation more extensively, an approxi- 
mation scheme for the self-energy part has been developed (Cederbaum 1975b, 
Cederbaum and Domcke 1977, Schirmer 1977) that exhibits the following properties: 
(i) the 2ph-TDA is contained as a special case, (ii) the self-energy part is exact up to 
third order and-which is very important-(iii) all diagrams 'directly arising' from the 
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Figure 3. Goldstone diagrams of third order not taken into account by the 2ph-TDA 

third-order diagrams are summed up to infinite order. Due to the high numerical 
requirements this method has not been applied so far except for small model systems. 
The implementation of the 2ph-TDA presented here proves to be crucial for every 
further study. 

It is interesting to note that equations related to the 2ph-TDA equations show up 
within the framework of an approach given by Simons and Smith (1973). These 
authors start from the excitation operators 

cl[,,) = 1 x p c :  + x$)lcjclc: + yj;'IcJc:c: (45) 
nl,= 1 k < f  k < l  

n p k n ,  = 1 n,nknz = 1 

and a correlated ground-state wavefunction given by 

where the coefficients r k l m n  are determined from Rayleigh-Schrodinger perturbation 
theory. The excitation operator of equation (45) contains-with respect to the 2plh 
expansion of equation (38)-additional amplitudes y${, corresponding to the 2hlp 
space. By evaluating the equations of motion for the excitation operators R,?) working 
on the wavefunction IO) and retaining only terms up to third order in the electronic 
interaction one arrives at a self-energy part whose w-dependent contribution is of the 
form 

M(o) = B r (w)Bt  = B('"(') (w)B") + B(")r(")(w)B("). (47) 

Here P ( w )  and P ( o )  are identical to the 2hlp and 2plh parts, respectively, of the 
2ph-TDA self-energy part. It should be noted that in the original paper of Simons 
and Smith only a diagonal version of the 2ph-TDA equations for r(') (r('I)) appears. 
This deficiency has been recognised by Purvis and Bhrn (1975) who present the correct 
equations. In actual calculations, however, Simons and co-workers do not make use 
of the full 2hlp (2plh) equations for the poles of the self-energy part. 

Whereas the poles of the self-energy part within the approach of Simons and Smith 
are determined by the 2ph-TDA equations, the corresponding residues differ from the 
2ph-TDA in that the matrices B(','') contain terms of second order in the electronic 
interaction. The resulting self-energy part is consistent through third order. Here a 
remark might be appropriate. The question arises whether it is a good approximation 
to obtain the poles of the self-energy part from an infinite partial summation (including 
all orders of the electronic interaction) and on the other hand to calculate the residues 
only consistent to third order. In our opinion one rather has to use an infinite 
partial summation that provides the poles and the residues on an equal footing. 
Such an infinite summation is discussed elsewhere (Cederbaum 1975b, Cederbaum and 
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Domcke 1977, Schirmer 1977). This infinite summation forms the basis for the approxi- 
mation scheme used by our group to calculate outer valence ionisation potentials. 

The preceding discussion also applies to the calculations presented by Purvis and 
Ohrn (1974) who build upon the super-operator approach of Pickup and Goscinski 
(1973). Although their approach is formally different from that of Simons and Smith, 
both methods are equivalent provided one makes use of the operator space h , ,  h ,  
(Pickup and Goscinski 1973) in conjunction with the reference state of equation (46) 
(Jargensen and Simons 1975). In actual calculations these authors, too, restrict them- 
selves to diagonal and near-diagonal approximations with respect to the 2hlp (2plh) 
excitations. 

In conclusion we may say that from both a theoretical and a practical point of 
view the 2ph-TDA is a basic approximation scheme for the one-particle Green’s 
function or related entities. This approximation has been shown to play a key role 
within several quite different approaches. In order to proceed one obviously has to 
start in one way or another from the 2ph-TDA. A rigorous application of this method 
will therefore be an essential step towards the development of more advanced 
approximations. The practical importance of the 2ph-TDA relies upon its applicability 
in realistic calculations. Such calculations for three diatomic molecules containing 
second-row atoms will be presented in the following paper. 

References 

Abrikosov A, Gor’kov L and Dzyaloshinskii J 1965 Quantum Field Theoretical Methods in Statistical Physics 

Arita K and Horie H 1971 Nucl. Phys. A 173 97-123 
Cederbaum L S 1973 Theor. Chirn. Acta 31 239-60 
--1974 Molec. Phys. 28 479-93 
-1975a J .  Phys. B: Atom. Molec. Phys. 8 29@303 
-1975b J .  C h e m  Phys. 62 216@70 
Cederbaum L S and Domcke W 1977 Adv. Chem. Phys. 36 205-344 
Ccderhaum L S. Domcke W and von Niessen W 1975 Chem. Phys. 10 459-70 
Ccdcrbauni L S. Schirmcr J. von Niessen W and Domcke W 1977 J .  Phys. B:  A t o m  Molec. Phys. 10 L549-53 
C\,inak G. Tallor H S and Yaris R 1971 Adc. Atom. Moiec. Piiys. 7 287-361 
Goscinski 0 and Lukman B 1970 Ciiem. Pliys. Lett. 7 573-6 
J~lrgensen P and Simons J 1975 J .  Chetn. Phys. 63 5302-4 
Koopmans T 1933 Physica 1 1 0 4 1 3  
Lane A M 1964 Nuclear Theory (New York, Amsterdam: Benjamin) 
von Niessen W, Cederbaum L S, Domcke W and Diercksen G H F 1977 J .  Cliem. Phys.  66 4893-9 
Pickup B and Goscinski 0 1973 Molec. Phys.  26 1013-35 
Purvis G D and o h r n  Y 1974 J .  Chem. Phys. 60 4063-9 
-1975 Chem. Phys. Lett. 33 396-8 
Ring P and Schuck P 1974 Z. Phys. 269 323-31 
Rowe D J 1968 Rev. Mod. Phys. 40 153 
Schirmer J 1977 Thesis Technische Universitat Miinchen 
Schirmer J. Cederbaum L S, Domcke W and von Niessen W 1977 Chem. Piij~s. 26 149 
Schuck P, Villars F and Ring P 1973 iliucl. Phys. A 208 302-8 
Simons J and Smith W D 1973 J .  Ciiem. Phys. 58 4899-907 
Thouless D J 1961 The Quantuni Mechanics of Manj,-Body Sysrems (New York: Academic Press) 

(Oxford : Pergamon) 


