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ABSTRACT

An increase of electric current densities due to filamentation is an important process in any flare. We show that the
pressure perturbation, followed by an entropy wave, triggers such a filamentation in the non-potential magnetic
null-point. In the two-dimensional (2D), non-potential magnetic null-point, we generate the entropy wave by a
negative or positive pressure pulse that is launched initially. Then, we study its evolution under the influence of the
gravity field. We solve the full set of 2D time dependent, ideal magnetohydrodynamic equations numerically,
making use of the FLASH code. The negative pulse leads to an entropy wave with a plasma density greater than in
the ambient atmosphere and thus this wave falls down in the solar atmosphere, attracted by the gravity force. In the
case of the positive pressure pulse, the plasma becomes evacuated and the entropy wave propagates upward.
However, in both cases, owing to the Rayleigh–Taylor instability, the electric current in a non-potential magnetic
null-point is rapidly filamented and at some locations the electric current density is strongly enhanced in
comparison to its initial value. Using numerical simulations, we find that entropy waves initiated either by positive
or negative pulses result in an increase of electric current densities close to the magnetic null-point and thus the
energy accumulated here can be released as nanoflares or even flares.
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1. INTRODUCTION

Magnetohydrodynamic (MHD) waves are omnipresent in the
solar atmosphere. Their study is one of the most rapidly
developing branches of solar physics; see the recent review by
De Moortel & Nakariakov (2012). The diversity of MHD
waves is studied in various structures, e.g., in simple density
slabs and Harris current-sheets (Jelínek & Karlický 2012;
Jelínek et al. 2012; Mészárosová et al. 2014), and in magnetic
funnels and open magnetic structures (Jelínek & Mur-
awski 2013; Pascoe et al. 2013, 2014). Recent numerical
results are summarized by Pascoe (2014) and are also
confirmed by observations, e.g., by Nisticò et al. (2013, 2014).

Among these MHD waves is the so-called entropy wave,
(Goedbloed & Poedts 2004). Similarly to slow and fast MHD
waves, the entropy wave is the solution for the dispersion
relation in MHD equations. In this wave, the plasma velocity,
magnetic field, and gas pressure remain undisturbed. The only
disturbed quantities are the plasma density, and, as a result of
that, the temperature and entropy. In a still and gravity-free
medium, this wave is non-propagating, i.e., the phase-velocity
(or frequency) of this wave is zero with respect to the medium.
In the case of non-ideal plasma, the entropy wave has an
equivalent, which is called the thermal mode (Field 1965; De
Moortel & Hood 2003; Macnamara & Roberts 2010). This
wave has been considered in the problem of reconnecting
current sheets; see Somov (2012) and references therein.
However, this wave is generally believed to be rapidly damped
(De Moortel & Hood 2003; Murawski et al. 2011) and usually
neglected (Somov 2012). However, in the paper by Murawski
et al. (2011) it was proposed that the entropy wave at magnetic
null-points can consist of indirect observational evidence of
nanoflares in the solar corona. In the present paper, we follow
this idea, and instead of the potential magnetic null-point

studied by Murawski et al. (2011), we consider the more
general case of the non-potential magnetic null-point. In such a
null-point, there is a free energy that can be released in the form
of nanoflares or even flares. Similarly to the paper by Murawski
et al. (2011) we assume that the entropy wave is generated by a
sudden pressure pulse: (a) the negative pressure pulse that may
result from the thermal instability or (b) the positive pressure
pulse that mimics thermal energy release.
In this paper, we show that during an evolution of the

entropy wave in the non-potential null-point the electric current
is rapidly filamentated and at some locations the current
densities are strongly enhanced. The filamentation of the
electric current is an essential process in any flare as is shown
by, e.g., Bárta et al. (2011) and Nickeler et al. (2013). At
locations with the enhanced electric current densities, when
their values become greater than the thresholds for some
plasma instabilities (e.g., the ion-sound or Buneman instabil-
ity), plasma waves can be generated and the anomalous
resistivity is produced (Foullon et al. 2005; Nakariakov
et al. 2006). These processes release the magnetic field energy
through Ohmic dissipation.
This paper is structured as follows. In Section 2, we describe

our numerical model with the initial equilibrium and perturba-
tions implemented. The results of numerical simulations and
their interpretation are summarized in Section 3. Finally, we
complete the paper by concluding in Section 4.

2. MODEL

In this section, we describe physical and numerical models
of the null-point and adopt them to study entropy waves that
are triggered by pressure pulses that are launched at the null-
point.
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2.1. Governing Equations

Our numerical model describes the gravitationally stratified
solar atmosphere, in which the plasma dynamics is described
by the two-dimensional (2D), time-dependent, ideal MHD
equations (see, e.g., Priest 1982; Chung 2002):
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Similarly to Murawski et al. (2011), we neglect the radiative
losses and thermal conduction.

2.2. Initial Equilibrium

For a still (v 0= ) equilibrium, the Lorentz and gravity
forces have to be balanced by the pressure gradient in the entire
physical domain,

j B gp 0. 8( )- + ´ + =

Assuming a force-free magnetic field, j B 0´ = , in the
null-point, the solution of the remaining hydrostatic equation
yields
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is the pressure scale-height, which, in the case of isothermal
atmosphere, represents the vertical distance over which the gas
pressure decreases by a factor of e ≈ 2.7,
k 1.38 10 J KB

23 1= ´ - - is the Boltzmann constant and
m m0.6 p= is the mean particle mass
(m 1.672 10 kgp

27= ´ - is the proton mass), and
p 10 Pa0

2» - in Equation (9) denotes the gas pressure at the

reference level y0. In our calculations, we set and hold fixed at
y 10 Mm0 = .
For the solar atmosphere, the temperature profile T(y) (see

Figure 1) was derived by Vernazza et al. (1981). At the top of
the photosphere, which corresponds to the height y 0.5 Mm= ,
and the temperature is T y 5700 K( ) = . At higher altitudes, the
temperature falls down to its minimal value T y 4350 K( ) = at
y 0.95 Mm» . Higher up, the temperature rises slowly to the
height of about y 2.7 Mm= , where the transition region is
located. Here the temperature grows up abruptly to the value,
T y 1.5 MK( ) = , at the altitude y 10 Mm= , which is typical
for the solar corona.
The solenoidal condition, B 0· = , is identically satisfied

with the use of the magnetic flux function, A, such as

B A. 12( )=  ´

Specifically, to represent the non-potential null-point, we use

A A0, 0, z[ ]=

with (Parnell et al. 1997)
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where t is the threshold current, which only depends on the
parameters associated with the potential part of the field and it
is assumed to be a constant in our calculations. The parameter

z is the magnitude of the current perpendicular to the plane of
the null-point. Both t and z are free parameters that govern
the magnetic field configuration. For 0z = , we get a potential
null-point, for z t∣ ∣ < a non-potential null-point, anti-parallel
magnetic field lines z t∣ ∣ = , and an elliptical null for

z t∣ ∣ > . See Parnell et al. (1997) for more details. The
magnetic field at the reference level is set and held fixed as
B 10 G0 = .
The equilibrium gas pressure and mass density are computed

according to the following equations; see, e.g., Solov’ev (2010)
and Kuźma et al. (2015):
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Figure 1. Temperature profile, T(y), in logarithmic scale as a function of height
y in the solar atmosphere.
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With the use of Equation (13) in these general formulas, we
obtain the expressions for the equilibrium gas pressure
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2.3. Perturbations

At the start of the numerical simulation (t 0 s= ), the
equilibrium with the magnetic null-point is perturbed, similarly
to Murawski et al. (2011), by a Gaussian pulse of the following
form:
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where p0 is the initial gas pressure, Ap denotes the initial
amplitude of the pulse, y 15 MmP = is the position of the
perturbation point, and w 0.1 Mm= is the width of the
pressure pulse; see Figure 2. The negative pressure pulse

corresponds to A 0p < and it mimics plasma cooling, while the
pressure pulse is represented by A 0p > and it indicates plasma
heating, which is implemented near the magnetic null-point.
Note that, despite the negative pressure pulse, the total pressure
p x y t, , 0( )= in Equation (18) remains positive.

2.4. Numerical Code

We solve the 2D time-dependent, ideal MHD Equations (1)–
(4) numerically, making use of the FLASH code (Fryxell
et al. 2000; Lee & Deane 2009). It is now a well tested, fully
modular, parallel, multi-physics, open science, simulation code
that implements second- and third-order unsplit Godunov
solvers with various slope limiters and Riemann solvers as well
as adaptive mesh refinement (AMR; e.g., Chung 2002). The
Godunov solver combines the corner transport upwind method
for multi-dimensional integration and the constrained transport
algorithm for preserving the divergence-free constraint on the
magnetic field (Lee & Deane 2009). We use the minmod slope
limiter and the Riemann solver (e.g., Toro 2006). The main
advantage of using the AMR technique is to refine a numerical
grid at steep spatial profiles while keeping the grid coarse at the
places where fine spatial resolution is not essential. In our case,
the AMR strategy is based on controlling the numerical errors
in a gradient of mass density that leads to the reduction of the
numerical diffusion within the entire simulation region.
For our numerical simulations, we use a 2D Eulerian box of

its height H 2 Mm= ; see Figure 2. Note that in this figure the
simulation region is zoomed in to display the null-point
including the initial perturbation in more detail. The spatial
resolution of the numerical grid is determined by the AMR
method. We use the AMR grid with the minimum (maximum)
level of the refinement blocks set to 3 6( ). The whole
simulation region is covered by 1434 blocks. Since every
block consists of 8 × 8 numerical cells, this number of blocks
corresponds to 91,776 numerical cells, and the smallest spatial
resolution is x y 3.9 kmD = D = .
At all boundaries, we fix all plasma quantities to their

equilibrium values, which lead only to negligibly small
numerical reflections of incident wave signals.

3. NUMERICAL RESULTS

Prior to performing numerical simulations, by making the
simulation test, we verify that for the adopted grid resolution
the system remains in numerical equilibrium, while not being
perturbed by any gas pressure pulse. After this basic numerical
test, we start to simulate the system dynamics by launching
either negative and positive initial gas pressure pulses. Because
we study the non-potential magnetic neutral point, we assume
in all considered cases that z t(∣ ∣ ) < ; see Parnell et al.
(1997). We perform numerical simulations for the following
cases: (a) 1.25t z  = ; (b) 2.5t z  = ; (c) 5.0t z  = .
However, we show here the preferential results for

2.5t z  = , while the results for cases (a) and (c) are simply
compared with those obtained for case (b).

3.1. Null-point with the Negative Pressure Pulse

We assume here the negative amplitude of the initial
pressure pulse, A 0.75p = - . In Figure 3, we present the
evolution of the mass density. At t 1 s= , we see that the initial
pressure pulse triggered fast and slow magnetoacoustic waves

Figure 2. Simulation region for the negative pressure pulse A 0.75p( )= -
launched in the center of the magnetic null-point. The white solid lines
represent magnetic field lines which the typical X-shape in the center. As a
complement, the computational blocks are also shown by thin, black, solid
boxes.
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that propagate quasi-isotropically out of the null-point (see the
expanding circular feature at t = 1 s).

Later on, as a result of the initial negative pressure pulse, the
entropy wave with the enhanced mass density and decreased
temperature is formed; see their profiles in Figure 4, left panel.
Very shortly after the initial pressure pulse 15 s( )» , the entropy
wave, represented by the dense blob, starts to move down,

along the direction of the gravity action force. Because this
blob falls down to an environment with higher density, after
some time 100 150 s( – )» the Rayleigh–Taylor (RT) instability
develops. At t 350 s» , the blob starts to move up because it is
reflected from high density layers and also due to the action of
magnetic tension force, and then at t 400 s» it moves down
again.

Figure 3. Time evolution of mass density for A 0.75,p = - with a clear development of Rayleigh–Taylor instability. The black solid lines show representative
magnetic field lines.

Figure 4. Entropy mode at t 10 s,= represented by rarefied and hot plasma regions in the case of the negative initial pressure pulse (left panel) and the positive
pressure pulse (right panel).
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In Figure 5, we present the time evolution of the mass
density computed at different detection points. In the left panel,
we show the mass density in two detection points
( 0, 15.2 Mm( ) (blue) and 0, 15.0 Mm( ) (green)). The initial
pressure pulse triggers large amplitude magnetoacoustic waves.
After the initial phase which lasts until t 10 s» , and during
which fast and slow magnetoacoustic waves pass the detection
point, the mass density starts to saturate slowly to its
equilibrium value (Figure 5, left panel, blue line). This fits
the theory of entropy waves perfectly, according to which the
entropy waves affect the mass density; for a negative pressure
pulse, the mass density ñ should increase as is indeed observed
in the numerical experiments.

In the right panel of Figure 5, we see the evolution of the
mass density in three detection points located below the
perturbation point (y y14.8, 14.6= = , and y 14.2 Mm= ,
red, green, and blue colored lines, respectively). At the very
beginning (within the order of seconds) we can again observe
the propagating fast magnetoacoustic waves. After the passage
of magnetoacoustic waves, the system slowly relaxes to its
equilibrium state followed, after some time, by a steep increase
in mass density, depending on the position of a detection point.
Because the blob descends to the denser layers of the solar
atmosphere, the amplitude of these waves decreases, which is
clearly seen by comparing all of the lines in this plot.
Furthermore, the blue line shows how the blob is reflected from
layers at lower altitudes with higher densities.

Figure 6 consists of four panels. The upper left panel shows
the current density distribution at time t 242 smax = , i.e., at the
time when its maximum value has been reached. From this
figure, one can see that the maximum value of the current
density is located in the vicinity of the vertical axis of the null-
point. As the mass density at this time slowly relaxes to the
equilibrium value (see Figure 5 right part), the electron
velocity, according to the relation for electric current density,
j vne= - , attains its maximum as well.
In the upper right panel of Figure 6, we present the time

evolution of the maximal current density detected along the
vertical axis of the null point. Note that the vertical axis is in
logarithmic scale to show the time evolution in more detail. In
this figure, there are two maxima. The first one appears very
shortly after the initial perturbation (units of seconds). This is
very likely related to the rapid increase of mass density in the
null-point. Then, the current density rapidly decreases

simultaneously with the mass density decrease. After
10 15 s–» , the current density starts to grow slowly again, but

now as the result of the electron velocity increase.
Finally, the two bottom panels of Figure 6 illustrate the

horizontal (left) and vertical slices (right) of the current density.
The horizontal slice is taken at the point of the maximal value
of the electric current density, i.e., at (x 0.5, 0.5= á- ñ and
y = 14.65). The vertical slice is displayed along the axis of the
null-point, i.e., at (x = 0 and y 13.5, 15.5= á ñ). From both of
these panels and also from the upper right panel, we can find
that the maximal value of the current density is 138´ higher
than its initial value; see Table 1.

3.2. Null-point with the Positive Pressure Pulse

In this section, we consider the positive amplitude of the
initial pressure pulse, Ap = +1. In Figure 7, we present the
evolution of mass density and compare it to the already
discussed case of A 0.75p = - . At the beginning phase of the
system evolution, we see that fast and slow magnetoacoustic
waves are triggered by the initial pressure pulse. After their
escape from the launching place, the entropy wave is formed
similarly as in the case of A 0p < . However, contrary to the
case of A 0.75p = - , its mass density is decreased and
temperature enhanced; see Figure 4, right panel. Thus, the
positive pressure pulse results in the entropy wave (blob)
moving up from 20 s( )» , owing to its mass density which is
lower than that in the ambient medium. Between 100 200 s( – )
we can observe again the growth of RT instability, similarly as
in the previous case. Note that at t 370 s» the central part of
the mass density blob starts to move down due to the gravity
and magnetic tension force. The latter plays a role as the
magnetic field lines are frozen in the plasma.
Figure 8 shows the time evolution of the mass density in

different detection points. In the left panel of this figure, the
results for two detection points (center of magnetic null-point,
y 15.0 Mm= , green line and (y 14.8 Mm= ), blue line) are
presented. Here we can see that in the center of the magnetic
null-point the mass density abruptly falls off due to the initial
pressure pulse. After a few seconds 1 10 s( – ) the mass density
starts to increase in agreement with the theory of the entropy
wave. In the meantime, the mass density represented by the
blue line starts to relax to its initial equilibrium value. In the
right panel of this figure, we show the mass density evolution

Figure 5. Time evolution of mass density in the case of A 0.75,p = - collected at the detection points placed at x 0 Mm= along the y axis in positions y = 15.2 Mm
(left blue line) and y = 15.0 Mm (left green line) and y y14.8, 14.6= = , and y 14.2 Mm= (right red, green, and blue line, respectively). Note that the time axis on
the left-hand side is in the logarithmic scale, showing the very beginning of the process.
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in three detection points located above the perturbation point
(y y15.2, 15.4= = and y 15.6 Mm= ; red, green, and blue
color, respectively). Similarly to the case of the negative
pressure pulse, the mass density oscillates as a result of the fast
magnetoacoustic waves propagating through the detection
points. Later on (depending on the position of the detection

point), the large amplitude waves pass and mass density starts
to increase to its equilibrium value. We see that after a certain
time (again depending on the detection point position) the mass
density tends to decrease—this is well represented by the green
line, which results from the gravitational force, as the blob
starts to move down at time 370 s» , as described in the
previous paragraph.
Figure 9 consists of four panels, similar to Figure 6. The

upper-left panel shows the current density at the time when the
current density has reached its maximal value, at t 273 smax = .
From this figure, we can again clearly see that the maximum
value of the current density takes place in the vicinity of the
vertical axis of the null-point. For the same reason as in the
case of A 0.75p = - , the plasma velocity also attains its
maximum at this time.
The upper right panel of Figure 9 presents the same quantity

using the same scale as in the previous case of the negative
pressure pulse. In this figure are two similarly discernible

Figure 6. Current density for the negative amplitude of the pressure pulse, A 0.75p = - , at the time when the current density reached its maximum value, t 242 smax =
(upper left). The black solid lines show the representative magnetic field lines. The light-green and light-blue dashed lines represent the positions of horizontal and
vertical slices (shown in the bottom panels of the figure), respectively. The time evolution of maximum values of the current density (upper right); note that the vertical
axis is in the logarithmic scale. The horizontal (y = 14.65 Mm) and vertical (x = 0 Mm) slices for the maximal current density at tmax are shown in the lower left and
lower right panels, respectively.

Table 1
Relative Ratios of Initial Current Densities with Respect to Initial Current

Density in Case (b)—Third Column and Relative Ratios of Maximum Current
Density with Respect to Their Initial Values—Fourth Column

Studied Case Ap j j bz z
0 0 ( ) j jz z

max 0

(a): 1.25t z  =
0.75-

1.98
106.39

1.00+ 213.76

(b): 2.50t z  =
0.75-

1.00
137.88

1.00+ 246.26

(c): 5.00t z  =
0.75-

0.51
163.13

1.00+ 286.82
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maxima. However, comparing the results to the first studied
case, some differences can be spotted. The first maximum is not
related to the increased mass density in the center of the null-
point due to the initial pressure pulse. Because the pressure
pulse is positive, the mass density in the launching point (center
of the magnetic null-point) decreases very quickly. On the
other hand, in the vicinity of the perturbation point the mass

density increases, as can be seen from Figure 8. After this first
maximum, the current density starts to decrease, to the time
30 40 s( – ), when, by the same reason as in the previous case, its
growth in time is again evident.
Finally, the two bottom panels of Figure 9 (left and right)

show the horizontal and vertical slices, respectively. The
horizontal slice has been taken at the point of the maximal

Figure 7. Time evolution of mass density for the positive pressure pulse, Ap = +1, with a clear development of Rayleigh–Taylor instability. The black solid lines
show representative magnetic field lines.

Figure 8. Time evolution of mass density, for the positive amplitude of the pressure pulse, Ap = +1, in the detection points placed along the y axis, for x 0 Mm= , at
y = 14.8 (left blue line) and y 15.0 Mm= (left green line) and y y15.2, 15.4= = and y 15.6 Mm= (right red, green and blue line, respectively). Note that the time
axis in the left panel is in the logarithmic scale, showing the initial phase of the process.
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value of the electric current density, i.e., (x 0.5, 0.5= á- ñ and
y = 15.12). The vertical slice is shown along the axis of the
null-point, i.e., (x = 0 and y 14.5, 16.5= á ñ). From both panels,
and finally also from the upper right panel, we can see that the
maximal value of the current density is 246´ higher compared
with the initial value; see Table 1.

3.3. Comparison of Results for Different Ratios of t and z

As we mentioned above, we also numerically studied the
following two cases: (a) 1.25t z  = and (c) 5.0t z  = .
Here we compare these results with case (b): 2.5t z  = ,
described above in more detail.

We found that the evolution of mass density for the cases (a)
and (c) exhibits essentially the same behavior as in the case of (b)
—corresponding Figures 3 and 7. For this reason, the mass
density evolution in the selected detection points (corresponding
to Figures 5 and 8) also exhibits practically non-essential
changes.

On the other hand, we find interesting changes in current
densities for all studied cases; see Table 1. Here we present the
relative ratios of initial current densities with respect to the
initial current density in case (b)—third column, and relative
ratios of maximum current density with respect to their initial
values—fourth column. This table reveals that by increasing
the parameter t z  , the initial current density in the non-
potential null point increases. It is expected that if we combine
Equations (6) and (12), we can find that the current density is
directly proportional to z as

j
B

2
. 19z z

0

0

( )
m

=

On the other hand, if we compare the values of maximal current
densities, we observe that with increasing t z  , the maximal
current density also increases, for both amplitudes of initial
pressure pulses. It is also clearly visible that for the positive
pressure pulse A 1.0p( )= + , the maximum current density is
higher than for the negative pressure pulse A 0.75p( )= - .

Figure 9. Current density for the positive amplitude of the pressure pulse, Ap=+1, at the time when the current density reached its maximum t 273 smax = (upper left). The
black solid lines show the representative magnetic field lines. The light-green and light-blue dashed lines represent the positions of horizontal and vertical slices (shown in the
lower panels of the figure), respectively. The time evolution of maximum values of the current density (upper right); note that the vertical axis is in the logarithmic scale. The
horizontal (y = 15.12 Mm) and vertical (x = 0 Mm) slices for the maximal current density at tmax are shown in the lower left and lower right panels, respectively.
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In Table 2, we present the times at which the current density
for all of the studied cases reaches its maximum. We can see
that, whereas for the negative initial pulse A 0.75p( )= - the
time remains practically the same, in the case of the positive
pressure pulse (Ap = +1), the maximum is reached earlier for a
higher value of t z  . It is also evident that the time is higher
for the positive pressure pulse in all of the studied cases.

4. SUMMARY

We performed numerical simulations of evolution of the
entropy wave generated by the pressure pulse in the non-
potential magnetic null-point. We solved 2D, time-dependent,
ideal MHD equations using the FLASH numerical code, which
implements AMR. To make the numerical model more
realistic, we considered the initial (VAL-C) temperature profile
in the gravitationally stratified solar atmosphere. Numerical
calculations are performed for three different initial cases. We
described here only one case in detail, whereas the remaining
two are only quantitatively compared with the first one.

Our results can be summarized as follows. The initial
negative or positive pressure pulse, which mimics a sudden
cooling, e.g., produced by the thermal instability or sudden
heating caused by some energy release, leads, respectively, to
the accumulation or evacuation of plasma at the null-point. In
our case, this accumulation or evacuation forms the entropy
wave, which evolves due to gravity. The entropy wave,
produced by the initial pressure pulse of its negative amplitude,
leads to a mass density that is greater than in the ambient
atmosphere and thus it falls down, being attracted by the
gravity. In the case of the positive pressure pulse, the entropy
wave propagates upward. These entropy wave motions in both
cases are limited by the magnetic tension force.

We found that during an evolution of the entropy wave the
electric current is strongly filamented owing to the Rayleigh–
Taylor instability. At some locations, the electric current
density increases up to 138 times (negative initial pressure
pulse) and 246 times (positive pressure pulse) its initial value.

When the current density exceeds the corresponding thresh-
olds for some plasma instabilities (e.g., the ion-acoustic or
Buneman instability), then plasma waves can be generated and
anomalous resistivity is produced. These processes can release
the magnetic field energy through the Ohmic dissipation.

Comparing the numerical results in all of the studied cases,
we found that the maximum of the current density ( j jz z

max 0),
reached in the filamentation process, grows with the parameter

t z  . We also found that for the positive pressure pulses, the
current density reached values higher than for the negative
pressure pulses.

Based on these results, the following sequence of processes
can be proposed. The thermal instability in the non-potential
magnetic null-point produces the “catastrophic” cooling, i.e.,
the negative pressure pulse. This pulse generates the entropy
wave and then after its evolution and filamentation process, at
locations with highly enhanced electric current densities, the
magnetic-energy release (nanoflare) takes place. For example,
the bright points in coronal EUV lines (Madjarska et al. 2003;
Tian et al. 2008) could be explained by this.
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