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ABSTRACT

When an accretion disk surrounds a binary rotating in the same sense, the binary exerts strong torques on the gas.
Analytic work in the 1D approximation indicated that these torques sharply diminish or even eliminate accretion
from the disk onto the binary. However, recent 2D and 3D simulational work has shown at most modest
diminution. We present new MHD simulations demonstrating that for binaries with mass ratios of 1 and 0.1 there is
essentially no difference between the accretion rate at large radius in the disk and the accretion rate onto the binary.
To resolve the discrepancy with earlier analytic estimates, we identify the small subset of gas trajectories traveling
from the inner edge of the disk to the binary and show how the full accretion rate is concentrated onto them as a
result of stream–disk shocks driven by the binary torques.
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1. INTRODUCTION

Binary systems often form within a gaseous disk environ-
ment. Because the tidal torques exerted by the binary on the
disk are repulsive when the disk and the binary orbit in the
same sense, it has long been thought that these torques severely
limit, or perhaps entirely prevent, accretion from the disk onto
the binary Pringle (1991). As a result, a very low-density
cavity forms within a2~ of the binary center of mass, where a
is the binaryʼs semi-major axis. Despite this prediction,
observations indicate accretion onto such binary systems at a
level comparable to their single star counterparts. This is
clearly detected for low-mass binary stars in nearby star-
forming regions (e.g., White & Ghez 2001). High velocity gas
flows are observed bridging gaps that are believed to be cleared
out by protoplanetary companions (e.g., Casassus & van der
Plas 2013; Rosenfeld et al. 2014). There are even detections of
accretion onto planetary mass companions (e.g., Bowler
et al. 2011; Zhou et al. 2014). A growing number of dual
active galactic nucleus candidates have also been reported (e.g.,
Komossa 2003; Rodriguez et al. 2006; Comerford et al. 2011);
if systems like these become mutually bound, they could
become accreting binaries. It is therefore important to under-
stand how gas is able to accrete despite these torques, both to
be able to use electromagnetic signatures (Rödig et al. 2014) as
diagnostics and also to learn how accretion influences the
evolution of these systems.

Much work has already been expended investigating how the
binary torque reshapes the surrounding circumbinary disk (e.g.,
Artymowicz & Lubow 1994; Crida et al. 2006; MacFadyen &
Milosavljević 2008; Noble et al. 2012; Shi et al. 2012).
However, how the torque regulates the gas accretion is a less
well-developed subject. The 1D analysis of Pringle (1991) has
been extended, but adopting that paperʼs assumption of zero
accretion (e.g., Milosavjević & Phinney 2005; Lodato
et al. 2009; Liu & Shapiro 2010). More recently, there have
been a number of 2D and 3D simulations of such systems (e.g.,
Artymowicz & Lubow 1996; Bryden et al. 1999; MacFadyen
& Milosavljević 2008; Dotti et al. 2009; Noble et al. 2012; Shi

et al. 2012; D’Orazio et al. 2013; Farris et al. 2014). These
consistently find the cavity predicted analytically, but also
accretion at a rate comparable to or somewhat smaller than in
the outer disk. Typically, the accretion takes place in narrow,
high velocity streams emanating from the edge of the cavity
and spiraling inward toward the central binary. Moreover, these
studies have shown significant consequences of the accretion
for the development of the system. In protoplanetary disks, the
amount of accretion through the gap controls the mass growth
of a gap-clearing planet (Bryden et al. 1999; Lubow et al. 1999;
D’Angelo et al. 2006) and the surface density within the gap
(Zhu et al. 2011; Fung et al. 2014). The angular momentum
associated with the advecting gas also strongly influence the
orbital evolution of the binary (Roedig et al. 2012; Shi
et al. 2012).
It is therefore crucial to quantify the net accretion fraction (ϵ)

of a prograde circumbinary disk, i.e., the ratio between the
time-averaged net accretion rate M q˙ ( 0)¹ and the rate that
would take place in the absence of binary torque M q˙ ( 0)= :

( )
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M q

˙ 0

˙ 0
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For the extreme small mass-ratio case (we define the mass-ratio
q M M 12 1º ⩽ ), previous studies using viscous hydrody-
namics simulations have found that there is a threshold mass-
ratio q 10 3~ - , such that for smaller q the accretion rate is
nearly unchanged when compared to that for a single point-
mass case; i.e., 1  when q 10 3 - . For values of q closer to
unity, the results so far are somewhat mixed. Most simulations
have found that ϵ is reduced by a factor of a few (Bryden
et al. 1999; Lubow et al. 1999; Noble et al. 2012; Shi et al.
2012; D’Orazio et al. 2013), but the dependence on q remains
poorly defined. For example, D’Orazio et al. (2013) saw
diminished accretion for q 0.01 binaries, while Farris et al.
(2014) saw no signs of suppression for q0.026 1< < . The
situation is further clouded by the fact that previous work
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(except for Shi et al. 2012 and Noble et al. 2012) has used the
approximation of 2D hydrodynamics, in which internal
accretion stresses, both within the accretion disk itself and in
the streams traversing the cavity, are described by the
phenomenological α viscosity model, rather than the actual
physical mechanism, correlated MHD turbulence.

In this paper, we carry out 3D MHD simulations to
investigate accretion in circumbinary disks around equal mass
(q = 1) and unequal mass (q 0.1= ) binaries. We assume the
disk and binary are coplanar, orbit in the same sense, and the
binary orbit is a circle with fixed semi-major axis a. For a
control experiment, we also simulate their single point-mass
counterpart. Comparison between the single mass run and the
circumbinary runs provides the answers to two key questions:
(1) to what extent does the accretion rate of a binary differ from
that of a single object, i.e., what is the value of ϵ? (2) How does
the accretion rate from circumbinary disks depend on the mass
ratio q of the binary, i.e., how does ϵ vary with q? As we will
show, the answer to the first question is also the answer to the
second: 1  for all q. This answer leads to a further question
that we will also attempt to answer: what was missing from the
early 1D analytic studies that led them to conclude 0  ?

We organize this paper as follows. In Section 2, we describe
the physical model and numerical setup of our single point-
mass and circumbinary disk simulations. In Section 3, we
present our simulation results. We analyze these results
physically in Section 4. Finally, we summarize our conclusions
and discuss the implications of our findings in Section 5.

2. NUMERICAL SIMULATIONS

In this section, we discuss details about the numerical
experiments we carried out in order to explore the effects of the
binary torques on the accretion rate. We used the same code as
Shi et al. (2012), which is a modern version of the 3D, time-
explicit Eulerian finite-differencing ZEUS code for MHD
(Stone & Norman 1992a, 1992b; Hawley & Stone 1995).

2.1. Model Setup

The model setup is very similar to the one described in Shi
et al. (2012). Our account here is therefore very brief and
emphasizes the few differences between our new simulations
and the one presented in our earlier paper. We also summarize
the main properties of all runs in this paper in Table 1 for
reference.

We construct our disks in an inertial frame with origin at the
center of mass. We set the gravitational constant G and the

central mass M to be unity, whether it is a single object or a
binary. The binary separation a = 1 is the simulation

lengthscale.3 The time unit is therefore a GM( )bin
1 3W =- .

The density is normalized to the initial midplane value 10r =
and the surface density unit is defined to be a0 0rS = . Similar
to Shi et al. (2012), we adopt a globally isothermal equation of
state with a fixed sound speed, but we set c 0.1s = , twice that of
the previous paper. A larger sound speed allows us to achieve
better resolution and also perform longer duration simulations.
Again, we assume the disk mass is considerably smaller than
the mass of the central object and therefore neglect the self-
gravity of the disk.
As discussed in Shi et al. (2012, see Section 2.2), the

simulation grid needs to resolve three different length scales:
the disk scale height H, the maximum growth-rate wavelength
of the MRI v R8 15 ( )MRI Al p= W , and the spiral density
wavelength c2d s binl p~ W , where vA is the Alfvén speed and

R( )W is the disk rotational frequency. We constructed our grid
in spherical coordinates following the same scheme as in Shi
et al. (2012), which was originally proposed by Noble et al.
(2010): logarithmic in the radial direction, uniformly spaced in
azimuthal angle, and spaced according to a polynomial
function in polar angle in order to concentrate cells near the
orbital plane (Equation (1) of Shi et al. (2012), with

0.825x = , 0.1cq = and n = 9). There were N[ , 400, 384]r
cells in r( , , )q f , covering a computational domain spanning
r r[ , ]in out radially, [ , ]c cq p q- meridionally, and [0, 2 ]p azi-
muthally, where r a40out = , 0.1cq = , rin is the radius of the
circular central cut out ( a0.8 for q = 0 and q = 1, increased to

a1.02 for q 0.1= to confine the secondary inside the excision),
and N 512r = for q = 0 and q = 1, diminished to 480 for
q 0.1= run as a result of the larger rin. In terms of minimum
cell size, our polar angle resolution is a factor ∼1.4 better than
in Shi et al. (2012). With a doubled disk scaleheight (c 0.1s =
versus c 0.05s = ), we therefore have about twice as many cells
per scaleheight as in Shi et al. (2012). In recent years, standards
have been developed for achieving resolution adequate to
describe the principal features of MRI-driven MHD turbulence:
at least 10–20 cells per v2 zA ,p Wf , where v zA ,f is the Alfvén
speed associated with the vertical (z) component of the
magnetic field or azimuthal (ϕ) component (Hawley et al.
2011, 2013). We typically have 20 cells per characteristic
vertical wavelength and at least 10 cells per characteristic
azimuthal wavelength.

Table 1
Properties of Accretion Disk Simulations

Label Type of Simulation q Resolutiona Radial Extentb M r˙ ( ) tiná ñ c GMa( )0S

S2DE Hydrodynamics 0.0 256 × 64 (0.8, 40) ...
S3DEQ MHD 0.0 512 400 96´ ´ (0.8, 40) 0.0081
S3DE MHD 0.0 512 400 384´ ´ (0.8, 40) 0.0085
B3DE MHD 1.0 512 400 384´ ´ (0.8, 40) 0.011–0.014
B3DEq MHD 0.1 480 400 384´ ´ (1.02, 40) 0.013–0.017

Notes.
a Cell counts are listed as r q f´ ´ for 3D MHD simulations and r q´ for 2D hydrodynamic simulations.
b In units of a. The azimuthal extent is (0, 2 )p for all MHD simulations except S3DEQ, which is (0, 2)p .
c Time1averaged accretion rate measured at the inner boundary. The accretion rate in the quarter-disk simulation S3DEQ is multiplied by 4. For binary runs, time
averages at both early and late stages are presented and separated by a dash.

3 In the q = 0 simulation, a has no physical interpretation other than the code-
unit of length.
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We choose strict outflow boundary conditions for the inner
and outer radial surfaces and also at the edges of the polar axis
cutout; all inward velocities are set to zero on these boundaries.
Periodic boundary conditions are used for the azimuthal
direction. For the magnetic field in the radial and meridional
directions, we set the transverse components of the field to be
zero in the ghost zones. The components normal to the
boundaries are calculated by imposing the divergence-free
constraint.

2.2. Numerical Experiments

2.2.1. Single Mass Run: q = 0

The single mass simulation both serves as a reference point
and provides the initial conditions for the circumbinary
simulations discussed later. In order to speed up these lengthy
simulations, we built a three-step ladder.

Step 1. 2D Hydrodynamic Disk: We start from a 2D
axisymmetric, inviscid, hydrodynamic simulation (S2DE) in
the r( , )q plane with the same numerical and physical
parameters as described above, except that the parameter ξ in
the θ-grid definition is 0.92 and the number of cells is only
lower 256 64´ in r q´ . The goal of this 2D simulation is to
get rid of initial transients and to find a quasi-equilibrium disk
solution. The initial configuration follows that of Shi
et al. (2012, Section 2.3): the disk stretches from r a3= to
r a6= with constant midplane density 0r and is vertically

hydrostatic. We evolve the disk for 2000 bin
1W- , when the disk

reaches a steady state (see Figure 1(a)).
Step 2. 3D MHD Quarter Disk: We then use the final dump

from S2DE as the initial conditions for a 2p wedge of a 3D
MHD disk (S3DEQ). The initial disk for S3DEQ is therefore

axisymmetric. Its initial density and angular velocity are
interpolated from the results of S2DE data. Motions in other
directions are neglected as they are very small. The initial
contours of magnetic vector potential Af are a set of nested
poloidal loops following the contours of the density within the
main body of the disk (the contour lines in Figure 1(a)). The
values of the Af contours are A ( 0.1 )0 0r r- , where A0 is a
constant determined by requiring the average plasma 100b = .
The magnetic field B is computed by taking the curl of the
vector potential. Run S3DEQ begins at t = 0 and lasts until
t 1330 bin

1= W- . A snapshot of the quarter-disk at t 800 bin
1= W-

is shown in Figure 1(b). We find the quarter disk approaches
steady accretion for r a5< between t 800 bin

1= W- and
1300 bin

1W- (see Figure 2).
Step 3. 3D MHD full Disk: We then patch together four

identical copies of the 2p disk from S3DEQ at t 800 bin
1= W- to

build the initial conditions for a full 2p disk (S3DE). This run
continues from t 800 bin

1= W- through 1340 bin
1W- . The evolution

history (see Figure 2), nearly the same as the quarter disk run,
indicates that by 800 bin

1~ W- the full disk undergoes quasi-
steady accretion.4 We show a clipped isosurfaces plot of this
fully turbulent disk at t 1000 bin

1= W- in Figure 1(c). The disk at
this moment serves as the initial conditions for the binary runs
that are discussed next.

Figure 1. (a) Density distribution (color) at the end of the 2D hydrodynamical simulation S2DE, which is used to provide initial conditions for the 3D MHD quarter
disk run S3DEQ. Note that the vertical scale is stretched relative to the horizontal. The black contour lines mark the initial magnetic field loops. (b) Density isosurfaces
(color) of the bottom half disk of S3DEQ at t 800 bin

1= W- . This data is used as the initial conditions of S3DE after combining four identical copies to make the whole
2p disk. (c) Density isosurfaces (color) of the bottom half disk of S3DE at t 1000 bin

1= W- . This data becomes the initial conditions for our circumbinary simulations.

4 The time averaged accretion rate at different radii suggests our q = 0 disk is
approaching inflow equilibrium for r 4 - a5 (see the second panel in Figure
2). Outside that radius, the accretion rate gradually shrinks, changing sign to
outflow at r a7~ . A small amount of mass outflow at large radius carries the
angular momentum transported from inside.

3
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2.2.2. Binary Runs: q 0¹

We performed two binary simulations, one with mass ratio
q = 1(B3DE) and one with q 0.1= (B3DEq). For both runs,
we use S3DE data at t 1000 bin

1= W- as the initial conditions.
Both also retain the domain size, numerical resolution, and
physical parameters of the q = 0 run; the only change is to
replace the point-mass at the center with either an equal-mass

binary or a q 0.1= binary with the same total mass. In both
binary cases, the orbit is constant and circular, and rotates
counter-clockwise, prograde with respect to the disk.
Everything about the q 0.1= case is the same except for the

extent of the radial grid. Because the secondary is a0.9 from

Figure 2. Accretion history of the single mass quarter-circle simulation S3DEQ
(black) and the full-circle S3DE MHD (red) disks. Top: inner edge accretion
rate as a function of time. Middle: time-averaged accretion rate as a function of
radius. Bottom: mass interior to a given radius as a function of time. The
accretion rates and enclosed mass for the quarter-disk are multiplied by 4 for
comparison with whole disk values. Note the very similar behaviors between
the quarter disk and the complete disk, in agreement with previous simulations:
the time averaged accretion of MHD turbulent disks is nearly independent of
the extent of the azimuthal domain if it is more than 3p (Hawley 2000;
Papaloizou & Nelson 2003).

Figure 3. History of disk mass interior to a given radius for q = 1 (top) and
q = 0.1 circumbinary disks.

Figure 4. Surface densities for the initial condition (red dashed) and the time-
averaged q = 0.1 (black) and q = 1 (green) cases. Solid curves are early-time,
dashed curves are late-time averages. Solids are for the early time averages and
dashed for the late time averages. For reference, a ∝ r−2 scaling is shown by the
black dotted curve.
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the center of mass, we increase the inner excision size from
a0.8 to r a1.02in = . This change results in a truncation of the

initial disk of the single mass run, but we keep all other aspects,
such as the resolution and outer boundary of the domain, intact.

3. RESULTS

3.1. q = 1 Run

The initial disk adjusts to the new potential within 1–2
binary periods after the equal-mass binary replaces the point-
mass. During this initial transient phase, the binary clears out a
cavity around itself in which the density is10 3- –10 2- of what it
was when there was a point-mass at the center. A small amount
of mass initially found at r a2 passes through the inner
boundary (about 2% of the total disk mass), but most of the
disk mass within r a2< is pushed outward by the binary
torque. After 50 bin

1 W- , the circumbinary disk gradually
reaches a quasi-steady state. In its inner portion (r a4 ), the
mass interior to r becomes nearly constant in time (first panel in
Figure 3) so that the surface densityʼs radial profile also
changes only very slowly (Figure 4). We also note that the late-
time average surface density of the outer disk follows the

r 2S µ - scaling observed in Shi et al. (2012) quite well.
After the first 50 bin

1~ W- , the accretion histories show that the
q = 1 disk has also reached a quasi-steady state with respect to

this property (Figure 5). Clearly, the accretion is not hampered
by the central binary (compare the red dashed curve for the
q = 0 disk with the green curve for q = 1). Although the strong
binary torque clears out a low density cavity near the center, the
cavity is not empty of gas. Streams of gas still flow through the
potential maxima at the L2 and L3 points (see Figure 10) and
maintain accretion at a rate comparable to the single mass case.
The overall time-averaged accretion rate of the q = 1 disk is in
fact a bit greater than that of the q = 0 case:
M r r GMa˙ ( ) 0.011( )in

1 2
0= S over t = 1050–1250 bin

1W-

(“early-time”) and GMa0.014( )1 2
0S over 1250–1400 bin

1W-

(“late-time”), compared to GMa0.0085( )1 2
0S of the q = 0

disk (from t 1000 bin
1= W- until the end of the simulation).

These numbers translate to an accretion efficiency 1.3  –1.6.
This result is in approximate agreement with the viscous
hydrodynamics simulations of D’Orazio et al. (2013), in which
they found the accretion rate of an equal mass binary is ∼0.93
times the single-mass case (see their Table 3). It is in even
better agreement with the results of Farris et al. (2014), who
found a ratio of 1.55.
We show the radial dependence of the time-averaged

accretion rate M r˙ ( ) in Figure 5. For both early (t = 1050–

Figure 5. Top: accretion rates through the inner boundary of q = 0 (red
dashed), q = 0.1 (black), and q = 1 (green) disks. Bottom: time-averaged
accretion rates for q = 0 (red dashed), q = 0.1 (black), and q = 1 (green) as a
function of radius. For the q 0¹ cases, both early (solid) and late (dashed)
time averages are presented.

Figure 6. Time averaged stress to pressure ratios (top) and their associated
angular momentum fluxes for the q = 1 disk. Different line styles denote
different time spans: t = 1050–1250 (solid), t = 1250–1400 (dashed), and
t = 1050–1300 of the q = 0 run (dotted); different colors distinguish Reynolds
(green) and Maxwell (red) stresses. There is an increase of Reynolds stress and
its corresponding angular momentum flux at later times, owing to the m = 1
spiral waves.
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1250 bin
1W- ) and late time averages (t = 1250–1400 bin

1W- ), M r˙ ( )
for both q = 1 and q 0.1= exceeds that of the q = 0 disk at all
radii. The q = 1 disk achieves a fairly steady accretion within
r a4 , quite similar to a single-mass disk. At late times, the
accretion rate at smaller radii increases by 20%~ , and the zone
of nearly constant accretion radius as a function of radius
extends outward from r a4 , characteristic of early times, to
r a25 .

The different levels of accretion observed in Figure 5 are
directly connected to variations in the internal stresses. As
shown in Figure 6, although the Maxwell stress changes little
with time, the Reynolds stress rises by a factor of ∼2 after

t 1250 bin
1= W- at all radii outside r a2 . This increase in

internal stress then drives a larger accretion rate at late time.
The increase in Reynolds stress occurs at the same time

( 1250 bin
1~ W- ) as the diskʼs spiral density waves change from a

tightly wrapped m = 2 pattern to a single-armed wave
(Figure 7). Although the spiral waves have little effect on the
Maxwell stress, the vertically integrated Reynolds stress is
enhanced along the density crest of the m = 1 wave. For
instance, the region of large Reynolds stress between r a4=
and a8 at t 1300 bin

1= W- (the yellow spiral arm winding from
9 o’clock to 6 o’clock) is absent in the t 1200 bin

1= W- snapshot.
It appears that the single-armed spiral wave is more effective at

Figure 7. Four disk diagnostics before and after the spiral wave phase transition at 1250 bin
1~ W- in the q = 1 simulation. Upper row: t 1200 bin

1= W- , lower row:
t 1300 bin

1= W- . From left to right, the variables shown are: surface density, density weighted radial velocity (normalized to the sound speed), vertically integrated
Maxwell and Reynolds stresses in units of c0 s

2S . The two white dots in the central cut-out region represent the binary members. White indicates off-scale high values.

Figure 8. Same diagnostics as in Figure 7, but for the q = 0.1 disk at t = 1100 and 1250 bin
1W- . In this case, the spiral wave transition took place at t 1200 bin

1~ W- ,
slightly earlier than in the equal mass case.
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conveying angular momentum outward than the two-
armed wave.

3.2. q 0.1= Run

The accretion flow in the q 0.1= disk is quite similar to that
seen in the q = 1 case. The disk reaches its quasi-steady state
after the first 50 bin

1~ W- . The history of enclosed disk mass
within a given radius in Figure 3 indicates a slowly evolving
steady state in the inner part of the circumbinary disk. Further
evidence that an approximate state of inflow equilibrium has
been reached for r a4< is given by the time-averaged radial
profiles of M r˙ ( ) (Figure 5). Also like the q = 1 case, the
accretion rate for q 0.1= gradually increases over the course of
the simulation, rising by 30% .

These two phases of accretion are also closely connected to
the phase transition of the disk structure for the q 0.1= run. In
Figure 8, we show snapshots of disk properties before and after
the transition. It is clear that the disk evolves from a relatively
compact two-armed spiral structure into a large scale single-
armed structure. We notice that this transition happens faster
than in the q = 1 run, possibly due to the asymmetry of the
binary system itself. A common feature shared by these two
phases is the gas stream attached to the secondary, which
indicates stronger accretion onto the secondary than onto the
primary.

Like the q = 1 case, the accretion rate through the inner
boundary in the q 0.1= case (black solid curve in upper
panel of Figure 5) appears to have two phases as well.
At early times (t = 1050–1250 bin

1W- ), the time-averaged rate
M r r GMa˙ ( ) 0.013( )in

1 2
0= S , while the accretion rate gra-

dually increases so that the average at late times (t = 1250–1500)
is GMa0.017( )1 2

0S . In both phases, the time-averaged
M r r˙ ( )in= exceeds the q = 1 case by 20%~ , and is ∼1.5–2
times the single mass case.5 By comparison, in the 2D
hydrodynamic simulations of D’Orazio et al. (2013), the time-
averaged accretion rate onto a q 0.1= binary was 0.7´ that of
a single-mass system, while those of Farris et al. (2014) found a
ratio 1.7 . Just as for the q = 1 case, our results show a
qualitatively similar but quantitatively somewhat greater accretion
efficiency than found by D’Orazio et al. (2013), and quite good
quantitative agreement with Farris et al. (2014).

3.3. Accretion Rate Fluctuations

In both the q = 1 and q 0.1= disks, the fractional amplitude
of fluctuations in the mass accretion rate is a few times greater
than for a point-mass (q = 0). As we will argue below, the
larger fluctuations are driven by the binary itself. However, the
accretion rate fluctuations in the binary cases also appear to
depend significantly on mass-ratio, both in amplitude and in
frequency. The typical peak-to-trough amplitude contrast for
q 0.1= is 0.01 –0.015 GMa( )0

1 2S , about as large as the
mean accretion rate. This is about twice the amplitude seen
when q = 1.
At early times in the q = 1 run, the accretion rate fluctuates

periodically at a frequency of 1.5 bin~ W , as shown in Figure 9.
This is the stage, called the “transient state” by D’Orazio et al.
(2013), in which the disk is beginning to become elliptical and
two streams of nearly equal strength run inward from the diskʼs
inner edge; D’Orazio et al. (2013) similarly found a periodic
modulation with this frequency. Later in the simulation, the
1.5 binW peak in the power spectrum splits into two lower
magnitude spikes, their frequencies centered on the original
peak frequency but separated by 0.1 binW . This split indicates
a change in the disk structure from point-symmetric toward
more eccentric shape.
Unlike the q = 1 case, the q 0.1= case can induce m = 1

disk asymmetry immediately. Consequently, right from the
start we see strong peaks in the accretion rate power spectrum
at 0.7 binW and 1.3 binW . These modes are beats between
the binary frequency binW and the orbital frequency of the
small density enhancement near the diskʼs inner edge,

0.3 binW . Another peak at 1.4 binW might be the first
harmonic of the 0.7 binW beat. At later time, we still see the
0.7 binW and 1.4 binW beat frequencies, but they shift slightly
toward higher frequency as the disk gap expands by a small
amount. Interestingly, we do not see the strong single peak at
1.0 binW observed by D’Orazio et al. (2013) for this mass
ratio.

4. ANALYSIS

Having seen that ϵ is actually slightly greater than unity, we
now turn to an effort to understand this result. The first point to

Figure 9. Fourier decomposed power spectrum of the accretion through the
inner boundary of a q = 1 binary (top panel) and a q = 0.1 binary (bottom
panel).

5 Here we have ignored the effects from the different rin as they are negligibly
small. The accretion rate of the equal mass binary hardly changes between
r a0.8= and r a1.0= .
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raise is that it is unlikely 1 > can persist for a long period of
time. If it were to do so, the inner region of the circumbinary
disk (r a2 ) would be drained of mass, inevitably leading to a
reduction in the accretion rate onto the binary. Thus, the better
way to think about the values of ϵ seen in our simulations, a
few tens of percent greater than unity, is that the spiral waves
excited in a circumbinary disk by the members of the binary
create a sufficient enhancement of the Reynolds stress to raise
the accretion rate per unit mass in the inner disk by a few tens
of percent. By this means, an accretion rate equal to that
injected at large radius can be sustained by a surface density
somewhat smaller than required when the potential is due to a
point-mass. Over longer times than we can follow with this

kind of simulation, we expect that the surface density in the
inner disk will decline to this level, leaving the disk in true
inflow equilibrium.
With that clarification, it is time to consider the question of

why 2D and 3D simulations consistently see substantial
accretion from circumbinary disks onto the central binary
despite the contrary prediction made by 1D studies. One clue to
the answer comes from the structure of the accretion flow
through the cavity: narrow streams.

4.1. Stream Structure

In the body of an accretion disk, the inflow speed is
generically much slower than the orbital speed, ∼α H r v( )2

orb,

Figure 10. Left column: time-averaged midplane density (top), midplane (middle), and inner boundary (bottom) accretion rate v r sinr
2r q, both for the q = 0.1 binary

over the last 50 bin
1W- of the simulation. All figures in a frame comoving with the binary. Right column: same as left, but for q = 1 binary. Here negative means inflow.

The plus symbols in the midplane plots mark the L2 and L3 points. Summed separately, regions of inward and outward mass flux have comparable magnitude; their
net, although smaller in magnitude, is consistently inward.
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where α is the usual ratio of vertically integrated stress to
vertically integrated pressure, and H is the local scale height.
On the other hand, this flow, although only H~ thick in the
vertical direction, takes place, on average, around the entire
circumference of the disk, through an area r2p wide.

By contrast, the flow across the cavity (see Figure 10) is
restricted to very narrow streams. Along the central density
maximum of the streams, they are typically ∼2– H3 wide if
measured sideways from the maximum to where the density
drops by 90%. Moreover, the density in the streams as they
approach the inner boundary is ∼3–10 times lower than the
density in the disk body. Thus, in order to carry the same mass
inflow, the inward velocity in a stream must be

r H( )( )disk streamr r~ larger than the typical disk inflow speed,
or H r v( ) ( )disk stream orbr r a~ . This condition can be easily
achieved because the absence of stable closed orbits within
r a2~ when q is not too small leads to a characteristic inward
speed v0.3 orb~ , whereas H r( ) ( ) 0.03disk streamr r a ~ –0.1 in
the conditions of our simulation, and often smaller in real disks.

Thus, one way of looking at the contrast between the 1D and
the 2D/3D results is to observe that the 1D picture, in which
there is no inward motion within r a2~ , is correct at almost
all, but not quite all, positions. We explore this idea further in
the next subsection.

4.2. Orbital Properties of Inward Trajectories

The reason gas accretion occurs through such narrow
channels is that only a small fraction of the gas possesses the
proper initial conditions (in position–velocity phase space) for
“infall” trajectories, i.e., trajectories that begin from the diskʼs
inner edge and reach the inner cutoff rin. Most of the gas near
the diskʼs inner edge that begins moving inward is turned
around and flung back out to the disk by binary torques. This
fate of the majority of the initially inflowing gas is what led the
1D analysis to predict no net accretion.

To test this explanation and identify exactly what the special
conditions for successful inward flow are, we begin by solving
a large number of restricted three-body problems further
restricted to orbits entirely in the midplane. The binary for these
trajectory integrations has a circular orbit and q = 1. The test-
particles have initial conditions evenly distributed within a
phase-space volume defined by a r a1.5 2.5⩽ ⩽ , 0 2f p⩽ ⩽ ,

GM a v0.4 0r- ⩽ ⩽ , and r0.4 [ ( ) ]K binw- ¢ - W - W⩽ ⩽
0.4+ . Here w¢ is the angular frequency in a frame co-rotating

with the binary. The initial specific angular momentum is
therefore j r( )bin

2wº ¢ + W .
Our results are shown in the left panel of Figure 11 in the

form of a parallel coordinates plot.6 When the initial radius is
r a2= (at which a circular orbit requires j GMa1.45
when q = 1), particles whose initial j is GMa1.5
( 0.63bin

1 w¢ W -- ) cannot reach the inner boundary; particles
with j GMa1.3 1.5  ( 0.68 0.63bin

1 w- ¢ W -- ) can,
but only if they also have v (0.1r  - – GM a0.3) ; particles
with j GMa1.3 are able to travel to rin even with vr only
slightly negative. The behavior of both these classes of
particles can be understood by reference to the approximate
(i.e., ignoring the quadrupolar contribution) effective potential

V r GM r j r( ) (2 )eff
2 2- + at r rin= . If v V r( )r

2
eff in , the

particle radial kinetic energy is negligible, and infall can
happen only when V r( ) 0eff in ⩽ , i.e., j GMa1.3 or less, or
equivalently w¢ is no more than 0.68 bin- W . Alternatively, if
vr is sufficiently negative, the particle radial kinetic energy can
be large enough to overcome a positive effective potential
barrier.
These conditions for infall are not easily met in a real disk

because the mean j is close to the circular orbit value,
GMa1.45 , and radial infall speeds (0.1 - – GM a0.3)

are rare in the disk body. Consequently, only those few fluid
elements with j well below the mean can contribute to the
inflow, and they are found in a tightly constrained portion of
phase space. In the right panel of Figure 11, we show a
selection of fluid elements taken from a snapshot of our
simulation at t 1208 bin

1= W- . The samples are drawn from a
ring of disk around r a2= with a width of a0.5 in order to
capture the inner edge of the disk. Comparing the orange
regions (all cells) with the blue ones (those falling in), one can
conclude that indeed only a tiny fraction of the disk proper falls
to the binary, while the rest of its fluid elements are pushed
back out even if they initially move in a small distance. The
criterion governing which fluid elements are able to move
inward is identical to that identified for the test-particles:
j GMa1.3 . In contrast, most of the orange fluid elements
have either too large a j (or w¢), i.e. large Veff , or too small an
inflow velocity vr- , and are therefore flung out. Particularly
low j fluid elements move inward so quickly there is too little
time for binary torques to substantially raise their angular
momentum; because they can pass the effective potential
barrier at rin, they cross the inner boundary and are permanently
removed from the circumbinary disk.
Because gas flows near the binary are close to ballistic

(Lubow & Artymowicz 2000, Shi et al. 2012), we can estimate
the accretion rate by counting the number of fluid elements
satisfying the inflow criterion. The data shown in the right
panel of Figure 11 indicate that the blue fluid elements cover

1 10~ of the annulus between r a1.9~ and a2.2 . For a typical
surface density 0.2 0~ S and an infall timescale 2 binp~ W , the
inferred inflow rate would be M GMa˙ 0.012 0~ S , consistent
with our simulation results. Thus, although 90% of inner disk
fluid elements cannot go any significant distance inward, the
angular momentum distribution is broad enough that its low j
tail suffices to carry the full accretion rate.
Having found that the fluid elements able to accrete are

defined by their low specific angular momentum, the next
question to answer is how their angular momentum is reduced
to that level. Ordinary MHD turbulence does not broaden the
angular momentum distribution to this degree: as shown in
Figure 6, the Reynolds stress in the q = 0 case is only 1% of
the pressure, and the pressure is only 1%~ of the orbital energy
per unit mass. Instead, the answer appears to be a consequence
of the binary torques themselves. As previously remarked, most
of the mass in the streams that move inward from the
circumbinary disk returns to the disk after its specific angular
momentum is raised by those torques. With that additional
angular momentum, its azimuthal velocity is somewhat greater
than the local orbital velocity when it strikes the disk
( j GMa1.6( )1 2 as opposed to j GMa1.45( )1 2 ). The work
done by the torques also increases the streams’ energy, giving
them an outward radial speed (0.3 – GM a0.5)( )1 2.

6 Parallel coordinates is a common method for multidimensional visualiza-
tion. For our case, each particle is represented by a line connecting multiple
attributes shown as vertical coordinates in parallel.
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An example of such a rapidly moving outward stream can be
seen near r 2.3~ , 1.5f ~ in Figure 12. Part of the stream
(r 2.3 –2.4, 1f  –1.5) is still heading outward. However, a
part of that stream has already encountered the ridge of high
density trending from larger radius to smaller between 2f 
and 3f  . When it struck that ridge, a pair of shocks was
formed, a forward shock propagating into the disk material and
a reverse shock propagating into the material that had been
moving outward. In the reverse shock, a portion of the stream
mass loses a significant fraction of both its angular momentum
and its orbital energy and heads back inward, seen in this
snapshot along the line from (r 2.3 , 2f  ) to (r 1.8 ,

3f  ). This shock deflection is the origin of the low angular
momentum material which can now travel all the way to the
inner boundary.
Because this mechanism depends almost entirely on 2D

orbital mechanics, its nature should be only weakly dependent
on parameters such as the diskʼs aspect ratio H r c vs orb= ,
provided only that c vs orb is small enough that the stream–disk
interaction is supersonic. In our simulation, in which the sound
speed is GM a0.1( )1 2, the Mach numbers of these shocks are
∼3–5; in real disks, they could be considerably larger. Support
for the view that the stream–disk interaction is at most weakly
affected by the disk thickness also comes from the fact that 2D
simulations employing laminar hydrodynamics and an “α
viscosity” to mock up the fluidʼs internal shear stress (Farris
et al. 2014) find a very similar continuity in the accretion rate.
It is possible, however, that the dynamics of the stream–disk
shocks may depend upon the equation of state of the shocked
gas. In our simulation, we assumed that the gas is isothermal.
If, instead, this sort of shock were to occur in a less lossy gas,
the immediate post-shock temperature would be much greater
than the disk gas temperature. The shocked gas could then
swell vertically well beyond the thickness of the disk,
permitting it to flow above and below the disk. Investigation
of such effects is well beyond the scope of our effort here.

4.3. One-armed Spiral Wave

As we have already remarked, a surprising outcome of our
simulations is that at late times a strong one-armed spiral wave
propagates outward through the circumbinary disk, enhancing
the Reynolds stress sufficiently to increase the accretion rate by
a few tens of percent. Its origin is worth further attention.
The most likely cause of this m = 1 feature is the

complement of the mechanisms studied in the previous
subsection. There we focused on the properties of those special
fluid elements able to travel all the way from the inner edge of
the disk to the binary. Here we focus on all the others, the ones

Figure 11. Left: a parallel coordinate plot for test particles at r a2= distributed uniformly in ϕ, vr (shown in units of GM a( )1 2), and binw¢ = W - W . The last
coordinate j r( )bin

2wº ¢ + W is the initial specific angular momentum in units of GMa( )1 2. The green lines show the initial locations of all infalling particles; note
that all have j GMa1.5( )1 2 , the specific angular momentum that supports a circular orbit in the region sampled. The red lines show particles with enough angular
momentum to trace nearly circular orbits, but also fall inward; all have especially large inward speed as well. The red particles concentrate at two opposite azimuth
angles where the binary potential is relatively weaker than at other angles, making it easier for particles to fall in. Right: similar to the left but now the lines represent
individual cells drawn from the actual simulation of the q = 1 disk at t = 1208. The orange lines show all cells within annulus having r a2 ; the blue lines show all
the infalling cells; the green lines show infalling cells with initial radius exactly a2 . Comparing the orange and blue regions, only a small fraction of the disk cells
actually fall in. The green cells found here are consistent in their properties with the green test particles shown on the left: v 0r  for 0.68w¢ - .

Figure 12. Surface density (color contours) and mass-weighted vertically
averaged velocity in the orbital plane (arrows) at t = 1209.6.
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that may initially move inward, but then feel the torques
exerted by the binary and are propelled outward again until
they strike the diskʼs inner edge. To demonstrate how these
streams excite spiral waves, we fit the wave form seen in our
simulations (surface density plots in Figures 7 and 8) with a
standard density wave pattern (e.g., Equation (36) of
Rafikov 2002). The resulting pattern speed is 0.17 binW
( 0.21 binW ) for the q = 1 (q 0.1= ) case, which suggests
wave excitation occurs at r a3.2 when q = 1 and r a2.8
when q 0.1= . As shown in Figures 7 and 8, the density is
strongly enhanced near r a3 . This connection is most clearly
seen in an animation (Figure 13).

The animations further show that the point of impact, the
azimuthal location of the spiral wave driving point, rotates
around the diskʼs inner edge at an angular frequency slightly
lower than the binary frequency.

Similar to tidally or mass-transfer induced spiral shocks that
transmit angular momentum outward in circumstellar disks in a

close binary system (e.g., Sawada et al. 1986; Rózyczka &
Spruit 1993), the waves excited by the binary-driven streams
can also provide long-range angular momentum transport.
Figure 14 shows the net outward angular momentum flux
(AMF) associated with the time averaged Reynolds stress
before and after large scale m = 1 density waves are excited
(see the green curves in the bottom two panels). Compared to
the early period (top row), the Reynolds stress contributes a
sizable negative torque at disk radius ∼3– a4.5 (2.5– a4 ) at late
times (bottom row) in the q = 1 (q 0.1= ) disk, which could
explain the slightly greater accretion rate observed in q 0¹
disks than in the q = 0 disk.
These large scale one-armed spiral density features were not

previously reported in Shi et al. (2012), D’Orazio et al. (2013),
or Farris et al. (2014). We believe they are due to the greater
global isothermal sound speed ( a0.1 binW ) used here, twice the
sound speed in simulation B3D (Shi et al. 2012). The faster
sound speed causes spiral waves to stretch farther radially,

Figure 13. Streams returning to the circumbinary disk exciting spiral waves. Click the figure to play a short animation of surface density in the q = 1 and 0.1 cases.
(Also available at http://www.astro.princeton.edu/~jmshi/leakage.htm.) Spiral waves can clearly be seen to begin when a stream pushed outward by the binary
torques strikes the inner edge of the disk.

(An animation of this figure is available.)

Figure 14. Radial derivatives of time-averaged and shell-integrated angular momentum flux (AMF) as functions of radius for the q = 0.1 (left) and q = 1 (right) cases
before and after the phase transition, where red shows the differentiated Maxwell AMF and green represents the differentiated Reynolds AMF. Negative means
outward transport of angular momentum. Time averages are long enough that the net change of local angular momentum are close to zero. The late time averages of
the q = 1 (q = 0.1) cases show that the Reynolds stress dominates the angular momentum budget at r 3~ – a4.5 (2.5– a4 ), a location coinciding with the stream
impact regions shown in Figure 7 for the q = 1 case and Figure 8 for the q = 0.1 case.
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creating large-scale loosely wrapped density features (Savonije
et al. 1994). In D’Orazio et al. (2013; as well as in MacFadyen
& Milosavljević 2008), H r 0.1= at all radii, so that the
isothermal sound speed drops r 1 2µ - . The wavelength
becomes shorter as the wave moves outward, causing the
wave to become more and more tightly wrapped as it travels to
greater radius. Given this apparent sensitivity to the disk
equation of state, it remains to be seen whether such strong
spiral waves are generic or rare in real circumbinary disks.

5. CONCLUSIONS

In this paper, we carried out 3D global MHD simulations of
circumbinary disks with binary mass ratios 0.1 and 1 and
contrasted them with a disk orbiting a solitary point-mass. We
found two major results:

1. The time-averaged accretion rate from a circumbinary
disk with either q = 1 or 0.1 is indistinguishable from that
of a circum-solitary disk whose central mass is the same.
In other words, essentially all the mass supply given the
disk at large radius ultimately leaves its inner edge and
travels to the binary. The similarity of the q = 1 and
q 0.1= cases in this regard suggests that this result
depends at most weakly on binary mass-ratio. This result
confirms, with physical internal fluid stresses, the
conclusion reached by Farris et al. (2014) on the basis
of 2D hydrodynamics and a phenomenological viscous
stress.

2. The key reason why initial 1D analyses suggested that the
accretion efficiency (the parameter we call ϵ) is 0 rather
than 1 is that they omitted consideration of the small
volume in orbital phase space from which trajectories can
travel inward from the diskʼs inner edge all the way to the
binary, avoiding the strong torques that, for most of phase
space, push matter back outward. Only those fluid
elements with specific angular momentum 15% less
than the circular orbit value at the diskʼs inner edge can
cross the gap and reach the binary. Ironically, fluid
elements with exactly this property are created as a
consequence of the binary torques themselves: these
torques add enough angular momentum to other gas
traveling through the gap to propel it back out to the disk;
it shocks upon reaching the disk, and a portion of its mass
is deflected onto accretion orbits.

Our results have several observational implications. If all the
matter supplied to a circumbinary disk at large radius accretes
onto the binary through narrow streams, those streams must
shock when they strike the outer edges of accretion disks
around the members of the binary. In the context of the
formation of stellar binaries, these shocks may be the sites of
the v = 1– S0 (1) H2 vibrational lines that can often be detected
(Beck et al. 2012). Radial inflow streams at velocities
approaching free-fall can also potentially explain both the
observed low density cavities in transitional disk systems and
the relatively normal stellar accretion rates they maintain
(Rosenfeld et al. 2014). In the context of supermassive black
hole binaries, one can similarly expect strong shocks where the
streams strike the outer edges of the individual disks. Hard
X-rays from those shocks may be observable when the binary
separation is small enough (Roedig et al. 2014; Farris
et al. 2015). If the accretion flow fed in at large radius is

large enough, a still greater luminosity can be generated when
the accreted matter approaches the two black holes’ ISCO
regions.
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