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ABSTRACT

The nature of quasi-periodic pulsations (QPPs) in solar and stellar flares remains debated. Recent work has
shown that power-law-like Fourier power spectra are an intrinsic property of solar and stellar flare signals, a
property that many previous studies of this phenomenon have not accounted for. Hence a re-evaluation of the
existing interpretations and assumptions regarding QPPs is needed. We adopt a Bayesian method for investigating
this phenomenon, fully considering the Fourier power-law properties of flare signals. Using data from the
PROBA2/Large Yield Radiometer, Fermi/Gamma-ray Burst Monitor, Nobeyama Radioheliograph, and Yohkoh/
HXT instruments, we study a selection of flares from the literature identified as QPP events. Additionally, we
examine optical data from a recent stellar flare that appears to exhibit oscillatory properties. We find that, for all
but one event tested, an explicit oscillation is not required to explain the observations. Instead, the flare signals are
adequately described as a manifestation of a power law in the Fourier power spectrum. However, for the flare of
1998 May 8, strong evidence for an explicit oscillation with P ≈ 14–16 s is found in the 17 GHz radio data and
the 13–23 keV Yohkoh/HXT data. We conclude that, most likely, many previously analyzed events in the literature
may be similarly described by power laws in the flare Fourier power spectrum, without invoking a narrowband,
oscillatory component. Hence the prevalence of oscillatory signatures in solar and stellar flares may be less than
previously believed. The physical mechanism behind the appearance of the observed power laws is discussed.

Key words: stars: flare – stars: oscillations – Sun: corona – Sun: flares – Sun: oscillations – Sun: UV radiation –
Sun: X-rays, gamma-rays

1. INTRODUCTION

A common feature of solar flare emission is the appear-
ance of quasi-periodic pulsations (QPPs). Alternately known—
particularly in stellar and astrophysical contexts—as quasi-
periodic oscillations (QPOs), these phenomena have been
observed in a wide range of wavelengths over several decades
(see Nakariakov & Melnikov 2009, for a recent review). Al-
though not precisely defined in the literature, the term QPP is
most often used to describe variations in the flux from a flare or
other astrophysical object as a function of time, which appear
to include periodic components with characteristic timescales
ranging from one second up to several minutes, although shorter
(Tan & Tan 2012) and longer (Foullon et al. 2010) timescales
are sometimes studied. They are typically observed during the
impulsive phase of solar flares and have been observed over a
wide range of wavelengths, from radio waves and microwaves to
hard X-rays and gamma-rays. Similar signatures have also been
observed from stellar flares (e.g., Mathioudakis et al. 2006;
Kowalski et al. 2010). Since QPPs are directly linked to the
properties of the flare reconnection region and flare accelera-
tion sites, a full description of QPPs remains crucial for our
understanding of solar flares.

There are two main theories that are currently being pursued
as possible mechanisms for generating QPPs (see Nakariakov
& Melnikov 2009), both of which assume the presence of a
periodic driver. These are that the observed flux variations
are driven either by (1) magnetohydrodynamic (MHD) wave
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behavior in the corona and in flare sites, or are instead (2)
a result of a regime of periodic or bursty reconnection. As
a consequence, recent studies have focused on the assumed
periodic nature of QPPs; such studies are usually motivated
by the concept of searching for a periodic signal obscured by
random noise and long-term trends in the flare signal.

However, it has recently become clear (e.g., Gruber et al.
2011; Vaughan 2010) that flare time series are often dominated
by a power law in the Fourier domain, rather than random white
noise. In an astrophysical context this is often referred to as
“red noise.” Objects that are known to exhibit time series with
power-law-like behavior in the Fourier power spectrum include
XMM-Newton observations of Seyfert galaxies (Vaughan 2005,
2010), gamma-ray bursts (Cenko et al. 2010), active galactic
nuclei (McHardy et al. 2006), and magnetars (Huppenkothen
et al. 2013). The Fourier power spectra of all of these objects are
well-described using power-law models with a negative slope,
i.e., P (f ) ≈ f −α for α � 0 where f is frequency. Strictly
speaking, “red noise” refers to a specific slope of the Fourier
power-law spectrum, α = 2, however, the term is often more
loosely used to refer to any power-law-dominated Fourier power
spectrum where α � 0. The term “noise” in this context is also
something of a misnomer; the observed emission is not noise in
the conventional sense of detector noise or measurement error.
Rather, the power-law shape of the Fourier power spectrum is
an intrinsic property of the physical system and must, therefore,
be taken into account when examining for other effects such
as oscillations.

That solar flares exhibit Fourier power-law-like properties
has in fact been known for some time (e.g., Ryabov et al. 1997;
Aschwanden et al. 1998; Schwarz et al. 1998). Such proper-
ties are clearly present in the Fourier power spectra of RHESSI
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X-ray flare observations. However, until recently the implica-
tions for QPPs have not been considered. Gruber et al. (2011)
were the first to demonstrate the importance of considering
this property of flaring emission in QPP studies by analyzing
Fermi/Gamma-ray Burst Monitor (GBM) and RHESSI solar
flare data from the same events in two different ways. They
demonstrated that the consequence of applying a white-noise
assumption to data dominated by a power law in the Fourier
power spectrum is a drastic overestimation of the significance
of peaks detected in the Fourier domain. Additionally, the nature
of the Fourier power spectrum in such signals means that the
empirical subtraction of “background components” of the signal
may lead to misleading results and should be avoided; the en-
tire Fourier spectrum of the signal should always be considered
(Vaughan 2010).

Hence the results of a number of previous studies, and the
general prevalence of flare signals with oscillatory content, are
both called into question. However, as Gruber et al. (2011) also
point out, their study does not mean that observed variations
in flare signals are not real, and we reiterate that here. Rather,
it means that the physical mechanisms causing the observed
flux variations need not be exclusively due to an oscillatory
mechanism.

In this paper, we address this problem and the question
of the true prevalence of statistically significant narrowband
oscillations in solar flares. We achieve this by adopting an
approach based on Vaughan (2010), which takes into account
the true statistical properties of flare time series. In this paper, we
introduce the method and demonstrate its application to selected
solar and stellar events where the presence of QPPs has been
suggested.

2. INSTRUMENTS AND DATA SELECTION

For this study, we concentrate on a joint data set consisting
of X-ray data from the GBM (Meegan et al. 2009) on board
Fermi, and soft X-ray and EUV data from the Large Yield
Radiometer (LYRA) instrument (Dominique et al. 2013) on
board PROBA2. Fermi was launched in 2008 and GBM, which
consists of 12 NaI and 2 BGO detectors, has provided high-
cadence solar observations in the 5 keV–40 MeV energy range
since then. Up to six of the NaI detectors and one BGO detector
may be sunward facing at any given time.

PROBA2 was launched in 2009 with a science payload in-
cluding the LYRA, which observes the Sun in four channels with
a nominal time resolution of 0.05 s, although the instrument is
capable of 0.01 s resolution. Of these channels, two continue
to take science quality data, namely the aluminum (Al) filter
(17–80 nm + SXR) and the zirconium (Zr) filter (6–20 nm +
SXR). The availability of these simultaneous data sets provides
us with the necessary multi-wavelength information for ana-
lyzing QPPs effectively in different regimes, as well as the
time cadence required for the detection of pulsations in the
1–300 s range.

Two recent solar flares considered to be QPP events are
the GOES-class X2.2 flare of 2011 February 15 (e.g., Dolla
et al. 2012), and the GOES-class M2.5 flare of 2011 June 7
(e.g., Inglis & Gilbert 2013). Both of these events were fully
observed by the LYRA and GBM instruments, making them
ideal candidates for a multi-wavelength investigation of their
power spectral properties.

For each of these events we apply the analysis method de-
scribed in Section 4 to a selection of GBM data channels. For
this analysis, we utilize the CTIME data product, which provides

X-ray count information at a 0.256 s temporal cadence in the
nominal observing mode, and ≈0.064 s cadence during flare
times. GBM CTIME data is available in eight energy chan-
nels, covering the range 4 keV–2 MeV. For the analysis pre-
sented in this paper, we select the following intervals: Chan-
nel 1 (≈ 12–27 keV), Channel 2 (≈27–50 keV), and Channel
3 (≈50–100 keV). The lowest energy emission observed in
Channel 0 (4–12 keV) is not used. These intervals are suited
to capturing both the soft and hard X-ray emission from flares.
To ensure a consistent observational cadence and to improve
signal-to-noise, all the analyzed GBM data are re-binned into
1 s intervals prior to analysis. Similarly, for LYRA the data
are accumulated into 1 s intervals throughout this paper. Subse-
quently, identical analysis is applied to data obtained from the
GBM channels to capture hard X-ray behavior, and to the Al and
Zr filters, capturing EUV and soft X-ray emission. Hence the
result will be a thorough understanding of the Fourier spectral
properties of these flares across EUV, soft X-ray and hard X-ray
wavelengths.

Additionally, we return to the flare of 1998 May 8, pre-
viously investigated in the microwave and X-ray regimes by
Stepanov et al. (2004) and Inglis et al. (2008), perhaps one
of the most pronounced examples of QPPs in the prior lit-
erature. During this flare, pronounced pulsations were ob-
served in the 17 GHz data from the Nobeyama Radiohelio-
graph (NoRH; Nakajima et al. 1994), as well as in X-ray flux
in the 13–93 keV range as observed by the Yohkoh satellite
(Ogawara et al. 1991). In Stepanov et al. (2004) and Inglis
et al. (2008) the observed pulsations were analyzed using a
white-noise assumption, resulting in an observed 16 s period
that was interpreted as a signature of either an MHD balloon-
ing mode or a magnetoacoustic sausage mode. However, it
is timely to revisit this event and re-analyze the NoRH radio
data and the Yohkoh X-ray data in the context of power-law
Fourier spectra.

Finally, for a stellar flare perspective, we analyze near-UV
U-band (∼3200–3900 Å) data from the New Mexico State
University (NMSU) 1m telescope (Holtzman et al. 2010) for the
“megaflare” of 2009 January 16, previously studied by Kowalski
et al. (2010), Kowalski et al. (2013), and Anfinogentov et al.
(2013). This flare exhibited interesting temporal variations that
were recently investigated by Anfinogentov et al. (2013), who
suggested that the observed emission was the manifestation of a
magnetoacoustic wave. However, as with the solar flares above,
the nature of the Fourier power spectrum was not considered in
the analysis of this event.

3. DATA PREPARATION

3.1. LYRA Large-angle Rotations (LARs)

In order to apply our analysis method to solar flare data, the
GBM and LYRA data require some preparation. In particular, a
design feature of PROBA2 is the incidence of large-angle rota-
tions (LARs), in which the spacecraft is rotated approximately
90◦ in order to accommodate the on-board star tracker. These
maneuvers are performed four times per orbit, or approximately
every 25 minutes. In some cases, a consequence of this is the
appearance of temporal artifacts in the LYRA data during LARs,
due to the movement of the Sun within the instrument’s field
of view.

A list of LARs and other spacecraft events (for example,
passes through the South Atlantic Anomaly) is maintained by
the PROBA2 instrument team, known as the LYRA timeline
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Figure 1. Example of LYRA large-angle rotations (LARs)—the areas in red are
marked as affected by the maneuver by the LYRA timeline annotation file.

annotation file (LYTAF). In this work, we remove the effects
of LARs in the simplest way, by removing the affected times
from the data entirely. This is achieved using routines within the
SunPy (Mumford et al. 2013) data analysis package that query
the LYTAF and, for a given data set, automatically separate
an LYRA time series into components, excluding the affected
portions of the data (see Figure 1).

3.2. Data Normalization and Apodizing

An additional step in data preparation for all data sources is
to normalize and apodize the input signal F. This normalization
is done according to,

Fnorm = F − F̄

F̄
, (1)

where F̄ is the mean of the signal. Finally, the normalized signal
is prepared by multiplying it by a window function. This step
is crucial, otherwise the Fourier power spectral density (PSD)
of the data is dominated by the discontinuity caused by the
mismatch between the beginning and end of the signal. For
this purpose, we choose the well-established Hann window
(Blackman & Tukey 1959). For verification, other window
functions (e.g., Blackman–Harris, Hamming) were tested and
found to produce very similar results; for brevity these tests are
not shown in this paper.

In all of the results shown in Section 5, the analysis method
has been applied to the prepared, apodized data as described
here.

4. THE METHOD

A powerful and flexible methodology designed for testing the
presence of oscillations in the presence of frequency-dependent
noise is described in Vaughan (2010), where it is applied to
determine the presence of QPOs in XMM-Newton observations
of highly variable Seyfert 1 galaxies, objects that also exhibit
frequency-dependent Fourier power spectra. A key advantage
of this approach is that we avoid techniques subtracting em-
pirically defined background trends, which inevitably modify
the frequency content of the analyzed data (Cenko et al. 2010;
Auchère et al. 2014). Additionally, one of the main motiva-
tions for adopting this Bayesian methodology is the enablement

of posterior predictive checking, as described in Section 4.6.
Finally, Bayesian methodology also makes it straightforward to
incorporate any prior information we may have into the proce-
dure, and to easily test different models of the observed power
spectrum.

The Vaughan (2010) approach is a multi-stage process. In
the first stage (see Section 4.1), Bayes’ theorem is used to
fit parameterized models S (e.g., a power law) to the Fourier
spectral power density. This is achieved via a Markov-Chain
Monte-Carlo (MCMC) procedure, which explores the parameter
space of the chosen model to find the posterior probability
distribution. From this the model that best fits the data may
be extracted.

The next stage is to perform a model comparison, to estab-
lish which of the tested models S is most favored. Numerous
methods are available to perform this model selection proce-
dure. Having selected the most favored model, appropriate test
statistics are calculated (Section 4.5). Then, (see Section 4.6)
posterior predictive checking is performed to establish the dis-
tribution of the relevant test statistics. This allows us to establish
whether the measured test statistics were extreme, and therefore
whether the chosen model captures the statistics of the data.
Hence, by choosing relevant models, this procedure can test
whether a model that includes an oscillatory component is
needed in order to explain the observed power spectra of so-
lar and stellar flares.

In the following sections, we describe in brief the methodol-
ogy used in this paper, which is similar to that used in Vaughan
(2010). We begin with Bayes’ theorem.

4.1. Determining the Model Parameters

Given that p(a|b) denotes the probability of a given b then
Bayes’ theorem states that

p(H |D, I ) = p(H |I )p(D|H, I )

p(D|I )
, (2)

where H represents the hypothesis to be tested (in our context a
model of the PSD), D is the data (in our case the measured PSD),
and I represents the prior information available. The quantity
p(D|H, I ) is called the likelihood, and is the probability of
the data D given the hypothesis H. The quantity p(H |I ) is
called the prior information, and relates what we know about
the hypothesis from our previous information before we take any
data. The denominator p(D|I ) represents the prior probability of
the data, and is a constant. The left-hand side—p(H |D, I )—is
the posterior probability of the hypothesis after we have acquired
some data, and expresses all of what we know about the
hypothesis H (see Gregory 2010).

Vaughan (2010) uses Bayes’ theorem to compare
hypotheses—or models—of red-noise spectra to the observed
PSD of Seyfert 1 galaxies. The same treatment may be applied
to solar flares. A model spectral power density Sj = S(fj , Θ) is
chosen, where fj is the Fourier frequency, and Θ = (θ1, ....θm)
represents the m parameters of the model (for example, the pa-
rameters of a simple power-law model consists of a power-law
index and a normalization constant). The periodogram of any
observed stochastic time series of length N has Fourier power
Dobs = (Dobs

1 , ...,Dobs
N/2) at Fourier frequency fj = j/NΔT

(with j = 1, ..., N/2) and is exponentially distributed (Press
et al. 1992; Chatfield 2003) about the true spectral density
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Sj = S(fj ). This allows us to write the likelihood as

p(Dobs|Θ, I ) =
N/2∏
j=1

1

Sj

exp

(
−Dobs

j

Sj

)
, (3)

where we have replaced the hypothesis H with its equivalent
representation Θ.

The posterior p(H |D, I ) can be calculated as a function of its
parameters Θ using an MCMC method. In this work, the poste-
rior distributions are calculated using PyMC, a Python analysis
package that implements such an MCMC procedure. MCMC
methods allow for the efficient mapping of Bayesian poste-
rior probability density functions in multi-dimensional param-
eter space. After some initial period (known as “burn-in”), the
Markov chain returns samples of the parameters Θ directly pro-
portional to their probability density as defined by the Bayesian
posterior; that is, the equilibrium distribution of the Markov
chain is the same as the posterior probability density function
(Gregory 2010). Therefore, volumes of the parameter search
space containing probable solutions are sampled more often in
preference to volumes containing less probable solutions. This
Bayesian/MCMC approach calculates the probability density
function (PDF) for Θ. This posterior PDF contains a lot of in-
formation: for example, we can find the best fit by finding Θmode,
the value of Θ that has the maximum posterior probability. The
posterior PDF can also be used to find the best-fit and probability
distribution of each fit parameter (e.g., Ireland et al. 2013).

4.2. Candidate Models

In this work, we focus on two candidate models that may
describe the PSD of flare time series data. First, we consider a
single power-law model plus a constant, i.e.,

SA = Af −α + C. (4)

This model is physically motivated by the understanding
that power-law Fourier power spectra are a common feature
of astrophysical objects, as discussed in Section 1. The addition
of the constant C accounts for the transition between a power-
law (“red”) regime to a white-noise regime or a Poisson regime,
as observed by Cenko et al. (2010) among others.

The second model includes an additional component that
accounts for the appearance of an oscillatory component in the
data, in addition to any observed power laws. This model may
be written,

SB = SA + B exp

(−(ln f − β)2

2σ 2

)
, (5)

where B = B0/
√

2πσ 2, such that the integral over the Gaussian
component is equal to 1. Hence model SB is model SA with a
function added that is equivalent to a Gaussian in log-frequency
space. The width of this Gaussian is then given by σ , its location
in log-frequency by β, and its amplitude by B. This function
represents excess power in the signal that may arise due to an
oscillation.

4.3. Selection of Priors

In Bayesian analysis, the choice of prior probabilities affects
the final posterior probability distribution (Equation (2)). These
priors represent the information we already possess about the

model characteristics. In this work, we adopt uniform prior
probabilities for the model parameters:

− 10 < log A < 10,

−6 < log B0 < 5,

−20 < log C < 10, (6)

−1 < α < 6,

−6.0 < β < −2.0,

0.05 < σ < 0.25,

Hence we define the prior probability of each parameter to be
uniform within a set range, i.e., any value within that range is
equally likely. This intentionally simple choice reflects our lack
of precise prior knowledge about the signal and ensures that
we do not accidentally exclude the optimal values of the model
parameters from the analysis.

4.4. Model Selection

In order to determine which of the candidate models is a
preferred fit to the data, we use the Bayesian Information
Criterion (BIC; Schwarz 1978; Burnham & Anderson 2004).
Similarly to log-likelihood measurements, the BIC is minimized
in the process of finding the best-fit of the model parameters to
the data. The BIC criterion is defined as

BIC = −2 ln(L) + k ln(n) (7)

for large n, where n is the number of data points, k is the number
of parameters in the model, and L is the maximum likelihood.

A feature of the BIC is that, as Equation (7) shows, it
includes built-in consideration of the number of parameters k
in the model. Models with more parameters are penalized in
comparison to those with fewer parameters, to compensate for
that fact that the more complex model should always fit at least
as well as the simple one.

In this paper, we will use the BIC to perform the model
comparison. By comparing the BIC of two models one may find
the extent to which one model is preferred over the other, e.g.,

ΔBIC = BICA − BICB. (8)

Since lower values of BIC are preferred, a negative value
of ΔBIC indicates that model SA is preferred over model SB,
whereas a positive value indicates a preference for SB. In general,
a value of ±10 in ΔBIC is considered highly significant (see,
e.g., Burnham & Anderson 2004).

It is important to note, however, that the BIC merely measures
which of the tested models is more appropriate, or alternatively
which model minimizes information loss. However, it does not
explicitly test whether either model is a good choice in absolute
terms—both models may be poor fits to the observed data. In
order to determine this, additional test statistics are required, as
described in Section 4.5 below.

4.5. Test Statistics

In addition to model selection via the BIC, we include other
measures of the appropriateness of the chosen models. We
consider two test statistics, defined as follows (Vaughan 2010).

TSSE =
∑

j

(
Dj − Sj

Sj

)2

(9)
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Figure 2. Time series, power spectra, and test statistic distributions TR and TSSE for Fermi/GBM observations of the 2011 February 15 solar flare. Each subfigure
(a)–(d) shows the following: (a) original lightcurve in the 12–27 keV energy band, (b) Fourier power spectral density of this signal after treatment with a window
function, (c) distribution of the test statistic TR, (d) distribution of the test statistic TSSE. In panels (c) and (d), the observed value of the test statistic is denoted by the red
vertical line.

and,
TR = max

j

(
2Dj/Sj

)
. (10)

The statistic TSSE corresponds to a global goodness-of-fit
measure of the model S to the observations D, similar to χ2.
TR measures the maximum deviation of the observations D
from the model S. Hence TR is a valuable statistic for finding
local anomalies between I and S, such as might occur due to a
narrowband oscillation.

The distribution of test statistic values, and hence to derive
p-values corresponding to the values of TR and TSSE, is achieved
via posterior predictive checking, described in Section 4.6. This
allows a determination of whether the measured values of TR
and TSSE are extreme compared to this distribution, which could
indicate a poor choice of model.

4.6. Posterior Predictive Checking: Estimating
Test Statistic Distributions

Section 4.1 gives us the posterior distribution of values for
the model S parameters. Sampled parameter values from this
posterior can be used to generate simulated noisy spectral power
density data Drep, using the spectral model. This simulated
data can be used to calculate the distribution of any test
statistic T (D),D = (D1, . . . , DN/2). The observed value of
the test statistic is T (Dobs), where Dobs is the original data.
The probability density distribution p(T ) for the test statistic
is found by repeatedly generating simulated spectral power
density data Drep and calculating T (Drep). The Bayesian p-
value pB is then defined as the tail area probability that the
simulated data could give a test statistic at least as extreme as
that observed, and is found by integrating p(T ) from T (Dobs) to
infinity. The Bayesian p-value is the classical p-value averaged
over the posterior distribution of the model parameters. Small
values of pB indicate that the model is very unlikely to generate
the value T (Dobs). The reverse scenario, where the measured
test statistic values TR and TSSE are very small compared to the
distribution obtained from posterior predictive checking, and
hence the associated p-values would be very large—would be
an indication of overfitting, similar to obtaining anomalously
small values in a χ2 test. In both scenarios, this is an indication
that other models are required.

4.7. Method Summary

In summary, the analysis method presented here consists of
the following steps.

1. Acquire flare data and obtain the Fourier PSD. This PSD is
henceforth referred to as the “data” D.

2. Select candidate models S with which to fit the data D.
3. Assign prior probabilities to the parameters of each

model S.
4. For each model, perform MCMC simulations to find the

posterior probability distribution and hence the best-fit to
the data D.

5. Perform a model comparison using the BIC.
6. For the favored model, perform posterior predictive check-

ing to test the appropriateness of this model.
7. Determine whether the chosen test statistics TR and TSSE

are extreme.

Hence using this method we will have determined which
of our tested models is a more appropriate description of that
data, and additionally we will have quantified—using posterior
predictive checking—how appropriate the preferred model is.
In practical terms—and in relation to QPPs—this will tell us
whether the power spectrum of the events studied may be
adequately described by a pure power-law model, or whether
excess power corresponding to an oscillation may be present.

5. RESULTS

5.1. The Flare of 2011 February 15

Here we apply the method described above to the GOES-class
X2.2 flare of 2011 February 15, which originated from NOAA
active region (AR) 11158. This flare was previously analyzed by
Dolla et al. (2012), who concentrated on the correlation between
short-term variations in the signal at various wavelengths using
data from a variety of instruments. An explicit significance test
of the observed variations in the signal was not performed. This
flare has also been studied by various other authors, including
Schrijver et al. (2011), Tan et al. (2012), Kerr & Fletcher (2014),
and Wang et al. (2014).

For this event, the most sunward facing detectors of GBM
show evidence of pulse pile-up effects due to high count rates.
Therefore, we utilize detector NaI-2 for this analysis, which was
pointed at a greater angle from the Sun, resulting in manageable
counts. We apply the analysis method to the Fourier power
spectra obtained from three X-ray energy ranges observed by
GBM at 1 s cadence (12–27 keV, 27–50 keV, 50–100 keV), and
to the Al and Zr filter data from LYRA, also at 1 s cadence.
Figure 2 shows an example of the method applied to the
12–27 keV data. The left panel shows the original signal, while
the second panel shows the Fourier power spectrum. In this
example, the simple model SA was strongly preferred over SB,
with ΔBIC = −14.4. The remaining two panels illustrate the TR
and TSSE distributions obtained by posterior predictive checking
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Table 1
Summary of Model Comparison Results and Statistics in Selected Energy Ranges for Four Flare Events

Event Fig. Ref. Obs. Instrument Obs. Band Obs. Interval ΔBIC Preferred Model −α p-value p-value
(UT) (TR) (TSSE)

2011 Feb 15 3(b) GBM 12–27 keV 01:44–02:22 −14.4 SA −2.89 ± 0.07 0.714 0.242
3(c) GBM 27–50 keV 01:44–02:22 −10.7 SA −2.30 ± 0.06 0.261 0.077
3(d) GBM 50–100 keV 01:44–02:22 −5.4 SA −2.03 ± 0.07 0.124 0.082
3(e) LYRA Al (17–80 nm) 01:44–01:55 −14.3 SA −3.52 ± 0.12 0.177 0.021
3(f) LYRA Al (17–80 nm) 01:58–02:06 −14.2 SA −4.90 ± 0.11 0.688 0.663
3(g) LYRA Zr (6–20 nm) 01:44–01:55 −13.8 SA −3.38 ± 0.13 0.649 0.368
3(h) LYRA Zr (6–20 nm) 01:58–02:06 −18.8 SA −4.95 ± 0.13 0.345 0.186

2011 Jun 7 4(b) GBM 12–27 keV 06:16–06:58 −18.2 SA −2.90 ± 0.07 0.990 0.688
4(c) GBM 27–50 keV 06:16–06:58 −9.6 SA −3.12 ± 0.07 0.928 0.932
4(d) GBM 50–100 keV 06:16–06:58 −4.2 SA −2.81 ± 0.08 0.844 0.871
4(e) LYRA Al (17–80 nm) 06:16–06:27 −19.7 SA −3.48 ± 0.1 0.035 0.046
4(f) LYRA Al (17–80 nm) 06:30–06:50 −3.7 SA −2.96 ± 0.11 0.110 0.742
4(g) LYRA Zr (6–20 nm) 06:16–06:27 −9.7 SA −3.46 ± 0.09 0.565 0.068
4(h) LYRA Zr (6–20 nm) 06:30–06:50 −2.3 SA − 2.80 ± 0.10 0.007 0.014

1998 May 8 5 NoRH 17 GHz 01:54–02:02 80.4 SB −3.06 ± 0.12 0.824 0.798
5 Yohkoh/HXT 13–23 keV 01:56–02:00 16.1 SB −3.70 ± 0.66 0.146 0.222
5 Yohkoh/HXT 23–33 keV 01:56–02:00 −3.4 SA −2.27 ± 0.17 0.441 0.171
5 Yohkoh/HXT 33–53 keV 01:56–02:00 −19.0 SA −1.86 ± 0.13 0.641 0.929

2009 Jan 16 6 NMSU U-band 04:03–07:35 −15.6 SA −3.55 ± 0.12 0.999 0.998
“megaflare”

as described in Section 4.6, where the actual observed values
of these statistics are denoted by the red lines. From this it can
be seen that the observed values of TR and TSSE are not extreme
within the context of the power-law model.

As Table 1 shows, the model comparison results for each
X-ray band observed by GBM are similar, resulting in a negative
value of ΔBIC, with values ranging from −14.4 at 12–27 keV to
−5.4 in the 50–100 keV range. Similarly, for both LYRA filters
the value of ΔBIC is <−10. Hence the simple power-law model
SA is preferred in all cases over the more complex model SB.

Figure 3 shows the lightcurves and best fits of model SA to
the Fourier power spectra each of the investigated energy bands.
For brevity the TR and TSSE distributions are not shown, but for
reference each best-fit power law is accompanied by a 99%
significance line, which is obtained by finding the value of TR
at each f where the p-value pTR < 0.01. It can therefore be seen
that the variations in the Fourier power spectra are not extreme in
the context of the power-law model expectations. The p-values
for TR and TSSE are listed in Table 1.

5.2. The Flare of 2011 June 7

This GOES-class M2.5 flare originated from AR 11226
and has been studied by various authors, including Innes
et al. (2012), Inglis & Gilbert (2013), Reale et al. (2013),
Gilbert et al. (2013), and Carlyle et al. (2014), primarily due
to the spectacular prominence eruption associated with this
event. However, this flare also exhibited strong pulsations in
UV and X-ray wavelengths, which were investigated in the
Inglis & Gilbert (2013) study. As with the event studied in
Section 5.1, a statistical significance test was not performed
on these pulsations, and their exact nature was left for debate
in favor of timing studies and correlations with other flare
parameters.

Figure 4 shows the result of considering power-law Fourier
power spectra by applying the analysis method described in
Section 4. For each of the six wavelengths studied, model SB,

which includes an additional spike that would be consistent with
a narrowband oscillation, is never preferred over the pure power-
law model SA (see Table 1 for the associated ΔBIC values),
although in the late phase of the Al and Zr channel data there is
little difference between the two models. Additionally, the test
statistics TR and TSSE describing the goodness of fit for SA, listed
in Table 1, are generally not extreme, indicating an overall good
fit of the model SA to the data D in most cases. An exception to
this is the 12–27 keV data, where pTR is 0.01, suggesting that
although SA is preferred over SB, it is not a complete description
of the observed data. Overall however, despite the visually
striking pulses in the flare lightcurves, the observed PSDs at
both X-ray and EUV wavelengths are consistent with and well-
described by a power-law model in the Fourier power spectrum,
without the need for explicit oscillations in the model.

5.3. The Flare of 1998 May 8

The GOES-class M3.1 flare of 1998 May 8 originated from
AR 8210 and began at approximately 01:49 UT in soft X-rays.
It was also observed in radio and hard X-rays by the NoRH and
the Yohkoh satellite, respectively, and is a pronounced example
of a QPP event. Analysis of this data in two previous studies
(Inglis et al. 2008; Stepanov et al. 2004) suggested the presence
of a statistically significant oscillation with P ≈ 16 s, which
was interpreted by Inglis et al. (2008) as the manifestation
of a magnetoacoustic sausage mode. However, these studies
did not account for the power-law-like nature of the signal
Fourier power spectrum, and hence may have overestimated
the statistical significance of their results.

Revisiting this event, the method described in Section 4.7 is
applied to both 1 s cadence NoRH data at 17 GHz, and to 0.5 s
cadence Yohkoh X-ray data. The results of the model compari-
son are shown in Figure 5. We find that, for the 17 GHz emis-
sion, ΔBIC ≈ 80, strongly favoring model SB which includes a
Gaussian bump in addition to a power law. The best-fitlocation
for this bump is at f0 = 0.062 ± 0.003 Hz, equivalent to
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(a)

(b)

(c)

(d)

(e)

(f)

(g)

Figure 3. Results of the analysis method applied at multiple wavelengths to the
2011 February 15 flare. Left column: time series of the 2011 February 15 solar
flare in three GBM X-ray bands (12–27 keV, 27–50 keV, 50–100 keV) and the
LYRA Al and Zr channels. The LYRA data are split into two sub-series each due
to the occurrence of a LAR during this flare. Right column: the Fourier power
spectra of each time series (blue) and the associated best-fit model (green).
Also shown is an estimate of the 99% confidence level (red line) obtained by
finding the value of TR at each frequency that would be consistent with a p-value
of 0.01.

(a)

(b)

(c)

(d)

(e)

(f)

(g)

Figure 4. Results of the analysis method applied at multiple wavelengths to the
2011 June 7 flare. Left column: time series of the 2011 June 7 solar flare in
three GBM X-ray bands (12–27 keV, 27–50 keV, 50–100 keV) and the LYRA
Al and Zr channels. The LYRA data are split into two sub-series each due to
the occurrence of a LAR during this flare. Right column: the Fourier power
spectra of each time series (blue) and the associated best-fit model (green).
Also shown is an estimate of the 99% confidence level (red line) obtained by
finding the value of TR at each frequency that would be consistent with a p-value
of 0.01.
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Figure 5. Results of the analysis method applied to the 1998 May 8 solar flare observational data from NoRH and Yohkoh. Columns from left to right: NoRH 17GHz
radio data, Yohkoh L-channel (13–23 keV) data, Yohkoh M1-channel (23–33 keV) data, Yohkoh M2-channel (33–53 keV) data. For each column, the panel arrangement
is as follows—top panel: the observed radio flux or X-ray counts associated with the flare. Center panel: the best fit of model SA (green) to the Fourier power
spectrum (blue). Bottom panel: the best fit of model SB (green) to the Fourier power spectrum (blue). The ΔBIC values associated with these model comparisons are
ΔBIC17 GHz ≈84 for the NoRH 17GHz data, ΔBICL ≈16 for the Yohkoh 13–23 keV signal, ΔBICM1 ≈ −3.4 for the Yohkoh 23–33 keV signal, and ΔBICM2 ≈ −19
for the Yohkoh 33–53 keV signal. Hence, model SB is strongly preferred for both the NoRH 17 GHz and Yohkoh 13–23 keV data, indicating an oscillation.

P = 16.2 ± 0.8 s. Although the position of the Gaussian bump
is determined very accurately, in this context the width of the
Gaussian is also of interest, as it encapsulates information about
the range, or variation, of the observed “quasi”-period. Hence,
when the Gaussian width is included in the period uncertainty
we obtain P = 16.2+3.8

−3.1 s. This is consistent with the results
of Inglis et al. (2008) and Stepanov et al. (2004), who both
estimated that P ≈ 16 s.

In X-rays, analysis of the Yohkoh data in the 13–23 keV
channel yields ΔBIC ≈ 16, also indicating a strong preference
for model SB. The best-fit location of the frequency bump with
a 1σ uncertainty is f0 = 0.071 ± 0.004 Hz, corresponding to
P = 14.0 ± 0.75 s. As before, when we utilize the Gaussian
width parameter to estimate the bounds of the quasi-period,
we obtain P = 14.0+3.4

−2.8 s, consistent with the observations at
radio wavelengths. In the higher energy X-ray channels, the
preference for model SB is not replicated—for the 23–33 keV
channel, model SA is marginally preferred with ΔBIC ≈ −3.4,
while for the 33–53 keV channel model SA is strongly preferred
with ΔBIC ≈ −19. As Figure 5 shows however, the fitting of
model SB to the 23–33 keV channel, where the simple power law
is marginally preferred, yields the same best-fit period of P ≈
14 s as the 13–23 keV channel. This suggests that an oscillatory
signature may indeed be present in the 23–33 keV data, but at
insufficient strength to be unambiguously detected.

Examination of the test statistic values for this event (see
Table 1) reveals that the measured TR and TSSE values for the
17 GHz data are smaller than the mean of the distribution
obtained via posterior predictive checking (see Section 4.6),
leading to p-values of 0.842 and 0.798, respectively. For the
13–23 keV data we find the reverse effect, but in neither case
are the test statistic values extreme. However, although a good
fit was obtained here, it should be noted that our choice of a

Gaussian function is a purely empirical one; as pointed out
by Vaughan (2010), the true statistics of the Fourier power
spectrum in the region of the narrowband peak are unclear.
Hence, although model SB is strongly preferred for both the
17 GHz and 13–23 keV data, indicating the presence of an
oscillation with P ≈ 14–16 s, the Gaussian function is likely
not a statistically complete choice for modeling this oscillation.

The critical finding is that, for this event, a simple power-
law Fourier power spectrum is not sufficient to explain the
flare data at radio or soft X-ray wavelengths. Instead, there
is strong evidence at both radio and X-ray energies for the
presence of a narrow-band oscillation. This is an extremely
important result, which confirms the existence of oscillation-
like signatures in solar flare signals across multiple energies and
emission regimes. This observation is consistent with classical
ideas of QPPs, such as bursty reconnection processes or MHD
wave modes.

5.4. The Stellar Megaflare of 2009 January 16

As a final example, we consider the stellar megaflare of
2009 January 16, previously studied by Kowalski et al. (2010)
and Anfinogentov et al. (2013). This flare originated from
the dM4.5e star YZ CMi, and exhibited several emission
peaks in addition to an exponential-like decay. These variations
were interpreted by Anfinogentov et al. (2013) as a decaying
long-period oscillation with P ≈ 32 minutes, suggesting a
longitudinal magnetoacoustic mode as a possible mechanism.
Here, we revisit the sub-minute cadence near-UV data from
the NMSU 1m telescope studied by Kowalski et al. (2010) and
Anfinogentov et al. (2013), and re-evaluate this flare signature
accounting for power-law effects in the Fourier power spectrum.

Figure 6 illustrates the U-band lightcurve and the best-fit
Fourier power spectrum for this event. Here, model SA is
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Figure 6. Result of analysis method applied to the 2009 January 16 stellar
“megaflare”. Top panel: the U-band lightcurve of the flare from dM4.5e star YZ
CMi, as observed by the New Mexico State University 1m telescope. Bottom
panel: the best fit of model SA (green) to the Fourier power spectrum (blue).
For this event, ΔBIC ≈ −16, indicating no evidence in favor of model SB. The
period of P ≈ 32 minutes suggested by Anfinogentov et al. (2013) is indicated
by the vertical dashed line for reference.

preferred over SB by a substantial margin, with ΔBIC ≈ −16.
Hence, despite the intriguing variations in the observed time
profile, the emission from this stellar flare is better explained
in terms of the power-law model than the model containing
a narrowband oscillation. The observed TR and TSSE values
are rather low, however, compared to their obtained posterior
predictive distributions. This indicates that another untested
model may better reproduce the statistics of the data than either
SA or SB.

6. DISCUSSION AND INTERPRETATION

Having studied 19 time series from 4 flares, we have found
strong evidence for the existence of an explicit oscillation only
in the 17 GHz radio data and the 13–23 keV X-ray data from the
1998 May 8 flare. For the remaining events, the simple power-
law model SA was preferred as a description of the data over the
model SB including an extra peak. However, in some cases the
models were considered almost equally likely. For example,
the Al and Zr channel during the latter part of the 2011 June
7 flare (Figure 4) showed ΔBIC ≈ −3.7 and ΔBIC ≈ −2.3,
respectively, only marginally favoring SA over SB. Hence, for
these signals, we do not rule out the presence of an additional
component—we can only say that we do not have strong
evidence in favor of one.

It is also important to emphasize that the adequate description
of flares containing substantial temporal variations in terms of
a power-law-like Fourier power spectrum does not mean that
those variations are not real or do not exist. These variations are
observed by multiple instruments and are of solar origin. Hence,
studies of the timing of these variations, their variations across
wavelengths and energy regimes (e.g., Dolla et al. 2012), and
their correlation with other measurable flare parameters (Inglis
& Gilbert 2013) remain crucial toward our understanding of
flares. The results of Section 5 indicate that, when the frequency-
dependent properties of flares are properly considered, an
explicit oscillatory signal is not required in order to explain
these observations. Instead, we must consider these variations
as an intrinsic property of the flare system.

One possible mechanism that would give rise to a power-law
structure in solar flares was suggested by Aschwanden (2011).
In this model, a flare is considered as a superposition of many
exponentially decaying energy deposition events. If the number
of events is N (E) ∝ E−αE , and the energy in each event is
E(T ) ∝ T 1+γ , where T is exponential decay time, then the
resulting Fourier spectrum should have a power-law index

p = −(2 − αE)(1 + γ ). (11)

Hence the observed power-law index can in principle provide
information about the energy release process in a flare.

McAteer et al. (2007) also investigated the nature of bursty
solar X-ray emission in the context of self-organized critical-
ity and fractal behavior. In that work, the Hölder exponent was
determined—using RHESSI data—as a function of X-ray energy
for the X4.8-class flare of 2002 July 23. The Hölder exponent is
related to the Fourier power spectral index and is a measure of the
persistence—i.e., how later observed values in a signal depend
on earlier values—of the physical system. In a persistent walk
regime, a generally increasing signal means that the next ob-
served value in time is also likely to show an increase (“smooth
behavior”), whereas in an anti-persistent regime the opposite
occurs, and a decrease is likely (“bursty behavior”). In general,
it was found that, for the 2002 July 23 flare, the persistence of
the signal decreased as a function of energy; low energy bands
(e.g., 6–12 keV) were consistent with a persistent-walk regime,
while at higher energies (e.g., 50–100 keV) anti-persistent be-
havior became more pronounced. This was also reflected in the
measured Fourier power-law exponents; the power-law index α
ranged from ≈−2.6 at 3–6 keV down to ≈−1.8 at 300–800 keV,
indicating different signal characteristics.

Figure 7 shows the distribution of measured α values for the
2011 February 15, 2011 June 7, and 1998 May 8 events as
a function of energy. The 2009 January 16 flare measurement
is also shown. For 2011 February 15, the results of McAteer
et al. (2007) are reproduced; the measured spectral index in hard
X-rays monotonically decreases as a function of energy from
≈−2.9 in the 12–27 keV range, down to ≈−2.0 at 50–100 keV.
Similarly, the three datapoints available from Yohkoh/HXT data
on 1998 May 8 show a monotonic decrease versus energy,
although it should be noted that the spectral index is very poorly
constrained in the 13–23 keV channel. The 2011 June 7 flare
however displays inconsistent results: the measured exponents
remain approximately constant at ≈−3.0 as a function of
energy in X-rays (see Figure 7). This suggests that flares may
not universally follow the monotonic trend in spectral index
and fractal dimension observed by McAteer et al. (2007);
different flares may exhibit different emission characteristics
as a function of energy. This is not unexpected given the earlier
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Figure 7. Best-fit spectral indices α to the Fourier power spectra for the 2011
February 15 (red), 2011 June 7 (blue), and 1998 May 8 (green) events as a
function of wavelength. The measured spectral index for the 2009 January 16
megaflare is indicated by the cyan data point. Note that this plot encompasses
different emission and energy regimes, which are separated by vertical lines for
clarity. The dashed red and blue lines highlight the LYRA power-law indices
for the later segments of the two flares, respectively.

results of Aschwanden et al. (1998) who, in a large study of
events in >25 keV X-rays observed with CGRO/BATSE, found
substantial variation of the power-law index between flares
(−1.5 < α < −3.2 for strong events).

In interpreting these results, we should be wary of potential
biases that may affect the measurement of α. One potential issue
is a dependence of α on the total fluence of the data, however,
this possibility is mitigated by the treatment of the input signal
described by Equation (1). Additionally, the choice of GBM
detector for the 2011 February 15 and 2011 June 7 events ensures
that pile-up effects should not be an issue in the X-ray data. The
other main factor in determining α, the length of the power-law
component in the Fourier power spectrum, is captured by the
uncertainties listed in Table 1. In general, we find that α is well
and consistently constrained, with the notable exception of the
13–23 keV X-ray data from Yohkoh in the 1998 May 8 flare. In
this case, the power-law slope is very poorly constrained due
to the relatively early transition to a white-noise regime (see
Figure 5) and the location of the Gaussian bump.

An additional feature of these results is that not only do the
observed Fourier power-law indices vary between flares (e.g.,
Aschwanden et al. 1998); the observed power-law index of both
LYRA channels changes substantially between the two sub-
intervals of both the 2011 June 7 and 2011 February 15 flares,
as highlighted in Figure 7. This could be related to the different
physical phases of solar flares, e.g., the early “rise phase” that
includes impulsive X-ray emission, and the long decay phase
often observed at EUV wavelengths. For the 2011 February 15
event, the power-law index is much steeper in both the aluminum
and zirconium filter channels during the observed decay phase of
the LYRA emission compared with the earlier rise phase. In the
context of Equation (11), this may indicate a change in either the
number distribution of heating events, or a change in the energy
distribution of these events, which would be expected during a
transition to the flare decay phase. For the 2011 June 7 event,
the difference in observed Fourier power-law index is much less
pronounced (Figure 7) in the LYRA channels. One difference
is that in this case, the later sub-intervals shown in Figures 4(e)
and (g) are associated with a peak of observed EUV emission,
rather than a strong decay phase, which is not observed due to
an LAR of the LYRA spacecraft (see Section 3.1).

7. CONCLUSIONS

It is clear that power laws in the Fourier power spectrum are
an intrinsic property of both solar and stellar flare time series,
and one that must be taken into account when searching for
pulsations or oscillations in flares. As has been shown here,
events that may have been previously considered as containing
signatures of oscillations can in fact be adequately described
via a power-law model of the Fourier power spectrum. Hence,
the prevalence of explicit oscillations in flares is likely to have
been substantially overestimated in past literature, although
few large-sample studies exist. However, the analysis of the
1998 May 8 flare shows that, for at least some events, there
is strong evidence of oscillatory signals in the data over and
above the background frequency-dependent spectrum, in both
radio and X-ray emission regimes. In these cases, classical
interpretations of QPPs, such as regimes of bursty reconnection
or signatures of MHD wave modes, remain valid. Additionally,
as discussed in Section 6, the detection and measurement of
frequency-dependent Fourier spectra may provide us with a
diagnostic tool for understanding the fundamental processes
of flare energy release. The measured power-law index as a
function of energy provides us with information regarding the
energy release process in different energy regimes.

These results are relevant not just to flare studies, but
throughout solar physics, and coronal seismology in particular,
where many searches for waves and oscillations implicitly
assume a Gaussian noise regime. For example, Auchère et al.
(2014) recently observed that, for a number of regions of interest,
the Fourier power spectra of long-duration EUV data obtained
by SOHO/EIT also obey a power law. Similarly, Ireland et al.
(2014) reveal Fourier power-law properties in the time series of
ARs obtained in EUV by SDO/AIA. Hence, power-law Fourier
power spectra must be accounted for in many solar features over
many timescales and in multiple emission regimes.

A future large-scale study of this kind is required in order
to understand how the Fourier power-law index may vary as a
function of energy between flares, during the flares themselves,
and how this information may be used to diagnose conditions at
the energy release sites in flares. Such a study will also establish
the true prevalence of explicit oscillations in solar and stellar
flares.
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