THE CARINA PROJECT. IX. ON HYDROGEN AND HELIUM BURNING VARIABLES

, , , , , , , , , , , , , , , , and

Published 2015 November 17 © 2015. The American Astronomical Society. All rights reserved.
, , Citation G. Coppola et al 2015 ApJ 814 71 DOI 10.1088/0004-637X/814/1/71

0004-637X/814/1/71

ABSTRACT

We present new multiband (UBVI) time-series data of helium burning variables in the Carina dwarf spheroidal galaxy. The current sample includes 92 RR Lyrae—six of them are new identifications—and 20 Anomalous Cepheids, one of which is new identification. The analysis of the Bailey diagram shows that the luminosity amplitude of the first overtone component in double-mode variables is located along the long-period tail of regular first overtone variables, while the fundamental component is located along the short-period tail of regular fundamental variables. This evidence further supports the transitional nature of these objects. Moreover, the distribution of Carina double-mode variables in the Petersen diagram (P1/P0 versus P0) is similar to metal-poor globulars (M15, M68), to the dwarf spheroidal Draco, and to the Galactic Halo. This suggests that the Carina old stellar population is metal-poor and affected by a small spread in metallicity. We use trigonometric parallaxes for five field RR Lyrae stars to provide an independent estimate of the Carina distance using the observed reddening free Period–Wesenheit [PW, (BV)] relation. Theory and observations indicate that this diagnostic is independent of metallicity. We found a true distance modulus of μ = 20.01 ± 0.02 (standard error of the mean) ± 0.05 (standard deviation) mag. We also provided independent estimates of the Carina true distance modulus using four predicted PW relations (BV, BI, VI, BVI) and we found: μ = (20.08 ± 0.007 ± 0.07) mag, μ = (20.06 ± 0.006 ± 0.06) mag, μ = (20.07 ± 0.008 ± 0.08) mag, and μ = (20.06 ± 0.006 ± 0.06) mag. Finally, we identified more than 100 new SX Phoenicis stars that together with those already known in the literature (340) make Carina a fundamental laboratory for constraining the evolutionary and pulsation properties of these transitional variables.

Export citation and abstract BibTeX RIS

1. INTRODUCTION

Dwarf galaxies play a crucial role in several astrophysical and cosmological problems. They outnumber giant stellar systems in the nearby universe and at low redshift (see, e.g., Mateo et al. 1998; McConnachie 2012), but it seems that the number is steadily decreasing at large redshifts (Baldry et al. 2012; Mortlock et al. 2013). The current empirical evidence indicates that the luminosity function does not peak at low-surface brightness systems at redshifts larger than z = 2 (Bauer et al. 2011; Weinzirl et al. 2011). It is clear that in this context the age distribution of the old stellar populations in nearby dwarf galaxies plays a crucial role in constraining their early formation and evolution (Salvadori et al. 2010). Current empirical evidence indicates that both early- and late-type dwarf galaxies host stellar populations older than 10 Gyr. This evidence applies not only to IC10, the Local Group prototype of star-forming galaxies (Sanna et al. 2009), but also to the recently discovered Ultra Faint Dwarf galaxies (Dall'Ora et al. 2006, 2012; Greco et al. 2008; Kuehn et al. 2008; Moretti et al. 2009; Musella et al. 2009, 2012; Clementini et al. 2012; Garofalo et al. 2013; Fabrizio et al. 2014). Moreover, the comparison between old stellar populations in nearby dwarfs and Galactic Globular clusters does not show, at fixed metal content, any striking difference concerning the age distribution (Monelli et al. 2003; Cole et al. 2007; Bono et al. 2010).

The above empirical evidence suggests that low-mass dark matter halos started assembling baryons at about the same time as the giant halos (Springel et al. 2005; Bauer et al. 2011; Duncan et al. 2014). Detailed constraints on the formation of these systems require detailed investigations into their star-formation histories. However, this approach needs deep and accurate color–magnitude diagrams (CMDs) down to limiting magnitudes fainter than the main-sequence turnoff of the old stellar populations (Gallart et al. 2005; Monelli et al. 2010b). In this context variable stars play a crucial role, since they can be easily identified. Moreover, they cover a broad range in age, from a few 100 Myr for Classical Cepheids (e.g., Bono et al. 2005) to a few Gyr for Anomalous Cepheids (AC) (e.g., Caputo 1998; Marconi et al. 2004) to ages older than 10 Gyr for the RR Lyrae stars (RRLs; e.g., Castellani et al. 1991). However, for classical Cepheids we have evidence of tight correlation between pulsation and evolutionary age (Matsunaga et al. 2011, 2013). The same outcome does not apply, as noted by the referee, to the other quoted variables. This means that for RRLs we can only provide a lower limit to their individual ages (Bono et al. 2011), while for ACs we can only provide an age interval.

The latter two groups have several distinctive features that make them solid stellar tracers in resolved dwarf spheroidal galaxies. Empirical evidence indicates that all the dSphs that have been searched for evolved helium burning variable stars host RRLs. It is worth mentioning that they have been identified in all stellar systems hosting a stellar population older than 10 Gyr and an intermediate horizontal branch (HB) morphology, i.e., systems in which the mass distribution along the HB covers the RRL instability strip (IS). The stellar systems with ages younger than 10 Gyr typically display Galactic thin disk kinematics (Blanco-Cuaresma et al. 2015). This means that we still lack solid empirical evidence of RR Lyrae belonging to old thin disk open clusters (Bono et al. 2011). On the other hand, ACs have been identified in stellar systems more metal-poor than about [Fe/H] = −1.6 dex. Theoretical predictions indicate that helium burning sequence of intermediate-mass stars more metal-rich than the above limit do not cross the so-called Cepheid IS (Castellani & degl'Innocenti 1995; Stetson et al. 2014b).

It goes without saying that the comparison of pulsation and evolutionary properties of evolved helium burning-variables in nearby stellar systems allows us to constrain their early formation (Fiorentino et al. 2012, 2015a; Coppola et al. 2013; Stetson et al. 2014b). The Carina dSph is a very interesting laboratory for investigating the above issues. In a previous investigation we compared the period distribution of the central helium burning variable stars in Carina with similar distributions in nearby dSphs and in the Large Magellanic Cloud (LMC) and we found that the old stellar populations in these systems share similar properties (Coppola et al. 2013, hereafter, Paper VI). On the other hand, the period distribution and the Bailey diagram (luminosity amplitude versus period) of ACs show significant differences among the above stellar systems. This evidence suggested that the properties of intermediate-age stellar populations might be affected both by environmental effects and structural parameters.

In this investigation we move toward a complete census of helium-burning variable stars. The structure of the paper is the following. In Section 2 we present in detail the adopted photometric data set together with the light curves of both RRLs and ACs and their pulsation properties. In Section 3 we discuss the properties of RRLs and ACs using the Bailey diagram and the Petersen diagram (period ratio versus period). We focused our attention on the position of double mode variables and on the sensitivity of the period ratio on the iron abundance. In Section 4 we use the optical Period–Wesenheit–Metallicity (PWZ) relation of RRLs to estimate the Carina true distance modulus. To constrain the possible occurrence of systematic errors we estimated the Carina distance using the five field RRLs for which accurate estimates of their trigonometric parallaxes are available. Independent distance determinations were also provided using predicted optical PWZ relations. In Section 5 we present preliminary results about SX Phoenicis variables. Finally, in Section 6 we summarize the results of this investigation and briefly outline the future development of the Carina project.

2. PHOTOMETRIC DATA

The photometric catalog adopted in this investigation is an extension of the data set discussed by Coppola et al. (2013). This included 4474 CCD images in the UBVRI photometric bands obtained with the CTIO 4 m and 1.5 m telescopes, the ESO 3.6 m NTT, the MPI/ESO 2.2 m telescope, and the 8 m ESO VLT during the period 1992 December through 2008 September. Here we add 2028 CCD images in the same photometric bands obtained with the same telescopes (see Table 1). In the current analysis, the R-band data were not included because the number of measurements is limited and they do not provide a good coverage of the pulsation cycle. The seeing had a median value of 1farcs0, and ranged from 0farcs8 (10-percentile) and 0farcs9 (25-percentile) to 1farcs3 (75-percentile) and 1farcs6 (90-percentile). The reader interested in a detailed discussion of the photometric methodology, the absolute photometric calibration, the identification of the variable stars and analysis of the time series data is referred to Paper VI and to Stetson et al. (2014b).

Table 1.  Log of Observations

  Run ID Dates Telescope Camera U B V R I Multiplex
1 susi9810: 1998 Oct 26–29 ESO NTT 3.6 m SUSI ... ... 2 ... 3 ×2
2 wfi38: 1999 Oct 30–11 14 MPI/ESO 2.2 m WFI ... 3 ... 2 ... ×8
3 susi0410: 2004 Oct 05–09 ESO NTT 3.6 m SUSI ... ... ... 12 ... ×2
4 B05jan12: 2005 Jan 12 CTIO 4.0 m Mosaic2 12 ... ... ... 5 ×8
5 B05jan17: 2005 Jan 18 CTIO 4.0 m Mosaic2 ... 2 6 ... 21 ×8
6 B0512: 2005 Dec 28 CTIO 4.0 m Mosaic2 14 ... 2 ... 1 ×8
7 B0712: 2007 Dec 14–19 CTIO 4.0 m Mosaic2 ... 71 88 ... ... ×8
8 B1002: 2010 Jan 14–16 CTIO 4 m Mosaic2 ... ... 19 ... ... ×8
9 wfi41: 2012 Feb 22–29 MPI/ESO 2.2 m WFI 6 3 ... ... 3 ×8

Download table as:  ASCIITypeset image

The list of variable stars begins with that from Dall'Ora et al. (2003, hereafter D03), who merged the prior lists of Saha et al. (1986, hereafter S86), and performed their own comprehensive investigation of the resulting set of 92 candidate variable stars. This existing star list has been augmented by our own search for new variables within the new, expanded set of 6992 optical images of Carina. In particular, we have identified 92 RRLs. Among them 12 pulsate in the first-overtone (FO, RRc), 63 in the fundamental mode (F, RRab), 9 are double-mode pulsators (RRd) and 8 are candidate Blazhko variables (Bl). We also identified 20 ACs, 2 long-period variables (LPV) and 10 geometrical variables (eclipsing binaries, EB, and W Uma). The main difference between the current set of variable stars and those discussed in Paper VI is that we have identified 16 new variables. Among them are six RRLs, one AC, seven EBs and two probable LPVs. Moreover, in Paper VI we discovered 14 new variables, but by using the new data set, we confirm that only nine of these are new identifications (see the Appendix for details).

Recently Vivas & Mateo (2013, hereafter VM13) performed a detailed investigation of pulsating stars in Carina. They found 38 RRLs, 10 AC variables and more than 340 new SX Phoenicis (SX Phe). Among them 36 (30 RRLs and 6 ACs) are in common with D03 and 41 (32 RRLs, 7 ACs, 2 EBs) with our new catalog. The nine stars listed by VM13 that do not appear in our catalog are listed in Table 7. These variables were not included in the following analysis of RRLs pulsation properties since they are located beyond the Carina tidal radius (see Section 3.1 for a detailed discussion). Concerning SX Phe stars, we confirm the variability for 324 out of 340 known pulsators in Carina and we identified 101 new variables of this class (see Section 5 for details).

In the first column of Table 2 we find the identification number according to S86 and D03. For the newly detected variables in this paper and in Paper VI (208–237) the D03 running number was continued and these stars were also marked with an asterisk in this same table. Columns (2) and (3) list α and δ (J2000.0) coordinates in units of (hh:mm:ss) and (dd:mm:ss), respectively,12 while the last five columns give S86, D03, VM13, Paper VI and current individual notes. Candidate variable stars for which we could not confirm the variability are given in Table 3.

Table 2.  Catalog of Carina Variable Stars

ID α (J2000.0) δ (J2000.0) S86 D03 VM13 Paper VI Our
... (hh mm ss) (dd mm ss) ... ... ... ... ...
V3 06 43 31.71 −50 51 05.3 ab ... ... V215 (ab) ab
V4 06 43 28.70 −50 55 46.9 c V177 (c) ... ... c
V7 06 43 16.26 −51 04 17.2 ab V7 (ab) ... V7 (ab) ab
V10 06 43 10.66 −50 43 47.8 ab V10 (ab) ... V10 (ab) ab
V11 06 43 08.20 −50 50 47.9 c V11 (d) ... V11 (d) d
V14 06 43 01.93 −51 01 26.3 ab V14 (AC) ... V14 (AC) AC
V22 06 42 46.32 −50 57 36.9 ab V22 (c) ... V22 (ab) ab
V24 06 42 34.00 −50 44 24.9 ab V24 (ab) ... V24 (ab) ab
V25 06 42 32.22 −50 59 36.4 ab ... ... V213 (ab) Bl
V26 06 42 30.33 −50 52 24.1 ab V26 (d) ... V26 (d) d
V27 06 42 28.89 −50 47 50.2 ab V27 (AC) ... V27 (AC) AC
V29 06 42 25.07 −51 03 47.7 ab V29 (AC) ... V29 (AC) AC
V30 06 42 24.10 −51 02 38.9 ab V30 (ab) ... V30 (ab) ab
V31 06 42 22.87 −50 59 16.0 c V31 (ab) ... V31 (ab) Bl
V32 06 42 22.50 −50 59 18.3 ab V202 (ab) ... V202 (ab) ab
V33 06 42 21.10 −51 11 51.4 ab V33 (AC) ... V33 (AC) AC
V34 06 42 19.22 −50 45 30.7 ab V34 (ab) ... V34 (ab) ab
V40 06 42 15.63 −51 07 00.0 c (ab?) V40 (c) ... V40 (c) c
V41 06 42 14.76 −50 55 14.0 SV V180 (AC) ... V180 (AC) AC
V43 06 42 13.11 −50 46 49.9 c V43 (c) ... V43 (c) c
V44 06 42 13.05 −50 57 22.1 ab ... ... V212 (ab) ab
V47 06 42 09.10 −50 53 53.5 c V47 (c) 37 (ab) V47 (c) c
V49 06 42 08.77 −51 01 11.8 ab V49 (ab) ... V49 (ab) ab
V57 06 42 02.85 −50 52 56.8 ab V57 (ab) 35 (ab) V57 (ab) ab
V58 06 42 01.04 −50 57 19.7 ab ... 34 (ab) V211 (ab) ab
V60 06 41 59.75 −51 06 38.5 ab V60 (ab) 33 (ab) V60 (ab) ab
V61 06 41 58.29 −50 47 37.8 ab V61 (ab) 32 (ab) V61 (ab) Bl
V65 06 41 55.86 −50 55 35.3 ab V65 (ab) 31 (ab) V65 (ab) ab
V67 06 41 52.64 −51 05 19.7 ab V67 (ab) 30 (ab) V67 (ab) ab
V68 06 41 49.15 −50 59 18.7 ab V68 (ab) 28 (ab) V68 (ab) ab
V73 06 41 46.91 −51 07 07.5 ab V73 (ab) 27 (ab) V73 (ab) ab
V74 06 41 43.86 −50 54 09.0 c V74 (c) ... V74 (c) d
V75 06 41 42.90 −50 58 49.5 ab ... 25 (ab) ... ab
V77 06 41 39.24 −51 05 39.7 ab V77 (ab) 23 (ab) V77 (Bl) Bl
V84 06 41 37.11 −51 00 04.5 ab V84 (ab) ... V84 (ab) ab
V85 06 41 35.64 −50 50 07.4 ab V85 (ab) 22 (ab) V85 (ab) ab
V87 06 41 32.67 −50 57 00.8 SV V87 (AC) 3 (AC) V87 (AC) AC
V89 06 41 29.94 −50 47 13.7 ab V89 (d) 21 (ab) V89 (d) d
V90 06 41 29.92 −50 52 10.7 ab V90(ab) 20 (ab) V90 (ab) ab
V91 06 41 29.46 −51 04 28.5 ab V91 (ab) 19 (ab) V91 (ab) ab
V92 06 41 28.75 −51 06 50.5 ab V92 (ab) 18 (ab) V92 (ab) ab
V105 06 41 16.53 −51 09 03.0 ab V105 (ab) 14 (ab) V105 (ab) ab
V115 06 41 06.23 −50 53 18.5 ? V115 (AC) ... V115 (AC) AC
V116 06 41 05.63 −51 00 28.1 ab V116 (ab) 11 (ab) V116 (ab) ab
V122 06 40 56.97 −51 00 45.8 ab V122(ab) ... V122 (ab) ab
V123 06 40 54.92 −50 44 14.5 ab V123 (ab) ... V123 (ab) ab
V124 06 40 53.78 −51 05 53.1 ab V124 (ab) ... V124 (ab) ab
V125 06 40 53.37 −50 58 53.3 ab V125 (ab) 10 (c) V125 (ab) ab
V126 06 40 52.35 −50 58 56.6 ab V126 (ab) ... V126 (Bl) Bl
V127 06 40 52.22 −50 59 20.8 ab V127 (ab) ... V127 (Bl) Bl
V129 06 40 49.34 −51 08 15.0 ab V129 (AC) ... V129 (AC) AC
V133 06 40 47.93 −51 03 23.5 ab ... ... V209 (ab) ab
V135 06 40 46.43 −51 05 24.6 ab V135 (ab) ... V135 (ab) ab
V136 06 40 44.80 −51 12 42.7 ab V136 (ab) ... V136 (ab) ab
V138 06 40 40.73 −50 52 58.3 SV V138 (ab) ... V138 (ab) ab
V141 06 40 39.29 −50 56 01.3 SV V141 (ab) ... V141 (ab) ab
V142 06 40 38.40 −51 01 38.8 SV V142 (c) ... V142 (c) c
V143 06 40 38.06 −51 11 30.9 ab V143 (ab) ... V143 (ab) ab
V144 06 40 37.20 −50 59 25.0 c V144 (c) 9 (c) V144 (c) c
V148 06 40 31.69 −50 48 39.9 ab V148(c) 8 (c) V148 (c) c
V149 06 40 30.46 −51 07 00.9 ab V149 (AC) ... V149 (AC) AC
V151 06 40 29.45 −51 00 17.3 SV V151 (c) 7 (c) V151 (c) c
V153 06 40 24.39 −51 04 49.9 ab V153 (ab) ... V153 (ab) ab
V158 06 40 12.87 −50 56 24.8 ab V158 (ab) ... V158 (ab) ab
V159 06 40 12.59 −51 09 35.8 ab V159 (ab) ... V159 (ab) ab
V164 06 39 56.29 −50 53 54.7 ab V164 (ab) ... V164 (ab) ab
V165 06 39 55.72 −50 59 49.2 ab V186 (ab) ... V186 (ab) ab
V170 06 39 38.54 −50 46 33.6 ab ... ... ... ab
V171 06 39 36.54 −51 12 40.7 ab ... ... ... ab
V173 06 43 27.13 −50 44 49.2 ... V173 (RGB) ... V173 (RGB) RGB
V174 06 42 38.13 −50 46 10.9 ... V174 (ab) ... V174 (ab) ab
V175 06 42 54.36 −50 51 21.6 ... V175 (c) ... V175 (c) c
V176 06 43 00.06 −50 53 59.1 ... V176 (c) ... V176 (ab) ab
V178 06 41 44.04 −50 50 17.2 ... V178 (AC) 5 (AC) V178 (AC) AC
V179 06 41 49.40 −50 54 11.2 ... V179 (ab) 29 (c) V179 (ab) ab
V181 06 42 24.16 −50 56 00.3 ... V181 (c) ... V181 (c) c
V182 06 41 34.93 −50 52 39.1 ... V182 (ab) ... V182 (ab) ab
V183 06 41 27.59 −50 56 01.4 ... V183 (ab) 17 (ab) V183 (ab) ab
V184 06 40 33.02 −50 43 14.8 ... V184 (c) ... V184 (c) c
V185 06 40 25.22 −50 44 35.4 ... V185 (ab) ... V185 (ab) ab
V187 06 40 24.74 −51 01 29.4 ... V187 (AC) ... V187 (AC) AC
V188 06 40 12.28 −51 07 06.2 ... V188 (ab) ... V188 (ab) ab
V189 06 40 09.85 −51 08 05.2 ... V189 (ab) 6 (c) V189 (ab) ab
V190 06 41 39.78 −50 59 02.1 ... V190 (AC) 4 (AC) V190 (AC) AC
V191 06 41 26.22 −50 59 33.9 ... V191 (ab) 16 (ab) V191 (ab) ab
V192 06 41 20.66 −51 00 31.5 ... V192 (d) 15 (ab) V192 (d) d
V193 06 41 28.23 −51 00 45.4 ... V193 (AC) 2 (AC) V193 (AC) AC
V194 06 41 04.23 −51 01 32.9 ... V194 (FV) ... V194 (FV) FV
V195 06 41 40.82 −51 01 33.7 ... V195 (ab) 24 (ab) V195 (ab) ab
V196 06 41 11.48 −51 02 16.1 ... V196 (ab) 13 (ab) V196 (ab) ab
V197 06 41 00.27 −51 02 39.5 ... V197 (c) ... V197 (c) c
V198 06 41 10.55 −51 03 22.9 ... V198 (d) 12 (c) V198 (d) d
V199 06 41 19.60 −51 10 23.7 ... V199 (ab) ... V199 (ab) ab
V200 06 41 46.74 −50 58 39.3 ... V200 (ab) 26 (ab) V200 (ab) ab
V201 06 42 10.38 −50 59 07.5 ... V201 (ab) ... V201 (ab) ab
V203 06 41 56.12 −50 59 21.6 ... V203 (AC) 6 (AC) V203 (AC) AC
V204 06 42 04.10 −51 01 51.4 ... V204 (ab) ... V204 (ab) ab
V205 06 42 24.51 −51 02 40.4 ... V205 (AC) 7 (AC) V205 (AC) AC
V206 06 42 04.25 −51 09 41.3 ... V206 (ab) 36 (ab) V206 (ab) Bl
V207 06 43 07.50 −51 02 30.9 ... V207 (d) ... V207 (d) d
V208* 06 40 22.40 −51 17 08.1 ... ... ... V208 (ab) ab
V210* 06 41 27.04 −51 15 39.8 ... ... ... V210(Bl) d
V214* 06 42 36.99 −51 03 29.7 ... ... ... V214 (Bl) Bl
V216* 06 41 17.76 −50 56 46.0 ... ... ... V216 (AC) AC
V217* 06 41 33.03 −50 47 56.0 ... ... ... V217 (AC) AC
V218* 06 41 39.56 −51 15 52.6 ... ... ... V218 (AC) AC
V219* 06 42 09.01 −50 59 37.6 ... ... ... V219 (AC) AC
V220* 06 40 19.12 −50 58 23.0 ... ... ... V220 (EB) EB
V221* 06 43 20.73 −50 55 29.9 ... ... ... V221 (WUma) WUma
V222* 06 41 24.30 −51 03 24.7 ... ... ... ... LPV
V223* 06 39 52.92 −50 54 28.3 ... ... ... ... ab
V224* 06 40 36.37 −51 16 42.2 ... ... ... ... LPV
V225* 06 41 01.01 −51 00 02.4 ... ... ... ... d
V226* 06 40 18.76 −51 18 36.6 ... ... ... ... ab
V227* 06 41 26.13 −51 21 26.7 ... ... ... ... ab
V228* 06 42 35.07 −50 38 07.2 ... ... ... ... ab
V229* 06 39 38.92 −51 05 59.1 ... ... ... ... ab
V230* 06 42 34.11 −50 58 20.0 ... ... 8 (AC) ... AC
V231* 06 41 10.58 −50 53 40.1 ... ... ... ... EB
V232* 06 40 10.11 −51 16 01.5 ... ... ... ... EB
V233* 06 41 23.47 −50 54 03.0 ... ... ... ... EB
V234* 06 42 30.62 −50 53 34.5 ... ... ... ... EB
V235* 06 43 14.32 −51 06 45.0 ... ... ... ... EB
V236* 06 41 03.78 −51 54 52.8 ... ... 2 (Mis) ... EB
V237* 06 41 17.39 −51 05 45.3 ... ... 5 (Mis) ... EB

Notes. Col. 1: Identification star; Col. 2: R.A., (α); Col. 3: Decl., (δ); Col. 4: Type as in S86; Col. 5: Type and identification as in D03; Col. 6: Type and identification as in VM13; Col. 7: Identification and type as in Paper VI; Col. 8: Type as in this study. FV—Field variable. RGB—Variable located along the RGB. SV—Suspected variable.

Machine-readable versions of the table is available.

Download table as:  DataTypeset images: 1 2 3

Table 3.  Catalog of Candidate Variable Stars that According to the Current Investigation are Not Variable

ID α (J2000.0) δ (J2000.0) S86 D03 This Work
... (hh mm ss) (dd mm ss) ... ... ...
V1 06 42 21.90 −50 51 35.0 ab ... NV
V2 06 42 19.60 −50 45 12.0 SV ... NV
V5 06 43 19.04 −50 53 29.3 SV NV NV
V6 06 43 18.01 −50 46 43.7 SV NV NV
V8 06 42 56.44 −50 41 45.6 δScu NV NV
V9 06 43 16.00 −51 02 43.6 WUma NV NVa
V12 06 43 06.20 −50 59 04.6 δScu NV NVb
V13 06 43 05.02 −50 49 33.0 SV NV NVb
V15 06 43 00.82 −50 50 28.2 SV NV NV
V16 06 42 56.33 −50 54 47.4 SV NV NVb
V17 06 42 56.39 −51 08 38.0 SV NV EB
V18 06 37 30.80 −51 17 31.4 SV NVc NV
V19 06 42 54.24 −50 44 44.8 SV NV NV
V20 06 42 50.97 −50 56 06.7 SV NV NV
V21 06 42 46.66 −51 08 50.6 SV NV NV
V23 06 42 37.03 −51 03 28.6 ab ... NV
V28 06 42 26.26 −50 59 44.2 SV NVc NVa
V35 06 42 19.37 −50 48 44.0 SV NV NV
V36 06 42 18.15 −51 08 07.6 SV NV NV
V37 06 41 52.94 −50 44 11.4 SV NV NVd
V38 06 42 17.30 −51 07 16.0 SV NV NVb
V39 06 42 17.21 −51 01 58.0 SV NVc NV
V42 06 42 14.75 −50 55 36.0 SV NV NVb
V45 06 42 10.98 −51 12 56.5 SV NV NV
V46 06 42 08.71 −50 46 57.3 SV NV NVb
V48 06 42 08.98 −51 02 40.4 SV NV NV
V50 06 42 08.50 −51 02 52.1 SV NV NV
V51 06 42 08.32 −51 02 26.7 SV NV NV
V52 06 42 07.52 −50 43 08.4 SV NV NV
V53 06 42 07.46 −50 51 25.3 SV NV NV
V54 06 42 07.54 −51 01 17.0 SV NV NV
V55 06 42 31.74 −50 51 56.7 SV NV NVe
V56 06 42 04.38 −50 49 15.1 SV NV NV
V59 06 41 59.71 −50 50 37.3 SV NV NV
V62 06 41 57.81 −50 59 53.3 SV NV NVb
V63 06 41 57.40 −51 03 23.0 SV NV NV
V64 06 41 57.17 −50 53 30.0 SV NV NVb
V66 06 41 53.04 −51 12 38.3 SV NV NV
V69 06 41 48.94 −51 02 32.5 c NV NVa
V70 06 41 48.23 −50 55 01.8 SV NV NV
V71 06 41 47.90 −51 03 12.6 SV NV NV
V72 06 41 46.89 −51 05 25.3 SV NV NV
V76 06 41 39.68 −50 48 56.1 SV NV NVe
V78 06 40 26.70 −51 08 23.0 SV ... NV
V79 06 41 38.26 −50 49 03.5 SV NV NV
V80 06 41 38.36 −51 04 37.5 SV NV NVb
V81 06 41 37.70 −51 02 37.2 SV NV NV
V82 06 41 37.52 −50 57 41.5 SV NV NVc
V83 06 41 37.46 −51 01 37.1 SV NV NVc
V86 06 41 33.86 −50 43 49.3 SV NV NV
V88 06 41 31.18 −50 57 56.1 SV NV NV
V93 06 40 16.20 −51 10 20.0 SV ... NV
V94 06 40 14.60 −50 57 20.0 SV ... NV
V95 06 41 26.76 −50 52 15.0 SV NV NVb
V96 06 41 24.98 −50 44 11.9 SV NV NV
V97 06 40 09.40 −50 54 31.0 SV ... NV
V98 06 40 08.50 −50 57 17.0 SV ... NV
V99 06 41 18.87 −50 58 24.8 SV NV NV
V100 06 40 05.6 −50 43 48.0 c ... NV
V101 06 41 18.13 −51 01 28.0 SV NV NV
V102 06 41 18.12 −51 10 57.1 SV NV NV
V103 06 41 17.40 −50 55 15.3 SV NV NV
V104 06 41 16.45 −51 01 08.8 SV NV NVb
V106 06 41 15.10 −51 08 40.7 SV NV NVb
V107 06 41 11.36 −51 11 14.8 SV NV NV
V108 06 41 10.55 −51 08 19.5 SV NV NV
V109 06 41 09.53 −50 59 43.8 SV NVa NVa
V110 06 41 09.18 −51 00 33.7 SV NV NVb
V111 06 39 56.10 −50 54 36.0 SV ... NV
V112 06 41 08.80 −51 04 39.3 SV NV NV
V113 06 41 08.56 −50 48 21.1 SV NV NV
V114 06 41 08.26 −50 54 41.1 SV NV NVb
V117 06 39 52.60 −51 00 07 SV ... NV
V118 06 41 01.82 −50 47 22.4 SV NV NVe
V119 06 41 01.44 −50 52 30.7 SV NV NV
V120 06 40 58.83 −50 45 24.4 SV NV NV
V121 06 40 57.49 −51 00 41.2 SV NV NV
V128 06 40 49.17 −51 00 33.4 SV ... NVb
V130 06 39 35.90 −50 43 13.0 SV ... NV
V131 06 39 36.50 −51 01 43.0 SV ... NV
V132 06 39 35.90 −50 54 38.0 SV ... NV
V134 06 39 35.80 −51 06 54.0 SV ... NV
V137 06 40 43.01 −50 55 54.3 SV NV NV
V139 06 40 39.86 −50 53 22.9 SV NV NV
V140 06 40 39.47 −51 07 02.2 SV NV NV
V145 06 40 36.06 −50 58 31.1 SV NV NV
V146 06 40 34.79 −51 01 51.7 SV NV NV
V147 06 40 34.08 −51 11 29.9 SV NV NVb
V150 06 40 30.73 −50 45 27.9 SV NV NV
V152 06 40 29.32 −50 42 14.5 SV NVc NVb
V154 06 40 13.95 −50 42 55.1 SV NV NV
V155 06 40 19.68 −50 45 45.4 SV NV NV
V156 06 40 17.98 −51 06 02.0 SV NV NV
V157 06 40 17.60 −50 58 41.4 SV NV NV
V160 06 40 01.42 −51 02 50.3 SV NV NV
V161 06 40 00.98 −51 04 06.6 SV SV NVa
V162 06 40 00.14 −50 44 14.5 SV NV NV
V163 06 39 57.08 −50 51 10.6 SV NV NV
V166 06 38 29.90 −50 52 41.0 SV ... NV
V167 06 38 30.30 −50 54 36.0 SV ... NV
V168 06 38 29.90 −50 54 27.0 SV ... NV
V169 06 38 29.2 −50 45 05.0 SV ... NV
V172 06 41 08.38 −50 47 06.8 SV NV NV

Notes. Col. 1: Identification star; Col. 2: R.A., (α); Col. 3: Decl., (δ); Col. 4: Type as in S86; Col. 5: Type as in D03; Col. 6: Type as in this study. NV—No variability detected. SV—Suspected variable.

aPossible blend. bLocated close to a bright or faint star. cPossible field galaxy. dSaturated star. eFaint star.

Machine-readable versions of the table is available.

Download table as:  DataTypeset images: 1 2

The current data set included the BV images adopted by D03 in their investigation of Carina's variable stars. We confirm their variability analysis and their variable star classification with only a few exceptions. According to our extended data set the variable V161 does not show clear signs of variability. The variable V17 appears to be an EB variable; while the variables V22 and V176 seem to pulsate in the fundamental (RRab) instead of in the first overtone (RRc) mode. The variables V31, V61, V77, V126, V127 and V206 were also classified by D03 as RRab variables and according to our new data they also show the Blazhko effect. Moreover, the variable V74 was classified by D03 as RRc variable, but according to our new data it is classified as a double-mode pulsator. A more detailed analysis of individual variables is given in the Appendix.

The individual UBVI measurements for all the variables in our sample are listed in Table 4. For every variable in our sample the first three columns of the table contain the Heliocentric Julian Date (HJD), the U-band magnitude and the photometric error. Columns (4)–(12) give the same information, but for the B-, V-, and I-band measurements. The total number of phase points in the complete data set depends on the photometric band, and they range from 1 to 23 (U), from 22 to 203 (B), from 38 to 278 (V) and from 3 to 92 (I). The coverage of the pulsation cycle is optimal in the B and V bands, modest in the I band and poor in the U band. The photometric error of individual measurements depends on the photometric band and on seeing conditions. It is also occasionally affected by crowding conditions, but it is on average of the order of 0.02 mag.

Table 4.  Photometry of the Carina Variable Stars

HJD U σU HJD B σB HJD V σV HJD I σI
V7                      
53351.7001 21.50 0.03 51552.5736 21.33 0.02 51552.5669 20.90 0.02 53351.7698 20.38 0.02
53351.7129 21.64 0.03 51552.5854 21.40 0.02 51552.5786 20.90 0.01 53351.7745 20.40 0.02
53351.7256 21.59 0.03 51552.5971 21.43 0.02 51552.5904 20.94 0.02 53351.7791 20.38 0.02
53351.7387 21.59 0.04 51552.6089 21.43 0.02 51552.6021 20.92 0.01 53351.7838 20.37 0.02
53351.7515 21.62 0.04 51552.6209 21.47 0.01 51552.6141 21.03 0.01 53351.7885 20.43 0.02
53351.7642 21.68 0.03 51552.6327 21.49 0.02 51552.6259 20.99 0.02 53351.7931 20.35 0.02
53359.7729 21.39 0.03 51552.6445 21.53 0.02 51552.6378 21.04 0.01 53351.7978 20.43 0.02
53359.7858 21.14 0.02 51552.6562 21.53 0.02 51552.6495 21.04 0.02 53359.6762 20.39 0.01
53359.7992 20.75 0.02 51552.6681 21.56 0.02 51552.6613 21.08 0.01 53359.6808 20.39 0.02
53359.8121 20.45 0.02 51552.6798 21.54 0.02 51552.6731 21.04 0.02 53359.6855 20.34 0.02
  51552.6916 21.58 0.02 51552.6849 21.10 0.02 53359.6901 20.36 0.01

Only a portion of this table is shown here to demonstrate its form and content. A machine-readable version of the full table is available.

Download table as:  DataTypeset image

Period searches and the phasing of light curves were performed using the procedure adopted by Stetson et al. (2014a), for the galactic Globular Cluster M4. The large time baseline (∼20 years) covered by our data set allowed us to overcome half- and one-day alias ambiguities that can be quite severe in data sets covering limited time intervals. The large time interval covered by the current data set allowed us to provide more precise periods, epochs of maximum light, and luminosity amplitudes for the entire set of variable stars. In particular, the accuracy of the period estimates is related to the period itself and to the time interval covered by the observations. They range from (1 × 10−8) to (1 × 10−5) days.

The mean optical magnitudes and the amplitudes in the bands with good time sampling (B, V) were estimated from fits with a spline under tension.

We already mentioned that the time sampling of both the U- and I-band light curves is either modest or poor. This means less accurate mean magnitudes and luminosity amplitudes. To overcome this problem for the I-band light curves we adopted the method described by Di Criscienzo et al. (2011) based on using the V-band light curve as a template and re-scaling the same measurements in amplitude to fit the I-band light curves. To accomplish this goal we adopted a visual-to-I-band amplitude ratio of 1.58 ± 0.03, obtained by Di Criscienzo et al. (2011) using the literature V and I light curves of 130 RRLs with good light curve parameters selected from different Galactic globular clusters.

The U-band light curves for several variables are poorly sampled, and often there is no coverage across minimum and/or maximum light. In those cases, we adopted as a mean magnitude the median of measurements and we do not provide luminosity amplitudes.

Table 5 lists, from left to right, for every variable in the current data set, the identification, the classification, the epoch of maximum light, the period (days), the intensity-averaged [<mml:math> <mml:mo stretchy="true">&lang;</mml:mo> <mml:mi>U</mml:mi> <mml:mo stretchy="true">&rang;</mml:mo> </mml:math>, <mml:math> <mml:mo stretchy="true">&lang;</mml:mo> <mml:mi>B</mml:mi> <mml:mo stretchy="true">&rang;</mml:mo> </mml:math>, <mml:math> <mml:mo stretchy="true">&lang;</mml:mo> <mml:mi>V</mml:mi> <mml:mo stretchy="true">&rang;</mml:mo> </mml:math>, <mml:math> <mml:mo stretchy="true">&lang;</mml:mo> <mml:mi>I</mml:mi> <mml:mo stretchy="true">&rang;</mml:mo> </mml:math>] mean magnitudes and the A(U), A(B), A(V), A(I) luminosity amplitudes. For some variables the light curves are poorly sampled, and as explained above for the U band, we adopted as a mean magnitude the median of measurements and do not provide luminosity amplitudes. Note that for RRd variables the same observables and the period ratios, P0/P1, are listed in Table 6. For these stars we did not perform the analysis of pulsational parameters in the U-band, because the U-band light curves are not well sampled.

Table 5.  Pulsation Properties of Carina Variable Stars

ID Type Epocha Period (day) <mml:math> <mml:mo stretchy="true">&lang;</mml:mo> <mml:mi>U</mml:mi> <mml:msup> <mml:mrow> <mml:mo stretchy="true">&rang;</mml:mo> </mml:mrow> <mml:mrow> <mml:mi mathvariant="normal">b</mml:mi> </mml:mrow> </mml:msup> </mml:math> <mml:math> <mml:mo stretchy="true">&lang;</mml:mo> <mml:mi>B</mml:mi> <mml:msup> <mml:mrow> <mml:mo stretchy="true">&rang;</mml:mo> </mml:mrow> <mml:mrow> <mml:mi mathvariant="normal">b</mml:mi> </mml:mrow> </mml:msup> </mml:math> <mml:math> <mml:mo stretchy="true">&lang;</mml:mo> <mml:mi>V</mml:mi> <mml:msup> <mml:mrow> <mml:mo stretchy="true">&rang;</mml:mo> </mml:mrow> <mml:mrow> <mml:mi mathvariant="normal">b</mml:mi> </mml:mrow> </mml:msup> </mml:math> <mml:math> <mml:mo stretchy="true">&lang;</mml:mo> <mml:mi>I</mml:mi> <mml:msup> <mml:mrow> <mml:mo stretchy="true">&rang;</mml:mo> </mml:mrow> <mml:mrow> <mml:mi mathvariant="normal">b</mml:mi> </mml:mrow> </mml:msup> </mml:math> A(U) A(B) A(V) A(I)
3 ab 52351.2771 0.5786581 21.30c 21.127 20.771 20.210 ... 1.256 1.012 0.637
4 c 51548.6519 0.3973509 21.243 20.995 20.685 20.234 0.513 0.663 0.565 0.356
7 ab 51548.7025 0.6033121 21.43c 21.104 20.729 20.212 ... 1.278 1.087 0.685
10 ab 51548.7378 0.5845143 21.158 21.070 20.724 20.203 0.712 1.367 1.095 0.690
14 AC 51548.9240 0.4766975 20.510 20.265 19.994 19.507 0.838 0.886 0.745 0.469
17 EB 51548.5693 0.3933393 22.03c 20.968 19.606 17.705 ... 0.092 0.086 0.059
22 ab 51549.0012 0.6380630 21.209 21.155 20.746 20.133 0.757 0.709 0.518 0.326
24 ab 51548.5844 0.6181987 21.48c 21.088 20.730 20.126 ... 0.909 0.723 0.456
25 Bl 52351.7201 0.5956510 21.20c 21.077 20.718 20.128 ... 0.993 0.856 0.539
27 AC 51549.1519 1.0203875 20.23c 19.817 19.376 18.820 ... 1.118 0.971 0.612
29 AC 51549.2591 0.7178952 19.297 19.283 19.013 18.608 1.152 1.015 0.811 0.511
30 ab 51548.7682 0.6188105 21.57c 21.179 20.774 20.136 ... 0.893 0.699 0.441
31 Bl 51548.7359 0.6457949 21.39c 21.154 20.750 20.093 ... 0.598 0.468 0.295
32 ab 51548.6507 0.6150517 21.44c 21.108 20.723 20.096 ... 0.875 0.743 0.468
33 AC 51549.1187 0.5836254 20.47c 20.055 19.735 19.155 ... 0.779 0.645 0.406
34 ab 51548.8657 0.5869516 21.44c 21.108 20.767 20.281 ... 1.281 0.993 0.625
40 c 51548.6092 0.3926228 21.183 21.125 20.781 20.223 0.429 0.525 0.441 0.278
41 AC 51548.5461 1.0381530 19.77c 19.393 19.091 18.577 ... 1.552 1.215 0.765
43 c 51548.9153 0.2992499 21.31c 20.945 20.741 20.353 ... 0.567 0.477 0.300
44 ab 52351.3257 0.6264277 20.89c 21.109 20.740 20.160 ... 1.181 0.963 0.607
47 c 51548.7090 0.3237674 21.26c 20.996 20.762 20.355 ... 0.760 0.619 0.390
49 ab 51548.8332 0.6815073 21.30c 21.106 20.690 20.052 ... 0.537 0.419 0.264
57 ab 51548.5449 0.6129016 21.294 21.195 20.783 20.185 0.854 0.854 0.671 0.423
58 ab 52351.7078 0.6194599 21.119 21.079 20.690 20.075 0.688 0.839 0.644 0.406
60 ab 51549.4418 0.6094132 21.341 21.148 20.746 20.157 0.539 1.016 0.808 0.509
61 Bl 51548.8037 0.6213493 21.28c 21.070 20.674 20.088 ... 0.936 0.795 0.501
65 ab 51548.6491 0.6517109 21.171 21.079 20.707 20.109 1.242 1.069 0.922 0.581
67 ab 51548.9560 0.60372385 21.064 21.100 20.726 20.136 0.763 0.856 0.716 0.451
68 ab 51548.5512 0.6787359 21.43c 21.158 20.721 20.091 ... 0.430 0.352 0.222
73 ab 51548.5572 0.5695182 21.11c 21.100 20.756 20.184 ... 1.324 1.134 0.715
75 ab 52345.7593 0.5912161 21.209 21.192 20.746 20.164 0.757 0.682 0.538 0.339
77 Bl 51548.6782 0.6043226 21.38c 21.101 20.730 20.138 ... 1.170 0.837 0.527
84 ab 51548.9285 0.6166815 21.01c 21.082 20.722 20.107 ... 0.954 0.795 0.501
85 ab 51548.6088 0.6405248 21.078 21.068 20.666 20.065 0.594 0.889 0.654 0.412
87 AC 51548.9360 0.8556130 19.144 18.975 18.732 18.353 0.526 0.644 0.478 0.301
90 ab 51548.6598 0.6313625 21.46c 21.135 20.724 20.145 ... 0.807 0.636 0.401
91 ab 51548.7635 0.7180705 21.164 21.105 20.684 20.023 0.600 0.751 0.579 0.365
92 ab 51548.7778 0.6301283 21.112 21.157 20.737 20.124 0.677 0.760 0.619 0.390
105 ab 51548.4033 0.6323014 20.99c 21.108 20.699 20.085 ... 0.834 0.680 0.428
115 AC 51549.4635 1.0109789 19.284 19.016 18.703 18.196 0.547 0.841 0.691 0.435
116 ab 51548.2506 0.6833133 21.15c 21.157 20.758 20.194 ... 0.938 0.727 0.458
122 ab 51548.8260 0.6314692 21.096 21.066 20.673 20.065 0.905 0.865 0.734 0.462
123 ab 51548.5547 0.6749693 21.35c 21.079 20.674 20.065 ... 0.829 0.689 0.434
124 ab 51548.9470 0.5917211 21.34c 21.043 20.672 20.139 ... 1.117 0.899 0.566
125 ab 51548.4329 0.5940963 20.94c 20.964 20.641 20.073 ... 1.332 1.091 0.688
126 Bl 51548.5952 0.5570972 21.23c 21.072 20.741 20.160 ... 1.070 0.917 0.578
127 Bl 51548.3900 0.6262952 21.22c 21.140 20.744 20.163 ... 0.694 0.506 0.319
129 AC 51549.2201 0.6301768 19.477 19.368 19.107 18.698 0.788 1.006 0.802 0.505
133 ab 52351.8941 0.6123127 21.398 21.160 20.776 20.237 1.463 1.011 0.813 0.512
135 ab 51548.9530 0.5909193 21.30c 20.982 20.624 20.091 ... 1.213 0.945 0.596
136 ab 51548.1625 0.631613 21.24c 21.099 20.691 20.064 ... 0.731 0.575 0.362
138 ab 51548.3027 0.6392611 21.12c 21.110 20.704 20.094 ... 0.691 0.549 0.346
141 ab 51548.3418 0.6353340 21.20c 21.143 20.737 20.144 ... 0.688 0.532 0.335
142 c 51548.4286 0.3635433 21.05c 21.004 20.734 20.254 ... 0.677 0.548 0.345
143 ab 51548.6506 0.6095789 21.297 21.063 20.674 20.116 1.336 0.934 0.763 0.481
144 c 51548.9292 0.3933566 21.086 20.969 20.661 20.153 0.414 0.545 0.427 0.269
148 c 51548.7335 0.3266545 21.01c 20.656 20.444 20.084 ... 0.701 0.592 0.373
149 AC 51548.5879 0.9177072 20.96c 20.444 20.077 19.488 ... 1.074 0.888 0.560
151 c 51548.8155 0.3418011 21.35c 21.125 20.842 20.374 ... 0.584 0.465 0.293
153 ab 51548.4220 0.6603692 21.076 21.072 20.674 20.083 0.717 0.670 0.539 0.339
158 ab 51548.5230 0.6324566 20.902 20.785 20.330 19.642 0.715 0.625 0.458 0.288
159 ab 51548.5223 0.5751520 20.94c 21.033 20.702 20.171 ... 1.164 0.976 0.615
164 ab 51548.3880 0.6339196 21.38c 21.095 20.718 20.104 ... 0.709 0.569 0.359
165 ab 51548.6742 0.5790136 20.57c 21.057 20.751 20.223 ... 1.315 1.081 0.681
170 ab 51543.0033 0.59d 21.06c 21.04c 20.79c 20.26c ... ... ... ...
171 ab 51542.6010 0.66d 21.48c 21.14c 20.76c 20.11c ... ... ... ...
173 RGB 51549.1135 0.657779 20.79c 19.573 18.542 17.25c ... 0.095 0.094 ...
174 ab 51548.5789 0.6531203 21.22c 21.175 20.756 20.152 ... 0.507 0.417 0.263
175 c 51548.8389 0.3923778 21.23c 21.068 20.739 20.263 ... 0.532 0.454 0.286
176 ab 51549.4881 0.764565 21.33c 21.160 20.715 20.061 ... 0.264 0.212 0.133
178 AC 51549.0958 1.0155700 19.25c 19.535 19.207 18.768 ... 1.512 1.244 0.784
179 ab 51548.7597 0.6637945 21.26c 21.155 20.719 20.081 ... 0.247 0.196 0.124
181 c 51549.0010 0.2794913 21.16c 20.996 20.781 20.350 ... 0.095 0.076 0.048
182 ab 51548.1454 0.7889722 20.48c 20.588 20.178 19.571 ... 0.380 0.323 0.204
183 ab 51548.7509 0.612302 21.21c 20.963 20.596 20.013 ... 0.615 0.508 0.320
184 c 51548.4830 0.3951290 21.165 21.011 20.714 20.213 0.499 0.539 0.422 0.266
185 ab 51548.5511 0.6209146 21.31c 21.097 20.731 20.155 ... 0.871 0.678 0.427
187 AC 51549.0083 0.9502923 19.42c 19.440 19.166 18.674 ... 1.389 1.154 0.727
188 ab 51548.6637 0.5973773 21.19c 21.019 20.665 20.143 ... 1.290 1.127 0.710
189 ab 51548.8546 0.7023692 21.22c 21.028 20.639 20.044 ... 0.771 0.647 0.407
190 AC 51549.2923 1.1647103 19.622 19.478 19.137 18.547 0.848 1.546 1.294 0.815
191 ab 51548.7011 0.6502894 21.066 21.091 20.686 20.114 0.633 0.711 0.561 0.354
193 AC 51549.1506 0.4263580 19.68c 19.530 19.284 18.900 ... 0.172 0.131 0.082
194 FV 51549.2016 0.2645828 16.32c 16.076 15.879 15.525 ... 0.133 0.123 0.072
195 ab 51548.5576 0.6189680 21.18c 21.140 20.769 20.143 ... 0.646 0.483 0.304
196 ab 51548.2819 0.665989 21.213 21.081 20.676 20.132 0.740 0.500 0.410 0.258
197 c 51548.7640 0.2961717 21.24c 20.959 20.739 20.331 ... 0.390 0.312 0.197
199 ab 51548.1840 0.769925 20.976 20.999 20.574 19.942 0.322 0.485 0.406 0.256
200 ab 51548.5254 0.6373468 21.24c 21.156 20.738 20.101 ... 0.359 0.289 0.182
201 ab 51548.5885 0.7222435 21.32c 21.133 20.730 20.084 ... 0.762 0.632 0.398
203 AC 51549.2587 0.9398875 19.924 19.820 19.427 18.838 0.736 1.052 0.812 0.511
204 ab 51548.8631 0.6332687 21.40c 21.121 20.725 20.094 ... 0.654 0.545 0.344
205 AC 51549.1382 0.3833676 20.189 19.891 19.668 19.281 0.399 0.156 0.145 0.091
206 Bl 51548.5382 0.587812 21.48c 21.069 20.700 20.113 ... 1.192 1.053 0.664
208 ab 52352.0043 0.656594 21.39c 21.125 20.721 20.073 ... 0.619 0.484 0.305
214 Bl 52352.3784 0.6391863 21.17c 21.031 20.674 20.077 ... 1.041 0.753 0.475
216 AC 51549.6831 1.079230 19.32c 19.258 18.853 18.201 ... 0.427 0.303 0.191
217 AC 51549.7742 0.9109459 18.71c 18.864 18.600 18.156 ... 0.839 0.676 0.425
218 AC 52351.7154 1.0086934 20.44c 20.141 19.742 19.224 ... 0.571 0.485 0.305
219 AC 52352.9984 1.365517 19.58c 19.277 18.879 18.252 ... 0.476 0.387 0.244
220 EB 51548.7085 0.37264174 15.59c 15.364 14.681 13.872 ... 0.733 0.750 0.663
221 WUma 51549.0298 1.783454 22.01c 20.551 19.228 17.43c ... 0.165 0.150 ...
222 LP 51519.2828 329 21.70c 19.35c 17.42c 15.66c ... ... ... ...
223 ab 52352.8734 0.660937 21.24c 21.105 20.715 20.061 ... 0.309 0.257 0.162
224 LP 52401.0706 685 20.10c 21.05c 20.47c 19.83c ... ... ... ...
226 ab 51549.3101 0.669846 21.12c 21.086 20.698 20.082 ... 0.432 0.322 0.203
227 ab 51550.7387 0.5594254 ... 21.265 20.940 20.274 ... 0.876 0.607 0.382
228 ab 51548.2822 0.6290089 20.86c 21.082 20.713 20.083 ... 0.600 0.500 0.315
229 ab 51548.3681 0.6626030 21.02c 21.085 20.681 20.072 ... 0.449 0.342 0.235
230 AC 52351.3174 1.0025734 19.73c 19.580 19.2546 18.663 ... 1.353 1.074 0.677
231 EB 51549.5699 2.3831781 21.19c 21.36c 21.23c 20.97c ... ... ... ...
232 EB 51548.7853 0.4142902 17.28c 16.44c 15.44c 14.14c ... ... ... ...
233 EB 51548.8868 0.6378688 22.48c 22.37c 22.26c 22.14c ... ... ... ...
234 EB 51548.4601 0.5274709 24.44c 22.59c 21.14c 18.99c ... ... ... ...
235 EB 51548.6759 0.6539230 18.54c 18.43c 17.74c 16.89c ... ... ... ...
236 EB 51548.7125 0.3747540 22.35c 22.41c 22.35c 22.32 ... ... ... ...
237 EB 51548.7915 0.4083364 22.03c 22.003 21.761 21.49c ... 0.323 0.314 ...

Notes.

aEpoch of maximum light. bIntensity-averaged magnitudes. cMedian of individual magnitude measurements. dNot enough data to fit a light curve, uncertain parameters.

Download table as:  ASCIITypeset images: 1 2

Table 6.  Pulsation Properties of Carina RRd Variable Stars

ID Epoch P0 P1/P0 <mml:math> <mml:mo stretchy="true">&lang;</mml:mo> <mml:mi>B</mml:mi> <mml:mo stretchy="true">&rang;</mml:mo> </mml:math> <mml:math> <mml:mo stretchy="true">&lang;</mml:mo> <mml:mi>V</mml:mi> <mml:mo stretchy="true">&rang;</mml:mo> </mml:math> <mml:math> <mml:mo stretchy="true">&lang;</mml:mo> <mml:mi>I</mml:mi> <mml:mo stretchy="true">&rang;</mml:mo> </mml:math> A(B0) A(B1) A(V0) A(V1) A(I0) A(I1)
(days) (days) (mag) (mag) (mag) (mag) (mag) (mag) (mag) (mag) (mag)
V11 51548.9191 0.543689 0.745854 21.080 20.766 20.247 0.548 0.341 0.451 0.339 0.28 0.21
V26 51548.9291 0.562177 0.745703 20.990 20.670 20.162 0.604 0.488 0.610 0.395 0.39 0.25
V74 51548.7140 0.533702 0.747205 21.059 20.712 20.246 0.607 0.222 0.567 0.263 0.36 0.17
V89 51548.6377 0.519403 0.746522 21.102 20.770 20.222 0.408 0.384 0.524 0.278 0.33 0.17
V192 51549.0958 0.541694 0.748661 21.030 20.720 20.252 0.753 0.525 0.600 0.345 0.38 0.22
V198 51548.6238 0.530551 0.745534 21.058 20.710 20.192 0.664 0.323 0.506 0.334 0.32 0.21
V207 51549.1028 0.541156 0.746387 21.122 20.782 20.215 0.621 0.548 0.637 0.349 0.40 0.22
V210 52351.5738 0.57324 0.75286 21.010 20.639 20.048 0.474 0.275 0.418 0.218 0.26 0.14
V225 52351.8655 0.57688 0.74610 20.960 20.641 20.147 0.776 0.363 0.575 0.324 0.36 0.20

Download table as:  ASCIITypeset image

Figures 1 and 2 show the IS and a zoom of the position of RRLs in the V, (BV) CMD, respectively. Red and green circles display fundamental and first-overtone RRLs. Orange triangles and gray circles mark double-mode pulsators and candidate Blazhko RRLs, while cyan symbols show the location of AC variable stars. Yellow and blue squares represent RGB and LPV variables, while black stars display the locations of the EBs (see Table 2). Finally, magenta and black pentagons show the RRLs and ACs in the catalog of VMC13 and not in common with our catalog. Blue and red lines display the theoretical IS boundaries predicted by radial nonlinear convective pulsation models for ACs (Fiorentino et al. 2006) and RRLs (Marconi et al. 2015, hereafter M2015). Theoretical predictions were computed assuming a metal abundance of Z = 0.0001 (ACs) and of Z = 0.001 (RRLs). Theory was transformed into the observational plane using the bolometric corrections and the color–temperature relations provided by Cardelli et al. (1989). We also adopted a true distance modulus of μ = (20.09 ± 0.07) mag (Coppola et al. 2013) and a reddening of E(BV) = 0.03 mag (Monelli et al. 2003). The agreement between theory and observations appears, within the errors, quite good both for RRLs and ACs. In the above figures the two bright RRab stars (V158, V182) were defined as peculiar RRLs in Paper VI. We also note the presence of two RRab (V170, V227) that appear anomalously blue. These stars have poorly sampled light curves and uncertain pulsational parameters. In particular, the number of measurements we have for the variable V170 is too small to fit the light curve and to estimate the luminosity amplitude (see the Appendix for details). These four stars are labeled and marked in Figure 2 with blue crosses.

Figure 1.

Figure 1. Position of variable stars in V, (BV) CMD. Red and green circles display fundamental and first-overtone RRLs. Orange triangles and gray circles mark double-mode pulsators and candidate Blazhko RRLs. Cyan symbols show ACs. Yellow and blue squares display candidate RGB and LPV variables, while black stars show the EB variables. Two EBs, not members of Carina, fall outside the plot limits; their colors and magnitudes are given in Table 5.

Standard image High-resolution image
Figure 2.

Figure 2. Same as Figure 1, but zoomed on the CMD region located around the RR Lyrae instability strip.

Standard image High-resolution image

Moreover, we identified 101 new SX Phe. Their pulsation properties, their light curves and their position in the V, (BV) CMD are discussed in Section 5.

3. PULSATION PROPERTIES

Figure 3 shows the BVI light curves for fundamental (left) and first overtone (middle) RRLs plus ACs (right). The different data sets were plotted with different colors. The light curves of RRd variables are plotted in Figure 4. The complete atlas of light curves, including the U-band data, is available in the online edition of the paper.

Figure 3.

Figure 3.

BVI light curves for selected Carina variables. We selected one RRab (V7, left panel), one RRc (V40, middle panel), and one AC (V14, right panel). Red, green, blue, and yellow filled circles display different data sets: MOSAIC2@CTIO, WFI@MPI/ESO, Tek2K-I@CTIO, and FORS1@ESO/VLT. Black lines are the fits of the light curves. For the I band they are the template light curves obtained by properly scaling the V-band light curve according to the procedure described in Section 2. The BVI plus the U-band light curves for the the entire sample of variables are given in the electronic edition of the journal. (The complete figure set (15 images) is available.)

Standard image High-resolution image
Figure 4.
Standard image High-resolution image
Figure 4.

Figure 4. Same as Figure 3, but for the BVI light curves of the nine RRd stars in our sample.

Standard image High-resolution image

3.1. Bailey Diagram

The left panels of Figure 5 display the Bailey diagram—amplitude versus period—for RRLs. From top to bottom the different panels show amplitudes in the B (top), V (middle) and I (bottom) bands. The Bailey diagram is a very good diagnostic for splitting fundamental and first overtones. The transition period between low-amplitude, short-period RRc and large-amplitude, long-period RRab is located around log P ∼ −0.35/−0.30 (P ∼ 0.45–0.5 days). The RRab display a steady decrease in amplitude when moving toward longer periods. On the other hand, the RRc show a "bell-shaped" (Bono et al. 1997a) or a "hairpin" (Kunder et al. 2013) distribution. The Bailey diagram is also used to constrain the Oosterhoff class (see, e.g., Bono et al. 1997b) of stellar systems hosting sizable samples of RRLs. The middle panel shows the comparison between RRab in the V-band with the empirical relations provided by (Clement & Shelton 1999, dashed lines) and by Cacciari et al. (2005, black solid line). The former relations are based on both OoI and OoII GCs, while the latter are only for OoI GCs. The comparison indicates that Carina can be classified either as an OoI or as an Oosterhoff intermediate system, since for periods longer than log P > −0.2 there is a group of RRab that, at fixed period, attains larger luminosity amplitudes. On the other hand, the amplitudes typical of RRc variables in OoII GCs (Kunder et al. 2013, blue solid line) agree quite well the current data.

Figure 5.

Figure 5. From top to bottom Bailey diagram in B (top), V (middle), and I band (bottom) for Carina RRLs (left) and ACs (right). The dashed lines plotted in the middle left panel display OoI and OoII relations for fundamental pulsators in Galactic globular clusters according to Clement & Shelton (1999), while the black solid line shows the relation for OoI cluster according to Cacciari et al. (2005). The blue solid line shows the relation for OoII first overtone cluster variables provided by Kunder et al. (2013). Symbols are the same as in Figure 1. Note that double-mode variables have been plotted using periods and amplitudes of both primary (first overtone, filled orange triangles) and secondary (fundamental, empty orange triangles) components.

Standard image High-resolution image

In Paper VI we classified Carina, on the basis of the mean period of fundamentalized RRLs, as an OoII system. Indeed, we found <mml:math> <mml:mo stretchy="true">&lang;</mml:mo> <mml:msub> <mml:mrow> <mml:mi>P</mml:mi> </mml:mrow> <mml:mrow> <mml:mi>RR</mml:mi> </mml:mrow> </mml:msub> <mml:mo stretchy="true">&rang;</mml:mo> </mml:math> = 0.60 ± 0.01 days (σ = 0.07). Including the new discovered RRab variables we find that the mean period of fundamental RRLs is <mml:math> <mml:mo stretchy="true">&lang;</mml:mo> <mml:msub> <mml:mrow> <mml:mi>P</mml:mi> </mml:mrow> <mml:mrow> <mml:mi>RR</mml:mi> </mml:mrow> </mml:msub> <mml:mo stretchy="true">&rang;</mml:mo> </mml:math> = 0.637 ± 0.006 days (σ = 0.05). This estimate suggests that Carina is closer to an OoII stellar systems, since OoII GCs show mean fundamental periods of <mml:math> <mml:mo stretchy="true">&lang;</mml:mo> <mml:mi>P</mml:mi> <mml:mo stretchy="true">&rang;</mml:mo> </mml:math> ∼ 0.65 days, while the OoI GCs show shorter periods, namely <mml:math> <mml:mo stretchy="true">&lang;</mml:mo> <mml:mi>P</mml:mi> <mml:mo stretchy="true">&rang;</mml:mo> </mml:math> ∼ 0.55 days. We have also computed the ratio between the number of RRc and the total number of RRLs, and we found <mml:math> <mml:msub> <mml:mrow> <mml:mi>N</mml:mi> </mml:mrow> <mml:mrow> <mml:mi>c</mml:mi> </mml:mrow> </mml:msub> <mml:mrow> <mml:mo stretchy="true">/</mml:mo> </mml:mrow> <mml:mo stretchy="true">(</mml:mo> <mml:msub> <mml:mrow> <mml:mi>N</mml:mi> </mml:mrow> <mml:mrow> <mml:mi mathvariant="italic">ab</mml:mi> </mml:mrow> </mml:msub> <mml:mo>&plus;</mml:mo> <mml:msub> <mml:mrow> <mml:mi>N</mml:mi> </mml:mrow> <mml:mrow> <mml:mi>c</mml:mi> </mml:mrow> </mml:msub> <mml:mo stretchy="true">)</mml:mo> <mml:mo>&sim;</mml:mo> <mml:mn>0.14</mml:mn> <mml:mo>,</mml:mo> </mml:math> i.e., a fraction of RRc variables that is more typical of OoI (∼17%) than OoII (∼44%) GCs. The above evidence indicates that the Oosterhoff classification of Carina depends on the adopted diagnostic. This means that the Oosterhoff classification should be cautiously treated, since it depends on the adopted diagnostic on the completeness and size of the RRL sample and on the morphology of the HB (Fiorentino et al. 2015a).

The data plotted in Figure 5 also show mixed-mode pulsators, the so-called RRd variables. These are radial variables oscillating simultaneously in at least two different pulsation modes. The RRd typically oscillate in the first overtone and in the fundamental mode, and the former mode is usually stronger than the latter (e.g., Smith 2006), but there are exceptions (Clementini et al. 2004). On the other hand, Classical Cepheids display a wide range of mixed-mode pulsators among the overtones and fundamental mode (Soszynski et al. 2008; Soszyñski et al. 2010), suggesting that surface gravity and effective temperature might play fundamental roles in driving the occurrence of such a phenomenon. Figure 6 shows the comparison in the Bailey diagram between the current observations and predicted amplitudes. Pulsation prescriptions rely on a large set of RRL models recently provided by M2015. The black solid and dotted lines display predicted amplitudes for the sequence of metal-poor (Z = 0.0001, Y = 0.245) models constructed by assuming a stellar mass of 0.80 M and two different luminosity levels. The black solid line shows predictions for the Zero-Age-Horizontal-Branch (ZAHB) luminosity level (<mml:math> <mml:mi>log</mml:mi> <mml:mo stretchy="true">(</mml:mo> <mml:mi>L</mml:mi> <mml:mrow> <mml:mo stretchy="true">/</mml:mo> </mml:mrow> <mml:msub> <mml:mrow> <mml:mi>L</mml:mi> </mml:mrow> <mml:mrow> <mml:mo form="prefix">&CircleDot;</mml:mo> </mml:mrow> </mml:msub> <mml:mo stretchy="true">)</mml:mo> </mml:math> = 1.76), while the dotted line for a brighter luminosity level (<mml:math> <mml:mi>log</mml:mi> <mml:mo stretchy="true">(</mml:mo> <mml:mi>L</mml:mi> <mml:mrow> <mml:mo stretchy="true">/</mml:mo> </mml:mrow> <mml:msub> <mml:mrow> <mml:mi>L</mml:mi> </mml:mrow> <mml:mrow> <mml:mo form="prefix">&CircleDot;</mml:mo> </mml:mrow> </mml:msub> </mml:math>) = 1.86). The purple lines display the same predictions, but for a slightly more metal-rich chemical composition (Z = 0.0003, Y = 0.245; M = 0.716 M, log(L/L) = 1.72 and 1.82).

Figure 6.

Figure 6. Same as left panels of Figure 5, but the comparison is between observations and predicted luminosity amplitude provided by M2015. The solid lines display predicted amplitude for F and FO models constructed by assuming a stellar mass of M = 0.80 M a metal-poor chemical composition (Z = 0.0001, Y = 0.245) and Zero-Age-Horizontal-Branch luminosity level (<mml:math> <mml:mi>log</mml:mi> <mml:mo stretchy="true">(</mml:mo> <mml:mi>L</mml:mi> <mml:msub> <mml:mrow> <mml:mo>&Lstrok;</mml:mo> </mml:mrow> <mml:mrow> <mml:mo form="prefix">&CircleDot;</mml:mo> </mml:mrow> </mml:msub> <mml:mo stretchy="true">)</mml:mo> </mml:math> = 1.76). The black dotted lines display the same predictions, but for models constructed by assuming a brighter luminosity level (<mml:math> <mml:mi>log</mml:mi> <mml:mo stretchy="true">(</mml:mo> <mml:mi>L</mml:mi> <mml:mrow> <mml:mo stretchy="true">/</mml:mo> </mml:mrow> <mml:msub> <mml:mrow> <mml:mi>L</mml:mi> </mml:mrow> <mml:mrow> <mml:mo form="prefix">&CircleDot;</mml:mo> </mml:mrow> </mml:msub> </mml:math>) = 1.86). The purple lines display the same pulsation predictions, but for pulsation models constructed by assuming a less metal-poor chemical composition (Z = 0.0003, Y = 0.245).

Standard image High-resolution image

The predicted amplitudes appear to be slightly larger, at fixed pulsation period, when compared with observations. This is a limit in the current theoretical framework, since the amplitudes are tightly correlated with the efficiency of convective transport. In passing we note that the comparison between predicted and observed luminosity amplitudes is hampered by the current theoretical uncertainties in the treatment of the time dependent convective transport. We current adopt a mixing length parameter of α = 1.5 (see Marconi et al. 2011). Larger values cause a steady decrease in the luminosity amplitude (see Di Criscienzo et al. 2004). Indeed, observed amplitudes attain, at fixed period smaller amplitudes. This applies to both fundamental and first overtone variables. Moreover, we are assuming that observed light curves have a good sampling around the phases of minimum and maximum light. However, the comparison shows two interesting features. (i) The predicted amplitudes for FO pulsators show a larger dependence on metal content than fundamental pulsators. (ii) The regular pulsators display, at fixed pulsation period, a small spread in amplitudes. The current predictions suggest that their evolutionary status is quite homogenous, since they appear to be located to the ZAHB luminosity level.

Carina was previously known to host six RRd variables: V11, V26, V89, V192, V198, V207 (D03); in the current analysis we discovered other three double-mode pulsators: V74, V210, and V225. To further understand their nature, and in particular to properly define the location of RRd pulsators in the Bailey diagram, we estimated both primary (first overtone) and secondary (fundamental) periods and decomposed their light curves. Indeed, the quality of the photometry allowed us to estimate not only the "global luminosity amplitude," but also the amplitude of both fundamental (open orange triangles) and first overtone mode (filled orange triangles). Table 6 gives from left to right their periods, mean magnitudes and amplitudes in the BVI bands. To our knowledge this is the first time in which we can associate to the two modes of double-mode variables their individual luminosity amplitudes. The data plotted in the left panels of Figure 5 indicate that the primary components (first overtone) are located in the long period tale (log P ∼ −0.4) of single mode first overtone variables. Moreover, the secondary components (fundamental) are located in the short period tale (log P ∼ −0.25) of single mode fundamental variables. This evidence is further supported by their mean colors. The mean color of RRd is systematically redder (BV ∼ 0.33 mag) than the color range covered by RRc variables (0.2 ≤ BV ≤ 0.35 mag) and systematically bluer than the typical color range of RRab variables (0.3 ≤ BV ≤ 0.5 mag).

The pulsation and evolutionary status of the RRd variables depends on their evolutionary direction and on their position in the so-called OR region (Bono et al. 1997b). In this context it is worth mentioning that RRLs in dwarf spheroidal galaxies appear to lack High Amplitude Short Period (HASP) fundamental variables (Stetson et al. 2014b; Fiorentino et al. 2015a), thus resembling Oosterhoff II globular clusters in the Milky Way (Bono et al. 1997b).

The occurrence of a good sample of RRd variables in Carina seems to suggest that this region of the Bailey diagram might be populated by mixed-mode variables. Obviously, the occurrence of RRd variables depends on the topology of the IS, but also on the evolutionary properties (extent in temperature of the so-called blue hook) and, in particular, on the occurrence of the hysteresis mechanism (van Albada & Baker 1971; Bono et al. 1995; Fiorentino et al. 2015a; Marconi et al. 2015) when moving from more metal-poor to more metal-rich stellar structures.

The Blazhko RRLs plotted in Figure 5 also appear to be located in a very narrow period range. No firm conclusion can be reached concerning the distribution in the Bailey diagram of Blazhko RRLs, since the sample size is quite limited and also because the Blazhko cycle is poorly sampled.

The above findings further support the crucial role played by cluster and galactic RRLs to constrain the topology of the IS and to investigate the evolutionary and pulsation status of exotic objects like RRd and Blazhko RRLs.

The right panels of Figure 5 show the distribution of Carina ACs in the same Bailey diagrams as the RRLs. Their properties have already been discussed in Paper VI. We confirm the separation at log P ∼ −0.1 between long-period and high-amplitude with short-period and low-amplitude ACs. In passing we note that three out of the 20 ACs have periods around one day, thus further supporting the need for data sets covering large time intervals to remove the one-day alias.

Note that in the current analysis of evolved variables we did not include the six RRLs (three RRc, three RRab) and the three ACs recently detected by VM13 outside the tidal radius of Carina. The reasons are the following. The three RRc variables attain periods that are systematically shorter (−1.0 ≲ log P ≲ −0.25) that typical RRc variables (see Table 7), but their mean BV colors are typical of RRab variables. The same outcome applies to the three RRab variable, and indeed they are located in the short period range of fundamental pulsators, but their BV colors are typical of objects located close to the red edge of the IS. Moreover, the newly identified ACs have periods that are systematically shorter (−0.8 ≲ log P ≲ −0.7) than the typical Carina ACs.

Table 7.  Pulsation Properties for the Nine Extra-tidal Variables (Six RRLs, Four ACs) Identified by VM13

ID Type P (B) (V) A(B) A(V)
(days) (mag) (mag) (mag) (mag)
RRL–1 ab 0.629 20.94 20.55 0.55 0.45
RRL–2 ab 0.523 21.04 20.60 0.83 0.65
RRL–3 ab 0.544 21.06 20.62 0.56 0.46
RRL–4 c 0.204 21.32 20.85 0.17 0.24
RRL–5 c 0.107 21.27 20.82 0.14 0.27
RRL–38 c 0.189 21.18 20.77 0.41 0.31
AC–1 ... 0.186 20.44 19.95 0.21 0.20
AC–9 ... 0.476 19.21 19.13 0.36 0.55
AC–10 ... 0.163 19.71 19.35 0.18 0.32

Download table as:  ASCIITypeset image

3.2. Petersen Diagram

The top panel of Figure 7 displays the position of the Carina RRd variables in the Petersen diagram, i.e., the first-overtone-to-fundamental period ratio (P1/P0) versus the fundamental period. The data in this panel also show the comparison with RRd variables identified in Galactic globulars (see labeled names) and in the Galactic field (Halo: blue squares; Bulge: small green circles). Table 8 gives from left to right the name of the stellar system, the number of RRd variables, the reference for the RRd data, the mean metallicity, and the reference for the metallicity estimate. The data plotted in this figure display several interesting features.

Figure 7.

Figure 7. Top: comparison in the Petersen diagram between Galactic (halo, bulge, globular clusters), and Carina (orange triangles) RRd variables. Pulsation predictions (M2015) for different chemical compositions (see the labeled values) are plotted with different lines. The stellar mass of the pulsation models for the most metal-poor chemical composition are also labeled. Bottom: same as the top, but the comparison is with RRd variables in nearby dwarf spheroidals and irregulars. The RRd of the Galactic bulge are also plotted.

Standard image High-resolution image

Table 8.  Number of RRd Hosted in the Stellar Systems Plotted in Figure 7 and Their References

System N Reference [Fe/H] Reference
NGC 2419 1 Clement et al. (1993) −2.20 ± 0.09 Carretta et al. (2009)
NGC 6426 1 Clement et al. (1993) −2.33 ± 0.15 Hatzidimitriou et al. (1999)
LMC 985 Soszyński et al. (2009) −0.33 ± 0.13 Romaniello et al. (2008)a
SMC 257 Soszyñski et al. (2010) −0.75 ± 0.08 Romaniello et al. (2008)a
Bulge 173 Soszyński et al. (2014) −1.5/–0.5 Zoccali et al. (2008)b
Halo (NSV 09295) 1 Garcia-Melendo & Clement (1997) −1.5 Layden (1994)
Halo (AQ Leo) 1 Clement et al. (1991) −1.5 Layden (1994)
Halo (VIII–10, VIII–58) 2 Clement et al. (1993) −1.5 Layden (1994)
Halo (CU Com) 1 Clementini et al. (2000) −1.5 Layden (1994)
Halo (ASAS) 32 Pojmanski (2002) −1.5 Layden (1994)
M3 8 Clementini et al. (2004) −1.50 ± 0.05 Carretta et al. (2009)
IC4499 16 Walker & Nemec (1996) −1.62 ± 0.09 Carretta et al. (2009)
M68 12 Walker (1994) −2.27 ± 0.04 Carretta et al. (2009)
M15 14 Nemec (1985b) −2.33 ± 0.02 Carretta et al. (2009)
Draco 10 Nemec (1985a) −1.98 ± 0.01 Kirby et al. (2013)
Sculptor 18 Kovács (2001) −1.68 ± 0.01 Kirby et al. (2013)
Sagittarius 40 Cseresnjes (2001) −0.62 ± 0.2 Carretta et al. (2010)

Notes. Columns 4 and 5 give the iron abundances of the hosting stellar system and their references.

aMean iron abundances and standard deviations of classical Cepheids based on high spectral resolution spectra. Metal abundances for 98 LMC RRLs were provided by Gratton et al. (2004) using low-resolution spectra and found <mml:math> <mml:mo stretchy="true">[</mml:mo> <mml:mi>Fe</mml:mi> <mml:mrow> <mml:mo stretchy="true">/</mml:mo> </mml:mrow> <mml:mi mathvariant="normal">H</mml:mi> <mml:mo stretchy="true">]</mml:mo> <mml:mo>=</mml:mo> <mml:mrow> <mml:mo>&minus;</mml:mo> <mml:mn>1.48</mml:mn> </mml:mrow> <mml:mo>&PlusMinus;</mml:mo> <mml:mn>0.03</mml:mn> <mml:mo>&PlusMinus;</mml:mo> <mml:mn>0.06</mml:mn> <mml:mo>.</mml:mo> </mml:math> Metal abundances for SMC RRLs are not available. The iron abundance of the single SMC GC (NGC 121) is [Fe/H] = −1.19 ± 0.12 provided by Da Costa & Hatzidimitriou (1998). bRange in iron abundance covered by red giants in the Galactic bulge. The iron abundance of Bulge RRLs was provided by Walker & Terndrup (1991) [Fe/H] = −1.00 ± 0.16 using low-resolution spectra.

Download table as:  ASCIITypeset image

The period ratio shows a steady decrease when moving from more metal-poor to more metal-rich systems (see also Bragaglia et al. 2001). The largest values in the period ratio are attained in the Halo and in very metal-poor GCs, while the smallest values are attained in the Bulge. The trend with the metallicity was also suggested on both theoretical and empirical bases by Soszyński et al. (2011) and more recently by Soszyński et al. (2014). Note that the fraction of double-mode variables appears to be anti-correlated with the mean metal abundance, and indeed it increases from 0.5% in the Bulge to 4% in the LMC and to 10% in the SMC (Soszyński et al. 2011). The RRd variables in Carina appear to follow a similar trend, since the current fraction is ∼10%. Two RRd variables (V192, V210) display period ratios that are systematically larger then period ratios in Galactic globulars, in dwarf galaxies, and in the Bulge. In passing we note that one RRd in M68 (V36) and two in M15 (V51, V53) display period ratios that systematically smaller than the bulk of RRd variables. The referee suggested the difference on a more quantitative basis. To avoid spurious fluctuations in the period range covered by the different data sets, we ranked the entire sample (398) as a function of the fundamental period. Then we estimated the running average by using a box including the first 40 objects in the list. We estimated the mean period ratio, the mean fundamental period, and the standard deviations of this sub-sample. We estimated the same quantities by moving one object in the ranked list until we took account of the last 40 objects in the sample. We performed several tests, changing both the number of objects included in the box and the number of stepping stars. The current findings are minimally affected by plausible variations. We found that the quoted five RRdstars are located within 3σ of the mean. The current statistics is too limited to claim solid evidence of discrepancy. Note that we double checked the photometric quality and coverage of the above five objects and we found that they are similar to the other canonical RRdstars.

The period ratios display a larger spread when moving into the metal-poor regime (long fundamental periods). To define the trend on a more quantitative basis we adopted several sets of nonlinear, convective pulsation models (M2015). The adopted chemical compositions are labeled. The new set of RRL models relies on the theoretical framework outlined in Di Criscienzo et al. (2004) and Marconi et al. (2011), but on new evolutionary prescriptions for low-mass He burning models provided by (Pietrinferni et al. 2004) (BASTI data base, http://albione.oa-teramo.inaf.it). The pulsation predictions plotted in this panel cover the so-called OR region, i.e., the region in which RRLs show a stable limit cycle in both the fundamental and the first overtone mode. This region is located between the blue edge of the fundamental mode and the red edge of the first overtone. The comparison between theory and observations indicates that an increase in the luminosity (log L/L = 1.76, 1.86, dotted and dashed red lines) mainly causes, at fixed chemical composition (Z = 0.0001) and stellar mass (M/M = 0.85), a steady increase in the fundamental period, and in turn a decrease in the period ratio. Moreover, a decrease in stellar mass (M/M = 0.80, solid red line) at fixed chemical composition and luminosity level (log L/L = 1.76) causes a systematic decrease in the period ratio and a moderate increase of the fundamental period. The above trends take into account a significant fraction of RRd pulsators located in metal-poor GCs and in Carina dSph. This indicates that RRd in Carina have a metallicity of the order of Z = 0.0001 and a mean stellar mass close to 0.85 M. The pulsation masses are slightly larger than predicted by evolutionary models, but are within the current empirical and theoretical uncertainties.

The above findings further support the evidence that the old stellar component in Carina is quite metal-poor. This evidence is soundly supported by recent photometric and spectroscopic results by Monelli et al. (2014) and Fabrizio et al. (2015) suggesting a mean metal abundance for the old stellar component of [Fe/H] = (−2.13 ± 0.03 ± 0.28) dex.

In this context it is worth mentioning that theoretical predictions for more metal-rich pulsation models (see the black lines and the labeled values) provide a sound explanation of the steady decrease in the period ratio of Bulge RRd variables, i.e., the stellar systems with the broader metallicity distribution.

To further define the pulsation and evolutionary properties of Carina RRd variables, the bottom panel of Figure 7 shows the same Petersen diagram, but the comparison is now extended to RRd in nearby dwarf spheroidals (Draco, Sculptor, Sagittarius), in dwarf irregulars (LMC; Small Magellanic Cloud, SMC) and in the Bulge. The data plotted in this panel bring forward several interesting new findings.

The range in period ratios covered by LMC RRd is on average larger (0.740 ≤ P1/P0 ≤ 0.749) than the range of SMC RRd variables. This evidence supports spectroscopic measurements of LMC RRLs suggesting metal abundances ranging from [Fe/H] = −2.12 to −0.27 dex (Gratton et al. 2004). The SMC RRd cover a slightly narrower period ratio range (0.741 ≤ P1/P0 ≤ 0.747 days) but according to recent studies, and within current uncertainties affecting metallicity estimates for RRLs in these systems (Haschke et al. 2012) the metallicity spread for the old stellar populations in the two Clouds is similar.

The location of RRd of Carina and Draco is the same in the Petersen diagram. Indeed current spectroscopic estimates, based on medium resolution spectra, provide a very metal-poor iron abundance ([Fe/H] = −1.92 ± 0.01 dex, see Table 8) also for Draco. The steady decrease in period ratio of RRd in Sculptor is strongly supported by the recent spectroscopic measurements suggesting an iron abundance of [Fe/H] = −1.68 ± 0.01 dex (see Table 8). The empirical evidence concerning Sagittarius needs to be discussed in detail, because the periods and period ratios attain values that are on average smaller than for RRd in other dSphs. Spectroscopic estimates based on high-resolution spectra by Carretta et al. (2010), suggest for Sagittarius a mean iron abundance, based on 27 RGs, of [Fe/H] = −0.62 and individual values ranging from −1.0 to above solar. A smaller spread in iron abundance was also suggested by (Kunder & Chaboyer 2008) using RR Lyrae properties. The spread in period ratios and the range in fundamental periods (0.45 ≤ P ≤ 0.49 days) showed by Sagittarius RRLs soundly support the spectroscopic measurements and the similarity with LMC RRLs. This indicates that Sagittarius is a fundamental nearby laboratory to constrain the pulsation properties of metal-rich RRL in gas poor systems.

The RRd in the Bulge (small green circles) display a clear overdensity for P0 ∼ 0.46 days. This overdensity was explained by Soszyński et al. (2011) as the relic of a former dwarf galaxy that was captured by the Milky Way. More recent investigations based on a larger sample (28 versus 16) indicate that they are distributed along a stream that crosses the Galactic bulge almost vertically. Note that the comparison with theoretical predictions suggests, for the above stellar system, a metal-intermediate chemical composition (Z = 0.001–0.002).

The RRd also provide a unique opportunity to validate the current approach to fundamentalizing the first overtones. Whenever the sample of RRLs hosted in a stellar system is limited, fundamental and first overtone variables are treated as a single sample by transforming the periods of the first overtones into "equivalent" fundamental periods, using the relation log PF = log PFO + 0.127. This assumption dates back to almost half a century and relies on the few RRd variables known at that time (Sandage et al. 1981; Cox et al. 1983; Petersen 1991). The above constant period shift is further supported by the new theoretical scenario by M2015 and by the sizable sample of RRd variables recently identified by large, dedicated photometric surveys.

In passing we note that this issue is far from being an academic dispute, since the same fix is also used to improve the precision of distance determinations based on both RRLs (Braga et al. 2015) and classical Cepheids (e.g., Marengo et al. 2010). Figure 8 shows fundamental versus first overtone periods (P0 versus P1) for the entire sample of RRd plotted in Figure 7. The red line shows the fit to the empirical data. We found:

Equation (1)

Figure 8.

Figure 8. Correlation between fundamental and first overtone periods. Observed RRd variables have been plotted using the same symbols of Figure 7. The red line shows the fit to the observed data, the black line shows the fit to the pulsation models and the green line shows the classical relation. Red triangles and blue dots display metal-poor and metal-rich pulsation models.

Standard image High-resolution image

The new estimate of both the slope and the zero-point soundly supports the old fix, and indeed the green line, showing the classical fix, agrees quite well with the new observations.

To further constrain the impact that the period ratios of RRd variables have in constraining the pulsation properties of RRLs, we plotted in the same plane theoretical predictions for the "OR" regions adopted in Figure 7. The black solid line was estimated by considering only models more metal-poor than Z = 0.001, i.e., a metallicity range similar to the observed one. The agreement is quite good over the period range. In passing we also note that when moving to more metal-rich models (Z > 0.001, blue circles) the period increase is significantly larger in the fundamental period than in the first overtone one. We still lack firm empirical evidence for such objects and it is not clear whether it is an observational bias or the consequence of an evolutionary property connected to the dependence of the HB morphology on the metal content.

4. DISTANCE TO CARINA FROM OPTICAL PERIOD–WESENHEIT RELATIONS

4.1. Carina Distance Determination Based on the Empirical PW BV Relation

One of the most important tools for deriving distances from pulsating stars is the so called Wesenheit relation (see for example, van den Bergh 1975; Madore 1982) that is independent of reddening by definition, assuming that the ratio of total-to-selective absorption is fixed. This is a period–luminosity relation that includes a color term whose coefficient is the ratio between the total and the selective extinction coefficients. Figure 9 shows the observed PW relations and the empirical fit to the data (solid black lines) obtained by fundamentalizing the first overtone pulsators by using Equation (1). Dashed lines depict the dispersion of the above inferred relations. Results of these fits are listed in Table 9, where the zero-points, the slopes, and the dispersions of the relations are reported in the first three columns, respectively. In the fit determination we excluded stars outside 3σ of the inferred empirical BV Wesenheit relation. These stars are the two peculiar pulsators V158 and V182 and the stars V170 and V171 for which we have uncertain parameters (red open symbols).

Figure 9.

Figure 9. Observed optical PW relations. From top to bottom the different panels display the BV, the BI, the VI, and the BVI relations. First overtone pulsators were fundamentalized. The symbols are the same as in Figure 1. The solid lines display the fit, while the dotted lines show the 1σ difference. The standard deviations (rms), the coefficient of the logarithmic period, and their errors are also labeled. The two empty circles were not included in the estimate of the PW relations.

Standard image High-resolution image

Table 9.  Results of the Empirical Fit of Period–Wesenheit Relations <mml:math> <mml:mi>W</mml:mi> <mml:mo>=</mml:mo> <mml:mi>&agr;</mml:mi> <mml:mo>&plus;</mml:mo> <mml:mi>&beta;</mml:mi> <mml:mi>log</mml:mi> <mml:mspace width="0.25em"/> <mml:msub> <mml:mrow> <mml:mi>P</mml:mi> </mml:mrow> <mml:mrow> <mml:mi mathvariant="normal">F</mml:mi> </mml:mrow> </mml:msub> </mml:math>

α β rms
<mml:math> <mml:mi>W</mml:mi> <mml:mo stretchy="true">(</mml:mo> <mml:mi>B</mml:mi> <mml:mo>,</mml:mo> <mml:mi>V</mml:mi> <mml:mo stretchy="true">)</mml:mo> <mml:mo>=</mml:mo> <mml:msub> <mml:mrow> <mml:mi>M</mml:mi> </mml:mrow> <mml:mrow> <mml:mi>V</mml:mi> </mml:mrow> </mml:msub> <mml:mo>&minus;</mml:mo> <mml:mn>3.06</mml:mn> <mml:mo stretchy="true">(</mml:mo> <mml:mi>B</mml:mi> <mml:mo>&minus;</mml:mo> <mml:mi>V</mml:mi> <mml:mo stretchy="true">)</mml:mo> </mml:math>
(18.98 ± 0.03) (−2.7 ± 0.1) 0.07
 
<mml:math> <mml:mi>W</mml:mi> <mml:mo stretchy="true">(</mml:mo> <mml:mi>B</mml:mi> <mml:mo>,</mml:mo> <mml:mi>I</mml:mi> <mml:mo stretchy="true">)</mml:mo> <mml:mo>=</mml:mo> <mml:msub> <mml:mrow> <mml:mi>M</mml:mi> </mml:mrow> <mml:mrow> <mml:mi>I</mml:mi> </mml:mrow> </mml:msub> <mml:mo>&minus;</mml:mo> <mml:mn>0.78</mml:mn> <mml:mo stretchy="true">(</mml:mo> <mml:mi>B</mml:mi> <mml:mo>&minus;</mml:mo> <mml:mi>I</mml:mi> <mml:mo stretchy="true">)</mml:mo> </mml:math>
(18.84 ± 0.03) (−2.6 ± 0.1) 0.06
 
<mml:math> <mml:mi>W</mml:mi> <mml:mo stretchy="true">(</mml:mo> <mml:mi>V</mml:mi> <mml:mo>,</mml:mo> <mml:mi>I</mml:mi> <mml:mo stretchy="true">)</mml:mo> <mml:mo>=</mml:mo> <mml:msub> <mml:mrow> <mml:mi>M</mml:mi> </mml:mrow> <mml:mrow> <mml:mi>I</mml:mi> </mml:mrow> </mml:msub> <mml:mo>&minus;</mml:mo> <mml:mn>1.38</mml:mn> <mml:mo stretchy="true">(</mml:mo> <mml:mi>V</mml:mi> <mml:mo>&minus;</mml:mo> <mml:mi>I</mml:mi> <mml:mo stretchy="true">)</mml:mo> </mml:math>
(18.80 ± 0.03) (−2.5 ± 0.1) 0.08
 
<mml:math> <mml:mi>W</mml:mi> <mml:mo stretchy="true">(</mml:mo> <mml:mi>V</mml:mi> <mml:mo>,</mml:mo> <mml:mi mathvariant="italic">BI</mml:mi> <mml:mo stretchy="true">)</mml:mo> <mml:mo>=</mml:mo> <mml:msub> <mml:mrow> <mml:mi>M</mml:mi> </mml:mrow> <mml:mrow> <mml:mi>V</mml:mi> </mml:mrow> </mml:msub> <mml:mo>&minus;</mml:mo> <mml:mn>1.34</mml:mn> <mml:mo stretchy="true">(</mml:mo> <mml:mi>B</mml:mi> <mml:mo>&minus;</mml:mo> <mml:mi>I</mml:mi> <mml:mo stretchy="true">)</mml:mo> </mml:math>
(18.88 ± 0.03) (−2.6 ± 0.1) 0.06

Download table as:  ASCIITypeset image

Thanks to the use of the Fine Guidance Sensor on board the Hubble Space Telescope (HST), Benedict et al. (2011) provided accurate estimates of the trigonometric parallaxes for five field RRLs: SU Dra, XZ Cyg, RZ Cep, XZ Cyg, and RR Lyr. Using their data in Table 2, we derived the mean magnitude in the B and V bands from a fit with a spline under tension. We then calculated the absolute Wesenheit parameter for each star, (<mml:math> <mml:mi>W</mml:mi> <mml:mo>=</mml:mo> <mml:mo stretchy="true">&lang;</mml:mo> <mml:mi>V</mml:mi> <mml:mo stretchy="true">&rang;</mml:mo> <mml:mrow> <mml:mo>&minus;</mml:mo> <mml:mn>3.06</mml:mn> </mml:mrow> <mml:mo stretchy="true">(</mml:mo> <mml:mi>B</mml:mi> <mml:mo>&minus;</mml:mo> <mml:mi>V</mml:mi> <mml:mo stretchy="true">)</mml:mo> <mml:mo>&minus;</mml:mo> <mml:mi>&mgr;</mml:mi> </mml:math>), where μ is the individual distance modulus based on the HST parallax. Individual mean magnitudes of the calibrating RRLs and their distances are listed in Table 10. We applied the individual calibrating RRL to the empirical PW relations (see Figure 9 and Table 9). Note that the calibrating RRLs cover a limited range in metallicity (from −1.80 to −1.41 dex, Benedict et al. 2011). The current theoretical predictions (see Section 4.2) suggest a mild dependence on the metal content. Therefore, we neglected the metallicity dependence of the calibrating RRLs. The data plotted in Figure 10 show in the W-log P plane the calibrating RRLs together with the Carina RRLs. The error bars of the calibrating RRLs take into account both the photometric errors and the uncertainties of the trigonometric parallaxes. A glance at the data discloses that only for RR Lyr is the precision of the absolute distance better than 1%. Using all the calibrating RRLs we found a true distance modulus for Carina of μ = (20.02 ± 0.02 ± 0.05) mag. Note that for the above reasons the accuracy of the distance mainly depends on the accuracy of the data for RR Lyr.

Figure 10.

Figure 10. Same as the top panel of Figure 9, but with the the five field RRLs (light blue circles) for which trigonometric parallaxes have been estimated using FGS at HST. The vertical error bars take account of the photometric error and of the uncertainty in distance. The object with the smallest error bar is RR Lyr itself. The true distance modulus based on the empirical slope and on the calibrating RRL is labeled.

Standard image High-resolution image

Table 10.  Periods, B and V Mean Magnitudes, True Distance Moduli and Metallicity for the Five Field RRLs Stars by Benedict et al. (2011)

Name log P <mml:math> <mml:mo stretchy="true">&lang;</mml:mo> <mml:mi>B</mml:mi> <mml:mo stretchy="true">&rang;</mml:mo> </mml:math> <mml:math> <mml:mo stretchy="true">&lang;</mml:mo> <mml:mi>V</mml:mi> <mml:mo stretchy="true">&rang;</mml:mo> </mml:math> μ [Fe/H]
RR Lyr −0.24655 8.07 ± 0.01 7.75 ± 0.01 7.14 ± 0.07 −1.41 ± 0.13
SU Dra −0.18018 10.23 ± 0.01 9.95 ± 0.01 9.35 ± 0.24 −1.80 ± 0.2
UV Oct −0.26552 9.71 ± 0.01 9.35 ± 0.01 8.87 ± 0.13 −1.47 ± 0.11
XZ Cyg −0.33107 10.13 ± 0.01 9.84 ± 0.01 8.98 ± 0.22 −1.44 ± 0.2
RZ Cep −0.38352 9.92 ± 0.01 9.46 ± 0.01 8.03 ± 0.16 −1.77 ± 0.2

Note. The distance moduli in this column are slightly different than those in Table 8 of Benedict et al. (2011) due to typographical errors in the paper.

Iron abundances are on the Zinn & West (1984) metallicity scale according to Benedict et al. (2011; see their Table 1).

Download table as:  ASCIITypeset image

4.2. Carina Distance Determination Based on Theoretical PWZ Relations

To fully exploit the multiband photometry of Carina RRLs we also decided to use predicted PW relations. The new theoretical framework derived by M2015 indicates that the PW (BV) relation is independent of the metal content. This is a very positive feature for two different reasons: (a) the PW (BV) can be applied to estimate individual distances of field RRLs for which the metal content is not available; (b) the PW (BV) is particularly useful to estimate distances of RRLs in nearby dwarf galaxies, since they typically cover a broad range in iron content. We applied the predicted relation to Carina RRLs and we found a true distance modulus of μ = (20.08 ± 0.007 ± 0.07) mag. The distance determination has been estimated using the predicted relation for fundamental pulsators. The number of RRc variables in Carina is modest (12) and they have been fundamentalized. As noted in the previous section in the current distance determination we did not consider stars outside 3σ of the inferred empirical Wesenheit (BV) relation. The above distance agrees, within the errors, quite well with the true Carina distance based on empirical calibrators. Moreover, the new distance determination also agrees with Carina distances available in the literature that are based on robust standard candles (see Table 11).

Table 11.  Carina True Distance Moduli Based on Different Diagnostics

μ E(BV) Method Reference
20.06 ± 0.12 0.025 PL (DC) Mateo et al. (1998)
20.10 ± 0.12 0.03 PLC D03
20.00 ± 0.10 0.03 PLA D03
20.10 ± 0.04 0.03 FOBE D03
20.11 ± 0.13 0.06 TRGB Pietrzyński et al. (2009)
20.17 ± 0.10 0.063 PL (DC) Vivas & Mateo (2013)
20.09 ± 0.07 0.03 PLW Paper VI

Download table as:  ASCIITypeset image

To take advantage of the multiband photometry for Carina RRLs, we estimated the distance using the PWZ (BI), the PWZ (VI), and the triple band PWZ (BIV) relations (see Figure 11). The current pulsation predictions suggest a mild dependence on the metal content. Indeed, the coefficients of the metallicity term are 0.106 (BI), 0.150 (VI), and 0.075 (BVI). In passing we note that the metallicity dependence of the optical PW relation for RRL stars displays a different trend when compared with similar relations for classical Cepheids. For the latter objects the PW (VI) relation is almost independent of the metallicity, while the PW (BV) shows a strong dependence on the iron content. The reader interested in a detailed discussion of the difference between RRLs and classical Cepheids is referred to the recent paper by M2015.

Figure 11.

Figure 11. Top: predicted PW (BV) relation (black line). The true distance modulus, the standard error of the mean and the standard deviations are labeled. Note that this PW relation is independent of the metal content. Middle: same as the top, but for the PW (BI) relation. The true distance modulus was estimated using the labeled value of iron abundance. Bottom: same as the middle, but for the PW (VI) relation.

Standard image High-resolution image
Figure 12.

Figure 12. Position of SX Phe in V, (BV) CMD. Red circles and blue crosses display the VM13 and the new discovered variables, respectively. Their positions, periods, and magnitudes are given in Tables 13 and 12.

Standard image High-resolution image

To estimate the distance from the PWZ (BI), the PWZ (VI) and the PWZ (BVI) we adopted a mean iron abundance for Carina RRLs of (−2.13 ± 0.03 ± 0.28) dex (Fabrizio et al. 2015). Using this value we found the following true distance moduli: μ = (20.086 ± 0.006 ± 0.06) mag (BI), μ = (20.07 ± 0.008 ± 0.08) mag (VI), and μ = (20.06 ± 0.006 ± 0.06) mag (VBI). Note that the uncertainties in the distance modulus account for the photometric errors, the standard deviation of the theoretical PWZ relations and the intrinsic spread in iron abundance. Once again the above distance determinations agree quite well with the empirical distance, with the distance based on the PW (BV), and with distances available in the literature.

5. SX PHOENICIS

More that 30 years ago Niss (1981) identified the first variable Blue Straggler (BS) in the Galactic globular ω Cen. The oscillating BSs have been the cross-road of several theoretical (Gilliland et al. 1998; Santolamazza et al. 2001; Fiorentino et al. 2015b) and observational (Kaluzny & Thompson 2003; Olech et al. 2005; Fiorentino et al. 2014) investigations. However, no general consensus has been reached yet on their evolutionary and pulsation properties. The names suggested in the literature range from SX Phoenicis (Nemec & Mateo 1990, p. 134) to Dwarf Cepheids (Mateo et al. 1998; Vivas & Mateo 2013) to ultra-short-period Cepheids (Eggen 1979) to AI Velorum stars (Bessell 1969) to high-amplitude δ Scuti stars (McNamara 1995; Hog & Petersen 1997).

The most relevant point concerning the classification is that SX Phe are considered the metal-poor extension of the classical δ Scuti stars. Ironically, the prototype, SX Phe itself, is a metal-intermediate ([Fe/H] = −1.3 dex; Hog & Petersen 1997). The circumstantial empirical evidence concerning the pulsation properties are: they oscillate both in radial and non radial modes and a significant fraction are mixed-mode variables (Gilliland et al. 1998); their amplitude ranges from a few hundredths to a few tenths of magnitude; they do not show a clear separation in the Bailey diagram (luminosity amplitude versus pulsation period), this means that the mode identification based on their pulsation properties is not trivial; they obey a period–luminosity (McNamara 2000) and a period–luminosity–color–metallicity (Petersen & Christensen-Dalsgaard 1999; Fiorentino et al. 2013).

The region of the CMD in which these objects are located is strongly affected by degeneracy. They are at the transition between low- and intermediate-mass stars during either central hydrogen burning or thick shell hydrogen burning. However, the same region is also crossed by stellar structures approaching the main sequence (Marconi et al. 2000) and by stellar structures that experienced either a collisional merging or a binary merging, i.e., the so-called BSs (Dalessandro et al. 2013).

The above evidence indicates that the evolutionary channel producing field δ Scuti and SX Phe can hardly be constrained by their position in the CMD or the Bailey diagram. The empirical scenario becomes easier for variables hosted either in open or in globular clusters, since they are typically brighter and bluer than MS turn-off stars. This further supports their "peculiar" evolutionary origin.

In this context, dwarf galaxies play a crucial role. The stellar content of dwarf spheroidal galaxies that experienced only a single star formation event (Cetus Monelli et al. 2012a) and (Tucana Monelli et al. 2010a) appears similar to globular clusters. These stellar systems are dominated by old (t > 10 Gyr) stellar populations, therefore the colors of their main sequence turn off stars (MSTO) are systematically redder (cooler) than the red edge of the IS. This means that the Cepheid IS in these stellar systems can only be crossed by BSs, since these objects are hotter and brighter than canonical MSTO stars. However, dwarf galaxies that underwent multiple star formation episodes, in particular a well defined star formation episode 6–9 Gyrs ago, are going to have both "canonical" and "peculiar" objects crossing the Cepheid IS. The Carina dwarf spheroidal galaxy belongs to the latter group.

The above scenario has been soundly supported by the recent detailed photometric investigation by VM13. They identified more than 340 new SX Phe in Carina with periods ranging from 0.03860 to 0.18058 days and luminosity amplitudes ranging from 0.22 to 1.10 mag in the V band. In this context it is worth mentioning that their magnitude (21.89 ≤ V ≤ 23.55) and color distribution (0.05 ≤ BV ≤ 0.54) indicate that only a minor fraction belongs to the so-called Blue Plume (22.0 ≤ V ≤ 23.2; 0.02 ≤ BV ≤ 0.22), i.e., to the objects for which it is not clear whether they are truly young (t < 1 Gyr) or BSs of the old populations (Okamoto et al. 2008; Monelli et al. 2012b). The bulk seem to belong to canonical main sequence intermediate-age stars. This evidence opens a new path in the investigation of these interesting objects, since we are dealing with objects that are the aftermath of the different channels located at the same distance and covering a narrow range in metal abundances (Fabrizio et al. 2015).

Although, the investigation by VM13 is a substantial step forward in the identification of these objects we decided to further investigate the possible occurrence of SX Phe stars. The working hypothesis was mainly supported by the slope of the Cepheid IS suggesting that the actual sample of SX Phe might be even larger. The similarity of the Cepheid IS with the location of SX Phe, δ Scuti, and RR Lyrae stars is supported by detailed investigations concerning their pulsation properties (McNamara 2011; McNamara & Barnes 2014). Thanks to the photometric precision and accuracy of our multiband photometric catalog we identified 101 new SX Phe. Some examples of light curves are plotted in Figure set 3, while their positions, epochs, periods and mean magnitudes are listed in Table 12. Finally, Figure 12 shows the position of VM13 (red circles) and the new discovered (blue crosses) SX Phe in IV (B–V) CMD. The mean magnitudes were estimated as intensity means using an analytical fit of the light curves. Moreover, we confirm the variability for 324 out of the 340 known SX Phe in Carina. For the other 16, we have insufficient data for DC-1, DC-2, DC-3, DC-4, DC-5, DC-6, DC-284, and DC-339, and we do not confirm the variability for DC-75, DC-158, DC-264, and DC-295, we do not find DC-180 and DC-340 and we consider DC-1, DC-111 and DC-144 the same variable. The pulsation properties for these objects are given in Table 13.

Table 12.  Pulsation Properties of the New Carina SX Phe

ID α δ Period (day) <mml:math> <mml:mo stretchy="true">&lang;</mml:mo> <mml:mi>B</mml:mi> <mml:msup> <mml:mrow> <mml:mo stretchy="true">&rang;</mml:mo> </mml:mrow> <mml:mrow> <mml:mi>b</mml:mi> </mml:mrow> </mml:msup> </mml:math> <mml:math> <mml:mo stretchy="true">&lang;</mml:mo> <mml:mi>V</mml:mi> <mml:msup> <mml:mrow> <mml:mo stretchy="true">&rang;</mml:mo> </mml:mrow> <mml:mrow> <mml:mi>b</mml:mi> </mml:mrow> </mml:msup> </mml:math> <mml:math> <mml:mo stretchy="true">&lang;</mml:mo> <mml:mi>I</mml:mi> <mml:msup> <mml:mrow> <mml:mo stretchy="true">&rang;</mml:mo> </mml:mrow> <mml:mrow> <mml:mi>b</mml:mi> </mml:mrow> </mml:msup> </mml:math>
341 06 40 14.14 −51 01 23.4 0.05898004 23.11 22.85 22.42
342 06 40 15.46 −51 08 31.2 0.06404925 23.25 22.94 22.50
343 06 40 17.76 −50 56 06.0 0.06189917 22.99 22.70 22.33
344 06 40 23.45 −51 00 18.5 0.05700707 23.39 23.04 22.49
345 06 40 23.84 −50 55 16.0 0.0616327 23.28 23.04 22.65
346 06 40 26.44 −50 55 12.2 0.06983306 23.20 22.93 22.48
347 06 40 34.03 −50 56 36.9 0.06382168 23.17 22.92 22.49
348 06 40 38.49 −50 50 34.2 0.05887662 23.01 22.74 22.34
349 06 40 38.82 −51 13 52.6 0.05220283 23.32 23.03 22.61
350 06 40 40.71 −50 58 29.0 0.05225971 23.12 22.86 22.49
351 06 40 49.07 −50 53 10.6 0.06510992 23.34 23.04 22.62
352 06 40 49.13 −50 54 37.1 0.05555380 22.84 22.58 22.16
353 06 40 49.50 −51 01 26.7 0.05860522 23.17 22.92 22.62
354 06 40 55.07 −50 55 18.3 0.0559396 23.35 23.06 22.65
355 06 40 58.61 −50 55 05.4 0.06195699 23.33 23.07 22.74
356 06 40 59.22 −50 56 52.2 0.05387742 23.26 22.97 22.55
357 06 41 02.69 −50 57 05.9 0.05802369 23.41 23.09 22.66
358 06 41 03.13 −50 51 51.1 0.04853505 23.10 22.86 22.51
359 06 41 02.86 −50 58 00.1 0.05870867 23.29 23.04 22.49
360 06 41 04.51 −50 55 07.3 0.05059894 23.05 22.80 22.41
361 06 41 07.09 −50 47 50.9 0.05405631 23.33 23.07 22.59
362 06 41 06.85 −51 04 14.1 0.05004092 22.89 22.57 22.18
363 06 41 08.60 −50 54 35.8 0.0591939 23.29 23.04 22.67
364 06 41 11.16 −51 00 11.8 0.06534271 23.29 23.00 22.63
365 06 41 12.44 −50 45 31.2 0.05781447 23.33 23.06 22.60
366 06 41 13.10 −51 09 07.4 0.05277468 23.28 23.04 22.64
367 06 41 14.32 −51 01 57.8 0.06230673 23.19 22.90 22.45
368 06 41 14.88 −50 55 16.6 0.07088727 23.21 22.88 22.46
369 06 41 15.33 −50 55 12.5 0.05923093 23.29 23.03 22.63
370 06 41 16.36 −50 54 36.0 0.05263070 23.24 22.97 22.53
371 06 41 18.51 −50 51 48.0 0.0610961 23.14 22.87 22.49
372 06 41 23.09 −51 07 42.1 0.06317447 22.99 22.66 22.28
373 06 41 24.30 −50 59 25.6 0.05712586 23.41 23.10 22.61
374 06 41 24.29 −51 04 21.8 0.05256096 23.02 22.67 22.28
375 06 41 25.07 −50 55 53.9 0.07412219 23.06 22.75 22.33
376 06 41 26.05 −51 12 19.0 0.0739414 23.20 22.86 22.46
377 06 41 28.18 −50 55 26.9 0.05301314 23.06 22.73 22.34
378 06 41 28.80 −50 43 11.2 0.05483068 23.42 23.12 22.71
379 06 41 28.81 −51 00 20.0 0.07092323 23.12 22.80 22.38
380 06 41 29.87 −50 52 05.1 0.06527955 22.99 22.67 22.27
381 06 41 32.44 −50 47 57.3 0.07488229 22.96 22.63 22.19
382 06 41 32.63 −50 57 43.7 0.07197212 23.31 22.98 22.63
383 06 41 32.93 −50 52 54.2 0.1594306 23.28 23.07 22.78
384 06 41 33.43 −50 52 48.5 0.05863985 23.32 22.98 22.49
385 06 41 33.65 −50 57 37.8 0.05633247 22.80 22.49 22.19
386 06 41 35.77 −51 00 39.1 0.0636862 23.20 22.95 22.52
387 06 41 36.96 −50 57 47.0 0.05627784 23.37 23.13 22.73
388 06 41 37.74 −50 55 13.6 0.06400101 23.15 22.85 22.52
389 06 41 37.61 −50 58 58.0 0.07160168 23.06 22.75 22.44
390 06 41 39.58 −50 57 01.2 0.0582159 23.32 22.99 22.60
391 06 41 42.92 −50 52 31.4 0.06104802 23.23 22.91 22.43
392 06 41 44.17 −50 44 22.9 0.06385933 22.74 22.45 21.87
393 06 41 44.84 −51 03 48.3 0.05746218 23.37 23.09 22.72
394 06 41 45.69 −50 50 01.3 0.04855492 23.15 22.89 22.62
395 06 41 49.86 −51 00 21.5 0.05655043 22.86 22.62 22.33
396 06 41 49.87 −51 00 32.4 0.06046970 23.26 22.94 22.55
397 06 41 51.00 −50 58 05.9 0.0645517 23.40 23.09 22.70
398 06 41 51.59 −50 53 05.0 0.06014112 23.39 23.09 22.67
399 06 41 51.66 −50 56 08.9 0.04527754 23.17 22.93 22.58
400 06 41 57.09 −50 55 08.0 0.06364862 23.24 22.95 22.49
401 06 41 58.08 −50 57 58.1 0.05734282 23.12 22.84 22.47
402 06 41 59.28 −51 00 00.0 0.07441239 23.12 22.85 22.39
403 06 41 59.76 −50 55 35.4 0.04671546 23.17 22.90 22.48
404 06 42 00.27 −50 52 19.9 0.06205412 23.28 22.97 22.63
405 06 42 01.47 −50 52 27.1 0.06348319 23.37 23.01 22.55
406 06 42 01.82 −50 51 30.4 0.06373945 23.04 22.74 22.35
407 06 42 03.52 −50 57 33.5 0.05525245 23.19 22.92 23.19
408 06 42 03.49 −51 01 12.2 0.05567260 23.20 22.95 22.54
409 06 42 05.51 −50 57 43.0 0.05779336 23.38 23.03 22.66
410 06 42 07.77 −51 00 51.5 0.05261781 23.19 22.92 22.45
411 06 42 08.13 −50 52 36.7 0.06459468 23.11 22.82 22.37
412 06 42 09.22 −50 55 36.2 0.05646218 23.27 22.98 22.58
413 06 42 09.61 −51 01 03.4 0.06032828 23.34 23.02 22.54
414 06 42 12.67 −50 56 23.8 0.05842271 23.22 22.87 22.42
415 06 42 13.13 −50 56 01.6 0.05598982 23.18 22.89 22.44
416 06 42 17.19 −50 51 18.2 0.05422022 23.33 23.07 22.63
417 06 42 17.68 −50 48 39.2 0.06434278 23.26 22.98 22.63
418 06 42 19.08 −50 47 46.7 0.05607941 23.22 22.92 22.50
419 06 42 19.88 −50 45 04.8 0.05780775 23.36 23.07 22.50
420 06 42 21.25 −50 45 35.8 0.06575657 23.15 22.87 22.43
421 06 42 22.01 −50 50 06.5 0.05161476 23.36 23.07 22.65
422 06 42 23.24 −50 54 50.4 0.07029254 23.13 22.84 22.23
423 06 42 23.67 −50 49 16.7 0.06527164 23.08 22.83 22.48
424 06 42 24.87 −51 03 02.1 0.07014507 23.22 22.92 22.37
425 06 42 25.71 −50 57 00.4 0.05172937 23.28 23.00 22.53
426 06 42 30.36 −50 49 05.9 0.06320298 23.10 22.87 22.50
427 06 42 31.01 −50 46 02.6 0.05587489 23.38 23.13 22.70
428 06 42 31.58 −50 57 28.1 0.05228718 23.36 23.05 22.65
429 06 42 33.88 −50 48 46.0 0.05360831 23.33 23.11 22.53
430 06 42 33.99 −50 48 03.3 0.05866563 23.39 23.10 22.64
431 06 42 35.21 −50 55 04.0 0.05962675 23.40 23.08 22.66
432 06 42 35.53 −51 02 22.6 0.05995828 23.35 23.05 22.58
433 06 42 37.57 −50 57 41.4 0.05497264 23.37 23.10 22.67
434 06 42 38.39 −50 53 16.7 0.07192960 23.24 22.93 22.43
435 06 42 41.09 −50 49 38.2 0.06649085 23.34 23.04 22.64
436 06 42 42.07 −50 57 31.2 0.05926036 23.39 23.13 22.70
437 06 42 49.56 −50 51 53.9 0.05158018 23.30 23.05 22.70
438 06 42 55.43 −50 54 43.3 0.06550635 23.29 23.00 22.60
439 06 42 55.57 −50 52 55.2 0.06189711 23.35 23.08 22.59
440 06 43 01.04 −50 52 07.7 0.05804751 23.35 23.09 22.70
441 06 43 04.87 −50 53 45.1 0.06346540 23.26 22.98 22.62
442 06 43 25.38 −50 52 26.9 0.05947808 23.28 23.05 22.65

Download table as:  ASCIITypeset images: 1 2

Table 13.  Pulsation Properties of the Known Carina SX Phe

ID α δ Period (day) <mml:math> <mml:mo stretchy="true">&lang;</mml:mo> <mml:mi>B</mml:mi> <mml:msup> <mml:mrow> <mml:mo stretchy="true">&rang;</mml:mo> </mml:mrow> <mml:mrow> <mml:mi>b</mml:mi> </mml:mrow> </mml:msup> </mml:math> <mml:math> <mml:mo stretchy="true">&lang;</mml:mo> <mml:mi>V</mml:mi> <mml:msup> <mml:mrow> <mml:mo stretchy="true">&rang;</mml:mo> </mml:mrow> <mml:mrow> <mml:mi>b</mml:mi> </mml:mrow> </mml:msup> </mml:math> <mml:math> <mml:mo stretchy="true">&lang;</mml:mo> <mml:mi>I</mml:mi> <mml:msup> <mml:mrow> <mml:mo stretchy="true">&rang;</mml:mo> </mml:mrow> <mml:mrow> <mml:mi>b</mml:mi> </mml:mrow> </mml:msup> </mml:math> M98
7 06 39 53.11 −51 04 31.5 0.05861265 23.43 23.13 22.12 ...
8 06 39 56.16 −51 06 43.6 0.0840233 22.66 22.36 21.92 ...
9 06 40 00.79 −50 57 58.5 0.06283058 23.33 23.04 22.45 ...
10 06 40 03.36 −51 07 55.6 0.06600411 23.19 22.93 22.43 ...
11 06 40 06.08 −50 55 58.0 0.0566776 23.32 23.04 22.58 ...
12 06 40 14.68 −51 05 05.0 0.05116040 23.46 23.18 ... ...
13 06 40 17.93 −50 56 33.7 0.0572522 23.27 23.01 22.59 ...
14 06 40 18.59 −51 03 01.9 0.05801669 23.33 23.06 22.67 ...
15 06 40 21.39 −51 01 02.2 0.06133516 23.14 22.92 22.57 ...
16 06 40 23.91 −51 06 44.4 0.06490812 23.16 22.90 22.50 ...
17 06 40 27.16 −51 06 17.6 0.06391992 23.31 22.99 22.52 ...
18 06 40 27.18 −51 01 03.4 0.06005208 23.36 23.07 22.66 ...
19 06 40 28.33 −50 52 58.8 0.05846323 23.16 22.94 22.64 ...
20 06 40 29.07 −50 55 58.4 0.05692126 23.28 23.01 22.49 ...
21 06 40 31.67 −51 08 54.2 0.07130197 23.12 22.81 22.37 ...
22 06 40 32.86 −51 01 43.4 0.05866617 23.27 23.00 22.54 ...
23 06 40 35.66 −50 56 48.1 0.05035238 23.51 23.23 22.83 ...
24 06 40 37.79 −50 58 11.5 0.05697949 23.30 23.03 22.61 ...
25 06 40 38.21 −50 58 04.9 0.05765942 23.31 23.03 22.58 ...
26 06 40 38.84 −50 58 39.7 0.05955433 23.28 23.03 22.64 ...
27 06 40 39.93 −51 00 32.7 0.06096031 23.28 22.99 22.61 ...
28 06 40 40.56 −51 02 30.7 0.06020401 23.08 22.77 22.35 ...
29 06 40 41.70 −50 59 10.5 0.05311877 23.11 22.84 22.44 ...
30 06 40 45.02 −50 59 29.4 0.06503761 23.02 22.70 22.30 ...
31 06 40 45.26 −51 06 18.6 0.06037914 23.35 23.04 22.56 ...
32 06 40 46.39 −50 57 53.4 0.05804718 23.26 22.98 22.58 ...
33 06 40 46.64 −51 09 37.3 0.05529873 23.38 23.09 22.65 ...
34 06 40 46.76 −50 52 17.5 0.05526398 23.29 23.03 22.64 ...
35 06 40 47.68 −50 56 44.1 0.06166175 23.26 22.94 22.48 ...
36 06 40 48.00 −50 58 33.9 0.05985196 23.17 22.90 22.49 ...
37 06 40 48.47 −51 10 55.6 0.05410886 23.36 23.03 22.62 ...
38 06 40 48.81 −51 00 41.2 0.05365485 23.32 23.02 22.58 ...
39 06 40 50.04 −50 59 24.6 0.05440634 23.28 23.01 22.57 ...
40 06 40 50.29 −51 09 31.2 0.05952932 23.24 22.91 22.47 ...
41 06 40 50.86 −50 59 28.7 0.06489616 22.82 22.50 22.11 ...
42 06 40 51.77 −51 07 16.9 0.05697602 23.18 22.87 22.48 ...
43 06 40 53.52 −51 07 14.6 0.06162396 23.25 22.94 22.46 ...
44 06 40 54.40 −51 01 28.4 0.06879427 22.27 22.04 21.49 ...
45 06 40 55.63 −51 00 43.0 0.05688051 23.39 23.09 22.72 V4
46 06 40 57.65 −50 56 09.5 0.06778138 23.04 22.74 22.26 ...
47 06 40 57.88 −51 02 07.9 0.05986604 23.23 22.98 22.48 ...
48 06 40 59.18 −50 49 44.3 0.0565391 23.31 23.04 22.74 ...
49 06 40 59.27 −50 50 31.6 0.05626531 23.40 23.14 22.69 ...
50 06 40 59.31 −50 56 49.1 0.07320810 22.71 22.42 22.00 ...
51 06 40 59.92 −50 48 44.6 0.05879641 23.37 23.08 22.50 ...
52 06 41 00.18 −51 07 26.7 0.06380392 23.31 23.00 22.55 ...
53 06 41 00.50 −50 54 53.6 0.05843550 23.27 22.99 22.51 ...
54 06 41 00.89 −51 00 01.1 0.06134829 23.33 23.06 22.64 ...
55 06 41 02.48 −51 00 25.8 0.05870253 23.32 23.01 22.65 V5
56 06 41 02.98 −50 58 41.1 0.05851668 23.29 23.00 22.59 V12
57 06 41 03.29 −50 56 14.8 0.05586523 23.31 23.01 22.15 ...
58 06 41 03.89 −50 58 44.1 0.05123522 23.54 23.27 22.59 ...
59 06 41 05.03 −51 05 15.2 0.06586275 22.88 22.59 22.18 ...
60 06 41 05.44 −50 48 27.0 0.05964722 23.32 23.04 22.42 ...
61 06 41 05.72 −50 57 44.1 0.06627047 22.84 22.54 22.13 ...
62 06 41 06.14 −50 51 51.3 0.04596514 23.45 23.23 ... ...
63 06 41 06.37 −50 49 23.2 0.05920742 23.37 23.06 22.53 ...
64 06 41 06.61 −51 08 44.1 0.05839355 23.37 23.07 22.64 V10
65 06 41 06.93 −50 59 18.4 0.06264205 23.26 23.00 22.57 ...
66 06 41 07.69 −50 52 34.0 0.0525963 23.37 23.10 22.65 ...
67 06 41 07.88 −50 56 00.9 0.06022396 23.35 23.06 22.61 V16
68 06 41 08.76 −50 54 27.4 0.06496999 23.15 22.84 22.31 ...
69 06 41 09.70 −50 57 37.9 0.05489874 23.33 23.01 22.61 ...
70 06 41 11.27 −50 57 41.0 0.05504275 22.94 22.65 22.22 ...
71 06 41 11.73 −51 01 35.5 0.05628829 23.36 23.06 22.69 ...
72 06 41 12.00 −50 53 01.6 0.05684917 23.48 23.18 22.68 ...
73 06 41 12.06 −50 56 40.2 0.05332273 23.55 23.25 22.79 ...
74 06 41 12.44 −50 53 10.8 0.06307089 22.90 22.57 22.09 ...
76 06 41 13.33 −50 56 31.5 0.07069207 22.84 22.53 22.06 ...
77 06 41 13.43 −50 53 08.2 0.0641156 23.17 22.86 22.48 ...
78 06 41 14.31 −50 59 32.8 0.07554039 23.11 22.79 22.41 V9
79 06 41 14.59 −51 02 49.3 0.06153187 23.19 22.93 22.51 ...
80 06 41 14.69 −51 08 44.1 0.05600743 23.35 23.09 22.59 ...
81 06 41 14.75 −50 59 20.3 0.06095969 22.53 22.11 21.50 ...
82 06 41 15.38 −51 08 24.3 0.05954823 22.93 22.60 22.16 ...
83 06 41 15.89 −50 55 44.0 0.05754453 23.17 22.92 22.56 V15
84 06 41 16.15 −51 02 56.8 0.06525352 23.25 22.96 22.60 ...
85 06 41 16.81 −51 03 55.9 0.06078077 23.26 22.89 21.68 ...
86 06 41 16.87 −50 53 05.0 0.06751050 23.00 22.71 22.28 ...
87 06 41 16.89 −51 03 45.9 0.06586277 22.88 22.59 22.18 ...
88 06 41 17.29 −51 05 26.6 0.05904829 22.87 22.55 22.06 ...
89 06 41 17.81 −50 56 01.9 0.05871582 22.99 22.72 22.31 ...
90 06 41 18.05 −50 56 40.5 0.06652948 22.59 22.35 22.02 V14
91 06 41 18.09 −51 03 17.0 0.06557268 23.14 22.83 22.39 ...
92 06 41 18.13 −50 59 34.1 0.05762093 23.55 23.23 22.80 ...
93 06 41 18.2 −50 52 52.5 0.05359279 23.41 23.11 22.69 ...
94 06 41 19.06 −50 56 10.9 0.0604939 23.33 23.04 22.54 ...
95 06 41 19.67 −51 09 57.5 0.05337312 23.33 22.99 22.52 ...
96 06 41 20.01 −50 59 5.9 0.06881335 22.98 22.68 22.29 ...
97 06 41 20.42 −50 59 40.7 0.06044260 23.24 22.89 22.45 ...
98 06 41 20.9 −50 58 3.0 0.05979826 23.32 23.04 22.48 ...
99 06 41 21.19 −51 02 6.5 0.06289669 23.26 22.99 22.53 ...
100 06 41 21.42 −50 57 13.2 0.05890563 23.43 23.13 22.79 ...
101 06 41 21.56 −51 00 41.5 0.05224501 23.42 23.12 22.77 ...
102 06 41 21.92 −50 57 7.7 0.05272663 23.31 23.04 22.70 ...
103 06 41 22.15 −50 57 13.5 0.05679868 22.87 22.57 22.19 ...
104 06 41 22.26 −50 57 9.4 0.05467434 23.17 22.90 22.48 ...
105 06 41 22.36 −50 58 56.5 0.0604251 23.33 23.07 22.71 ...
106 06 41 22.62 −50 51 48.9 0.07006015 22.84 22.53 22.07 ...
107 06 41 23.17 −51 01 54.1 0.06589533 23.21 22.91 22.49 ...
108 06 41 23.31 −51 01 7.3 0.06002635 23.39 23.12 22.69 ...
109 06 41 23.56 −50 53 55.7 0.06008917 23.36 23.05 22.60 ...
110 06 41 23.56 −51 02 56.0 0.05742446 23.43 23.14 22.76 ...
112 06 41 25.16 −50 42 27.2 0.05093029 23.02 22.77 22.23 ...
113 06 41 25.22 −50 58 20.6 0.05366079 23.37 23.10 22.57 ...
114 06 41 25.47 −51 00 12.5 0.06051002 22.58 22.31 21.93 ...
115 06 41 26.0 −51 03 26.0 0.06565715 23.38 23.10 22.63 ...
116 06 41 26.02 −51 06 5.0 0.05160868 23.48 23.16 22.83 ...
117 06 41 26.17 −51 07 16.5 0.05743431 23.52 23.19 22.82 ...
118 06 41 26.34 −50 57 43.9 0.05157820 23.54 23.25 22.76 ...
119 06 41 26.39 −50 56 20.9 0.05193595 23.50 23.19 22.80 ...
120 06 41 26.67 −50 58 21.6 0.06033252 23.04 22.75 22.37 ...
121 06 41 27.07 −50 53 0.9 0.05577754 23.29 23.02 22.58 ...
122 06 41 27.8 −51 01 26.0 0.04680622 23.19 22.89 22.45 ...
123 06 41 27.8 −50 59 1.0 0.05847475 23.44 23.15 22.67 ...
124 06 41 27.83 −50 55 41.8 0.05863472 23.21 22.87 22.48 ...
125 06 41 28.21 −50 53 37.1 0.05675304 23.17 22.84 22.38 ...
126 06 41 28.45 −50 59 8.5 0.06369570 23.10 22.84 22.51 ...
127 06 41 28.71 −50 58 11.1 0.0601055 23.39 23.06 22.69 ...
128 06 41 28.8 −50 51 35.4 0.0527838 23.31 23.04 22.63 ...
129 06 41 29.04 −50 53 19.0 0.0544041 23.35 23.08 22.51 ...
130 06 41 29.21 −51 00 23.5 0.05956936 22.84 22.52 22.07 ...
131 06 41 29.35 −50 55 44.1 0.06545531 23.25 22.96 22.46 ...
132 06 41 29.44 −50 57 39.1 0.06719052 23.25 22.96 22.56 V13
133 06 41 29.67 −50 53 14.4 0.05464765 23.39 23.11 22.61 ...
134 06 41 29.85 −51 02 34.7 0.05504185 23.44 23.14 22.71 ...
135 06 41 29.87 −50 59 37.8 0.0534139 23.49 23.17 22.69 ...
136 06 41 30.25 −51 09 3.2 0.04970627 23.40 23.10 22.54 ...
137 06 41 30.42 −50 51 29.1 0.0529662 23.36 23.10 22.72 ...
138 06 41 30.47 −50 48 15.3 0.05815515 23.41 23.09 ... ...
139 06 41 30.79 −50 55 23.3 0.0644954 23.26 22.94 22.52 ...
140 06 41 30.97 −51 06 27.7 0.05051116 23.45 23.08 ... ...
141 06 41 32.25 −51 02 38.5 0.05788590 23.48 23.14 22.76 ...
142 06 41 32.56 −51 00 56.0 0.06607394 23.31 22.97 22.52 ...
143 06 41 32.68 −50 52 58.7 0.06626448 23.27 22.97 22.55 ...
145 06 41 32.88 −50 57 21.9 0.05559422 23.30 23.05 22.53 ...
146 06 41 33.29 −50 55 52.0 0.05518256 23.42 23.14 22.64 ...
147 06 41 33.31 −50 56 21.0 0.0516737 23.27 22.97 22.51 ...
148 06 41 33.49 −50 52 16.3 0.04502640 23.46 23.21 ... ...
149 06 41 33.6 −50 53 17.2 0.06592061 23.15 22.84 22.50 ...
150 06 41 33.68 −51 02 22.5 0.0607464 23.27 22.95 22.64 ...
151 06 41 33.87 −50 57 52.6 0.05790728 23.09 22.83 22.43 ...
152 06 41 34.1 −51 04 52.1 0.05515096 23.48 23.13 22.65 ...
153 06 41 34.39 −50 59 44.7 0.08287027 22.66 22.33 21.90 ...
154 06 41 34.74 −50 52 58.7 0.05223474 23.53 23.24 ... ...
155 06 41 35.37 −51 07 57.2 0.05196965 23.55 23.25 ... ...
156 06 41 35.62 −50 52 21.0 0.05518927 23.46 23.17 22.75 ...
157 06 41 36.08 −51 00 31.2 0.06138969 23.57 23.26 22.64 ...
159 06 41 36.81 −50 58 30.4 0.06345606 22.93 22.63 22.10 ...
160 06 41 36.91 −51 05 46.8 0.794001 22.95 22.64 17.16 ...
161 06 41 37.15 −51 07 26.0 0.06743787 23.32 22.98 22.26 ...
162 06 41 37.44 −50 57 44.1 0.04950919 23.44 23.16 ... ...
163 06 41 37.52 −50 55 54.8 0.05993709 23.45 23.14 22.58 ...
164 06 41 37.61 −50 59 41.7 0.06221228 23.13 22.88 22.04 ...
165 06 41 37.68 −50 55 46.8 0.05804816 23.26 23.00 22.46 ...
166 06 41 37.77 −50 59 30.2 0.06451736 23.14 22.87 22.49 ...
167 06 41 38.48 −50 57 7.7 0.0538934 23.33 23.04 22.46 ...
168 06 41 38.71 −51 04 52.4 0.05157579 23.48 23.19 ... ...
169 06 41 39.09 −50 50 52.8 0.0494872 23.37 23.12 ... ...
170 06 41 39.15 −51 10 26.1 0.05545547 23.46 23.17 ... ...
171 06 41 39.34 −50 53 0.5 0.05387548 23.17 22.88 22.54 ...
172 06 41 39.47 −50 58 48.9 0.07324209 22.99 22.66 22.19 ...
173 06 41 39.55 −50 47 43.3 0.05155752 23.36 23.03 ... ...
174 06 41 40.39 −50 54 39.7 0.06174584 23.42 23.12 ... ...
175 06 41 40.54 −51 00 58.8 0.05422135 23.43 23.18 ... ...
176 06 41 40.59 −50 59 11.0 0.05880960 23.50 23.22 ... ...
177 06 41 40.66 −50 46 33.7 0.05548850 23.36 23.03 ... ...
178 06 41 41.01 −50 48 45.8 0.05676424 23.42 23.16 ... ...
179 06 41 41.45 −51 03 55.3 0.05777849 23.31 22.98 22.50 ...
181 06 41 41.67 −50 55 50.3 0.05891665 23.40 23.07 22.53 ...
182 06 41 42.16 −51 03 50.8 0.06129068 23.43 23.12 22.69 ...
183 06 41 42.21 −50 57 12.3 0.10774755 22.40 22.00 21.51 ...
184 06 41 43.02 −51 02 27.1 0.05879365 22.89 22.59 22.17 ...
185 06 41 43.11 −51 01 8.2 0.04519765 23.02 22.82 22.59 ...
186 06 41 43.19 −51 04 46.4 0.06336417 23.00 22.69 22.27 ...
187 06 41 43.51 −51 04 12.0 0.05053246 23.45 23.18 22.75 ...
188 06 41 43.56 −50 52 46.5 0.06248493 23.08 22.77 22.30 ...
189 06 41 44.16 −51 04 24.9 0.06737899 23.19 22.90 22.50 ...
190 06 41 44.58 −51 03 16.4 0.05927821 22.93 22.65 22.24 ...
191 06 41 44.66 −51 09 12.9 0.05014270 23.43 23.15 ... ...
192 06 41 44.69 −51 02 44.2 0.05215024 23.23 22.95 22.51 ...
193 06 41 44.72 −50 50 13.0 0.06786510 23.29 22.99 22.62 ...
194 06 41 44.96 −50 54 5.7 0.0638021 23.25 22.94 22.52 ...
195 06 41 45.1 −50 56 11.4 0.0604508 23.28 23.00 22.45 ...
196 06 41 45.53 −51 01 35.4 0.05485589 23.39 23.11 22.66 ...
197 06 41 45.64 −51 05 21.8 0.05700529 23.46 23.19 22.58 ...
198 06 41 46.01 −51 04 22.6 0.0552781 23.37 23.14 22.65 ...
199 06 41 46.0 −50 53 0.7 0.05127621 23.47 23.15 22.72 ...
200 06 41 46.11 −50 50 8.1 0.05729547 22.78 22.20 21.40 ...
201 06 41 46.16 −51 12 35.1 0.05264742 23.01 22.76 22.41 ...
202 06 41 46.47 −50 55 10.8 0.06236390 23.18 22.92 22.52 V20
203 06 41 46.62 −50 52 43.8 0.05846323 23.16 22.94 22.64 ...
204 06 41 46.72 −50 58 27.3 0.05327753 23.47 23.22 ... ...
205 06 41 46.83 −51 05 2.3 0.05975768 23.37 23.04 22.65 ...
206 06 41 46.94 −50 58 52.0 0.05747476 23.42 23.15 22.46 ...
207 06 41 47.16 −50 53 30.2 0.06124722 22.89 22.59 22.09 ...
208 06 41 47.17 −50 59 8.2 0.05641026 22.63 22.37 21.94 ...
209 06 41 47.38 −50 51 27.5 0.05379832 23.34 23.05 22.62 ...
210 06 41 47.4 −50 49 31.8 0.06601826 23.22 22.95 22.67 ...
211 06 41 47.49 −50 54 47.0 0.03863078 23.40 23.09 22.65 ...
212 06 41 47.55 −51 00 48.9 0.05764756 23.32 23.04 22.58 ...
213 06 41 47.69 −50 54 9.8 0.06027106 23.43 23.12 22.65 ...
214 06 41 47.72 −50 52 3.6 0.04701230 23.48 23.22 22.78 ...
215 06 41 47.8 −51 01 36.8 0.05662963 23.36 23.10 22.81 ...
216 06 41 48.37 −50 50 55.6 0.05979195 23.32 23.03 22.61 ...
217 06 41 49.31 −50 57 57.6 0.05807511 23.48 23.16 22.59 ...
218 06 41 49.96 −50 46 5.0 0.06366226 23.17 22.94 22.58 ...
219 06 41 50.43 −51 04 14.3 0.06075013 23.34 23.08 22.60 ...
220 06 41 50.66 −51 00 49.5 0.05904003 23.21 22.90 22.51 ...
221 06 41 50.79 −50 58 53.0 0.05209704 23.37 23.08 22.65 ...
222 06 41 51.04 −50 54 29.0 0.05576081 23.41 23.11 22.66 ...
223 06 41 51.06 −-51 04 31.7 0.06984379 23.21 22.91 22.38 ...
224 06 41 51.68 −50 57 27.0 0.05308256 23.38 23.07 22.61 ...
225 06 41 51.7 −50 57 4.3 0.07427555 23.23 22.89 22.46 ...
226 06 41 51.89 −51 04 1.4 0.05877806 22.95 22.68 22.24 ...
227 06 41 51.94 −51 02 46.5 0.04577285 23.06 22.85 22.56 ...
228 06 41 52.29 −50 58 7.4 0.05670511 23.31 23.10 22.67 ...
229 06 41 52.74 −50 56 50.2 0.05704030 23.32 22.98 22.56 ...
230 06 41 52.78 −50 59 12.5 0.05804334 23.58 23.28 ... ...
231 06 41 52.83 −51 04 8.9 0.06504728 23.24 22.96 22.56 ...
232 06 41 53.2 −50 46 30.9 0.06587775 23.34 23.01 22.59 ...
233 06 41 53.2 −50 55 15.6 0.05519357 22.88 22.55 22.08 ...
234 06 41 53.3 −51 00 22.5 0.07879928 23.04 22.76 22.34 ...
235 06 41 54.04 −50 54 35.2 0.05946258 23.44 23.13 22.60 ...
236 06 41 54.11 −51 06 11.7 0.05388561 23.38 23.08 22.61 ...
237 06 41 54.81 −51 02 44.2 0.06376287 23.33 23.01 22.57 ...
238 06 41 55.75 −50 58 28.9 0.05211579 23.42 23.18 ... ...
239 06 41 56.05 −50 48 21.0 0.05420404 23.49 23.23 22.69 ...
240 06 41 56.9 −50 58 7.1 0.06098996 23.24 22.96 22.47 ...
241 06 41 56.93 −51 06 10.7 0.06707216 23.29 22.97 22.49 ...
242 06 41 57.13 −50 56 11.8 0.05633799 22.82 22.52 22.11 V18
243 06 41 57.35 −50 53 3.3 0.05820235 23.45 23.14 22.69 ...
244 06 41 57.71 −50 54 22.9 0.03887685 23.28 22.98 22.63 ...
245 06 41 58.42 −51 05 46.3 0.06735249 23.27 22.96 22.50 ...
246 06 41 58.93 −51 01 35.5 0.06902505 23.13 22.82 22.33 ...
247 06 41 59.06 −50 56 14.1 0.07260680 23.19 22.89 22.44 ...
248 06 41 59.51 −50 49 7.0 0.05233172 23.48 23.18 ... ...
249 06 41 59.69 −50 45 23.6 0.07625333 23.09 22.79 22.32 ...
250 06 42 0.03 −50 56 43.3 0.07485741 23.16 22.83 22.44 ...
251 06 42 0.05 −50 55 52.2 0.06031459 23.16 22.90 22.57 V17
252 06 42 0.42 −50 57 28.4 0.05574277 23.21 22.96 ... ...
253 06 42 0.61 −51 01 38.8 0.05781329 23.53 23.23 22.78 ...
254 06 42 0.97 −50 46 12.8 0.07540239 22.73 22.42 22.00 ...
255 06 42 0.97 −51 05 20.9 0.05291626 23.51 23.19 ... ...
256 06 42 1.11 −50 53 31.3 0.05283800 23.51 23.21 22.74 ...
257 06 42 1.31 −51 01 24.7 0.05176433 23.46 23.19 22.72 ...
258 06 42 1.72 −51 01 22.7 0.05421737 23.26 23.01 22.57 ...
259 06 42 1.83 −50 51 52.9 0.06569699 23.26 22.96 22.53 ...
260 06 42 1.88 −50 55 51.3 0.05638275 22.98 22.68 22.28 ...
261 06 42 1.97 −50 49 46.9 0.05943899 23.30 23.02 22.65 ...
262 06 42 2.65 −50 58 7.1 0.05790880 23.17 22.92 22.38 ...
263 06 42 3.21 −50 53 4.3 0.06510705 23.36 23.01 22.54 ...
265 06 42 3.72 −50 53 40.1 0.06100386 23.34 23.04 22.59 ...
266 06 42 3.84 −50 52 55.2 0.05297954 23.39 23.11 22.62 ...
267 06 42 4.06 −50 55 43.7 0.05502621 23.42 23.11 22.69 ...
268 06 42 4.51 −50 55 0.6 0.05722660 22.88 22.59 22.19 ...
269 06 42 4.95 −51 05 9.3 0.06504377 23.44 23.12 22.63 ...
270 06 42 5.03 −50 58 50.3 0.05499679 23.53 23.23 22.72 ...
271 06 42 5.26 −50 55 57.4 0.06152380 23.18 22.86 22.39 ...
272 06 42 5.28 −50 49 2.3 0.05880554 23.36 23.07 22.59 ...
273 06 42 5.55 −51 02 57.8 0.05339638 23.43 23.15 22.68 ...
274 06 42 5.61 −50 55 13.2 0.04986932 23.47 23.20 22.73 ...
275 06 42 5.87 −51 01 40.2 0.05530886 23.29 23.03 22.60 ...
276 06 42 6.14 −50 56 33.9 0.05151944 23.25 22.95 22.52 ...
277 06 42 6.21 −50 57 31.3 0.05929224 23.47 23.14 22.28 ...
278 06 42 6.24 −50 46 9.9 0.05903120 23.20 22.91 22.48 ...
279 06 42 7.06 −50 59 13.3 0.0689945 23.20 22.91 22.50 ...
280 06 42 7.26 −51 03 46.8 0.05790894 22.71 22.50 22.14 ...
281 06 42 7.44 −50 56 20.0 0.05449367 22.73 22.44 22.08 ...
282 06 42 7.78 −51 12 15.5 0.0677668 23.10 22.79 22.41 ...
283 06 42 8.17 −51 06 2.3 0.06326881 22.71 22.40 22.04 ...
285 06 42 8.95 −50 49 49.7 0.05939892 23.39 23.10 22.63 ...
286 06 42 9.02 −50 47 9.5 0.06478860 23.17 22.91 22.49 ...
287 06 42 9.79 −50 53 28.6 0.05328744 23.40 23.12 22.71 ...
288 06 42 10.25 −50 45 42.3 0.06449873 23.12 22.89 22.54 ...
289 06 42 11.36 −51 03 34.1 0.06686331 23.19 22.92 22.52 ...
290 06 42 11.54 −50 51 52.4 0.05631450 23.51 23.22 22.74 ...
291 06 42 11.78 −50 56 14.7 0.06001563 23.42 23.10 22.67 ...
292 06 42 14.39 −51 01 36.0 0.06529897 23.23 22.94 22.55 ...
293 06 42 14.53 −50 47 19.1 0.05494963 23.39 23.10 22.72 ...
294 06 42 14.67 −50 53 6.3 0.0590915 23.44 23.11 22.70 ...
296 06 42 15.21 −50 58 39.3 0.05625275 23.31 23.03 22.54 ...
297 06 42 15.62 −50 54 5.5 0.06991609 23.10 22.84 22.45 ...
298 06 42 16.43 −50 56 0.4 0.07426899 23.17 22.85 22.36 ...
299 06 42 16.57 −50 51 37.4 0.05705933 23.45 23.15 22.66 ...
300 06 42 17.33 −50 58 28.8 0.05419873 23.28 23.02 22.54 ...
301 06 42 19.44 −50 55 29.0 0.05615369 22.22 21.92 21.51 ...
302 06 42 19.48 −50 43 16.2 0.05671087 23.36 23.07 22.53 ...
303 06 42 19.67 −50 55 20.4 0.06518118 23.25 22.93 22.51 ...
304 06 42 21.2 −50 56 2.3 0.05414244 22.58 22.30 21.90 ...
305 06 42 21.73 −50 52 15.0 0.05867896 23.16 22.89 22.43 ...
306 06 42 23.36 −51 03 23.8 0.05754752 23.41 23.07 22.66 ...
307 06 42 23.53 −50 49 2.5 0.04933231 23.32 23.13 22.58 ...
308 06 42 25.71 −50 44 37.8 0.05746768 23.19 22.97 22.66 ...
309 06 42 26.22 −50 54 41.8 0.05833121 23.34 23.08 22.71 ...
310 06 42 30.21 −50 47 40.6 0.06787074 23.12 22.86 22.43 ...
311 06 42 30.6 −50 46 30.4 0.05826303 23.25 23.03 22.64 ...
312 06 42 31.28 −50 56 12.1 0.07580626 23.19 22.88 22.38 ...
313 06 42 31.83 −50 50 52.6 0.08140471 23.04 22.75 22.29 ...
314 06 42 33.17 −50 56 37.5 0.05044822 23.47 23.23 22.70 ...
315 06 42 34.36 −50 50 10.9 0.05782427 23.46 23.15 22.70 ...
316 06 42 34.52 −50 52 56.2 0.05146992 23.19 22.90 22.55 ...
317 06 42 39.61 −50 51 12.4 0.05268487 23.33 23.03 22.62 ...
318 06 42 40.33 −50 55 6.3 0.05775708 23.50 23.21 22.72 ...
319 06 42 40.36 −50 54 56.0 0.05554502 23.18 22.77 22.23 ...
320 06 42 41.59 −50 57 42.3 0.06197303 22.93 22.62 22.19 ...
321 06 42 43.39 −50 46 50.0 0.06700168 23.15 22.88 22.48 ...
322 06 42 44.68 −50 55 24.5 0.04944784 23.42 23.16 22.69 ...
323 06 42 45.69 −51 02 22.9 0.06264889 23.34 23.02 22.58 ...
324 06 42 46.56 −50 56 22.7 0.05710797 23.27 23.01 22.59 ...
325 06 42 46.79 −50 34 23.2 0.05855386 23.55 23.22 ... ...
326 06 42 49.08 −50 44 54.3 0.06133020 22.88 22.59 22.17 ...
327 06 42 54.51 −50 48 8.1 0.06121390 22.92 22.64 22.27 ...
328 06 42 54.6 −50 59 11.1 0.05483696 22.96 22.68 22.26 ...
329 06 42 55.87 −50 59 7.1 0.05684852 23.38 23.10 22.58 ...
330 06 43 4.94 −50 56 3.9 0.06522519 23.12 22.79 22.33 ...
331 06 43 10.89 −51 03 42.2 0.05529448 23.39 23.07 22.67 ...
332 06 43 18.68 −50 48 19.4 0.05442560 23.07 22.80 22.42 ...
333 06 43 22.28 −50 54 17.1 0.06204207 23.32 23.06 22.52 ...
334 06 43 27.85 −50 45 51.3 0.05501861 23.30 23.04 22.63 ...
335 06 43 38.45 −50 58 11.4 0.06575684 23.38 23.02 ... ...
336 06 43 40.55 −51 02 28.6 0.05646906 23.45 23.18 ... ...
337 06 43 51.08 −50 50 27.7 0.05884652 23.46 23.16 ... ...
338 06 44 43.03 −50 47 50.2 0.05083201 23.42 23.19 ... ...
... 06 41 02.39 −51 01 53.3 0.06397398 23.32 23.02 22.54 V1
... 06 41 09.57 −51 01 20.6 0.04791289 23.46 23.15 22.73 V2
... 06 41 04.12 −51 01 14.7 0.07691745 23.19 22.88 22.40 V3
... 06 40 57.75 −51 00 11.4 0.06608899 23.11 22.83 22.40 V6
... 06 41 02.86 −50 59 40.4 0.05093715 23.42 23.13 22.74 V7
... 06 40 56.40 −50 59 39.8 0.05575196 23.50 23.14 22.79 V8
... 06 41 02.22 −50 58 54.7 0.07171579 23.09 22.77 22.36 V11
... 06 41 56.74 −50 56 13.7 0.05907561 23.08 22.78 22.35 V18
... 06 41 55.20 −50 56 15.4 0.06491275 22.86 22.58 22.17 V19

Download table as:  ASCIITypeset images: 1 2 3 4 5 6

The comparison between predicted and observed evolutionary and pulsation properties of Carina SX Phe will be discussed in a forthcoming paper.

6. CONCLUSIONS AND FUTURE PERSPECTIVES

We have discussed new and accurate multiband optical (UBVI) photometry of helium burning variables in the Carina dwarf spheroidal galaxy. The current photometry covers a time interval of more than 20 years. This means that we can provide robust identification of regular variables with periods close to a half and one day, as well as variables showing modulations in the pulsation period and/or in in amplitude (mixed mode pulsators, Blazhko).

We ended up with a sample of 92 RRLs, among them 12 first overtones (RRc), 63 fundamental (RRab) pulsators, 9 mixed-mode variables (RRd), and 8 candidate Blazhko variables (Bl). Six out of the 92 RRL variables are new identifications. Moreover, we identified one new double mode pulsator. We also identified 20 ACs, and among them 1 is a new identification. Together with all these variables we found two new LPVs and seven EB candidates.

For the entire sample of variables we provide accurate pulsation properties (periods, luminosity amplitudes) plus accurate estimates of the mean BVI magnitudes. The mean BV magnitudes are based on a spline fit, while the mean I-band mean magnitude is based on a template fit. For the RRd variables we have been able to estimate the two oscillating frequencies and also the luminosity amplitude of both the FO and the F component. The current data do not allow us to constrain the secondary oscillation of the candidate Blazhko RRLs. According to extensive photometric surveys of field RRLs, they are a minor fraction (8%) of Blazhko RRLs (Soszyński et al. 2011).

Although the pulsation properties of ACs in Carina are very accurate we are still facing the problem of mode identification. It seems that optical bands do not help us in settling this longstanding problem.

The analysis of the Bailey diagram confirms that Carina is an Oosterhoff intermediate system and shows that the luminosity amplitudes of the FO component in RRd variables are located along the long-period tail of "regular" RRc variables, while the fundamental components are located along the short-period tale of "regular" RRab variables. To our knowledge this is the first time that we can properly locate the two components of RRd variables.

The comparison between theory and observations in the Petersen diagram for RRd variables indicates that a steady increase in the metal content causes a steady decrease in the period ratio and in the fundamental period. This evidence is supported not only by RRd variables in Galactic globulars, but also by RRd variables in the Galactic halo and bulge. Moreover, the same diagram shows that RRd variables in nearby dwarf spheroidals and dwarf irregulars (the Magellanic Clouds) display similar properties and that Carina RRd variables are located in a region in which there are only RRd variables hosted in metal-poor globular clusters (M15, M68), in the Halo, or in metal-poor dwarf spheroidal galaxies (e.g., Draco).

The new accurate and precise mean magnitudes allowed us to provide new independent estimates of Carina's true distance modulus. We investigated four different reddening-free Period-Wesenheit relations (BV, BI, VI, BVI). We found that the PW (BV) is independent of the metal content. This finding soundly supports recent pulsation predictions based on nonlinear, convective, hydrodynamical models of RRL stars (M2015).

We took advantage of the trigonometric parallaxes for five field RRLs provided by Benedict et al. (2011) to give a new independent estimate of Carina's true distance modulus using the observed slope of the PW (BV) relation. We found μ = 20.02 ± 0.02 (standard error of the mean) ±0.05 (standard deviation) mag. The distance was evaluated using the entire sample of variables. In particular, the RRc variables were fundamentalized. The above estimate agrees, within the errors, with Carina distances available in the literature that are based on solid standard candles (see Table 11).

To take advantage of the new predicted optical and NIR PW relations provided by M2015 we also estimated the Carina distances using the zero-point and the slope of the PWZ (BV, BI, VI, BVI) relations. We found true distance moduli of μ = (20.08 ± 0.007 ± 0.07), μ = (20.06 ± 0.006 ± 0.06), μ = (20.07 ± 0.008 ± 0.08) mag, and μ = (20.06 ± 0.006 ± 0.06) mag. Note that the distances based on both predicted and empirical PW (BV) relations are independent of the metal content. The distances based on the PWZ (BI, VI, BVI) relations have been estimated by assuming a mean iron abundance for Carina RRLs of [Fe/H] = (−2.13 ± 0.03 ± 0.28) dex. All the above distances are independent of uncertainties in the reddening. However, they rely on the assumption that the reddening law adopted to estimate the color coefficients of the PW relations is appropriate. The true distances based on empirical and predicted PW relations agree quite well with each other and with similar distances available in the literature.

There is evidence that distances based on the theoretical calibrations are ∼0.05–0.1 mag larger than the distance based on empirical calibrations. The evidence applies not only to the PW relation that is independent of metallicity, but also to the PW relation based on triple bands indicates that the difference is mainly caused by a difference in the zero-point. The comparison between distances based on empirical and on predicted PW relations for stellar systems with precise distances are required to constrain possible systematics either in the current trigonometric parallaxes or in the predicted luminosities at fixed mass.

The above findings further support the mature phase that RRLs are approaching as distance indicators. This circumstantial evidence is going to be reinforced using either NIR and/or MIR PW relations (Madore et al. 2013; Braga et al. 2015). The key advantage of the above findings is that RRL PW relations display either a mild or a vanishing metallicity dependence. This offers a unique opportunity to estimate individual distances for a significant fraction of Halo and Bulge RRLs that have been recently discovered by long-term photometric surveys (OGLE IV, Soszyński et al. 2014; Catalina, Drake et al. 2009; LINEAR, Palaversa et al. 2013; LONEOS, Miceli et al. 2008; ASAS, Pojmanski 2002; QUEST, Vivas et al. 2004; Gaia, Eyer et al. 2012). This appears to be a crucial stepping stone before RRLs can be used as solid primary distance indicators in the local universe.

The recent findings concerning the difference in iron and in Mg distribution between the old and the intermediate-age Carina stellar populations opened the path for a more detailed pulsation analysis of Carina SX Phe stars. In a recent investigation Fiorentino et al. (2015b) found that the pulsation properties of SX Phe can provide solid constraints on their pulsation masses. This approach has already been applied to canonical Galactic globulars (NGC 6541, Fiorentino et al. 2014) and to Omega Centauri, i.e., in stellar systems mainly hosting old stellar populations. The sizable sample of Carina SX Phe stars is a very promising laboratory to constrain the mass distribution of the different stellar populations. Moreover, they are located at the same distance, and therefore they offer a unique opportunity to constrain whether the aftermaths of single and binary star evolution display different mass–luminosity relations. This means the prodrome for their use as solid distance indicators.

It is a real pleasure to thank the referee, Mario Mateo, for the positive opinion concerning the content of the paper and for several suggestions and insights that improved the readability and the cut of the paper. This work was partially supported by PRIN–INAF 2011 "Tracing the formation and evolution of the Galactic halo with VST" (PI: M. Marconi) and by PRIN–MIUR (2010LY5N2T) "Chemical and dynamical evolution of the Milky Way and Local Group galaxies" (PI: F. Matteucci). M. Monelli was supported by the Education and Science Ministry of Spain (grants AYA2010-16717). M. Fabrizio acknowledges financial support from the PO FSE Abruzzo 2007-2013 through the grant "Spectro-photometric characterization of stellar populations in Local Group dwarf galaxies, prot.89/2014/OACTe/D (PI: S. Cassisi). G. Fiorentino was supported by the Futuro in Ricerca 2013 (RBFR13J716).

APPENDIX: NOTES ON INDIVIDUAL VARIABLES

V11, V26, V74: Classified as first-overtone pulsators by S86, according to the current photometry they seem to be double-mode pulsators.

V17: Classified as a suspected variable in S86 and NV by D03. According to the current photometry it appears to be an EB with a period of 0.3933393 days.

V22: Classified as first-overtone pulsator by S86 and D03. According to the current photometry it seems to pulsate in the fundamental mode with period of days.

V25, V31: Classified as first-overtone pulsators by S86. According to the current photometry they seem to pulsate in the fundamental mode with periods of 0.05765942 and 0.06037914 days and they also show the Blazhko effect.

V27, V29, V33, V129 and V149: Classified as fundamental mode pulsators by S86. According to the current photometry they appear to be ACs.

V40 and V115: Classified as uncertain variables by S86. According to our current set of data, they appear to pulsate as first-overtones and ACs, respectively.

V41 and V87: Classified as suspected variables by S86. According to our current set of data, they appear to be anomalous cepheids.

V61, V77, V126, V127: Classified as fundamental mode pulsators by S86. According to the current photometry they also show the Blazhko effect.

V89: Classified as a fundamental mode pulsator by S86. According to the current photometry it seems to be a double-mode pulsator.

V138 and V141: Classified as suspected variables by S86. According to our current set of data, they appear to be fundamental-mode pulsators.

V142 and V151: Classified as suspected variables by S86. According to our current set of data, they appear to be first overtone pulsators.

V176: Classified as a first-overtone pulsator by D03 with period of ∼0.4. According to the current photometry it seems to pulsate in the fundamental mode with period of 0.764565 days.

V40, V65, V73, V84, V85, V123, V136, V138, V149, V177, V183, V186, V188, V195, V199, V201, V208, V211, V227, V228, V229, V230: The I-band light curves are poorly sampled in the pulsation across maximum light.

V31, V61, V76, V77, V126, V127, V206: Classified as fundamental pulsators by D03. According to the current photometry they seem to pulsate in the fundamental mode and they also show the Blazhko effect.

V74: Classified as a first overtone pulsator by D03. According to the current photometry they seem to pulsate in the double mode.

V85, V90, V181, V186, V196, V226: The light curves are noisy.

V148: This RRc is ∼0.3 mag brighter than the typical luminosity of HB stars.

V158, V182: We confirm the peculiar nature of the RRLs (see also Paper VI).

V161: Classified as a suspected variable in D03. According to the current photometry it does not show variability.

V170 and V171: Not enough data to fit light curves; uncertain parameters.

V176, V179, V196, V182, V200, V223: These RRLs have very small luminosity amplitudes for an ab-type RRL.

V181: This variable has a very small luminosity amplitude for a c-type RRL. Possible blend with nearby faint star.

V193, V205, V216 , V217, V219: These variables have very small amplitudes for an AC-type variable. Possible blends with nearby faint stars.

V3, V25, V44, V58, and V133: These stars were classified as newly discovered variables in Paper VI with the identification numbers: V215, V213, V212, V211, and V209, respectively.

V4, V32, V41 and V165: These stars were classified in D03 and Paper VI as V177, V202, V180 and V165, respectively.

V218, V227, V228, V229, V230: Poorly sampled light curves, pulsational parameters are uncertain.

RRL-1, RRL-2, RRL-3, RRL-4, RRL-5, RRL-38, AC-1, AC-9, AC-10: These stars are the six RRLs (three RRc, three RRab) and the three ACs recently detected by VM13 outside the tidal radius of Carina.

Footnotes

  • 12 

    The astrometry is on the system of the USNO-A2.0 catalog.

Please wait… references are loading.
10.1088/0004-637X/814/1/71