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ABSTRACT

We perform three-dimensional stratified shearing-box magnetohydrodynamic (MHD) simulations on the gas
dynamics of protoplanetary disks with a net vertical magnetic flux of Bz0. All three nonideal MHD effects,
Ohmic resistivity, the Hall effect, and ambipolar diffusion, are included in a self-consistent manner based on
equilibrium chemistry. We focus on regions toward outer disk radii, from 5 to 60 AU, where Ohmic resistivity tends
to become negligible, ambipolar diffusion dominates over an extended region across the disk height, and the Hall
effect largely controls the dynamics near the disk midplane. We find that at around R = 5 AU the system launches a
laminar or weakly turbulent magnetocentrifugal wind when the net vertical field Bz0 is not too weak. Moreover, the
wind is able to achieve and maintain a configuration with reflection symmetry at the disk midplane. The case with
anti-aligned field polarity (� · Bz0 < 0) is more susceptible to the magnetorotational instability (MRI) when Bz0
decreases, leading to an outflow oscillating in radial directions and very inefficient angular momentum transport. At
the outer disk around and beyond R = 30 AU, the system shows vigorous MRI turbulence in the surface layer due
to far-UV ionization, which efficiently drives disk accretion. The Hall effect affects the stability of the midplane
region to the MRI, leading to strong/weak Maxwell stress for aligned/anti-aligned field polarities. Nevertheless,
the midplane region is only very weakly turbulent in both cases. Overall, the basic picture is analogous to the
conventional layered accretion scenario applied to the outer disk. In addition, we find that the vertical magnetic flux
is strongly concentrated into thin, azimuthally extended shells in most of our simulations beyond 15 AU, leading to
enhanced radial density variations know as zonal flows. Theoretical implications and observational consequences
are briefly discussed.
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1. INTRODUCTION

Gas dynamics in protoplanetary disks (PPDs) is largely
controlled by nonideal magnetohydrodynamic (MHD) effects,
which include Ohmic resistivity, the Hall effect, and a ambipolar
diffusion (AD), because of the weak level of ionization. The
three effects coexist in PPDs, with Ohmic resistivity dominating
dense regions (the midplane region of the inner disk) and AD
dominating tenuous regions (the inner disk surface and the outer
disk), and the Hall-dominated region lies in between. While
Ohmic resistivity and AD have been studied extensively in the
literature, the role of the Hall effect remains poorly understood.
This paper is the continuation of our exploration on the role of
the Hall effect in PPDs, following Bai (2014, hereafter Paper I),
where an extensive summary of the literature and background
information were provided in great detail.

One of the major new elements introduced by the Hall effect
is that the gas dynamics depends on the polarity of the external
poloidal magnetic field (B0) threading the disk. Such an external
field is expected to be present in PPDs as inherited from the star-
formation process (see McKee & Ostriker 2007 and Crutcher
2012 for an extensive review) and is also required to explain
the observed accretion rate in PPDs (Bai & Stone 2013b; Bai
2013; Simon et al. 2013a, 2013b). Observationally, the large-
scale magnetic fields have been found to thread star-forming
cores (Chapman et al. 2013; Hull et al. 2014). It is conceivable
that the large-scale fields with B0 · � > 0 and B0 · � < 0

1 Hubble Fellow.

are equally possible, where � is along the disk rotation axis.
In PPDs, one would expect different physical consequences
for different field polarities in regions where the Hall effect is
important (�50–60 AU).

In Paper I, we focused on the inner region of PPDs (R �
15 AU), where the midplane region is dominated by Ohmic
resistivity and the Hall effect, and the disk upper layer is
dominated by AD. Without including the Hall effect, it has been
found that the magnetorotational instability (MRI; Balbus &
Hawley 1991) is completely suppressed in the inner disk, leading
to a laminar flow, and the disk launches a magnetocentrifugal
wind (Bai & Stone 2013b; Bai 2013). When the Hall effect is
included (Paper I), the basic picture of a laminar wind still holds,
but the radial range where a laminar wind solution can be found
depends on magnetic polarity: for B0 · � > 0, the range of a
stable wind solution is expected to extend to R ∼ 10–15 AU,
but for B0 · � < 0, the stable region is reduced to only up
to ∼3–5 AU. In addition, when B0 · � > 0, the horizontal
magnetic field is strongly amplified as a result of the Hall-shear
instability, where shear amplification of the radial field into the
toroidal field is fed by the conversion of the toroidal field back
to the radial field because of the Hall effect (see also Kunz
2008; Lesur et al. 2014). With opposite polarity, the Hall effect
acts destructively with shear and strongly reduces the horizontal
magnetic field.

The works in Paper I mainly employ quasi-one-dimensional
(1D) simulations to construct laminar wind solutions for the
inner disk. In this paper, we shift toward the outer disk and
consider regions where the MRI is expected to set in (beyond
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∼3–10 AU), up to the radius where the Hall effect has a signif-
icant influence (∼60 AU). We conduct full three-dimensional
(3D) simulations to accommodate turbulent fluctuations and po-
tentially large-scale variations. In this range of disk radii, the
midplane region is largely dominated by both the Hall effect
and AD, and AD is progressively more dominant toward the
disk surface layer. Without including the Hall effect, it was
found that the MRI is able to operate in the AD-dominated
midplane, although the level of turbulence is strongly reduced
because of AD (Bai 2013; Simon et al. 2013a). In addition,
as far-UV (FUV) ionization penetrates deeper (geometrically)
toward the outer disk, MRI can operate much more effectively
in the much-better-ionized surface FUV layer to drive disk ac-
cretion (Perez-Becker & Chiang 2011; Simon et al. 2013a).
Including the Hall effect, we expect a modification of the gas
dynamics in the disk midplane region that is dependent on the
polarity of the large-scale magnetic field.

We begin by studying the properties of the MRI in the
presence of both the Hall effect and AD using unstratified
shearing-box simulations and discuss its relevance in PPDs in
Section 2. In Section 3 we describe the numerical setup for our
full 3D stratified simulations of PPDs and run parameters. We
then present simulation results at two focusing radii, 30 AU
(Section 4) and 5 AU (Section 5), emphasizing the role played
by the Hall effect. We briefly discuss simulations at other disk
radii (15 and 60 AU) in Section 6, which help map out the
dependence of PPD gas dynamics on disk radii. In Section 7,
we summarize the main results and discuss observational
consequences, caveats, and future directions.

2. MRI WITH HALL EFFECT AND
AMBIPOLAR DIFFUSION

We begin by considering how the Hall effect affects the
general properties of the MRI in the outer region of PPDs.
We conduct unstratified shearing-box simulations that include
both the Hall term and AD. These generalize previous MRI
simulations with a single nonideal MHD effect (Bai & Stone
2011; Kunz & Lesur 2013) and are more appropriate for the
midplane regions of outer PPDs. The results will serve to guide
more realistic simulations for the rest of this paper.

All simulations in this paper are performed using the
ATHENA MHD code (Stone et al. 2008), with the relevant
nonideal MHD terms implemented in our earlier works (Bai &
Stone 2011, Paper I). Standard shearing-box equations and the
definitions of nonideal MHD effects can found in Section 2.2
of Paper I. In brief, dynamical equations are written in Carte-
sian coordinates in the corotating frame with a local disk patch
with angular velocity Ωez. As a convention, (x, y, z) represent
radial, azimuthal, and vertical coordinates, respectively. For the
unstratified simulations considered in this section, the vertical
gravity and Ohmic resistivity terms are dropped. An isothermal
equation of state P = ρc2

s is adopted with cs being the sound
speed. In code units, we have ρ0 = cs = Ω = 1, where ρ0 is
the initial gas density (or midplane density for stratified simula-
tions in the following sections). The unit for the magnetic field
is chosen such that magnetic permeability μ = 1. Nonideal
MHD diffusion coefficients are characterized by dimensionless
numbers (to be introduced in this section), based on which one
can convert physical units to code units.

In the following, we first discuss the relative importance
of the Hall effect and AD in the relevant regions of PPDs.
We then discuss the MRI linear dispersion relation in the
presence of both the Hall and AD terms. Finally, we proceed to

nonlinear unstratified shearing-box simulations. Our coverage
of parameter space is by no means complete, but they are chosen
to be relevant to the regions of PPDs that we study in the
remainder of the paper (midplane regions up to ∼60 AU).

2.1. Relative Importance of the Hall Effect and Ambipolar
Diffusion in PPDs

The Hall effect is characterized by a physical length scale
lH . In the absence of charged grains, it reads as (Kunz & Lesur
2013)

lH ≡ vA

ωH

=
(

ρ

ρi

)(
vA

ωi

)
, (1)

where vA = B/
√

4πρ is the Alfvén velocity, ωi is the ion
cyclotron frequency, ωH = (ρi/ρ)ωi is the Hall frequency, and
ρi and ρ are the mass densities of the ions and the bulk of the
gas, respectively, with ρi � ρ for weakly ionized gas. Note that
both vA and ωi are proportional to the magnetic field strength,
so lH is field-strength independent and is determined solely by
the ionization fraction. In disks, it is natural to normalize lH by
the disk scale height H ≡ cs/Ω. The associated Hall diffusivity
ηH can be expressed as

ηH = vAlH . (2)

At a fixed ionization fraction (∝ ρi/ρ), we have ηH ∝ B/ρ.
AD is characterized by the frequency with which neutrals

collide with ions γiρi , where γi is the coefficient of momentum
transfer for ion-neutral collisions. In the disk, it is natural to
normalize γiρi to the disk orbital frequency, by defining

Am ≡ γiρi

Ω
, (3)

which is the Elsasser number for AD. Generally, AD plays an
important role in the gas dynamics when Am � 10 (Bai & Stone
2011). The associated ambipolar diffusivity is given by

ηA = v2
A/γiρi . (4)

At a fixed ionization fraction, we have ηA ∝ (B/ρ)2.
The above definitions apply when electrons and ions are the

main charged species, where the physics can be described most
easily. Generalizations to include charged grains can be found
in, e.g., Wardle (2007) and Bai (2011a), which are used in our
vertically stratified simulations in subsequent sections.

Both ηH and ηA are inversely proportional to the ionization
fraction, while different scalings of ηH and ηA with gas density
indicate that AD becomes progressively more important toward
low-density regions (e.g., the outer disk). To quantify this, we
take the product of the two dimensionless numbers lH /H and
Am, which is independent of the ionization fraction:

Am ·
(

lH

H

)
= γiρ

ωi

(
vA

cs

)
∝

√
ρ

cs

. (5)

When adopting the minimum-mass solar nebula disk model
(MMSN; Weidenschilling 1977; Hayashi 1981), we have at disk
midplane ρ0 ∝ R−11/4, cs ∝ R−1/4 and hence Am · (lH /H ) ∝
R−9/8. More specifically, we find2

Am ·
(

lH

H

)
≈ 0.64

(
R

10 AU

)−9/8

. (6)

2 The factors γi and ωi depend on the mass of the ions. However, for the ion
mass mi 	 mH , the dependence diminishes. The value computed here
assumes the gas mean molecular weight μ = 2.33mH , following the formulas
in Bai (2011a).
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Figure 1. Linear growth rate of the MRI in the presence of the Hall effect and AD, in the case of a pure vertical background magnetic field and for modes with pure
vertical wavenumbers kz = k. The growth rate is drawn as a function of normalized wavenumber kvA/Ω and sgn(Bz)(1/χ0), with the two panels showing the results
for fixed Am = 100 (ideal MHD) and Am = 1 (strong AD). Note that no unstable mode exists for sgn(Bz)(1/χ0) � −2.

In the outer region of PPDs, the value of Am is found to be of
order unity for a wide range of disk radii (Bai 2011a, 2011b),
and this formula provides a very useful relation in estimating the
importance of AD and the Hall effect in PPDs. If we consider
the Hall effect to be important when lH /H � 0.1, then the
influence of the Hall effect extends to ∼50–60 AU.

For the MRI, the importance of the Hall effect and AD is
characterized by their respective Elsasser numbers, defined as
v2

A/ηΩ, with η being ηH or ηA. With the AD Elsasser number
introduced in Equation (3), the Hall Elsasser number can be
written as (also see in Paper I)

χ ≡ ωH

Ω
. (7)

Note that χ depends on field strength (∝ B) and also

lH

H
= 1

χ

vA

cs

= 1

χ

√
2

β
= X√

2β
, (8)

where the plasma β = 8πP/B2 is the ratio of gas to magnetic
pressure, and X ≡ 2/χ is another commonly adopted dimen-
sionless quantity in the literature (Sano & Stone 2002a, 2002b).
The nonideal MHD term with an Elsasser number of order unity
or less indicates that the term is physically significant.

A comparison between χ and Am reveals the relative im-
portance between the Hall effect and AD, where a larger value
indicates less importance. Using Equation (6), we find

Am

χ
≈ 4.5

√
β

100

(
R

10 AU

)−9/8

. (9)

Again, we see that Am and χ are likely of the same order for
a wide range of disk radii given the expected magnetic field
strength of β � 100 (saturated β) in the outer disk.

In our definition, ωH , lH , and χ are all positive. On the other
hand, the Hall term also depends on the polarity of the magnetic
field relative to �. To distinguish the two cases, we always state
explicitly in this paper the polarity of the background magnetic
field Bz0 > 0 or Bz0 < 0 for fields aligned and anti-aligned
with �.

2.2. Linear Properties

The linear dispersion relations of the MRI for general ax-
isymmetric perturbations in the Hall and AD regimes have been

derived separately in Balbus & Terquem (2001) and in Kunz
& Balbus (2004) and Desch (2004). The authors considered a
general background field configuration B0 = Bz0ez +Bφ0eφ and
general axisymmetric perturbations of the form exp (ik · x + σ t)
with k = kxex +kzez. The main results reveal that for linear MRI
modes, the Hall term is coupled only to the vertical magnetic
field, and the AD term is also coupled to the toroidal field. As
a result, the presence of a background toroidal field has little
effect on the Hall MRI, but it facilitates the MRI to operate in
the AD-dominated regime with Am � 1. A joint dispersion re-
lation including all nonideal MHD terms was given by Pandey
& Wardle (2012). They showed that while contributions from
the Hall and AD terms are independent, the joint effect is that
regimes stable to pure Hall MRI can be rendered unstable be-
cause of AD, a situation which again requires a net toroidal field
and strong AD (Am � 1).

Exploring the full parameter space of the MRI in the presence
of the Hall and AD effects with different field orientations using
nonlinear simulations is beyond the scope of this work. Here,
we restrict ourselves to a pure vertical background field with
either Bz0 > 0 or Bz0 < 0. This choice makes the dispersion
relation much simpler, and the most unstable mode has a pure
vertical wavenumber of kz = k. For these modes, AD behaves
the same way as Ohmic resistivity by replacing ηA with ηO (in
the linear regime). This case also covers the most essential MRI
physics relevant to PPDs: the Hall term is not directly coupled
to the toroidal field, and for AD, the background toroidal field
does not strongly affect the level of MRI turbulence for Am � 1
(Bai & Stone 2011).

In reference to previous works (e.g., Wardle 1999), we show
in Figure 1 the MRI growth rate for pure vertical modes k = kz

as a function of dimensionless wavenumber kvA0/Ω and 1/χ0,
where subscript 0 represents χ and vA determined from the
background field. Similarly, we use β0 to denote the plasma β
for the background field. The magnetic polarity is reflected from
sgn(Bz0). We consider two cases with Am = 1 and Am = 100.

For Am = 100 (very weak AD), the dispersion relation is well
described by pure Hall MRI. For Bz0 > 0, the most unstable
mode always has the maximum growth rate of 0.75 Ω−1, and
the most unstable wavelength λm shifts progressively to larger
scales with λm ∝ χ

−1/2
0 as the Hall term strengthens (χ0 → 0).

Normalizing to disk scale height, we find

λm

H
≈ 4π

√
lH

3H

(
2

β0

)1/4

≈ 0.5

√
3lH

H

(
104

β0

)1/4

. (10)
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Table 1
List of Unstratified Simulation Runs with Bz0 > 0

Run Res. Am lH β0 χ0 Ek EM αRey αMax α αmag

Q3A1B4-R24 24 1 0.3 104 0.047 4.6(−2) 2.4(−3) 3.0(−4) 5.0(−4) 8.0(−4) 0.21
Q3A1B4-R48 48 1 0.3 104 0.047 3.1(−2) 3.6(−3) 3.8(−4) 7.8(−4) 1.2(−3) 0.22

Q3A1B5-R24 24 1 0.3 105 0.015 1.4(−2) 3.7(−3) 4.3(−4) 8.8(−4) 1.3(−3) 0.24
Q3A1B5-R48 48 1 0.3 105 0.015 1.4(−2) 4.2(−3) 5.1(−4) 9.8(−4) 1.5(−3) 0.23

Q1A1B4-R24 24 1 0.1 104 0.14 1.6(−2) 2.6(−3) 5.9(−4) 6.1(−4) 1.2(−3) 0.24
Q1A1B4-R48 48 1 0.1 104 0.14 1.7(−2) 4.9(−3) 9.3(−4) 1.2(−3) 2.1(−3) 0.25

Q1A1B5-R24 24 1 0.1 105 0.045 1.0(−2) 1.7(−3) 3.8(−4) 2.3(−4) 6.1(−4) 0.14
Q1A1B5-R48 48 1 0.1 105 0.045 9.8(−3) 1.1(−3) 3.9(−4) 2.3(−4) 6.1(−4) 0.20

Notes. Values written in a(−b) denote a×10−b , lH is normalized to H, and Ek and EM are normalized to the midplane gas pressure ρ0c
2
s . See Section 2.3

for details.

For Bz0 < 0, unstable modes exist only when (1/χ0) < 2, and
the unstable wavenumber can extend virtually to infinity when
(1/χ0) > 1/2.

For Am = 1, we see that small-scale modes are strongly
suppressed. For Bz0 < 0, the most unstable modes have wave
numbers of kmvA/Ω ∼ 0.5. In the absence of the Hall effect
(1/χ0 = 0), λm is increased by a factor of ∼2 because of AD.
For Bz0 > 0 and toward a stronger Hall term (1/χ0 � 5), λm

is less affected by AD because it is shifted to larger scales, and
the maximum growth rate is only slightly reduced.

2.3. Unstratified Shearing-box Simulations

Our unstratified shearing-box simulations mainly serve for
calibrating and interpreting stratified simulation results. There-
fore, we do not aim at a thorough parameter study but mainly
focus on parameter regimes relevant to real PPDs. In this regard,
we consider the following set of parameters.

1. The Hall length lH = 0.1H or 0.3H .
2. Net vertical field strength, with β0 = 104 and 105.
3. Magnetic field polarity, Bz0 > 0 or Bz0 < 0.
4. The value of Am = 1, occasionally 10 and 100.

Our simulations use a fixed box size of 4H × 4H × 2H
in (x, y, z) dimensions. Note that our simulation box height
is 2H rather than H typically used in unstratified shearing-
box simulations, providing the potential to accommodate larger
spatial structures while not being unrealistically tall for real
disks. Our unstratified simulations can be performed with
relatively high spatial resolution, 48 cells per H in the x−z plane
(24 in the y dimension). We cannot afford the same resolution for
our stratified runs in Sections 3–5. Therefore, we also conduct
simulations with half the resolution to justify the use of lower
resolution in our stratified simulations.

We have chosen the value of Am = 1 that is appropriate for
the midplane region of the outer disk. From Equation (6), the
Hall length of lH ∼ 0.1 to 0.3H applies to the range of R ∼ 20
to 50 AU. Given β0 = 104 and 105, the corresponding value of
χ0 ranges from 0.015 to 0.14.

For Bz0 < 0, and for this range of χ0, there is no linearly
unstable MRI mode. However, this does not necessarily relate
to the nonlinear sustainability, given the relatively small value
of lH . Therefore, we first run simulations in the ideal MHD
limit to time t = 60 Ω−1, then we turn on nonideal MHD terms
and evolve further to time t = 300 Ω−1. In Figure 2, we show
the time evolution of three runs with Am = 1, 10, and 100
at fixed lH = 0.1 and β0 = 104. We see that for Am = 100,
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Figure 2. Nonlinear sustainability of the MRI turbulence in the case of Bz0 < 0.
The run is initialized under ideal MHD with β0 = 104 until t = 60 Ω−1 before
the Hall (with lH = 0.1H ) and AD terms are turned on. Without linearly
unstable MRI modes, turbulence is sustained for Am = 100 but decays for
Am = 10 and 1.

the MRI turbulence can be sustained but at a lower level, while
for Am = 10 and 1, turbulence is suppressed. We have also
tested with other values of β0 and lH , and we find that as long as
Am = 1, no sustained MRI turbulence is possible. This implies
that under this configuration the midplane region of the outer
disk is likely the exact analog of the conventional “dead zone.”

For Bz0 > 0, the background field configuration is unstable
to the MRI. We provide the list of runs and diagnostic quantities
in Table 1. The runs are named in the form QxAyBz-Rw,
where x = 10 lH /H , y = Am, z = log10(β0), and w is the
numerical resolution (24 or 48 per H). In all cases, we have
fixed the value of Am = 1. We find that vigorous turbulence is
quickly developed for all runs. Many of these runs show secular
effects in their evolution (to be discussed later), so we run these
simulations for a very long time to t = 1440 Ω−1 and extract
turbulence statistics by performing time and volume averages
after t = 1120 Ω−1 (denoted by the overline). Major diagnostic
quantities include kinetic energy density Ek = ρv2/2, magnetic
energy density EM = B2/2, Maxwell stress αMax ≡ −BxBy ,
and Reynolds stress αRey ≡ ρvxvy (the normalization factor
ρ0c

2
s is omitted because it is one in code units). The total

Shakura–Sunyaev α is αMax + αRey. Another useful diagnostic
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Figure 3. Snapshot from the end of our unstratified run Q3A1b4-R48 with
Am = 1, lH = 0.3H , and Bz0 > 0. The top panel shows the vertical magnetic
field Bz0, and the bottom panel shows the gas density ρ.

is αmag ≡ αMax/EM (e.g., Hawley et al. 2011; Sorathia et al.
2012), which is considered a useful indicator for numerical
convergence.

First, we find that for a relatively large lH = 0.3H and a
relatively strong field β0 = 104 a strong zonal field is gradually
built up on relatively long timescales (∼103 Ω−1). This results
from the concentration of the vertical magnetic flux pertaining
to the Hall effect, as studied in detail in Kunz & Lesur (2013).
In Figure 3, we show the final snapshot of our run Q3A1B4-
R48 at time t = 1440 Ω−1, which clearly shows the zonal field
structure. On the other hand, we find that the zonal field coexists
with vigorous turbulence and gives an α value of ∼10−3.
The presence of vigorous turbulence, rather than remaining in
the low-transport state, is largely due to relatively strong AD
with Am = 1: additional magnetic dissipation acts against the
buildup of magnetic flux (Kunz & Lesur 2013). We do not
observe prominent zonal field structures in runs with smaller lH
and weaker magnetic fields.

In the meantime, we find that in essentially all of our un-
stratified simulations, the density variation also shows signif-
icant zonal structure, leading to strong zonal flows to balance
the pressure gradient of the zonal density variation (Johansen
et al. 2009). Such density variation is not captured in Kunz &
Lesur (2013) because of their usage of incompressible code.
The density structure from our run Q3A1B4-R48 is shown
in the bottom panel of Figure 3, where the density variation
reaches ∼50%. As a result, the kinetic energy displayed in
Table 1 is largely dominated by the kinetic energy associated
with the zonal flow (vy ∼ 0.2–0.3cs). Other runs develop weaker
zonal density variations and weaker zonal flows as well. These
structures also develop over long timescales of ∼103 Ω−1 and
show secular variations. A full discussion on such zonal flows
is beyond the scope of this paper, but phenomenologically we
observe from our unstratified simulations that a stronger zonal

flow is launched when lH is larger and when the background field
is stronger.3

In all of our simulations, sustained MRI turbulence at the level
of α ∼ 10−3 is obtained. A stronger background vertical field
leads to stronger turbulence, and a larger lH also leads to stronger
turbulence until the zonal field configuration is developed, where
the turbulence level is reduced. We caution that for the param-
eters considered here, the most unstable MRI mode is not well
resolved. For the best-resolved case (run Q3A1B4-R48), we find
from Equation (10) that the most unstable wavelength amounts
to about 13 cells. We do not expect our simulations to show un-
ambiguous convergence on the value of α (and in fact the value
of α is also affected by the development of the zonal flows, which
show long timescale variations). Nevertheless, by looking at the
value of αmag, we find that low- and high-resolution simula-
tions give consistent values in all cases except for run Q1A1B5.
Moreover, by inspecting snapshots in runs with different resolu-
tions, we find that their evolutionary behaviors are qualitatively
similar in all cases. This gives us confidence that the 24 cells
per H adopted in our stratified runs is adequate to capture the
essential properties of the MRI in the Hall–AD regime.

In sum, our unstratified simulations of the MRI in the presence
of both the Hall effect and AD indicate that under conditions
appropriate for the outer region of PPDs (Am ∼ 1), the MRI
cannot be self-sustained in the midplane if Bz0 < 0, while for
Bz0 > 0, the self-sustained turbulence exists at the level of
α ∼ 10−3. When Bz0 > 0, we observe zonal fields develop
when the Hall term and background field are relatively strong,
and we find that zonal flows develop in all cases.

3. SETUP OF 3D STRATIFIED SIMULATIONS

We perform a series of 3D stratified shearing-box simulations
where all nonideal MHD effects are included self-consistently.
The setup of the simulations closely follows Paper I (with the
formulation given in Sections 2.1–2.2 and the methodology
given in Section 3.1). We briefly summarize the simulation setup
below with minor updates.

We consider an MMSN disk. While submillimeter continuum
observations suggest that disk surface-density profiles are typi-
cally shallower than MMSN scalings, the inferred disk surface
densities at a few tens of AU are approximately consistent with
MMSN values (e.g., Andrews et al. 2009). In addition, by ex-
ploring a wide range of disk radii from 5 AU to 60 AU, we cover
all of the essential physical effects as the midplane regions tran-
sition from being Hall dominated to AD dominated. Different
disk surface-density profiles may shift the transition radius but
must exhibit the same physical effects.

At a given radius R, we produce a diffusivity table based
on equilibrium chemistry using the chemical reaction network
developed in our earlier works (Bai & Goodman 2009; Bai
2011a) and the latest version of the UMIST database (McElroy
et al. 2013). Dust grains of 0.1 μm size and an abundance of 10−4

are assumed as in our previous works, where the total surface
area is consistent with typical grain-coagulation calculations
(e.g., Birnstiel et al. 2011). Cosmic rays, X-rays, and radioactive
decay are included as standard ionization sources. We further
include an effective treatment of the FUV ionization. It is
calibrated with the models of Walsh et al. (2010, 2012),

3 We note that MRI alone also generically leads to zonal flows and magnetic
flux concentration, as discussed in detail in Bai & Stone (2014), but they are
overwhelmed by the strong Hall effect in these unstratified Hall MRI
simulations. Stratified simulations do yield different results, to be discussed in
Sections 4.4.
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Table 2
List of Stratified Simulation Runs

Run R Hall? Bz0 β0 Box Size T αMax αRey δvz Ṁout |T Max
zφ | Section

(AU) (H) (Ω−1)

R5b5H+ 5 Yes + 105 4 × 8 × 12 360 6.5(−3) 1.6(−5) 1.0(−2) 3.0(−4) 3.1(−4) 5

R5b5H– 5 Yes − 105 4 × 8 × 12 360 4.2(−4) 3.4(−5) 5.0(−3) 1.1(−4) 1.64(−4) 5

R5b4H– 5 Yes − 104 4 × 8 × 12 360 1.3(−3) 4.6(−4) 1.4(−3) 3.2(−4) 6.7(−4) 5

R15b5H+ 15 Yes + 105 4 × 8 × 12 720 2.3(−3) 1.3(−4) 5.2(−3) 2.9(−4) 2.5(−4) 6.1

R15b5H– 15 Yes − 105 4 × 8 × 12 720 7.2(−4) 2.8(−5) 2.4(−3) 2.3(−4) 2.4(−4) 6.1

R15b4H+ 15 Yes + 104 4 × 8 × 12 720 2.3(−3) 3.1(−4) 8.2(−3) 6.1(−4) 8.8(−4) 6.1

R15b4H– 15 Yes − 104 4 × 8 × 12 720 3.0(−3) 1.7(−4) 8.6(−3) 8.0(−4) 1.1(−3) 6.1

R30b5H+ 30 Yes + 105 6 × 12 × 12 960 1.9(−3) 3.9(−4) 2.0(−2) 2.2(−4) 2.1(−4) 4

R30b5H0 30 No + 105 6 × 12 × 12 960 1.5(−3) 2.9(−4) 1.5(−2) 2.3(−4) 2.2(−4) 4

R30b5H– 30 Yes − 105 6 × 12 × 12 960 1.4(−3) 2.2(−4) 1.3(−2) 2.3(−4) 2.2(−4) 4

R30b4H+ 30 Yes + 104 6 × 12 × 12 960 6.1(−3) 4.4(−4) 2.0(−2) 1.5(−3) 1.7(−3) 4

R30b4H0 30 No + 104 6 × 12 × 12 960 4.8(−3) 5.4(−4) 2.4(−2) 1.1(−3) 1.4(−3) 4

R30b4H– 30 Yes − 104 6 × 12 × 12 960 5.0(−3) 6.5(−4) 2.4(−2) 1.2(−3) 1.4(−3) 4

R60b5H+ 60 Yes + 105 4 × 8 × 12 720 2.9(−3) 5.7(−4) 2.5(−2) 2.4(−4) 2.2(−4) 6.2

R60b5H– 60 Yes − 105 4 × 8 × 12 720 2.6(−3) 5.0(−4) 2.1(−2) 2.4(−4) 2.1(−4) 6.2

R60b4H+ 60 Yes + 104 4 × 8 × 12 720 9.3(−3) 4.4(−4) 8.9(−3) 2.0(−3) 1.9(−3) 6.2

R60b4H– 60 Yes − 104 4 × 8 × 12 720 7.3(−3) 4.3(−4) 1.1(−2) 1.8(−3) 2.0(−3) 6.2

Notes. αMax and αRey are computed within z = ±4.5H , T Max
zφ is evaluated at z = ±4.5H , and δvz is the turbulent vertical velocity within z = ±2H . See Section 4

for details.

recalculated based on our X-ray ionization parameters with
X-ray luminosity LX = 1030 erg s−1 and temperature TX = 5
keV. The FUV substantially increases ionization at the disk
surface, and the gas essentially behaves in the ideal MHD regime
in the FUV ionization layer. The diffusivities have the form
ηO ∝ B0, ηH ∝ B, and ηA ∝ B2, which are applicable given
the small grain abundance.

Unlike in Paper I, simulations in this work are full 3D because
we expect the MRI turbulence to develop. All of our simulations
have a vertical domain extending from z = −6 H to 6 H using
a resolution of 24 cells per H in x and z and half the resolution
in y. A density floor of 5 × 10−6ρ0 is applied for all simulations
to avoid numerical difficulties in the strongly magnetized disk
surface region (where ρ0 = 1 is the midplane gas density in
code units). For the simulations in Section 4 (at R = 30 AU),
we use a very extended horizontal box size of 6 H × 12 H in
(x, y) to better accommodate potentially large-scale structures.
Note that for an MMSN disk at 30 AU, the disk aspect ratio
H/R ≈ 0.078, so the radial box size is ∼14 AU, which is about
the maximum size where a shearing-sheet approximation can
be considered as reasonable. A smaller horizontal domain size
of 4 H × 8 H is used for simulations in Sections 5–6 to reduce
computational cost.

All simulations are started with all nonideal MHD terms
turned on and are initialized with a uniform vertical magnetic
field Bz0 characterized by a midplane plasma β0, together with
a sinusoidally varying (in x) vertical field Bz1 to avoid strong
initial channel flows (Bai & Stone 2013a). We choose Bz1 to
be 4Bz0 with a relatively high frequency of radial variations to
make simulations saturate more quickly:

Bz = Bz0 + 4Bz0 sin (8πx/Lx). (11)

Simulations are typically run to t = 960 Ω−1 or 720 Ω−1.

We have slightly modified the vertical outflow boundary
condition compared with Paper I. Here, the boundary condition
assumes hydrostatic equilibrium in ρ, outflow in vz, and zero
gradient in Bz, vx , and vy (same as Paper I), and Bx and By are
reduced proportionally with density in the ghost zones (different
from Paper I, same as in Simon et al. 2013a). We do observe
that the evolution of mean magnetic fields somewhat depends on
the treatment of the outflow boundary condition, which reflects
the limitation of the shearing box when using open boundaries
in the presence of disk outflow. Some of its influences will
be discussed in the main text. Nevertheless, the general flow
properties do not sensitively depend on the choice of vertical
boundary condition (Fromang et al. 2013).

We consider four disk radii: R = 5 AU, 15 AU, 30 AU, and
60 AU. At each radius, we consider β0 = 104 and 105 and for
both magnetic polarities. We mainly focus on two disk radii:
R = 30 AU (Section 4), where we further conduct Hall-free
simulations for detailed comparison; and R = 5 AU (Section 5),
where comparisons with quasi-1D simulations in Paper I will
be made. All 3D simulations are listed in Table 2. Simulation
runs are named as RxbyH∗, where x represents the disk radius
in AU, y = log10β0, and ∗ can be 0, + , or − for simulations
excluding the Hall term (0), with the Hall term and Bz0 > 0,
and with the Hall term and Bz0 < 0.

4. SIMULATION RESULTS: 30 AU

We focus on R = 30 AU in this section. We choose this radius
because we find that at this location the Hall effect around the
disk midplane is about as equally important as AD. The disk
is likely to develop more stable configurations at smaller disk
radii (for Bz0 > 0), as found in Paper I, and the Hall effect
becomes less prominent toward larger radii. This location has

6
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Figure 4. Time evolution of the vertical profile of horizontally averaged By in our runs at 30 AU with β0 = 105. The top, middle, and bottom panels correspond to
runs R30b5H+, R30b5H0, and R30b5H−, i.e., Hall turned on with Bz0 > 0, Hall-free, and Hall turned on with Bz0 < 0.

been explored in Simon et al. (2013a, 2013b), where only AD
was taken into account with a fixed profile of Am = 1 near
the midplane. Our new simulations self-consistently take into
account the ionization-recombination chemistry, together with
the Hall effect included for the first time.

We perform a total of six runs with β0 = 105 and 104. All
runs lead to vigorous MRI turbulence in the surface layer, and in
the presence of a net vertical magnetic field, they always launch
outflows. Different aspects of these runs are discussed in the
subsections below.

4.1. Evolution of a Large-scale Toroidal Field

The global evolution of the system is largely controlled by
magnetic fields, so we first discuss the overall evolution of a
large-scale toroidal field from our simulations as a standard
diagnostic. Starting from runs with β0 = 105, R30b5H+,
R30b5H0, and R30b5H−, we show in Figure 4 the time
evolution of the horizontally averaged By for all three runs.
Because the initial conditions for these simulations are identical
(except for a negative sign of Bz0 for run R30b5H−), these
runs initially proceed in a similar way. The Hall and AD
terms become progressively more important as (midplane)
magnetic fields become stronger, and the three runs then evolve
differently. All three cases show a prominent level of dynamo
activities emanating from the surface layer, where the sign of
mean By alternates over time. The alternation behavior is quite
irregular and to some extent similar to ideal MHD simulations
with a modestly strong vertical magnetic flux (β0 � 103, Bai &
Stone 2013a). It contrasts with the conventional MRI dynamo
(zero net vertical magnetic field in ideal MHD) that exhibits
very periodic cycles of about 10 orbits (e.g., Davis et al. 2010;
Shi et al. 2010).

We next discuss simulations with β0 = 104, with three runs
R30b4H+, R30b4H0, and R30b4H−. Similar to the weaker field
case, all three runs develop vigorous turbulence mainly in the
surface layer because of FUV ionization (see next subsection).
The time evolution of horizontally averaged By for the three runs
is shown in Figure 5. We see that the MRI dynamo is suppressed

in all cases, and the mean toroidal field is predominantly one
sign. This is generally a consequence of a stronger net vertical
field, which is an analog of the ideal MHD case (Bai & Stone
2013a). While the system is turbulent, the toroidal field is
always the dominant field component, and when the dynamo is
suppressed, this field component is dominated by the mean field.
However, by viewing individual simulation snapshots, localized
patches possessing opposite signs for the toroidal field do exist
in runs R30b4H0 and R30b4H−. In the latter case, the region
with opposite By gradually grows and eventually leads to the
reversal of the mean toroidal field in the disk (bottom panel of
the figure). We have continued this run further and found that
the mean By will reverse again after another ∼300 Ω−1, and
this cycle is likely to continue. Similarly, the positive By region
started to dominate the upper half of the disk near the end of our
run R30b4H0.

The secular evolution of the mean field discussed above ex-
ists in all of our simulations to a certain extent, and this is
partly related to the limitations of the shearing-box approach:
with an imposed net vertical field that presumably connects to
infinity, the mean field in the disk should be in causal con-
tact with the field beyond, but the causal connection is trun-
cated with the prescribed outflow boundary condition. Because
most activities in disks are magnetically driven, the secular
evolution of the mean fields also makes the level of turbu-
lence in disks time variable. For example, in run R30b4H−,
the midplane region exhibits stronger turbulent activities
around time t = 480–600 Ω−1 with turbulent velocity about
a factor of three higher than some other periods. Therefore,
readers should bear in mind the potential uncertainties that are
due to such variabilities.

4.2. Stress Profiles and Level of Turbulence

Based on the time evolution of the mean field, we extract
useful diagnostic quantities and average them in time from
t = 480 Ω−1 onward for simulations with β0 = 105, and from
t = 360 Ω−1 onward for simulations with β0 = 104. The mean
vertical profiles of these quantities are shown in Figures 6 and 7.
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Figure 5. Same as Figure 4, but for runs at 30 AU with β0 = 104.
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Figure 6. Vertical profiles of various horizontally averaged diagnostic quantities from our runs at 30 AU with β0 = 105. Top left: the Ohmic (Λ), Hall (χ ), and
ambipolar (Am) Elsasser numbers in blue dash-dotted, black dashed, and red solid lines, together with plasma β in a thin gray line. The profile is extracted from the
Hall-free run R30b5H0 (almost identical to the other two runs). Bottom left: vertical turbulent velocity. The remaining three panels show various profiles for all three
runs of R30b5H+ (red solid), R30b5H0 (black dashed), and R30b5H− (blue dash-dotted). Top right: Maxwell stress −BxBy . Bottom right: Reynolds stress ρvxvy .
The gray vertical dashed lines mark the location where Am = 100 in run R30b5H0.

8



The Astrophysical Journal, 798:84 (18pp), 2015 January 10 Bai

−6 −4 −2 0 2 4 6

10
0

10
1

10
2

10
3

10
4

z/H

E
ls

as
se

r 
N

um
be

r

 

 

−6 −4 −2 0 2 4 6

10
−2

10
−1

10
0

z/H

V
er

tic
al

 T
ur

bu
le

nt
 V

el
oc

ity

 

 

−6 −4 −2 0 2 4 6
10

−4

10
−3

10
−2

z/H

M
ax

w
el

l S
tr

es
s

 

 

Am
χ
Λ
beta

B
z
>0

No Hall
B

z
<0

B
z
>0

No Hall
B

z
<0

Figure 7. Same as Figure 6 without the bottom right panel, but for runs at 30 AU with β0 = 104. The vertical dashed line labels the location where Am = 100 in run
R30b4H0.

The relative importance of various nonideal MHD effects can
be best viewed from the top left panel of Figure 6 and the left
panel of Figure 7. They show the profiles of the Elsasser numbers
(based on the Hall-free run in each case, but the runs with the
Hall term generally give almost the same profiles). Clearly,
Ohmic resistivity is completely negligible with Λ 	 100 at
all heights. With β0 = 105, both the Hall effect and AD
are important within z ∼ ±2–2.5H with χ and Am being
around one, and the range of influence of AD extends higher
from the midplane than the Hall effect. The Hall effect is less
important relative to AD with stronger net flux β0 = 104 because
the resulting total field is stronger. Beyond z ∼ 2.5H , FUV
ionization catches up and all nonideal MHD effects are greatly
reduced. Beyond z = ±3H , the gas behaves essentially in the
ideal MHD regime with Am > 100.

Vigorous MRI turbulence takes place beyond about z ∼
±2.5H thanks to FUV ionization. As a result, the profile of
the Maxwell stress T Max

Rφ = −BxBy peaks at around z = ±3H ,
as shown in the top right panel of Figure 6 and the middle
panel of Figure 7. Beyond z ∼ ±3H , the Maxwell stress
drops because disk density drops, and it enters the magnetically
dominated corona (plasma β < 1). All three runs at a given
β0 show very similar properties in this region because the gas
behaves in the ideal MHD regime. Runs with β0 = 104 have
a systematically higher Maxwell stress than the corresponding
β0 = 105 runs by a factor of three to four as a result of a stronger
background field.

The midplane region is where three simulations at fixed β0
are expected to differ because of the Hall effect. The most
prominent difference lies in the Maxwell stress. The runs with
Bz0 > 0 give the highest stress that peaks at the midplane.
This is related to the Hall-shear instability (Kunz 2008), which
operates only when Bz0 > 0 and is responsible for generating
stronger horizontal magnetic fields and hence Maxwell stress in
the inner disk (Lesur et al. 2014; Paper I). Here, the effect
is much less prominent than in the inner disk studied in
Paper I and Lesur et al. (2014) because the Hall effect is only
modestly significant (χ ∼ 1). The runs with Bz0 < 0 give the
lowest midplane Maxwell stress, while the Maxwell stress from
R30b5H0 (without the Hall term) lies in between. This is again
consistent with the expectation from Paper I that the horizontal
magnetic field tends to be reduced for negative Bz0.

As discussed in Section 2, for Bz0 > 0, the midplane region
is unstable to the MRI, and the level of MRI turbulence is
expected to be stronger than in the Hall-free case. For Bz0 < 0,

self-sustained MRI turbulence is not expected because of the
Hall effect. To characterize the level of turbulence, we consider
the vertical component of the rms velocity, which is shown in the
bottom left panel of Figure 6 and the right panel of Figure 7 for
the two sets of runs. They are computed based on the turbulent
kinetic energy at each height.4 In the same way, we define δvz

to be the rms vertical velocity fluctuation within z = ±2H for
all of our runs, which is included in Table 2.

We see that the turbulent rms vertical velocity reaches
∼0.3–0.8cs at the disk surface (z ∼ ±4H ) for all of these
runs, while it is reduced by more than one order of magnitude
to ∼0.01–0.03cs around the disk midplane. For β0 = 105, the
run with Bz0 > 0 gives a higher midplane turbulent velocity, the
run with Bz0 < 0 gives the lowest, and the Hall-free run lies in
between, which is consistent with our expectation. Nevertheless,
the difference is within a factor of two, so the role of the Hall
effect in the midplane turbulent activities is only modest. While
we caution that the level of turbulence in the Bz0 > 0 case may
be underestimated because of the lack of numerical resolution,
the overall scenario is similar to the Hall-free case: turbulence
in the midplane region is substantially reduced largely because
of AD, consistent with the earlier stratified AD simulations of
(Simon et al. 2013a, where the midplane region was termed an
“ambipolar-damping” zone). In the case of Bz0 < 0, because
the MRI cannot be self-sustained at the disk midplane, the
midplane turbulent motion is largely induced by the strong
MRI turbulence from the disk surface layer. This is a direct
analog of the conventional “Ohmic dead zone” of the inner disk
(e.g., Fleming & Stone 2003; Turner & Sano 2008; Oishi &
Mac Low 2009).5

For β0 = 104, we find that the level of midplane turbulence in
all three runs are very similar (modulo some secular variations
not reflected in the time-averaged plots), despite the marked
difference in Maxwell stress. We have checked that for Bz0 > 0,
the midplane Maxwell stress is dominated by contributions
from the large-scale field (−BxBy), while for Bz0 < 0, the
midplane Maxwell stress is almost entirely due to the turbulent
field. The turbulent contributions of the midplane Maxwell

4 A turbulent velocity calculated in this way is partially weighted by density.
Results without additional weighting are almost identical.
5 On the other hand, because Ohmic resistivity and AD scale with magnetic
field strength very differently, increasing the net vertical field tends to make
midplane regions more laminar in the outer disk because of AD (Simon et al.
2013a), rather than more turbulent in the conventional Ohmic dead-zone case
(Gressel et al. 2012; Okuzumi & Hirose 2012).
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stress from the two runs R30b4H+ and R30b4H− are in fact
similar. We have also checked that for β0 = 105 the midplane
Maxwell stress is always dominated by turbulent stress. The
low level of turbulence in run R30b4H+ may be considered to
be a consequence of the strong mean toroidal field (By), which
dominates the magnetic field strength and tends to suppress
turbulent motions (but see also Section 4.4).

Overall, based on the six simulations with different strengths
and polarities of the net vertical field, it is clear that the Maxwell
stress profile (and hence the radial transport of angular momen-
tum) is layered. Moreover, it appears that δvz ≈ 0.01–0.02cs is
a good proxy for the level of turbulence in the midplane region
of the outer disks, with much stronger turbulence in the FUV
ionization layer at the disk surface.

4.3. Angular Momentum Transport and Disk Outflow

Outflow is always launched in shearing-box simulations in
the presence of a net vertical magnetic flux (e.g., Suzuki &
Inutsuka 2009). Although this outflow may serve as a wind-
launching mechanism, the kinematics of the outflow is not well
characterized in shearing-box simulations because the rate of
mass outflow does not converge with simulation box height
(Fromang et al. 2013) and there are also symmetry issues (Bai
& Stone 2013a). Therefore, we do not aim at fully characterizing
the outflow properties but simply provide some basic diagnostics
for reference. We calculate the rate of mass outflow leaving
the simulation box Ṁout. This is computed by time averaging
the sum of vertical mass flux at the two vertical boundaries.
We also calculate the zφ component of the Maxwell stress
tensor T Max

zφ = −BzBφ , which determines the rate of wind-
driven angular momentum transport (if the outflow is eventually
incorporated into a global magnetocentrifugal wind). If the flow
is laminar, Tzφ can be conveniently evaluated at the base of the
wind, where the toroidal velocity transitions from sub-Keplerian
to super-Keplerian (Bai & Stone 2013b; Bai 2013). Because
most of our simulation runs are highly turbulent at the disk
surface, and there are ambiguities in defining the base of the
wind (and whether the outflow can become a global wind at all;
Bai & Stone 2013a), we simply provide a reference value of
time-averaged |T Max

zφ | evaluated at z = ±4.5H in Table 2.
The value of the Shakura–Sunyaev α for a stratified disk can

be written as

α =
∫

TRφdz

c2
s

∫
ρdz

, (12)

where TRφ has contributions from both the Maxwell stress
(−BxBy) and Reynolds stress (ρvxvy), leading to αMax and
αRey in Table 2. From the lower right panel of Figure 6, we
see that the vertical profile of the Reynolds stress is generally
a factor of several smaller than the Maxwell stress. Because of
uncertainties in characterizing the outflow from shearing-box
simulations, we truncate the vertical integral at z = ±4.5H in
the equation above. For the six runs, the values of α are found
to be around 1.5–2 × 10−3 for β0 = 105 and 5–6 × 10−3 for
β0 = 104. As discussed in the previous subsection, a stronger
net vertical field yields larger stress. These α values are also
comparable to results from Simon et al. (2013a) with FUV
penetration depth 0.01g cm−2, but they have incorporated more
realistic chemistry.

In a steady state, the total accretion rate driven by radial
transport of angular momentum (given by α) and the putative
wind-driven accretion (given by Tzφ) can be approximately

written as (e.g., Bai 2013)

Ṁ ≈ 2π

Ω
αc2

s Σ +
8π

Ω
R|Tzφ|,

Ṁ−8 ≈ 0.82

(
α

10−3

)
R

−1/2
AU + 4.1

( |Tzφ|
10−4ρc2

s

)
R

−3/4
AU , (13)

where RAU is the radius measure in AU, and we have assumed
an MMSN disk model in the second equation, with Ṁ−8 being
the accretion rate measured in 10−8 M� yr−1.

Using the values from Table 2 with R = 30 AU, we find
that based on radial transport alone, the resulting accretion
rate is about 0.24–0.33 × 10−8 M� yr−1 for the three runs with
β0 = 105 studied here, which is somewhat smaller than desired.
If there were contributions from disk wind, the estimated
wind-driven accretion rate is about 0.7 × 10−8 M� yr−1. The
sum of the two contributions just matches the desired rate
of 10−8 M� yr−1. For β0 = 104, the accretion rate resulting
from radial angular momentum transport gives ∼0.72–0.91 ×
10−8 M� yr−1, with a potential contribution from the wind to
give ∼5 × 10−8 M� yr−1.

4.4. Zonal Field and Zonal Flow

For our 30 AU simulations, we find in using Equation (8)
and from the Elsasser number plots in Figures 6 and 7 that
lH ≈ 0.2H around the disk midplane, which is about the
threshold value to trigger the zonal field configuration in the
unstratified case, as discussed in Kunz & Lesur (2013). In
Section 2 we showed in Figure 3 that a strong zonal field and
zonal flow are present in unstratified simulations when β0 = 104

and Bz0 > 0. To check whether our stratified simulations reveal
similar behaviors, we show in Figure 8 the time evolution
of mean gas density ρ and Bz for runs 30AUb4H± and
30AUb5H±, averaged in the y and z dimensions, within the
disk region −2H � z � 2H .

We find that, strikingly, for all runs, the vertical magnetic flux
is concentrated into thin (axisymmetric) shells, while in regions
outside these shells, the net vertical flux is close to zero. In the
meantime, there are very prominent radial density variations that
are characteristic of strong zonal flow. There is a clearly secular
evolution of the vertical magnetic flux distribution and zonal
flows; this is also related to the secular behaviors discussed in
Section 4.1. At first glance, these features appear to be consistent
with those shown in Figure 3 from our unstratified simulations.
However, there are distinct differences. In particular, both the
Bz0 > 0 and Bz0 < 0 cases show such zonal fields, while
from unstratified simulations a zonal field is expected only from
the Bz0 > 0 case. Also, the width of the zonal field is very
small (<0.5H ), while from unstratified simulations the width is
generally wider than H.

In fact, we find that the concentration of magnetic flux is a
generic behavior in shearing-box simulations with a net vertical
magnetic flux. Not only simulations with the Hall effect, but
also our Hall-free simulations at 30 AU, together with many
simulations at other disk radii, show this behavior to some level.
We also find that the concentration is less prominent when
the net vertical field is weaker, as one compares the top and
bottom panels in Figure 8. Accompanying the magnetic flux
concentration is the strong zonal flow, the density of which varies
across the domain up to ∼30%. An enhanced zonal flow in the
presence of a net vertical magnetic flux was reported in Simon
& Armitage (2014) based on stratified shearing-box simulations
in the AD-dominated outer disk. Such zonal flows also exist in
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Figure 8. Time evolution of the radial profiles of mean gas density ρ (upper panels) and mean vertical magnetic field Bz (lower panels) averaged over the y−z plane
within z = ±2H in our runs R30b4H+ (upper left), R30b4H− (upper right), R30b5H+ (lower left), and R30b5H− (lower right). The color scales are centered in their
mean values (in code units).

our earlier simulations including both Ohmic resistivity and AD
closer in (at 10–20 AU; Bai 2013), and we have verified that, in
general, there is only one single “wavelength” of the density/
pressure variation across the radial domain, regardless of the
radial domain size (Bai 2013, unpublished).

In our follow-up study (Bai & Stone 2014), we show that in
the presence of a net vertical magnetic field, the magnetic flux
concentration is a natural consequence of the MRI itself. Re-
gions with a strong magnetic flux yield a larger Maxwell stress,
which drives enhanced zonal flows with flux-concentrated re-
gions corresponding to density minima. AD further enhances
the concentration to yield sharp vertical flux profiles. From
Figure 8, we see that the location where magnetic flux con-
centrates significantly correlates with the density minimum, es-
pecially in runs R30b4H + and R30b5 + . The correlation is less
pronounced in runs with Bz0 < 0, which reflects the fact that
MRI is not operating in the midplane. Moreover, because the
surface layer is fully MRI turbulent, the magnetic flux distri-
bution is also likely affected by the surface MRI in the ideal
MHD regime.

In sum, the zonal field and zonal flow observed in our
stratified simulations are not due to the Hall effect as reported in
unstratified simulations, but are correlated phenomena generic

to the MRI with a net vertical magnetic flux. Although the
saturation of the zonal flow is artificially affected by the
simulation box size, its association with the magnetic flux
concentration is very likely a physical phenomenon. Our local
simulations here serve as a first study of the PPD gas dynamics
including all nonideal MHD effects, and more works, especially
global simulations, are needed to quantify their properties.

5. SIMULATIONS AT 5 AU

Our second focused location is at the relatively small radius
of R = 5 AU, which complements our studies in Paper I.6

Using quasi-1D simulations, we found in Paper I that for
Bz0 > 0 the inner disk launches a laminar magnetocentrifugal
wind and very efficiently drives disk accretion. In constructing
the wind solutions, we enforced reflection symmetry about
the disk midplane so that the wind solution has the desired
symmetry properties to match a physical magnetocentrifugal
wind (i.e., the horizontal component of the magnetic field must
flip across the disk). It remains to be demonstrated that this wind

6 To better compare with the results in Paper I, we run the simulations at
5 AU with the same vertical outflow boundary condition as in Paper I instead
of the modified version in the rest of the simulations.
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Figure 9. Time evolution of the vertical profile of horizontally averaged By in our runs at 5 AU. The top, middle, and bottom panels correspond to runs R5b5H+,
R5b5H−, and R5b4H−.

configuration is stable in 3D without enforcing the symmetry.
Another important result from Paper I is that for Bz0 < 0,
we did not find any stable wind configuration for the typically
expected level of vertical magnetic field strength at this location
(β0 = 105–106) because MRI sets in in a very narrow range of
disk height. It remains to be demonstrated how the disk behaves
under this situation.

We have performed three runs. For Bz0 > 0 we consider
β0 = 105 (run R5b5H+), and for Bz0 < 0 we consider β0 = 105

and 104 (runs R5b5H− and R5b4H−). From Paper I, we expect
largely laminar configurations to be developed for runs R5b5H+
and R5b4H−, launching a magnetocentrifugal wind; the MRI
should set in for run R5b5H−. In Figure 9, we again show the
space-time plot of the horizontally averaged By for the three
runs. Given the highly regular patterns seen in this figure, it
suffices to run these simulations just to t = 360 Ω−1 and then
perform a time average from t = 180 Ω−1 onward.

5.1. Simulation with Bz0 > 0

For run R5b5H+, we see from the top panel of Figure 9 that
the system is able to achieve a largely laminar state as desired.
More interestingly, the toroidal field changes sign almost exactly
at the disk midplane, automatically maintaining the reflection
symmetry (more specifically, even-z symmetry; see Figure 9 of
Bai & Stone 2013b). Achieving this field geometry is essential
for physically launching a magnetocentrifugal wind. Our full
3D simulation therefore supports the procedure adopted in
Paper I where the reflection symmetry across the midplane was
enforced.

Checking the time-averaged vertical profiles of the main
diagnostic quantities, we find that the result is almost identical
with Figure 9 of Paper I (with a slight difference because our
box extends to z = 6 H rather than 8 H ). For this solution, the
horizontal magnetic field near the midplane is strongly amplified
by the Hall shear instability, and the flip of this horizontal field
creates a strong current density at the midplane. This contrasts
with the study by Bai (2013), where without the Hall term, the
strong current layer was found to be located offset from the

midplane at zSC ≈ 1.3H in this particular case (see his Table 2
for run S-R5-b5). It appears that with the Hall term included, the
horizontal magnetic field tends to flip right across the midplane
rather than from the upper layers.

In Figure 10, we further show the vertical profiles of time-
averaged Maxwell stress and vertical turbulent velocities. For
run R5b5H+, the Maxwell stress profiles peak close to the disk
midplane at a rather high level close to 10−2ρ0c

2
s as a result of

the Hall shear instability. The dip at the midplane is due to the
flip of the horizontal field, all in agreement with the results in
Paper I. For the turbulent velocity profiles, however, we find
that an appreciable level of turbulence is present in this run.
The turbulent velocity is again on the order of 0.01cs around
the midplane and increases toward the surface layer at a level
very similar to that in the outer disk studied in the previous
section. Since we expect the system to be stable to the MRI, the
turbulence mainly originates from elsewhere: at the midplane,
we find that the strong current layer tends to exhibit small
amplitude corrugation from time to time, resembling the tearing
modes in reconnecting with the current sheet. Such corrugating
motion is likely the source of most random velocities that
propagate toward disk surface layers and become amplified
because of the rapid density drop.

In sum, for Bz0 > 0, our 3D simulation with the full box well
reproduces the quasi-1D simulations with enforced reflection
symmetry in Paper I: we expect that accretion is mainly driven
by the magnetocentrifugal wind, with a significant contribution
from the radial transport of angular momentum via the large-
scale Maxwell stress and magnetic braking (see Table 2 of
Paper I). The wind-driven accretion flow mostly proceeds in
the strong current layer where the toroidal magnetic field flips
(Bai & Stone 2013b), and here it takes place exactly at disk
midplane. Our 3D simulation further reveals the presence of
turbulence, which largely originates from the midplane region
where the relatively strong large-scale horizontal magnetic fields
flip. The level of turbulence is similar to that in the outer disk.
We also comment that because the system is stable to the MRI,
magnetic flux concentration into thin shells is not observed in
this simulation.
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Figure 10. Vertical profiles of Maxwell stress (top) and vertical turbulent
velocity (bottom) for all three runs at 5 AU, as marked in the legend. The
vertical dashed lines label the location where Am = 100 in run R5b5H−.

5.2. Simulations with Bz0 < 0

For run R5b5H−, the system is expected to be unstable to
the MRI in a narrow range of disk height at about |z| ∼ 2–3H .
This can roughly be identified from the left panel of Figure 9 in
Paper I, where the Hall Elsasser number χ passes one at around
z = 2.5H , and the plasma β there is still much larger than
unity (based on the Hall-free run in dashed lines). A detailed
explanation of the onset of the instability is given in Section 5.2
of Paper I, but, in brief, it is related to the fact that for Bz0 < 0
the Hall term makes the most unstable MRI wavelength shift
to a shorter wavelength when the Elsasser number χ0 is of
order unity, allowing the unstable modes (that are otherwise too
long) to fit into the disk. Using full 3D simulations, we see
from the middle panel of Figure 9 that the large-scale toroidal
magnetic field flips in a highly periodic manner, and the origin
of the periodic flips directly connects to the unstable region.
Interestingly, the toroidal fields in the upper and lower halves
always have opposite signs, and the midplane horizontal field is
very weak (and goes through zero). We have also found that the
overall mean field evolution can be almost exactly reproduced
from our quasi-1D simulation of Paper I. An outflow is launched
whose mass outflow rate is smaller than but the same order of
magnitude as the rate from our run R5b5H+ (see Table 2).

Therefore, at a given time, the magnetic field configuration can
be considered physical for a magnetocentrifugal wind. However,
because the toroidal (and hence radial) field constantly changes
sign, the wind keeps oscillating between the radial inward
and outward directions. This is inconsistent with global wind
geometry and reflects the limitation of the local shearing-box
framework (Bai & Stone 2013a). While periodic field flips are
likely physical phenomena that are inherent with the onset of
the MRI, global simulations are necessary to determine the fate
of the outflow.

The onset of the MRI also leads to some level of turbulence, as
seen from the bottom panel of Figure 10. Away from the region
where the MRI operates, turbulent motion largely results from
a passive response to the MRI activities, and the midplane has
the weakest level of turbulent motion. Despite different origins,
the level of turbulence is comparable to run R5b5H+, especially
at the surface.

The fact that the mean toroidal field periodically changes
sign makes it ambiguous in estimating the role of disk wind in
transporting angular momentum (the net wind-driven accretion
rate would be zero considering the periodic flips). Here we set
it aside and look at the radial transport of angular momentum
from the Maxwell stress, as shown in the top panel of Figure 10.
We see that the Maxwell stress peaks at about |z| ∼ 4H ,
but at a relatively low level. We estimate the total α to
be only about 4.5 × 10−4, corresponding to an accretion
rate of ∼1.6 × 10−9 M� yr−1 using Equation (13). This is
about an order of magnitude smaller than the expected level
of 10−8 M� yr−1.

We further performed run R5b4H− with a stronger net
vertical field β0 = 104. Based on Paper I, we expect the
system to be stable to the MRI and to develop a laminar
magnetocentrifugal wind. This is again confirmed using full 3D
simulations, with the general wind properties almost identical
to the one obtained in Paper I. In particular, our full 3D
run automatically obeys the reflection symmetry across the
midplane, confirming that solutions with enforced symmetry
in Paper I are generally physical. Note that the toroidal field is
close to zero near the midplane as a result of the Hall term. The
level of random motion in our run R5B4H− is systematically
weaker than all other runs, confirming its intrinsically laminar
nature. One can obtain from Table 2 the Maxwell stress and the
wind stress to derive the accretion rate resulting from the radial
transport and wind, or directly look at Table 2 of Paper I for more
accurate estimates. We see that the radial transport is completely
negligible compared with the wind-driven accretion rate. The
latter gives ∼10−7 M� yr−1, which is an order of magnitude
more than sufficient.

In sum, it appears that for Bz0 < 0, while results from
our shearing-box simulations are likely robust, they also raise
puzzling issues regarding the mechanism to transport angular
momentum. For a relatively weak net vertical field (β0 ∼ 105),
MRI sets in, leading to a periodically oscillating outflow. Based
on shearing-box simulations, we are unable to tell whether the
outflow drives angular momentum transport, but radial transport
of angular momentum by Maxwell stress appears to be too
inefficient. For a relatively strong net vertical field (β0 ∼ 104),
the system unambiguously launches the magnetocentrifugal
wind with a physical wind geometry, but it drives a more rapid
accretion than typically observed. At this point, it is unclear how
the system can achieve an accretion rate at the desired level of
∼10−8 M� yr−1, an issue that can only be clarified from global
simulations.
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Figure 11. Time evolution of the vertical profile of horizontally averaged By in
our runs at 15 AU. Shown from top to bottom are runs R15b5H+, R15b5H−,
R15b4+, and R15b4H−.

6. SIMULATIONS AT OTHER DISK RADII

In this section, we perform simulations at two other locations,
15 AU and 60 AU, from which we can study the radial
dependence of PPD gas dynamics and the role played by the
Hall effect. At each location, we consider β0 = 104 and 105

and different magnetic polarities. All nonideal MHD terms are
included.

6.1. Results from 15 AU

At 15 AU, our quasi-1D simulations suggest a laminar
configuration for Bz0 > 0 with β0 = 104, while MRI should
set in otherwise. In Figure 11, we show the space–time plot of
the horizontally averaged toroidal field. In Figure 12, we further
show the time-averaged profiles of Maxwell stress and vertical
turbulent velocity for all four runs, where the time averages are
taken from time t = 420 Ω−1 onward. We see that for all four
runs the system eventually settles into a state where the large-
scale toroidal field remains one sign across the entire disk, so
the symmetry of the outflow would be undesirable for a global
wind. Nevertheless, we again set aside the issue of symmetry
and focus on other properties.

For Bz0 > 0, and comparing runs R15b5H + with R15b4H + ,
it is counterintuitive to notice from both figures that a stronger
mean toroidal magnetic field is generated when the net vertical
field is weaker (R15b5H+), leading to stronger Maxwell stress
around disk midplane. A look at all of the simulation data reveals
that for run R15b4H+ almost the entire vertical magnetic flux
is concentrated in a single thin shell, while the rest of the radial
zones have a net vertical flux that is effectively zero. As a
result, magnetic field amplification by the Hall shear instability
is suppressed for the bulk of the disk. A strong zonal flow is also
formed with a high density contrast of 30%, and the shell of
magnetic flux coincides with the density minimum. The highly
nonuniform distribution of magnetic flux also makes the flow
properties in this run deviate from the wind solution in Paper I
(see his Table 2). On the other hand, for run R15b5H+, the
magnetic flux distribution is much more uniform, leading to
effective growth of the horizontal magnetic field that is due to
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Figure 12. Vertical profiles of Maxwell stress (top) and vertical turbulent
velocity (bottom) for all four runs at 15 AU, as marked in the legend. The
vertical dashed lines mark the location where Am = 100 in run R15b4H−
(dark) and R15b5H− (light).

Hall shear instability, producing stronger Maxwell stress at the
disk midplane. At this point, it is again unclear how realistic the
level of magnetic flux concentration is, and the results shown
here should be treated with caution.

For Bz0 < 0, we see that for both runs with β0 = 104 and
105, the initial evolution of mean By closely resembles our
run R5b5H− with quasi-periodic flips. This is again because
the MRI sets in a thin layer where the Hall Elsasser number
transitions through order unity. Later on, a field of one sign takes
over and dominates the entire disk. There are also MRI activities
in the FUV layer, though the level is weaker than in their 30 AU
counterpart (e.g., seen from the peak Maxwell stress). To some
extent, this location represents a transition between the 5AU
and 30 AU cases: in the former case, the MRI is triggered
mainly in the Hall-dominated layer, and in the latter case, the
MRI is active mainly in the FUV layer. As usual, the midplane
horizontal magnetic field is suppressed due to the Hall effect,
and most of the Maxwell stress originates from the FUV layer.

From the values of αMax and T Max
zφ listed in Table 2 and using

Equation (13), we see that the net vertical magnetic flux has
to be at least β0 = 104 in order for the accretion rate to reach
levels comparable to 10−8 M� yr−1. On the other hand, if a
magnetocentrifugal wind is operating, the level of T Max

zφ from
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Figure 13. Time evolution of the vertical profile of horizontally averaged By in
our runs at 15 AU. Shown from top to bottom are runs R60b5H+, R60b5H−,
R60b4+, and R60b4H−.

a weak net vertical field with β0 = 105 is sufficient to drive
the accretion rate above the desired level. Overall, the turbulent
velocity is smallest at midplane either because of weak MRI
turbulence (Bz0 > 0 with weak field) or induced random motion
from MRI activities in the disk surface (Bz0 < 0), similar to the
30 AU case.

6.2. Results at 60 AU

At 60 AU, the relative importance of the Hall effect is reduced
by a factor of about two compared with the 30 AU case (see
Equation (9)), and it is only marginally important at the disk
midplane. AD is the dominant effect in most regions of the
disk. Also, given the approximately constant penetration column
density of the FUV ionization, it penetrates deeper geometrically
(in terms of disk scale height) at the more tenuous outer disk. In
Figure 13, we show the space–time plot of the horizontally
averaged toroidal field. In Figure 14, we further show the
time-averaged profiles of Maxwell stress and vertical turbulent
velocity for all four runs, where the time averages are taken from
time t = 300 Ω−1 onward. The general evolution of the systems
are in many ways similar to our runs at 30 AU, where the MRI
drives vigorous turbulence in the surface FUV layer, with the
midplane region only weakly turbulent. Here we mainly focus
on the differences and the overall trend toward larger disk radii.

At β0 = 105, dynamo activities constantly flip the mean
toroidal field similar to but apparently more regularly than in
the 30 AU case for both magnetic polarities. For β0 = 104,
the dynamo is suppressed, and the entire disk is dominated by
a mean toroidal field with a single sign. When Bz0 < 0, we
do not observe the mean field changing sign as for the 30 AU
counterpart shown in Figure 5. In fact, the toroidal field in the
entire disk has the same sign throughout the saturated state
of the simulation, so we do not expect this sign flip to occur.
We speculate that the flip we observed at 30 AU is associated
with the relatively strong Hall effect at the disk midplane, but
it is unlikely to occur toward the outer disk as the Hall effect
becomes less dominant.

At 60 AU, the contrast in Maxwell stress between the Bz0 > 0
and Bz0 < 0 cases at disk midplane is still very evident.
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Figure 14. Vertical profiles of Maxwell stress (top) and vertical turbulent
velocity (bottom) for all four runs at 60 AU, as marked in the legend. The
vertical dashed lines mark the location where Am = 100 in run R60b4H−
(dark) and R60b5H− (light).

The level of turbulence is found to be higher for runs with
a weaker net vertical field β0 = 105, which may be because
in runs with β0 = 104 the turbulent motion is limited by the
relatively strong large-scale toroidal field, but it may also be
due to the strong concentration of magnetic flux into thin shells
where a large fraction of the simulation domain has effectively
zero net vertical flux.

Deeper penetration of FUV ionization allows the MRI to
be fully active over thicker surface layers. With a larger gas
density in the active layer (in code units), the turbulent magnetic
fields from the MRI become stronger (at fixed β0) than their
30 AU counterparts, giving larger values of αMax. Again, we
find that for the Maxwell stress alone to drive the accretion rate
of ∼10−8 M� yr−1, the net vertical flux needs to be β0 ∼ 104 or
stronger. The magnetocentrifugal wind, if operating in the outer
disk, would drive an accretion with rate ∼0.4–4 × 10−8 M� yr−1

for β0 = 105–104.

7. SUMMARY AND DISCUSSIONS

7.1. Summary

In this work, we have studied the gas dynamics of PPDs,
focusing on regions toward the outer disk (from 5 to 60 AU),
taking into account all nonideal MHD effects in a self-consistent
manner. In these regions, the Hall effect generally dominates

15



The Astrophysical Journal, 798:84 (18pp), 2015 January 10 Bai

near the disk midplane, AD plays an important role over a more
extended region across the disk height, and the very surface layer
behaves in the ideal MHD regime because of FUV ionization.
In the presence of the Hall effect, the gas dynamics depends on
the polarity of the net vertical magnetic field (Bz0) threading
the disk relative to the rotation axis (along ẑ). Because the
Hall effect becomes progressively less important relative to AD
with increasing disk radius, we estimate based on the MMSN
disk model that the Hall effect controlled polarity dependence
extends to about 60 AU.

We first conducted unstratified MRI simulations that included
both the Hall effect and AD. We find that at the conditions
expected in the outer region of PPDs (the midplane plasma
β0 for the net vertical field being 104–105) the MRI leads to
turbulence when Bz0 > 0, but the MRI cannot be self-sustained
when Bz0 < 0. For Bz0 > 0, the level of MRI turbulence is of
the order α ∼ 10−3 (with AD Elsasser number Am = 1). We
confirm that the strong zonal field configuration of Kunz & Lesur
(2013) can be achieved with a sufficiently strong Hall effect, and
we find that in the meantime it leads to strong zonal flows. In
addition, a numerical resolution of 24 cells per H = cs/Ω is
in general adequate to resolve the bulk properties of the MRI
turbulence.

We then focus on self-consistent stratified MRI simulations
at various disk radii from 5 AU to 60 AU, with the main results
summarized as follows.

At a relatively small disk radius (∼5 AU), and for Bz0 > 0,
we confirm and justify the results from Paper I that the system
launches a strong magnetocentrifugal wind and is able to achieve
a physical wind geometry, with the horizontal magnetic field
flipped exactly at the disk midplane. Although Maxwell stress
is enhanced because of the Hall shear instability, accretion is
largely driven by the wind and proceeds primarily through the
midplane strong current layer. In addition, the midplane region
is weakly turbulent, which likely results from the flip of the
relatively strong horizontal magnetic field. The turbulent motion
gets amplified toward the disk surface as gas density drops.

For Bz0 < 0, our full 3D simulations confirm the results
from Paper I that the system is unstable to the MRI in a thin
Hall-dominated layer when the net vertical field is relatively
weak (β0 = 105). This results in periodic flips of the large-scale
horizontal magnetic field over time, accompanied by a radially
oscillating disk outflow or wind. The fate of the outflow or wind
and whether it drives accretion are uncertain based on shearing-
box simulations. Radial transport of angular momentum by
Maxwell stress is found to be too inefficient by one order of
magnitude. A stable magnetocentrifugal wind with a physical
wind geometry can be achieved with a stronger net vertical
field (β0 = 104), which very efficiently drives accretion with
Ṁ � 10−7 M� yr−1. It is uncertain whether and how the system
can achieve the typically observed rate of 10−8 M� yr−1.

At a relatively large disk radius (∼30 AU), we find that the
Hall effect mainly affects the Maxwell stress at disk midplane,
with Bz0 > 0 (Bz0 < 0) giving an enhanced (reduced) stress
that is similar to that found at the inner disk (Paper I; Lesur et al.
2014). Nevertheless, the strongest Maxwell stress results from
vigorous MRI turbulence in the surface layer because of FUV
ionization (Perez-Becker & Chiang 2011; Simon et al. 2013a).
While self-sustained MRI is expected at disk midplane when
Bz0 > 0 but not when Bz0 < 0, the level of turbulence in all
cases appears very similar, with a vertical turbulent velocity of
the order δvz ∼ 0.01–0.03cs . The turbulent motion in the latter
case is largely induced from stronger turbulence in the surface

layer, analogous to the conventional “Ohmic dead zone” picture
(e.g., Fleming & Stone 2003). Overall, the gas dynamics in the
outer regions of PPDs shows a clear layered structure consisting
of a highly turbulent surface FUV ionization layer and a weakly
turbulent midplane region that is due to damping through a
combination of AD, the Hall effect, and large-scale magnetic
field structure.

We find that for a relatively weak net vertical field (β0 = 105),
the MRI dynamo leads to repeated flips of the large-scale
toroidal field with very irregular cycles. Dynamo activities tend
to be suppressed for stronger fields (β0 = 104). Our simulations
also show secular behavior in the evolution of the mean toroidal
field, especially in simulations at 30 AU. This is to a certain
extent related to the limitations of the shearing box because
the net vertical magnetic flux ought to be connected to infinity
but gets truncated by the vertical boundary condition without
reaching all of the critical points (e.g., Fromang et al. 2013).

We also find that most of our simulations show a strong con-
centration of vertical magnetic flux into a thin axisymmetric
shell at a certain radial location, and the rest of the regions have
a net vertical flux that is close to zero. The concentration is gen-
erally stronger in simulations with a stronger net vertical field
(β0 = 104) and toward outer disk radii (�15 AU). Accompa-
nying the magnetic flux concentration is an enhanced density
variation (zonal flow) across the radial domain, with most flux
concentrated in low-density regions. The concentration differs
from the zonal field from unstratified Hall-MRI simulations
(Kunz & Lesur 2013), but it is a generic property of the MRI
turbulence in the presence of a net vertical magnetic flux, which
is studied in detail in our followup paper (Bai & Stone 2014).
Global simulations are required to determine the saturation am-
plitude of the concentration and transport of magnetic flux across
the disk.

Although all of our simulations launch disk outflows, it is
uncertain whether such outflows (at �15 AU) can be incor-
porated into a global magnetocentrifugal wind because of the
MRI dynamo and symmetry issues (Bai & Stone 2013a), but if
they do, the level of net vertical flux of β0 = 105 and stronger
is generally sufficient to drive accretion at the desired level of
10−8 M� yr−1. On the other hand, to purely rely on radial trans-
port of angular momentum by Maxwell and Reynolds stresses,
the level of the net vertical field must be β0 = 104 or stronger,
assuming an MMSN disk model. This level of field translates to
physical field strength according to

B = 18.6β−1/2R
−13/8
AU G. (14)

For reference, we find for β0 = 104 that Bz0 ∼ 0.7 mG at 30 AU.

7.2. Discussion

Combining the results from this paper and Paper I, we see that
the Hall effect has a major influence on the disk dynamics in
the inner region of PPDs (�15 AU), where the wind properties,
stability to the MRI, and the amplification or reduction of the
midplane horizontal magnetic field show a strong dependence
on the polarity of the net vertical magnetic field. The Hall effect
also affects the stability to the MRI in the midplane region of the
outer disk, although the level of midplane turbulence appears
insensitive to the Hall effect. Overall, it is likely that wind-
driven accretion dominates the inner disk, and accretion can be
largely driven by the MRI through the surface FUV layer in the
outer disk. This picture was already outlined in the discussion
of Bai (2013), which incorporated numerical simulation results
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without the Hall effect (Bai & Stone 2013b; Simon et al. 2013a).
On the other hand, the detailed behavior in the inner disk region,
as well as the transition from the largely laminar inner disk to the
MRI turbulent outer disk, is expected to have a strong polarity
dependence because of the Hall effect, as summarized in the
previous subsection and also in Paper I and Lesur et al. (2014).

Several observational consequences are expected based on
our current simulation results. First, the fact that the inner
disk launches a magnetocentrifugal wind can be detectable
through gas tracers. In fact, signatures of low-velocity disk
outflow have been routinely inferred from blue-shifted emission
line profiles, such as from CO, O i, and Ne ii lines (e.g.,
Hartigan et al. 1995; Pascucci & Sterzik 2009; Pontoppidan
et al. 2011; Herczeg et al. 2011; Sacco et al. 2012; Rigliaco
et al. 2013). While conventionally interpreted as signatures of
photoevaporation (e.g., Gorti et al. 2009; Owen et al. 2010), a
magnetocentrifugal wind is likely to produce similar signatures
because it possesses low velocities near the launching point
before getting strongly accelerated and diluted. In reality, both
mechanisms are likely to cooperate to launch the disk wind. We
note that a purely photoevaporative wind is likely to be angular-
momentum conserving because the radial driving force does not
exert any torque on the outflow, while a strongly magnetized
magnetocentrifugal wind is more likely to be angular-velocity
conserving near the base of the wind where the gas is forced
to move along supra-thermal magnetic fields anchored to the
disk (e.g., Spruit 1996). Searching for distinguishable signatures
between the two scenarios would be important for understanding
the nature of the observed disk outflows.

Second, we expect the level of turbulence in the outer disk to
be layered, where the level of turbulence is expected to be of
the order δvz ∼ 10−2cs at the midplane and increases to near
sonic level toward the disk surface. An empirical constraint on
the level of turbulence in the outer regions of PPDs has already
been reported based on the turbulent line width of the CO (3–2)
transition (Hughes et al. 2011). This line is optically thick and
probes the disk surface layer with a line width constrained to
be �10%–40% of sound speed, consistent with a fully turbulent
surface layer. With superb sensitivity and resolution, ALMA
is expected to constrain the variations in turbulence level at
different disk heights using different line tracers. Together with
theoretical efforts in modeling turbulent line width (e.g., Simon
et al. 2011, 2013b), we expect ALMA data to provide direct
evidence of a layered structure in the outer PPDs.

Third, the weakly turbulent outer disk with a toroidal-
dominated field configuration may lead to grain alignment and
dust polarization (Cho & Lazarian 2007). We have found that
in the outer disk (�30 AU) the net vertical field needs to be
β0 ∼ 104 or stronger for Maxwell stress to drive an accretion rate
of 10−8 M� yr−1. For this level of net vertical field, we see that
the MRI dynamo is suppressed, and the entire field is dominated
by a large-scale toroidal magnetic field, whose strength at the
disk midplane corresponds to a plasma β ∼ 10–20 (e.g., see
Figure 13). Using Equation (14), we find that the midplane
toroidal field can be at least ∼3–8 mG at 60–100 AU. Based on
Equation (1) of Hughes et al. (2009), and using the MMSN disk
model at midplane with grain size of 10–100 μm and dust aspect
ratio s = 3, we find that the critical strength for grain alignment
to occur is ∼1–40 mG at 60–100 AU. Although there are large
theoretical uncertainties, we see that the match is marginal, and
the field strength in the outer disk can either be just enough to
promote grain alignment, or a little too weak to align the grains.
Several observational attempts to search for dust polarization

in Class II disks have failed (Hughes et al. 2009, 2013). Very
recently, however, the successful detection of dust polarization
toward younger sources has been reported, with an inferred field
configuration resembling a large-scale toroidal field (Rao et al.
2014; Stephens et al. 2014). This might indicate that the disk
magnetic field fades over time. Again, future dust polarization
observations by ALMA will likely provide better constraints on
the geometry, strength, and evolution of disk magnetic fields.

From this work, together with Paper I, we have explored
the main parameter space in the gas dynamics of PPDs using
local shearing-box simulations. There are other unexplored
parameters and uncertainties, including the abundance and
size distribution of grains, where small grains may reduce the
importance of the Hall effect and AD and hence promote the
MRI (Bai 2011a, 2011b). Also, the cosmic-ray ionization rate
may be reduced and modulated by the stellar wind (Cleeves et al.
2013; it is less affected by disk wind), the X-ray luminosity can
be highly variable because of stellar flares (Wolk et al. 2005;
Ilgner & Nelson 2006), and FUV photons may be shielded by
the dust in the disk wind from the inner disk (Panoglou et al.
2012; Bans & Königl 2012). It is likely that grain abundance
and FUV ionization are more sensitive parameters (Bai & Stone
2013b; Simon et al. 2013a; Paper I), and X-ray ionization is less
sensitive but also important (Bai 2011a; Paper I).

Probably the largest uncertainties in our work come from the
use of a local shearing-box framework, and there are several
outstanding issues related to net vertical magnetic flux. With
a net vertical flux, it is well known that the properties of
the disk outflow are not well characterized in shearing-box
simulations, largely because the vertical gravitational potential
is ever increasing in the local approximation (Fromang et al.
2013; Bai & Stone 2013b). Issues related to the symmetry
and fate of the outflow are notorious (Bai & Stone 2013a,
2013b). Moreover, the evolution of a large-scale magnetic field
can be affected by the vertical outflow boundary condition. In
addition, magnetic flux concentration and zonal flows are again
not well characterized in shearing-box simulations (Bai & Stone
2014). Global disk simulations with vertical stratification and
net vertical magnetic flux have recently been carried out (Suzuki
& Inutsuka 2014), yet many of these issues remain not quite
addressed because of limited domain size in the θ dimension.
In the future, it is crucial to perform global simulations with
a sufficiently large vertical domain to accommodate the disk
outflow or wind and the fine resolution in the disk to resolve the
disk microphysics.
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