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ABSTRACT

We perform the first detailed three-dimensional simulation of low Mach number convection preceding runaway
thermonuclear ignition in a mixed H/He X-ray burst. Our simulations include a moderate-sized, approximate
network that captures hydrogen and helium burning up through rp-process breakout. We look at the difference
between two- and three-dimensional convective fields, including the details of the turbulent convection.
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1. INTRODUCTION

X-ray bursts (XRBs) are the thermonuclear runaway in a
H/He layer on the surface of a neutron star. These transient
events can be used to probe the structure of neutron stars and
the equation of state (EOS) of dense material (Özel et al. 2010;
Steiner et al. 2010). Furthermore, they are also the sites of rp-
process nucleosynthesis (Schatz et al. 2001). For these reasons,
understanding the dynamics of the explosion has seen
substantial research interest in the past years.

One-dimensional studies (Taam 1980; Taam et al. 1996;
Woosley et al. 2004) can reproduce the observed energies,
durations, and recurrence timescales for XRBs, but use a
parameterized model for convection, namely mixing length
theory (which likely does not describe turbulent convection
accurately, e.g., Arnett et al. 2015). An open question is
whether a fully turbulent convective velocity field can modify
the nucleosynthesis. Additionally, the convection may dredge
up heavy element ash to the photosphere (Bhattacharyya et al.
2010; in’t Zand & Weinberg 2010) thereby altering the
opacity of the atmosphere, which affects the inference of
neutron star mass and radius from photospheric radius
expansion bursts. These are inherently three-dimensional
problems.

Previously, we performed two-dimensional simulations,
focusing first on pure He bursts (Malone et al. 2011), and then
later on mixed H/He bursts (Malone et al. 2014). The latter
study used an approximate network to capture the hot-CNO,
triple-α, and initial rp-process breakout burning. There we
found that we needed a spatial resolution of about 6 cm zone−1

in order to accurately model the burning; for comparison, the
extremely temperature-sensitive burning of the pure He models
of Malone et al. (2011) required 0.5 cm zone−1 resolution. In
this paper, we extend our studies by performing the first three-
dimensional model of convective burning in a H/He XRB,
using the reaction network from Malone et al. (2014). This
initial study compares to our two-dimensional results, and
discusses the computational requirements for a more extensive
study.

2. NUMERICAL METHOD

We use the publicly available5 MAESTRO code (Nonaka
et al. 2010), which solves the equations of low Mach number
hydrodynamics by reformulating the reactive Euler equations
to filter soundwaves while retaining compressibility effects due
to stratification and local heat release. By filtering dynamically
unimportant soundwaves, MAESTRO enables efficient simula-
tion of slow convective flows, such as those in XRBs (Malone
et al. 2011, 2014), various progenitors of SNe Ia (Zingale et al.
2011, 2012; Nonaka et al. 2012), and in the cores of massive
stars (Gilet et al. 2013). Also important for simulations like
these is that the low Mach number formulation analytically
enforces hydrostatic equilibrium of the base state, allowing us
to maintain a hydrostatic atmosphere in the simulation code
without the development of large spurious velocities (see, e.g.,
Zingale et al. 2002).
All of the MAESTRO options and microphysics used in our

two-dimensional study of XRBs in Malone et al. (2014) are
retained for this study. In particular, we use the new energy
formulation variant of MAESTRO, based on the ideas in Klein
& Pauluis (2012) and Vasil et al. (2013), which improves
energy conservation and our treatment of gravity waves. We
use the Helmholtz EOS from Timmes & Swesty (2000), which
includes an ideal gas of nuclei, a photon gas, and an electron/
positron gas with arbitrary degeneracy and relativistic para-
meters, and Coulomb corrections. MAESTRO is under contin-
uous development, and we have improved the advection
portion of the code since the construction of the interface states
was last discussed in Almgren et al. (2008). We take the
opportunity to document those changes in Appendix A.
We use the same parametrized initial model as in our two-

dimensional study. Briefly, the model consists of a
= M M1.4 , R = 10 km neutron star, of which we model

the outer ~ ´1.4 103 cm as an isothermal ( = ´T 3 108 K),
pure Ni56 gas. On top of the neutron star is a warm accreted
layer of mainly H/He fuel that is slightly metal-rich compared
to solar, with CNO metals tied up in O14 and O15 in a ratio
comparable to their respective β-decay lifetimes. A smooth
transition is applied between the density (r = ´2 106 g cm−3)
and temperature ( = ´T 9.5 108 K) at the base of the accreted
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layer and the surface of the neutron star. The accreted layer is
given an isentropic profile, making it convectively unstable,
and the temperature decreases until a cut off temperature is
reached. The original extent of the convective region is
 ´2 103 cm. Figure 1 shows the density and temperature
profile, along with the values of the cut-off densities that are
part of the MAESTRO algorithm. For the three-dimensional
simulations present here, the anelastic and base cut-off
densities have been increased slightly to ´ -2 10 g cm3 3 to
better quench the dynamics above the atmosphere. The two-
dimensional simulations used the same parameters as in
Malone et al. (2014). The reader is referred to the appendix
of Malone et al. (2014) for more details of our model
construction procedure. Finally we note that all of the problem
setup files, inputs, and initial models for the runs presented here
have been copied into the main MAESTRO code repository
in Exec/SCIENCE/xrb_mixed/, allowing anyone to rerun these
simulations.

In this paper, we perform two three-dimensional simulations
to assess the dynamics of the convective flow. We model the
XRB using a plane-parallel geometry. Our wide simulation
uses a uniform grid of 512 × 512 × 768 and our narrow
simulation uses a grid of 256 × 256 × 768 zones, both with
6 cm zone−1 spatial resolution—the same resolution used in our
two-dimensional study. As the simulation evolves, the one-
dimensional hydrostatic base state that MAESTRO carries is
allowed to expand due to the heating, following the procedure
described in Almgren et al. (2006).

2.1. Correction to the Network

Our reaction network contains 10 species, approximating hot
CNO, triple-α, and rp-breakout burning up through Ni56 , using
the ideas from Wallace & Woosley (1981), but with modern
reaction rates from ReacLib (Cyburt et al. 2010) where
available (see the discussion in Malone et al. 2014 for more
details). This is the same network used in Malone et al. (2014),

but with one important change. The convective flow field in
Malone et al. (2014) showed signs of splitting into two distinct
convective regions (e.g., Figure 7 of that paper). The split
occured at a location of a secondary peak in energy generation,
which grew with time (Figure 9 in that paper). We attributed
this extra energy to the branching ratio, l1, of β-decay versus
α-capture on Ne18 as a breakout mechanism from the Hot CNO
cycle. The precise location of the secondary peak in energy
production was where the branching ratio favored the β-decay
to F18 (see Figure 10 of Malone et al. 2014), followed by

aF(p, ) O18 15 ; the approximate network converts F17 +2p
directly to O15 a+ at a rate governed by the rate of p-capture on

F17 and l1.
This coincidence of peak energy generation and l1 transition

was a red herring: the energy generation from the F17 a(2p, )
O15 chain was insufficient to reproduce the production rate we

witnessed. We know now that we erroneously had an
additional term in the reaction network—based on legacy
code—that attempted to model p-capture on Ni56 to heavier
elements. In particular, there was a kludge of a term involving

+ Ni 56p 2 Ni56 56 to mimic the energy release of heavier
element production, which should not have been included in
the network. This “reaction” occured exactly at the secondary
peak in energy generation and depletion of H, and its rate was
sufficient to reproduce the energy production and its increase
with time. We have since removed this feature of our network.
All calculations in this paper, including the 2d comparisons,
use the corrected network, which is available in the
MAESTRO distribution in Microphysics/networks/rprox/.

3. RESULTS

In order to understand how dimensionality affects our
results, we compare to updated two-dimensional calculations
based on Malone et al. (2014). In particular, we use a 6 cm
resolution 1024 × 768 zone calculation. Figure 2 shows the
standard deviation of temperature (compared to other zones at
the same height) as a function of height for the two- and three-
dimensional runs, both at t = 0.02 s. The overall trend is the
same for the two calculations, with the magnitude of the
temperature fluctuations in the convective region
(∼1400–3550 cm) d á ñ ~T T 10−3–10−4.
Figure 3 shows the peak temperature and peak Mach number

as a function of time for the runs. We see that they closely track
one another, but that in the wide three-dimensional simulation
there more sporatic spikes to moderate Mach number
throughout the simulation. At the start of the calculation, there
is always a period of transient behavior as the heating needs to
set up a consistent convective velocity field, but the flow
quickly settles down. For both simulations, the average Mach
number after the transient is about 0.1; in the longer-duration
two-dimensional case, the Mach number asymptotes to 0.1.
The temperature plots all track one another well. We did not
run the three-dimensional calculation as long as the two-
dimensional calculation, to conserve computational resources.
It is interesting to note how the peak Mach number translates

into a timestep improvement compared to a fully compressible
code. For this problem, the sound speed in the atmosphere is
greater the deeper one goes into the atmosphere, but the Mach
number is highest at the top of the atmosphere. As a result, the
timestep increase will actually be better than the naive M1 one

Figure 1. Initial density and temperature profile. The vertical lines represent the
sponge start (leftmost line) and the anelastic cut off for the three-
dimensional runs.
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would expect if the domain were uniform. A further
complication is that, in the compressible code, when we reach
the low density material at the top of the atmosphere that
buffers us from the boundary, it is radiation pressure that
dominates here, articially increasing the hydrodynamic sound-
speed. This is a common limitation that arises from using an
EOS that includes radiation instead of modeling the radiation
field itself. For comparison, we started the same XRB
simulation (in two dimensions) in the Castro code (Almgren
et al. 2010), and the average timestep after ´ -2.76 10 4 s of
evolution was D = ´ -t 2.79 10comp

10 s. For the main three-
dimensional MAESTRO calculation, the average timestep over
the course of the entire simulation was D = ´ -t 1.93 10LM

7 s
—a ~ ´700 improvement.

The convective velocity structure of the wide three-
dimensional simulation is shown in Figure 4, highlighting the
vertical velocity. These two images are representative of the
flow throughout the simulation. We do not see the tight
layering that was apparent in the older two-dimensional
simulations (especially for narrower domains; see Figures 6
and 7, and the discussion in Section 4.2.1 of Malone
et al. 2014) because of the fix to the reaction network
discussed in Section 2.1. To better understand the difference in
the nature of the convective flow, we need to examine the
turbulent structure.

Turbulence is known to behave differently between two and
three dimensions (see, e.g., Ouellette 2012). To get a feel for
the turbulent nature of the convection in these simulations, we
look at the kinetic energy power spectrum. Following the
discussion regarding turbulence in stratified flows in Nonaka
et al. (2012) and references therein, we calculate a generalized

kinetic energy density spectrum as


ò=

W
 V k V k SE k d( )

1 1

2
( ) · ( ) , (1)

S k
n n n

( )

where V k( )n is the Fourier transform of r=
~

V x x U x( ) ( ) ( )n
n

with n specifying the density weighting, S k( ) is the surface
defined by =∣ ∣k k , and the å denoting complex conjugation.
We note that here we use

~
U , the local velocity on the grid,

instead of explicitly calculating the turbulent velocity fluctua-
tions from the full velocity field, including the base state
expansion, = +

~
U U ew r0 , because

~
U is essentially the

velocity perturbations on top of an otherwise hydrostatic
background state (Nonaka et al. 2010). The volume, Ω, and
surface element, Sd , are based on the dimensionality of the
problem. The goal is to find the proper scaling of the energy
density spectrum with wavenumber for both two- and three-
dimensional flow.
The units of Vn are [g

n + -cm D n1 3 s−1], where the extra power
of D on the length scale comes from the integral over xd in the
definition of the Fourier transform. In Equation (1), the integral
is done in k-space, such that ~ -Sd d kD 1 with units [cm -D1 ],
whereas the normalization is in real-space, so that Ω has units
of [cmD]. Upon integration of Equation (1), the dimensionality,
D, drops out of the equation, and the units of the generalized
kinetic energy density spectrum become [g2n -cm n3 6 s−2] for
both two- and three-dimensional configurations. For turbulent
flows that have density variation (i.e., compressible or stratified
flows), the typical Kolmogorov energy dissipation rate,  l( ), at
a given length scale l should be weighted by the mass density
(see Fleck 1983, 1996, for example):  r=l U l l( ) ( )3 , which
has units of [g cm−1 s−1]. The arguments of Nonaka et al.
(2012) then apply to any dimension: the only combination of
 a bk E k( )n that yields a dimensionless quantity is when
a = -2 3, =n 1 3, and b = 5 3. If the physics of two-
dimensional and three-dimensional turbulence were the same
(this is likely not the case), then the spectrum defined in
Equation (1) should scale as -k 5 3 for both two- and three-
dimensional flows.
In evaluating Equation (1), we create equally spaced radial

wavenumber bins, ki, ranging from the smallest physical
wavenumber, L1 , to the highest meaningful wavenumber,

Dx1 (2 ), where L is the domain width. The Fourier transform
of the kinetic energy density gives us


=  ( )( ) V VK k k kˆ , ,

1

2
· . (2)x y z n n

For each of the points in the three-dimensional K̂ array, we

define = + +∣ ∣k k k kx y z
2 2 2 and determine which of the

radial bins, ki, this falls into and add the value of K̂ to that bin’s
sum. Done this way, we are integrating up in spherical shells in
k-space, using our discrete bins. The same procedure is done in
two dimensions, but now we are working in the kx–ky plane,
and are integrating up over annular regions in that plane, again
defined by our discrete bins, ki. We do not worry about the W1
normalization, since we will normalize each spectrum such that
its peak value is 1.
Figure 5 shows the power spectrum of the two-dimensional

and wide three-dimensional XRB simulations at t = 0.02 s. For
this analysis, we restrict the domain to just the vicinity of the

Figure 2. Variance of T normalized by its average at a given height for both
our two-dimensional and three-dimensional simulations at t = 0.02 s. Within
the convective region, 1600  height  3200, the temperature fluctuations
between the two simulations are quite similar. We also note that at the edges of
the convective region, due to overshoot/undershoot, there are local spikes in the
average temperature fluctuations. Below the convective region, the two-
dimensional simulation shows temperature fluctuations that are about four
times larger than in the three-dimensional counterpart. This is likely due to the
larger amount of convective undershoot present in the two-dimensional
simulation compared to the three-dimensional simulation. Note that the
variation for the 3D simulation is 0 above 3500 cm, and as a result the line is
not plotted on the log scale.
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convective region, including only the vertical range
< <z1300 cm 3550 cm. For the three-dimensional case, we

see that we have more than a decade in wavenumber where we
achieve a -k 5 3 power-law scaling, indicative of Kolmogorov
turbulence. We note that the region we are studying is not
periodic in the vertical direction, but an FFT assumes
periodicity, so the discontinuity through the vertical boundary
may affect the behavior at high wavenumbers, perhaps
accounting for the slow fall in the three-dimensional spectrum.
For the two-dimensional case, the spectrum starts off with a
-k 5 3 scaling, but then becomes steeper at moderate wave-
numbers. Such a break in the power law scaling for two-
dimensional turbulence is predicted for very idealized turbu-
lence where the steeper part of the curve has a -k 3 scaling
attributed to a cascade of enstrophy (e.g., Kraichnan 1967;
Leith 1968; Batchelor 1969). Numerical simulation cannot
achieve the idealized conditions (e.g., infinite domain and
infinite Reynolds number) assumed in the -k 3 derivation, and
sometimes achieve a steeper power law (e.g., the review by
Gkioulekas & Tung 2006, and references therein). In our two-
dimensional simulation, we see a moderate range in the
spectrum after the break consistent with -k 3.

We have also seen such a difference in scaling between two-
and three-dimensional turbulence on smaller scales in reactive
Rayleigh–Taylor simulations (Zingale et al. 2005), where we
saw a spectrum that appeared to follow the -k 11 5 scaling
predicted by Bolgiano–Obukhov statistics for a two-dimen-
sional cascade (Niemeyer & Kerstein 1997). In that study, we
found that a wide domain, giving more statistics, was essential
to see this scaling. The difference in the scaling we observe in
the present simulations suggests that there is a fundamental
difference in how the cascade takes place between the two- and
three-dimensional convection in XRBs.

Figure 5 also shows that there is relatively more power in
small scale (higher wavenumber, k) features for the three-

dimensional simulation compared to the two-dimensional
calculation. This is made more explicit by looking at a
colormap plot of the enstrophy density h =  ´

~∣ ∣U 22 , as is
shown in Figure 6, where the left (right) panel shows the two-
dimensional (three-dimensional) simulation at t = 0.02 s. The
plot for the two-dimensional simulation is for the wide domain,
but only half of the domain is shown to keep the same scale for
both plots. For the three-dimensional simulation, the plot shows
a slice through the center of the domain. The two-dimensional
simulation plot appears to be dominated by moderate-sized
vortices throughout the domain, while in three dimensions, we
see structure on a much wider range of scales. This is similar to
the results seen in comparisons of two- and three-dimensional
simulations of novae (Kercek et al. 1998, 1999), although our
two-dimensional results do not show as severe of a dominance
of vortices as reported there.
The panels of Figure 6 also show that in two-dimensional flow

the convective motions penetrate deeper into the underlying
neutron star than in the three-dimensional case. This can have
implications for the amount of metal-rich material that can be
dredged up into the atmosphere, potentially polluting the
photosphere and adjusting the opacity. We leave these details
for a future paper.
Accurate analysis of the convection during a thermonuclear

runaway is challenging. Most convective analysis in the
literature are focused on stellar convection, which reaches a
steady-state. In that case, one can drop the time derivative in
the energy equation and simply compare the balance of energy
fluxes. A thermonuclear runaway is far from steady state.
One can assume things are in a quasi-steady state over a
somewhat short timescale and perform a RANS-like averaging
of the energy balance, but it is not a priori clear the exact
duration of this averaging timescale. Our data dumps are
roughly once every eddy turnover time, which would likely not
give good enough statistics for this approach. Instead, we have,

Figure 3. Comparison of the peak temperature vs. time between the two- and three-dimensional simulations (left) and the peak Mach number vs. time (right). All
simulations agree quite well in this context, however the three-dimensional simulation has more spikes to large Mach number at late times. All simulations experience
an initial short-duration transient spike in Mach number as the system creates a convective flow field able to carry away the energy generated from nuclear reactions.
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as in Malone et al. (2011, 2014), focused on the adiabatic
excess, Δ∇:

D =  -   º
d T dr

d P dr
;

ln

ln
, (3)s

where the subscript s indicates the profile along an adiabat.
Figure 7 shows the horizontal average of Δ∇ as a function of
radius for both two- and three-dimensional simulations at
t = 0.02 s. This view of the convective region confirms that the
extent of the convective overshoot region is less in three
dimensions than in two dimensions, as was seen in the
comparison of Figure 6; in this snapshot, the average overshoot
region in two dimensions is roughly 50% larger than that of the
three-dimensional simulation. Furthermore, the upper boundary

in the two simulations is a bit different. The two-dimensional
simulation has a stronger degree of superadiabaticity, implying
the thermal gradient is steeper than that of an adiabat. The
three-dimensional simulation also appears to have, on average,
a convectively stabilizing gradient around r = 3300 cm where
the adiabatic excess becomes negative before a small overshoot
region extends the convection to nearly the same distance as in
the two-dimensional case.

4. DISCUSSION AND CONCLUSIONS

We described the first three-dimensional models of con-
vective burning in an XRB. While the peak temperature and
Mach number behave qualitatively the same as our two-
dimensional calculations, the structure of the convective

Figure 4. Volume renderings of the vertical velocity field at t = 0.01 s (top) and 0.02 s (bottom) for the wide calculation. Upward moving fluid is in red and
downward moving is blue.

(An animation of this figure is available.)
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velocity field differs substantially, both in the global appear-
ance and in the turbulent statistics. This is illustrated well by
the difference in appearance of the enstrophy density, which in
three dimensions shows the typical cascade to small scales.
Since convective mixing is expected to distribute the
synthesized nuclei throughout the atmosphere, potentially
bringing some to the photosphere, modeling the convection
accurately is important. Based on the differences seen between
the two-dimensional and three-dimensional flows, this suggests
that three-dimensional models should be the focus of our future
simulation efforts.

The calculations presented here pave the way for a more
detailed study of convective burning in XRBs. We plan to do a
more thorough analysis of the convective flow patterns in both
two and three dimensions in the future paper by including
tracer particles in the flow. The tracers will help visualize the
trajectory of the flow, and to build a statistical analysis of the
transport during a thermonuclear runaway. The wide three-
dimensional simulation used 2.8 M CPU-hours on the OLCF
titan system (running with 768 MPI tasks and 16 threads per
task). While MAESTRO can use AMR, in these simulations we
would refine the entire convective region, so the cost savings
would be small. Modifying the simulation to advect and store
tracer particle information should increase the computational
cost by only a few percent.
Our future calculations will push for increased realism of the

reaction network. As detailed in Malone et al. (2014), the
approximate network used here reasonably captures the overall
energy release, but we plan to both improve the nuclear
reaction network with a more clever selection of isotopes for an
approximate network, and to investigate using larger networks
whose integration can be accelerated using highly parallel
hardware accelerators, such as GPUs or Intel Xeon Phi
processors.
Thus far, we have only explored a single initial model,

constructed with a simple parameterization. The real state of
the accreted layer can vary, and there are two potential changes
worth exploring. First, we extend the isentropic layer all the
way to the surface of the model, but accretion would likely
cause heating at the top of the atmosphere, which could
truncate the convection region before the surface. This may
prevent the convective plumes from reaching the steep density
gradient at the very top of the atmosphere. Second, our base
density is on the higher end of likely models. We should
explore lower density models as well. The burning in that case
would not be as vigorous, but our timestep should increase as
the convective velocity decreases, making these simulations
feasible. An initial study of the initial model variations can be
done in two dimensions, and then selected models can be run in
three dimensions as needed.

Figure 5. Kinetic energy power spectrum for the two- and three-dimensional
simulations at t = 0.02 s. The dashed gray line is a -k 5 3 power law and the
dotted line is a -k 3 power law. A density weighting of r1 3 was used for both
two and three dimensions. The power is normalized so the two spectra have the
same peak. There is about a decade in wavenumber where the three-
dimensional simulation obeys the standard Kolmogorov turbulent cascade. The
two-dimensional simulation displays a characteristic change in power-law
scaling, having sections that are both shallower and steeper than what
Kolmogorov predicts for three dimensions.

Figure 6. Enstrophy density of the turbulent flow in both the two-dimensional
(left) and three-dimensional (right) simulations at t = 0.02 s. The plot for the
three-dimensional simulation is a slice through the center of the domain; the
plot for the two-dimensional simulation only shows half of the wide domain to
keep the spatial scale the same in both plots. There are clear differences
between two- and three-dimensional flows with the three-dimensional
simulation showing much more small scale features. This is consistent with
the presence of relatively more power at larger wavenumber for the three-
dimensional case compared to the two-dimensional case, as seen in Figure 5.

Figure 7. Horizontal average of the adiabatic excess,Δ∇, at t = 0.02 s for both
two- and three-dimensional simulations. The plot focuses near the convective
region and shows the less extended overshoot region for the three-dimensional
case, as seen in Figure 6. Furthermore, the upper convective boundary is quite
different between the two simulations, with the two-dimensional model
showing stronger superadiabaticity.
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We also plan to push our calculations to larger scales. For the
near future, however, these sort of calculations will be limited
to convection-in-a-box studies. Capturing the range of length
scales necessary to follow a laterally propagating burning front,
while resolving the energy-generation region, is not currently
possible. The complementary approach to ours are the
calculations by Cavecchi et al. (2012), which used wide-aspect
ratio zones and did not perform hydrodynamics in the vertical
direction. Ultimately these two methods can inform one-
another to build a picture of nucleosynthesis and dynamics of
the burning front in XRBs.

Visualization was done with yt (Turk et al. 2011). The
power spectrum calculation followed the “Making a Turbulent
Kinetic Energy Power Spectrum” recipe in the yt Cookbook.
The git-hashes of the codes used for the main three-
dimensional simulation are MAESTRO: afb7a1479b2bK
and BoxLib: 3fcc394f2774K.

We thank Frank Timmes for making his equation of state
publicly available. The work at Stony Brook was supported by
DOE/Office of Nuclear Physics grants Nos. DE-FG02-
06ER41448 and DE-FG02-87ER40317 to Stony Brook. Work
at LANL was done under the auspices of the National Nuclear
Security Administration of the U.S. Department of Energy at
Los Alamos National Laboratory under Contract No. DE-
AC52-06NA25396. The work at LBNL was supported by the
Applied Mathematics Program of the DOE Office of Advance
Scientific Computing Research under U.S. Department of
Energy under contract No. DE-AC02-05CH11231. This
research used resources of the National Energy Research
Scientific Computing Center, which is supported by the Office
of Science of the U.S. Department of Energy under Contract
No. DE-AC02-05CH11231. An award of computer time was
provided by the Innovative and Novel Computational Impact
on Theory and Experiment (INCITE) program. This research
used resources of the Oak Ridge Leadership Computing
Facility at the Oak Ridge National Laboratory, which is
supported by the Office of Science of the U.S. Department of
Energy under Contract No. DE-AC05-00OR22725.

APPENDIX A
GODUNOV INTEGRATION DETAILS

Here we describe the details of the second-order Godunov
integration schemes used to predict face and time-centered
quantities in various steps of the algorithm. In our overall
algorithm, there are three variations that share most of the same
discretizations, with small differences that will be described
below. In summary,

1. Case 1: Construction of the advective velocities. In Steps
3 and 7 of the algorithm flowchart in Nonaka et al.
(2010), we compute face- and time-centered normal
velocities (i.e., we only compute u at x-faces, v at y-faces,
etc.), UADV, , given Un and an associated source term,
U.

2. Case 2: Construction of the final velocity edge states. In
Step 11 of the MAESTRO flowchart, we compute
face- and time-centered velocities, +Un 1 2, given Un

and an associated source term, U. This case is different
from Case 1 in that we leverage the availability of the

projected velocity field,
~
U

ADV
, during the characteristic

tracing and upwinding steps. Also, at each face we need

to compute all components of velocity, rather than just
the normal components.

3. Case 3: Construction of the scalar edge states. In Steps 4
and 8 of the MAESTRO flowchart, we compute face- and
time-centered scalars, r r +X h( , )k

n l1 2,( ), given r rX h( , )k
n

and the associated source terms,  r r,X hk . This is
different from Case 2 in that the evolution equations
for the scalars are in conservative form rather than
advective form.

Our Godunov integration strategy is based on the piecewise
parabolic method (PPM) of Colella & Woodward (1984). We
modify this algorithm to account for the fact that (i) our
underlying velocity field is spatially varying, (ii) we require a
multidimensionally unsplit discretization, (iii) we have govern-
ing equations in both advective and conservative form,

¶
¶

= -  + =U
q

t
q q u v w· ; , , or , (4)q

 r r
¶
¶

= - + =U
q

t
q q X h· ( ) ; or . (5)q k

Which form is used for the scalars, rX( )k or rh( ), is determined
at runtime based on how we chose to bring these states to the
interface. MAESTRO offers several possibilities, e.g., bringing
rX( )k to the interface as a single quantity, bringing r¢ and Xk to
the interface separately, or bringing ρ and Xk to the interface
separately. Even more variation is allowed for rh( ), where we
can use T instead of h for the interface prediction. We
document both forms of interface reconstruction here. The full
list of possible states is provided in the MAESTROUser’s
Guide. For the present simulations, we predict ρ and Xk

separately for form rX( )k on interfaces, and T is predicted and
converted to h on the interface via the EOS.
For all cases, the idea is to use the original PPM algorithm is

to predict preliminary face and time-centered states, q1D, using
a one-dimensional advection equation for each direction d,

¶
¶

= -
¶
¶

q

t
U

q

x
, (6)d

d

and then use these states in a multidimensionally unsplit
discretization of the full equations of motion based on the ideas
in Colella (1990) and Saltzman (1994) to compute updated
face- and time-centered states. We now provide the details of
our method.

A.1 Case 1

Here we compute face- and time-centered estimates of the
normal velocity. We begin by computing preliminary face- and
time-centered estimates of all velocity components at every
face. Here, q will represent an arbitrary component of velocity
(u v, , or w). The following developments are for the x-direction
and we omit the j kand subscripts for ease of exposition; the
equations for the y- and z-directions are analogous. The first step
is to construct a parabolic profile, q(x), in each zone following
the methodology discussed in Colella & Woodward (1984)

x x= + - + -- + -( )q x q x q q q x( ) ( ) (1 ( )) , (7)i i i i, , , 6,

where -qi, and +qi, are the limited edge values of the parabola
and = - +- +q q q q6 3( )i i i i6, , , is related to the curvature. The
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quantity x x( ) converts x into the fraction of the zone from the
left edge.

The parabolic profiles are then integrated along character-
istics to get the average value swept over the high and low
faces over the time step. By defining

s =
D
D

u
t

x
, (8)i

we obtain:

s
s

=

ì

í

ïïïï

î
ïïïï

-
é

ë
ê
ê

- -
æ
è
ççç -

ö
ø
÷÷÷

ù

û
ú
ú

>

+

+ + -( )

( )q

q q q q u

q
2

1
2

3
, 0,

, otherwise, (9)

L i

i i i i i

i

1D

1 2

, , , 6,

s
s

=

ì

í

ïïïï

î
ïïïï

+
é

ë
ê
ê

- +
æ
è
ççç -

ö
ø
÷÷÷

ù

û
ú
ú

<

-

- + -( )

( )q

q q q q u

q
2

1
2

3
, 0,

, otherwise. (10)

R i

i i i i i

i

1D

1 2

, , , 6,

Then, for the normal velocity components, we solve a Riemann
problem to obtain the preliminary state at the face,

=

=

ì

í

ïïïïïï

î

ïïïïïï

+ >

+ <

+ + +

+ +

+ + +

+ + +

⩽ ⩾

( )( ) ( )
( ) ( )

( ) ( ) ( )
( ) ( ) ( )

u u u

u u

u u u

u u u

,

0, 0 AND 0,

, 0,

, 0.
(11)

i L i R i

L i R i

L i L i R i

R i L i R i

1 2
1D 1D

1 2

1D

1 2

1D

1 2

1D

1 2

1D

1 2

1D

1 2

1D

1 2

1D

1 2

1D

1 2

1D

1 2

Next, we obtain the preliminary face- and time-centered
transverse velocities using upwinding,

=

=
ì
í
ïï

î
ïïï

>

<

+ + + +

+ +

+ +

( )( ) ( )v v v u

v u

v u

, ,

( ) , 0,

( ) , 0.
(12)

i
D

L i R i i

L i i

R i i

1 2
1 1D

1 2

1D

1 2 1 2
1D

1 2
1D

1 2
1D

1 2
1D

1 2
1D

We now have u1D and v1D at each face. The next step is
compute updated face- and time-centered normal velocities by
accounting for the transverse derivative and source terms we
have ignored so far. In two dimensions, first compute

+u( )L i j1 2, and +u( )R i j1 2, using, e.g.,



= -
D æ

è

ççççç

+ ö

ø

÷÷÷÷÷

´
æ

è

ççççç

-

D

ö

ø

÷÷÷÷÷
+

D

+
+

+ -

+ -

( )

( )

u u
t v v

u u

y

t

( )
2 2

2
, (13)

i

L i j L i j

i j i j

i j i j
u

1 2,
1D

1 2,

, 1 2
1D

, 1 2
1D

, 1 2
1D

, 1 2
1D

followed by a Riemann solver to obtain the final face- and
time-centered state,

 =+ + +( )u u u( ) , ( ) . (14)i j L i j R i j1 2,
ADV,

1 2, 1 2,

In three dimensions, instead of Equation (13) we use



= -
D æ

è

ççççç

+ ö

ø

÷÷÷÷÷

´
æ

è

ççççç

-

D

ö

ø

÷÷÷÷÷

-
D æ

è

ççççç

+ ö

ø

÷÷÷÷÷

´
æ

è

ççççç

-

D

ö

ø

÷÷÷÷÷
+

D

+
+

+ -

+ -

+ -

+ -

( )

( )

u u
t v v

u u

y

t w v

u u

z

t

( )
2 2

2 2

2
,

(15)
i

L i j k L i j k

i j k i j k

i j k
y z

i j k
y z

i j k i j k

i j k
z y

i j k
z y

u

1 2, ,
1D

1 2, ,

, 1 2,
1D

, 1 2,
1D

, 1 2, , 1 2,

, , 1 2
1D

, , 1 2
1D

, , 1 2 , , 1 2

where to account for transverse corner coupling, we compute
the intermediate states as in Colella (1990) and Saltzman
(1994). For example,

= -
D æ

è

ççççç

+ ö

ø

÷÷÷÷÷

´
æ

è

ççççç

-

D

ö

ø

÷÷÷÷÷

+
+

+ -

+ -

( )u u
t w w

u u

z

( )
3 2

,

(16)

L
y z

i j k
L i j k

i j k i j k

i j k i j k

, 1 2,
, 1 2,

, , 1 2
1D

, , 1 2
1D

, , 1 2
1D

, , 1 2
1D

=
æ
è
ççç

ö
ø
÷÷÷+ + + +( ) ( )u u u v, , . (17)i j k

y z
L
y z

i j k
R
y z

i j k
i j k, 1 2, , 1 2, , 1 2,
, 1 2,
1D

A.2 Case 2

Here we compute face and time-centered estimates of each
component of velocity at every face. The details are the same as

Case 1 up until Equation (8). Now we can use
~
U

ADV
for

characteristic tracing and upwinding whenever possible.
Specifically, we define

s =
D
D

 u
t

x
, (18)i 1 2

ADV

and compute

s
s

=

ì

í

ïïïïïïï

î

ïïïïïïï

-
é

ë
ê
ê

- -
æ
è
ççç -

ö
ø
÷÷÷

ù

û
ú
ú

>

+

+
+

+ - +

+

( )

( )q

q q q q

u
q

2
1

2

3
,

0,
,

otherwise,

(19)

L i

i i i i

i

i

1D

1 2

, , , 6,

1 2
ADV

s
s

=

ì

í

ïïïïïïï

î

ïïïïïïï

+
é

ë
ê
ê

- +
æ
è
ççç -

ö
ø
÷÷÷

ù

û
ú
ú

<

-

-
-

+ - -

-

( )

( )q

q q q q

u
q

2
1

2

3
,

0,
,

otherwise,

(20)

R i

i i i i

i

i

1D

1 2

, , , 6,

1 2
ADV

=+ + + +( )( ) ( )q q q u, , . (21)i L i R i i1 2
1D 1D

1 2

1D

1 2 1 2
ADV
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We now have q1D at each face. We now account for the
transverse derivative terms to compute updated face- and time-
centered states +q( )L i j1 2, and +q( )R i j1 2, using, in two
dimensions,



= -
D æ

è

ççççç

+ ö

ø

÷÷÷÷÷

´
æ

è

ççççç

-

D

ö

ø

÷÷÷÷÷÷
+

D

+
+

+ -

+ -

( )

( )

q q
t v v

q q

y

t

( )
2 2

2
, (22)

i

L i j L i j

i j i j

i j i j
q

1 2,
1D

1 2,

, 1 2
ADV

, 1 2
ADV

, 1 2
1D

, 1 2
1D

followed by an upwinding step to obtain the final face- and
time-centered state,

=+
+

+ + +( )q q q u( ) , ( ) , . (23)i j
n

L i j R i j i j1 2,
1 2

1 2, 1 2, 1 2,
ADV

In three dimensions we use



= -
D æ

è

ççççç

+ ö

ø

÷÷÷÷÷

´
æ

è

ççççç

-

D

ö

ø

÷÷÷÷÷÷

-
D æ

è

ççççç

+ ö

ø

÷÷÷÷÷

´
æ

è

ççççç

-

D

ö

ø

÷÷÷÷÷÷
+

D

+
+

+ -

+ -

+ -

+ -

( )

( )

q q
t v v

q q

y

t w v

q q

z

t

( )
2 2

2 2

2
(24)

i

L i j k L i j k

i j k i j k

i j k
y z

i j k
y z

i j k i j k

i j k
z y

i j k
z y

q

1 2, ,
1D

1 2, ,

, 1 2,
ADV

, 1 2,
ADV

, 1 2, , 1 2,

, , 1 2
ADV

, , 1 2
ADV

, , 1 2 , , 1 2

where to account for transverse corner coupling, we compute
the intermediate states as in Colella (1990) and Saltzman
(1994). For example,

= -
D æ

è

ççççç

+ ö

ø
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´
æ

è

ççççç

-

D

ö

ø

÷÷÷÷÷÷

+
+

+ -

+ -

( )q q
t w w

q q

z

( )
3 2

,

(25)

L
y z

i j k L i j k
i j k i j k

i j k i j k

, 1 2,
, 1 2,

, , 1 2
ADV

, , 1 2
ADV

, , 1 2
1D

, , 1 2
1D

=
æ
è
ççç

ö
ø
÷÷÷+ + + +( ) ( )q q q v, , . (26)i j k

y z
L
y z

i j k R
y z

i j k
i j k, 1 2, , 1 2, , 1 2,
, 1 2,
ADV

A.3 Case 3

Here we compute face and time-centered estimates of a q
that obeys a conservative equation. The details are the same as
Case 2 up through Equation (22). We also note that in Step 2A,

we use UADV,pred instead of
~
U

ADV
. The difference between

Case 2 is in the form of the corner coupling and transverse

derivatives:



= -
D

´

æ

è

ççççççç

-

D
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÷÷÷÷÷÷÷÷

-
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+
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+ -

+ -

( ) ( )

( )

q q
t
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q

u u

x

t

( ) ( )
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2 2
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(27)
i i

L i j L i j

i j i j

i j i j
q

1 2, 1 2,
1D

1D ADV
, 1 2

1D ADV
, 1 2

1 2,
ADV

1 2,
ADV

We apply the same upwinding procedure in Equation (23) to
obtain the final face- and time-centered state, +

+qi j
n

1 2,
1 2. In three

dimensions we use


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with
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, (29)

L
y z

i j k L i j k

i j k i j k

, 1 2,
, 1 2,

1D ADV
, , 1 2

1D ADV
, , 1 2

along with the upwinding procedure in Equation (26).

APPENDIX B
TWO-DIMENSIONAL TESTS

Based on feedback from collaborators and the anonymous
referee, we have performed several two-dimensional XRB tests
to see how either the initial conditions or domain size can alter
the effects of the convection.
The first test we performed was to alter the strength of the

initial velocity perturbations that act as a seed to the
convection. Even though we expect the convection to “forget”
how it was initiated during the ∼200 convective turnover times
we simulate, this is an important check. The default velocity
perturbations in the simulations of the main paper, as well as
those of Malone et al. (2014), were 1 × 105 cm s−1. Figure 8
shows both the peak temperature and peak Mach number as a
function of time for five simulations, each with different initial
velocity perturbations as shown in the labels; here we only plot
every 500 steps to cut down on the image size. All simulations
track each other very nicely, and thus the development of the
convection does not depend strongly on the strength of the
initial perturbations. Figure 9 shows colormaps of the
magnitude of velocity for each of the five runs. They likewise
compare well with one another.
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The second test was designed to see if the domain size
choice we had made for our default runs, including those of the
three-dimensional simulation, were affecting the evolution of
the convective flow pattern. To this end, we performed two
additional simulations where we extended the default two-

dimensional domain (3072 cm × 4608 cm) in both the vertical
direction (to 3072 cm × 5760) and again in the horizontal
direction (to 6144 cm × 5760 cm). The results are shown in
Figure 10 where we plot the magnitude of velocity for each of
the three runs at t = 0.01 s; the default domain is on the left and

Figure 8. Evolution of the peak temperature (left) and peak Mach number (right) as a function of time for five simulations that differ only in the strength of the initial
velocity pertubation, which is given as the line labels. All of the simulations track one another well, giving credence to the fact that the developed convection does not
depend strongly on the initial pertubation strength. Every 500th point is plotted to minimize the image size.

Figure 9. Comparison of the magnitude of velocity field for the five simulations shown in Figure 8 at t = 0.01 s; the velocity label along the top of each image gives
the corresponding strength of the initial velocity perturbations. The extent of the convective region as well as the rough magnitudes of the flow field are quite similar
among the different runs.

Figure 10. Comparison of the magnitude of velocity field for three simulations of varying size at t = 0.01 s. The simulation on the left has the default size
(3072 cm × 4608 cm), the middle simulation has the bottom of the domain extended to the size (3072 cm × 5760 cm), and the right simulation has the lateral extent of
the domain extended to the size (6144 cm × 5760 cm). The general intensities of the velocity field and the extent of the convective region are not affected by the
default domain size we have chosen.
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has been shifted up by the 1152 cm difference, the middle
frame shows the tall domain, and the right shows the tall and
wide domain. These plots show that the shape and strength of
the flow in the convective region are only weakly affected by
the domain size. We note that had we chosen a domain width
less than the scale-height of the convection, this would have
constrained the eddy size quite strongly.
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