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ABSTRACT

Driven by recent RHESSI observations of confined loop-top hard X-ray sources in solar flares, we consider stochastic
acceleration of electrons in the presence of Coulomb collisions. If electron escape from the acceleration region
can be neglected, the electron distribution function is determined by a balance between diffusive acceleration and
collisions. Such a scenario admits a stationary solution for the electron distribution function that takes the form of a
kappa distribution. We show that the evolution toward this kappa distribution involves a “wave front” propagating
forward in velocity space, so that electrons of higher energy are accelerated later; the acceleration timescales with
energy according to τacc ∼ E3/2. At sufficiently high energies escape from the finite-length acceleration region
will eventually dominate. For such energies, the electron velocity distribution function is obtained by solving a
time-dependent Fokker–Planck equation in the “leaky-box” approximation. Solutions are obtained in the limit of a
small escape rate from an acceleration region that can effectively be considered a thick target.
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1. INTRODUCTION

Ever since the first hard X-ray observations of solar flares
(Peterson & Winckler 1959), it has been realized that these
events are responsible for the acceleration of copious amounts of
charged particles, in particular deka-keV electrons. Fifty years
of observations have revealed considerable insight into the spec-
tral, temporal, and spatial properties of these accelerated elec-
trons; however, the underlying mechanism responsible for their
acceleration remains largely undetermined. A major objective
of contemporary high-energy solar physics research is, then, to
understand not only the propagation of accelerated electrons
within the source but also the physics of their acceleration. To
do this requires that we obtain information on the hard X-ray
emission produced by accelerated electrons with spectral, spa-
tial and temporal resolutions sufficiently precise to probe the
emergence of the accelerated electron spectrum from the ini-
tial quasi-Maxwellian population. Acquisition of such data was
a key element in the design of the RHESSI instrument (Lin
et al. 2002).

Proposed acceleration mechanisms include acceleration by
large-scale coherent sub-Dreicer electric fields (e.g., Benka &
Holman 1994) and by supra-Dreicer electric fields in thin re-
connecting current sheets (e.g., Litvinenko & Somov 1993;
Litvinenko 1996). However, these models face serious chal-
lenges in terms of the properties of the source (e.g., fine
fragmentation, efficient pitch-angle scattering) in order to
avoid unacceptably large unidirectional currents (Holman 1985;
Emslie & Hénoux 1995). Further, there is growing observational
evidence (e.g., Kane et al. 1980; Kontar & Brown 2006) that the
overall accelerated electron distribution has an angular distribu-
tion that is nearly isotropic. Combined, these theoretical and ob-
servational considerations favor a stochastic acceleration model
invoking plasma turbulence where particles undergo multiple
energetic “boosts” by an ensemble of scattering centers (see,
e.g., Melrose 1994; Miller et al. 1997; Petrosian 2012; Bian

et al. 2012 for reviews). Stochastic acceleration models have
been applied to solar flares (e.g., Parker & Tidman 1958; Ra-
maty 1979; Miller et al. 1996; Petrosian & Chen 2010), and
often share the property that the acceleration can be described
by a second-order velocity diffusion coefficient Dvv .

We therefore here consider a model that involves accelera-
tion by a stochastic process, modeled through a diffusion term
in the Fokker–Planck equation describing the evolution of the
electron phase-space distribution function, coupled with particle
transport that consists of two components: in situ Coulomb col-
lisions with the background plasma, and escape associated with
the finite length of the acceleration region. In general, the results
are characterized by four governing timescales: the acceleration
timescale τacc, the collisional deceleration timescale τc, the col-
lisional diffusion timescale τd, and the escape timescale τesc. In
the region in velocity space where escape can be neglected, the
electron distribution function is driven toward a steady state cor-
responding to a balance between diffusive acceleration and col-
lisional energy losses. For a velocity diffusion coefficient Dvv ∼
1/v, this equilibrium state takes the form of a kappa distribution,
which transitions smoothly from a Maxwellian low-energy core
to a power-law high-energy tail (Tsytovich 1966; Benz 1977;
Hasegawa et al. 1985; Ma & Summers 1998; Leubner 2004).
This result is encouraging, since kappa distributions have been
used to characterize particle distribution functions in a variety
of space plasma scenarios (e.g., Livadiotis & McComas 2009),
including electrons in solar flares (Kašparová & Karlický 2009;
Oka et al. 2013).

The context and general properties of the acceleration model
are detailed in Section 2. In Section 3, we consider the steady-
state solution for the accelerated electron distribution in the case
of an acceleration model characterized by a diffusion coefficient
with an inverse dependence on velocity. This takes the form of
a kappa distribution, which is characterized by two parameters,
one of which is a characteristic velocity scale (e.g., the thermal
velocity associated with the Maxwellian core) and the other is
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the dimensionless ratio of the acceleration time to the collisional
deceleration time. The dimensionless parameter, denoted by
κ , is simply related to the power-law spectral index δ of the
electron energy flux, and hence to γ , the power-law index of
the emitted hard X-ray bremsstrahlung spectrum. In Section 4
we characterize the time evolution toward the asymptotic kappa
distribution as an advancing wavefront in velocity space, and
we find that the acceleration of electrons to energy E occurs on
a timescale τacc ∝ E3/2.

At sufficiently high energies, particle escape associated with
the finite length of the acceleration region can modify this
asymptotic form, and we consider this effect in Section 5.
In Section 6, we present numerical solutions of the basic
Fokker–Planck equation and we discuss the extent to which the
numerical results confirm the analytic results of the previous
sections. In Section 7 we analyze a model that is appropriate
to acceleration by a coherent large-scale electric field, showing
that the presence of efficient pitch-angle scattering can lead to
isotropization of the distribution function and hence can produce
an effect akin to stochastic acceleration over a wide velocity
range. We determine the conditions for the turbulent diffusion
coefficient in such a model to take the desired form Dvv ∼ 1/v
and we discuss the constraints that the model imposes on the
magnitude of the electric field. In Section 8 we summarize the
results obtained.

Overall, our results lead to the characterization, over a wide
velocity range, of the evolution of the electron distribution
toward its asymptotic form, an analysis pertinent to the study
of a variety of stochastic acceleration models that have been
associated with hard X-ray production during the impulsive
phase of a solar flare.

2. CONTEXT AND GENERAL DESCRIPTION
OF THE ACCELERATION MODEL

RHESSI has revealed (e.g., Xu et al. 2008) the presence of
coronal hard X-ray flare sources with a background density
sufficiently high that the accelerated electrons are collisionally
stopped in the corona, rather than streaming through it and
impacting on the chromosphere to produce hard X-ray foot-
points (cf. Emslie et al. 2003). The spatial distribution of these
thick-target coronal hard-X ray sources exhibits a core region
where acceleration occurs, surrounded by a halo where escap-
ing high-energy electrons are collisionally stopped (Xu et al.
2008). Since the acceleration and hard X-ray emitting regions
are coincident, these flares have opened new horizons for the
study of acceleration processes, inasmuch as they permit deter-
mination of the length of, and density within, the acceleration
region (Xu et al. 2008; Kontar et al. 2011b; Guo et al. 2012),
and hence the number of particles available for acceleration and
the specific acceleration rate (electrons s−1 per ambient elec-
tron), a quantity that measures the efficiency of the acceleration
process (Guo et al. 2013). Spectroscopic imaging observations
with RHESSI also suggest the presence of turbulence (due to,
e.g., fluctuations in the magnetic field) in these coronal loops
(Kontar et al. 2011b), resulting in both pitch-angle scattering
(Kontar et al. 2014) and cross-field transport (Bian et al. 2011)
of high-energy electrons.

Our aim is to develop a model for the electron phase-space
distribution function in coronal thick-target sources, using a
Fokker–Planck equation that includes the combined effects of
turbulent acceleration and Coulomb collisions with the dense

background plasma:
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Here f (electrons cm−3 (cm s−1)−3) is the phase-space distribu-
tion function of electrons, averaged over the acceleration region
volume, and we use a simplified form of the collision operator
applicable to the solar flare situation (see Jeffrey et al. 2014), in
which the background electrons are modeled as a heat bath at a
fixed temperature T(K). In Equation (1)

vte =
√

2kBT /me (2)

is the thermal speed (with kB (erg K−1) the Boltzmann constant
and me (g) the electron mass),

Γ = 4πe4 ln Λ n

m2
e

(3)

is the collision parameter (with n (cm−3) the density of back-
ground electrons, e (esu) the electronic charge, and ln Λ the
Coulomb logarithm), and Dturb(v) ≡ Dvv (cm2 s−3) is the dif-
fusion coefficient in velocity space associated with an as yet
unspecified stochastic acceleration mechanism.

There are three characteristic timescales in the stochastic
acceleration model represented by Equation (1), viz.

1. The acceleration time τacc, defined through
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through

Γ
v2

∂f

∂v
� f

τc(v)
; τc(v) � v3

Γ
; and (5)

3. The collisional diffusion time τd, defined through
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Many important properties of the model are more conve-
niently derived by recasting the Fokker–Planck Equation (1) in
the form studied by Chavanis & Lemou (2005) and Lemou &
Chavanis (2010):
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and

U ′(v) = Γ
v2D(v)

=
(

v2
te

2v
+

v2 Dturb(v)

Γ

)−1
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Observations of quantities related to f(v, t) are generally aver-
aged over the pertinent instrument time resolution. Specifically,
imaging spectroscopy hard X-ray observations from RHESSI
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(see Kontar et al. 2011a for a review) are limited to the time
it takes to develop a full set of spatial Fourier components of
the source; this takes a full spacecraft rotation period of several
seconds. Given that the timescales for acceleration, collisional
energy loss, and escape are, for typical conditions in loop-top
coronal hard X-ray sources (Guo et al. 2013), less than a second,
it follows that a quasi-steady-state scenario is of considerable
relevance and interest. The stationary (∂/∂t = 0) solution of the
Fokker–Planck equation (7) is

f (v) = Ae−U (v), (10)

where A is a normalization constant. This result is sufficiently
general to permit the determination of the steady-state distribu-
tion f (v) of energetic electrons in a collisional plasma, given a
specific choice of the turbulent velocity-space diffusion coeffi-
cient Dturb(v) or, equivalently, the function U (v).

3. THE KAPPA DISTRIBUTION AS
A STATIONARY SOLUTION

The stationary state (10) has been written in the form of
a Gibbs–Boltzmann distribution with the function U (v) play-
ing the role of a potential. It is well known that such dis-
tributions globally minimize the Helmholtz free-energy func-
tional F [f ] = E[f ] − S[f ] where E[f ] = ∫

Uf dv is the
potential energy and S[f ] = − ∫

f ln f dv is the Boltzmann
entropy. This property of the equilibrium state (10) is inti-
mately related to the existence of a variational principle un-
derlying the Fokker–Planck equation (7), which dictates that
the time-dependent solution f(v, t) evolves according to the fol-
lowing constraint (Chavanis & Lemou 2005) on the functional
F [f (v, t)]:

Ḟ = −
∫

D(v)

f

(
∂f

∂v
+ f

∂U

∂v

)2

dv � 0. (11)

Therefore, if F is bounded from below, the distribution func-
tion converges toward the stationary state (10) as t → ∞,
corresponding to a statistical equilibrium between diffusive ac-
celeration and collisional drag. Indeed, the electron distribution
function will steadily converge toward the stationary state (10)
provided the zero-flux boundary condition v2 D(v)(∂f/∂v +
f U ′(v)) → 0 as v → ∞.

When Dturb = 0, Equation (9) shows that the potential
U (v) is quadratic in v, so that, by Equation (10), a steady-
state Maxwellian distribution is obtained. In this case the
Fokker–Planck equation describes collisional relaxation toward
thermal equilibrium at temperature T. However, Equation (9)
also shows that a steady-state Maxwellian distribution of elec-
trons can be achieved in the presence of a finite level of turbu-
lence Dturb 
= 0 provided Dturb ∼ 1/v3, in which case the accel-
eration time given by Equation (4) obeys a velocity dependence3

identical to that of collisional diffusion τacc(v) ∼ τd(v) ∼ v5.
Therefore, the presence of a Maxwellian distribution of plasma
electrons is not synonymous with a state of thermal equilibrium.
This fact may complicate the interpretation of spectroscopic
data, inasmuch as the temperature inferred from the shape of
the electron distribution function may also include a turbulent
broadening component (e.g., Antonucci et al. 1986).

3 Acceleration times τacc ∼ v5, corresponding to Dturb ∼ v−3, are produced
by Gaussian isotropic spectra of electrostatic fluctuations, not necessarily
thermal, in the plasma (see Rosenbluth 1992).

The distribution function of deka-keV electrons in solar flares
is generally well described by a Maxwellian core with a power-
law high-energy tail (see, e.g., Holman et al. 2003). In an attempt
to account for this behavior, let us consider a turbulent diffusion
coefficient of the form

Dturb(v) = D0

v
, (12)

from which it follows (Equation (4)) that the acceleration time,
defined as τacc(v) ≡ v2/D(v), is given by

τacc(v) = v3

D0
. (13)

For this case, the acceleration time τacc and the collisional de-
celeration time τc have the same velocity dependence, τacc(v) ∝
τc(v) ∝ v3. Therefore we can define the dimensionless constant

κ = τacc(v)

2 τc(v)
= Γ

2D0
, (14)

(the reason for the factor 2 will be evident shortly). With this
identification, Equation (9) becomes
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, (15)

with the following solution for the potential U (v):

U (v) = κ ln

(
1 +

v2

κ v2
te

)
. (16)

Thus, by Equation (10), the (normalized) stationary solution
is the well-known (see, e.g., Vasyliunas 1968; Kašparová &
Karlický 2009; Livadiotis & McComas 2009; Oka et al. 2013)
kappa distribution

fκ (v) = nκ

π3/2 v3
te κ3/2

Γ(κ)

Γ
(
κ − 3

2

)
(

1 +
v2

κ v2
te

)−κ

, (17)

where nκ = ∫
fκ (v) d3v is the number density associated with

the accelerated electron distribution.
Equation (17) defines a kappa distribution of the first kind,

in the terminology of Livadiotis & McComas (2009, their
Equation (9)). We note that other authors (e.g., Kašparová &
Karlický 2009; Oka et al. 2013) have used a kappa distribution
of the second kind (again in the terminology of Livadiotis &
McComas 2009, their Equation (10)):

fκ̃ (v) = nκ̃

π3/2 θ3 κ̃3/2

Γ(κ̃ + 1)

Γ
(
κ̃ − 1

2

)
(

1 +
v2

κ̃ θ2

)−(κ̃+1)

(18)

to describe the electron distribution function in solar flares. Such
authors have also used the concept of kinetic temperature TK ,
defined such that the average energy of the electrons in the kappa
distribution (18) is E = (3/2) kB TK (see, e.g., Oka et al. 2013).
It follows that

kBTK = 1

2
me θ2

[
κ̃

(κ̃ − 3/2)

]
(19)

and it should be noted that the kinetic temperature TK is not
to be confused with T (Equation (2)), the temperature of the
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Figure 1. Stationary solution kappa distribution, fκ , for different values of κ ,
all normalized to a density nκ = 1. Solid blue line: κ = 1.6, dotted orange line:
κ = 3, dashed green line: κ = 5, dot-dashed red line: κ = 10, dot-dot-dot-
dashed purple line: κ = 30. For small values of κ the distribution function has
a Maxwellian core and a non-thermal power-law tail, while for large values of
κ , the distribution is almost indistinguishable from a Maxwellian.

(A color version of this figure is available in the online journal.)

background Maxwellian with which the accelerated electrons
interact.

It is important to note that Equations (17) and (18) refer
to an identical family of two-parameter distributions; only the
parametric labeling of the mathematical form is different in the
two descriptions. Indeed, as noted by Livadiotis & McComas
(2009), the changes of variable

κ̃ = κ − 1; θ =
√

κ

κ − 1
vte (20)

transform Equation (17) into Equation (18) exactly. Livadiotis
& McComas (2009) note that “the first kind of kappa distri-
bution is less widely used than the second kind.” However, in
our “first kind” parameterization (17), the quantity κ has an im-
mediate physical significance, namely the dimensionless ratio
(Equation (14)) of two physical quantities: the stochastic accel-
eration time τacc (Equation (4)) and the collisional deceleration
time τc (Equation (5)) or, equivalently, the collisional parameter
Γ (Equation (3)) and the diffusion parameter D0 (Equation (12)).
We therefore submit that the form (17) is a more natural choice
of kappa distribution parameterization.

Examples of kappa distributions (17), for various values of
the parameter κ , are shown in Figure 1. For high values of κ ,
the identity

e−x = lim
κ→∞

(
1 +

x

κ

)−κ

(21)

shows that fκ (v) (Equation (17)) approaches the Maxwellian
form

fκ (v) ∼ exp

(
− v2

v2
te

)
. (22)

At low velocities v � √
κ vte, the collisional diffusion term

f/τd ∼ v−5 is dominant over the turbulent term f/τacc ∼ v−3,
and so the distribution relaxes through collisional diffusion to
a Maxwellian form. Equation (17) confirms that in this regime

the kappa distribution approaches the form

f ∼
(

1 − v2

v2
te

)
as v → 0, (23)

which is the same as the low-velocity limit of the Maxwellian
distribution (22). On the other hand, in the high-velocity limit
v  √

κ vte, the collisional diffusion timescale τd ∼ v5

(Equation (6)) is much longer than either the acceleration time
τacc (Equation (4)) or the collisional deceleration timescale τc
(Equation (5)), both of which vary with velocity like v3. Thus
in this regime the (temperature-dependent) collisional diffusion
term is unimportant. Further, since both τacc and τc have the same
velocity dependence (∼v3), there is no characteristic velocity
scale in this domain. Indeed, Equation (17) confirms that the
stationary distribution approaches a (scale-independent) power-
law form:

fκ → v−2κ as v → ∞. (24)

Overall, then, the use of the turbulent diffusion coefficient of
the form (12) leads to an accelerated electron distribution that
has the form of a kappa distribution (17). Such a distribution, as
intended, accounts for the observed (e.g., Holman et al. 2003)
blend of a Maxwellian core at low energies with a power law at
higher energies. No artificial “low-energy cutoff” to the high-
energy part of the distribution need be invoked; the electron
distribution transitions smoothly from a “non-thermal” shape at
high energies to a thermal (Maxwellian) form at low energies.

Recalling our remarks near the beginning of this section on
the possibility of a stationary Maxwellian form for f (v) even in
the presence of finite non-thermal turbulence, it should be noted
that any scenario in which the turbulent acceleration time τacc
varies between τacc ∼ v5 at low velocities and τacc ∼ v3 at larger
velocities will produce a kappa distribution. Thus, we again
note that the Maxwellian core of the kappa distribution is not
necessarily associated with a collisionally dominated thermal
equilibrium state.

Now, the electron phase-space distribution function f (v) is
related to the mean electron flux F (E) (electrons cm−2 s−1

per unit energy) through the relation vf (v) d3v = F (E) dE.
Using the elementary relation E = mev

2/2, it follows that
v d3v ∼ v3 dv ∼ E dE and hence that f (v) ∼ F (E)/E. Thus
κ is simply related to the power-law spectral index for the mean
electron flux: F (E) ∼ E−δ , with δ = κ − 1.

Observations show that the hard X-ray spectrum above
∼(15–20) keV is indeed approximately power-law in form:
I (ε) ∼ ε−γ , with a typical value γ � 5. The bremsstrahlung
hard X-ray spectrum I (ε) (photons cm−2 s−1 keV−1 at the Earth)
is related to the emitting mean electron flux spectrum F (E)
(electrons cm−2 s−1 keV−1) (Brown et al. 2003) by

I (ε) = nV

4πR2

∫ ∞

ε

F (E) σ (ε, E) dE, (25)

where V is the source volume, R = 1 AU, and σ (ε, E) is
the bremsstrahlung cross-section (cm2 keV−1), differential in
photon energy ε. For the simple non-relativistic Kramers cross-
section

σ (ε, E) ∼ 1

εE
, (26)

a hard X-ray spectrum I (ε) ∼ ε−γ thus implies a mean electron
flux spectrum F (E) ∼ E−δ , with δ = γ − 1; this relation
also holds for more complex forms of σ (ε, E), such as the
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Bethe–Heitler cross-section (see Brown 1971). As discussed
above, for the model considered here, the electron flux at high
energies approximates a power-law with δ = κ−1; thus the hard
X-ray spectral index γ and the electron distribution parameter
κ are equal:

κ = γ, (27)

and so a typical value of κ � 5. Further, to obtain such a value
of κ , Equation (14) shows that the acceleration time

τacc � 10 τc, (28)

i.e., about an order of magnitude larger than the collisional
friction/deceleration time.

Since the power-law index κ in this acceleration model is
proportional to the acceleration time (Equation (14)), it follows
that temporal hardening (softening) of the photon spectrum can
be produced by a decrease (increase) of the acceleration time,
resulting from a variation of the turbulent diffusion coefficient
D0 on a timescale much longer than the overall relaxation time
toward the steady state. The same argument was advanced by
Benz (1977) for interpreting spectral index variations of the
photon spectrum during solar flares, including the commonly
observed soft-hard-soft behavior.

4. EVOLUTION TOWARD THE
STATIONARY DISTRIBUTION

We now consider in more detail the relaxation of the electron
distribution function toward the stationary solution (17), and in
particular the formation of accelerated high-energy tails during
such a process. This can be studied by introducing the function

u(v, t) ≡ f (v, t)

fκ (v)
. (29)

Substituting f (v, t) = fκ (v) u(v, t) into Equation (7) and using
the fact that ∂fκ/∂t = 0, we obtain an equation governing the
evolution of the dimensionless quantity u(v, t):

∂u

∂t
= 1

v2

∂

∂v

(
v2 D(v)

∂u

∂v

)
− D(v) U ′(v)

∂u

∂v
. (30)

We now introduce the velocity-space variable η through the
transformation

dη = dv√
D(v)

(31)

and thus find that Equation (30) can be written in the form of an
advection-diffusion equation in velocity space:

∂u

∂t
+ V (v)

∂u

∂η
= ∂2u

∂η2
. (32)

Here the advection speed (in velocity space) is given by

V (v) =
√

D(v)

[
U ′(v) − 2

v
− 1

2

d ln D(v)

dv

]
. (33)

Because of the advection-diffusion structure of the
Equation (32) that governs the relaxation toward the kappa dis-
tribution, the acceleration process is characterized by the suc-
cessive energization of particles of higher and higher energy.
The process may thus be described as a velocity-space “front”
moving in the direction of increasing velocity (MacDonald et al.
1957; Montgomery & Tidman 1964; Chavanis & Lemou 2005).

The position vf (t) of this velocity-space front may be estimated
by neglecting the diffusion term in Equation (32), so that

∂u

∂t
+ V (vf )

∂u

∂η
= 0. (34)

The location of the velocity-space “front” may be identified with
a fixed value of u(v, t) = f (v, t)/fκ (see Section 6, where we
set u = 0.5). Thus, setting the total derivative

du

dt
≡ ∂u

∂t
+

dη

dt

∂u

∂η
= 0 (35)

allows us to write

V (vf ) = dη

dt
= 1√

D(vf )

dvf

dt
(36)

and hence

dvf

dt
= √

D(vf ) V (vf )

= D(vf )

[
U ′(vf ) − 2

vf
− 1

2 vf

d ln D(vf )

d ln vf

]
. (37)

In the high-velocity domain, D(v) � Dturb(v) = D0/v
(Equations (8) and (12)), so that d ln D(vf )/d ln vf = −1. Also,
from Equation (15), in this regime U ′(vf ) � 2κ/vf , so that
Equation (37) reduces to

dvf

dt
= D(vf )

vf

(
2 κ − 3

2

)
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(
1 − 3

4κ

)
1

v2
f

, (38)

where we have used Equations (12) and (14). This has solution

vf (t) =
(

1 − 3

4κ

)1/3

(3 Γt)1/3 � vte

(
t

τ

)1/3

, (39)

where τ is the characteristic collision time for a thermal electron:

τ = v3
te

3 Γ
= (2kT )3/2 m

1/2
e

12πne4 ln Λ
� 4 × 10−3 T 3/2

n
. (40)

Substituting typical numerical values for the flaring corona in
a dense looptop source, viz. T = 2 × 107 K, n = 1011 cm−3,
we obtain τ � 3 ms. A hard-X-ray-producing electron has a
typical energy ∼30 keV, about 15 times the thermal energy.
From Equation (39) we see that

t = τ

(
vf

vte

)3

, (41)

and hence the time to produce an electron of this energy is
∼(15)3/2 τ � 0.2 s, comparable to the observed rise and decay
times of the hard X-ray flux at such energies. This therefore
raises the question of whether electrons can be confined in
the acceleration region for a time sufficiently long for the
ensemble to attain the asymptotic kappa distribution form (17).
We explore the consequences of this situation more fully in the
following section.

5
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5. SPATIAL TRANSPORT AND ESCAPE

In the acceleration model considered above, it is implicitly
assumed that the electron distribution function is maintained
close to isotropy as a result of efficient angular scattering in
the acceleration region. This implies that the transport of elec-
trons in this region is characterized by a spatial diffusion over
length-scales much larger than their mean free-path λ(v). Thus,
after averaging over the fast pitch-angle scattering timescale
τpa(v) ∼ λ(v)/v responsible for isotropization of the distribu-
tion function, the pitch-angle-dependent streaming transport of
electrons parallel to the background magnetic field, described
by the relation

ż = μv (42)

(where z is the coordinate along a direction parallel to the
guiding magnetic field and μ is the cosine of the angle
between the velocity and magnetic field vectors), assumes the
diffusive form

μv
∂f

∂z
→ ∂

∂z

[
K‖

∂f

∂z

]
. (43)

where the corresponding spatial diffusion coefficient is given by

K‖ = λ(v) v

3
. (44)

In this strong scattering limit (e.g., Petrosian 2012), the
Fokker–Planck equation, including the spatial transport term,
takes the form

∂f

∂t
+

∂

∂z

[
λ(v) v

3

∂f

∂z

]
= 1

v2

∂

∂v

×
{
v2

[(
Γ v2

te

2v3
+ Dturb(v)

)
∂f

∂v
+

Γ
v2

f

]}
. (45)

Now, representing ∂/∂z as 1/L, thus defining the “length” L of
the acceleration region, Equation (45) can be written

∂f

∂t
= 1

v2

∂

∂v

{
v2

[(
Γ v2

te

2v3
+ Dturb(v)

)
∂f

∂v
+

Γ
v2

f

]}

− f

τesc(v)
, (46)

where the escape timescale

τesc(v) = 3L2

λ(v) v
=

(
3L

λ(v)

) (
L

v

)
. (47)

In this leaky-box approximation, intended to represent the
effect of spatial transport out of the acceleration region, the role
of the escape term is to deplete the number of electrons from
the acceleration region over a transport timescale τesc(v). We
notice that this diffusive escape time becomes of the order of
the free-streaming escape time L/v only when the mean free
path λ and the acceleration region length L are comparable. We
also note that in the absence of an additional source of particles
maintaining a steady state, the number of electrons will decrease
with time as a result of the escape term.

In Equation (46), there are now four terms (acceleration, col-
lisional deceleration, collisional diffusion, and escape), each
with their associated characteristic timescale. The relative im-
portance of these terms is summarized on Figure 2. Ignoring

Figure 2. Characteristic timescales of the system. The solid blue line represents
the collisional diffusion timescale τd ∝ v5 (Equation (6)), the purple triple-
dot-dash line the acceleration timescale τacc ∝ v3 (Equations (4) and (12)), the
green dashed line the collisional deceleration timescale τc ∝ v3 (Equation (5)),
and the red dot-dashed lines the escape time τesc ∝ v−1 (Equation (47)) for
(from bottom to top) λ/L = 0.2, 0.01 and 0.001.

(A color version of this figure is available in the online journal.)

for the moment the (red dash-dot) lines representing the es-
cape time τesc(v) (∼v−1 for a velocity-independent mean free
path λ), we can see the two regimes that define the boundaries
of the kappa distribution. At low velocities the collisional dif-
fusion time, τd(v) ∼ v5 (blue line), is shorter than, and hence
dominant over, the acceleration timescale τacc(v) ∼ v3 (pur-
ple triple-dot-dash line); this creates a collisionally dominated
Maxwellian core. At higher velocities, the physics is dominated
by the acceleration and collisional friction timescales τacc(v)
and τc(v), which have the same velocity dependence ∼v3. The
resulting absence of characteristic velocity in this regime yields
a power-law spectrum with index κ = τacc/2τc.

Since the mean free path λ(v) can generally be expected to
be constant or increase with v, the escape timescale τesc(v) will
also generally be a decreasing function of v. Thus, at sufficiently
large velocities, τesc will eventually become smaller than all of
τd(v), τacc(v), and τc(v) (all of which are increasing functions
of v). Hence we define the escape velocity vesc as the critical
velocity where escape starts to be the leading effect, found by
equating the time at which the velocity front reaches a velocity
vf = vesc (i.e., t = v3

esc/3Γ; see Equations (40) and (41)) and
τesc(v) (Equation (47)):

v3
esc

3Γ
= 3L2

λ(vesc) vesc
. (48)

For λ = λ0(v/v0)α (see the discussion in Section 7), the explicit
solution is

vesc =
(

9L2 Γ vα
0

λ0

) 1
4+α

. (49)

The three red dot-dashed lines in Figure 2 show τesc(v)
for three different values of λ/L (where λ is assumed to be
independent of velocity, i.e., α = 0). As the mean free path
decreases the escape time becomes longer (Equation (47)) and
thus the intersection with τc(v) occurs at a higher velocity. For
example, for λ/L = 0.2, τesc(v) intercepts τc(v) before the
acceleration timescale has become shorter than the collisional
diffusion timescale, τd(v), so in this case we do not expect a

6
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kappa distribution to form. On the other hand, looking at the
λ/L = 0.0001 line, we see that the escape time intercepts at
much larger velocities, so that a kappa distribution power-law
tail will form for v � vesc, the shape of the distribution function
becoming substantially different from a kappa distribution only
at large velocities v � vesc.

We may solve the “leaky box” Fokker–Planck equation (46)
using an approximation based on an analogy to the pitch-angle
loss-cone in a magnetic trap where in the loss-cone situation,
there is a critical pitch angle below which electrons escape
and above which they remain fully trapped. By analogy, the
“escape velocity” vesc is the velocity below which electrons
are considered to remain in the acceleration region and above
which they are considered to freely escape.4 The Fokker–Planck
equation may therefore be written without an explicit escape
term:

∂f

∂t
= 1

v2

∂

∂v

{
v2

[(
Γ v2

te

2v3
+ Dturb(v)

)
∂f

∂v
+

Γ
v2

f

]}
, (50)

together with the absorbing boundary condition

f (vesc, t) = 0 (51)

replacing the escape term.
We treat the problem in the limit of a small escape rate

when the acceleration region can effectively be considered a
collisional thick target. Thus the time-dependent solution can be
found by perturbation analysis. We start with the Fokker–Planck
equation in the form (7), repeated here:

∂f

∂t
= 1

v2

∂

∂v

[
v2 D(v)

(
∂f

∂v
+ f U ′(v)

)]
, (52)

which is to be solved subject to the boundary condition (51).
We posit a solution of the form

f (v, t) = Aeνt g(v), (53)

leading to

νg(v) = 1

v2

∂

∂v

[
v2D(v)

(
dg(v)

dv
+ g(v)

dU

dv

)]
. (54)

This has a first integral

dg(v)

dv
+ g(v)

dU(v)

dv
= ν

v2D(v)

∫ v

0
dw w2 g(w). (55)

We next write the solution as an expansion in the decay rate ν
(see King 1965; Lemou & Chavanis 2010):

g(v) = g0(v) + ν g1(v) + . . . . (56)

The zero-order equation is

dg0(v)

dv
+ g0(v)

dU(v)

dv
= 0, (57)

with the expected solution (see Equation (10))

g0(v) = Ae−U (v), (58)

4 This approximation is also used to model the escape of stars from
gravitational clusters (Chandrasekhar 1943; Spitzer & Harm 1958).

where A is a normalization factor. The first-order equation is

dg1(v)

dv
+ g1(v)

dU (v)

dv
= 1

v2D(v)

∫ v

0
dw w2 g0(w)

= A

v2D(v)

∫ v

0
dw w2 e−U (w). (59)

Using an integrating factor eU (v), we derive the solution

g1(v) = Ae−U (v) χ (v), (60)

where χ (v) is the function defined by

χ ′(v) = eU (v)

v2D(v)

∫ v

0
dw w2 e−U (w). (61)

Using Equations (56), (58), and (60), the distribution function
is, to first order in ν, given by

f (v, t) = Ae−U (v) eνt [ 1 + ν χ (v) ]. (62)

Now introducing the boundary condition f (vesc, t) = 0
(Equation (51)), we obtain the identification

ν = − 1

χ (vesc)
, (63)

which is the sought-after escape rate in the limit of large escape
velocity.

In the case where Dturb(v) = D0/v (Equation (12)), we recall
that (see Equation (8))

D(v) = Γ v2
te

2 v3
+

D0

v
, (64)

and that (Equation (16))

U (v) = κ ln

(
1 +

v2

κv2
te

)
. (65)

Substituting results (63) and (65) in Equation (62) gives the
(normalized; see Equation (17)) time-dependent solution of the
leaky-box acceleration model:

f (v, t) = n e−t/χ(vesc)

π3/2 v3
te κ3/2

Γ(κ)

Γ
(
κ − 3

2

)
(

1 +
v2

κ v2
te

)−κ

×
[

1 − χ (v)

χ (vesc)

]
. (66)

The last factor in brackets describes the deviation from the kappa
distribution and

n(t) = n exp[−t/χ (vesc)] (67)

describes the decreasing overall number of particles in the
box with time, which are both a consequence of escape of
particles out of the acceleration region. These functions de-
pend on the function χ (v), which is determined through
Equations (61), (64), and (65):

χ ′(v) = v

κ D0 v2
te

(
1 +

v2

κ v2
te

)κ−1 ∫ v

0
dw w2

(
1 +

w2

κ v2
te

)−κ

.

(68)
As a reminder, the above solution is valid in the limit where
the acceleration region behaves essentially as a thick target.
A stationary solution of a similar leaky-box Fokker–Planck
equation, without the collisional diffusion term but with a source
of particles, was also obtained by Benz (1977).

7
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Figure 3. Temporal evolution of electron distribution function f(v, t), for
κ (≡ Γ/2D0) = 5. The solid blue line shows the initial Maxwellian and then,
from left to right, f(v, t) at t/τc = 1.0 (orange dotted line), t/τc = 10 (green
dashed line), t/τc = 100 (red dot-dashed line), and t/τc = 1000 (purple dot-
dot-dot-dashed line).

(A color version of this figure is available in the online journal.)

6. NUMERICAL SOLUTIONS

We have performed a number of numerical solutions of
the Fokker–Planck equation (1), with the goal of validating
the analytical approximations of Section 4. We use a finite
difference code to examine the evolution of the electron velocity
distribution f(v, t) with time as governed by Equation (1) with
Dturb = D0/v = Γ/2κv. For the simulations, we adopted a
typical value for κ = 5, which agrees well with solar flare hard
X-ray observations (see Equation (27)).

First we check that we do indeed obtain a kappa distribution
from the balance of Coulomb collisions and stochastic accel-
eration within Equation (1). Figure 3 shows the evolution of
an originally Maxwellian thermal population of electrons (blue,
solid line) toward a final state which agrees with the stationary
solution kappa distribution (purple, dot-dot-dot-dashed line) as
given by Equation (17). We see that the distribution at t = 100 τc
closely approximates the kappa distribution form below �5 vte,
corresponding to a range of about four orders of magnitude in
f(v, t). Such a distribution at t = 100 τc is thus close to a kappa
distribution form for a significant proportion of the particles.

The evolution of the normalized distribution (Figure 4) shows
a “wavefront” moving toward higher energies, as expected from
the advection-diffusion nature of Equation (30). (We do not plot
the final state of the distribution at t = 1000 τc as it is almost
a constant across the domain.) Examining f/fκ gives a clearer
view of how close the electron distribution approximates a kappa
distribution at different points of the simulation. Our results
confirm that the electron distribution function at t = 100 τc
(green dashed line) is close to a kappa distribution for v � 5 vte
and that for t = 300 τc it is almost indistinguishable from a
kappa distribution up to around 7 vte.

In Section 4 we found that the location of the front in
velocity space evident in Figure 4 should depend on time
according to vf (t) ∼ t1/3 (Equation (39)). To assess the
accuracy of this analytical result we arbitrarily choose a value
u(v, t) = f (v, t)/fκ = 0.5 to define the front location vf (t). A
plot of vf versus time (in units of the collision time τc) is shown

Figure 4. Evolution of the normalized distribution f/fκ with time. The solid
blue line shows the normalized injected Maxwellian and then, from left to right:
f (v, t)/fκ at t/τc = 10 (orange dotted line), t/τc = 100 (green dashed line),
and t/τc = 300 (red dot-dashed line).

(A color version of this figure is available in the online journal.)

Figure 5. Location vf of the front in velocity space (in units of the thermal
speed vte) vs. time (in units of the collisional deceleration time τc). The analytic
approximation for front speed vf (t) (Equation (39)) is shown by the orange
solid line. The blue line shows the location of the velocity where f/fκ = 0.5,
from numerical simulations.

(A color version of this figure is available in the online journal.)

in Figure 5. Before t � 20 τc there is a significant disagreement
because the analytic expression (39) holds only for t  τc, i.e.,
when a sufficient number of particles have been accelerated to
non-thermal energies. At longer times t � 700 τc a discrepancy
also develops, which is due to the simulation results reaching
the upper limit of velocity allowed in the system. However, for
times between these two extremes, we see excellent agreement
between the numerical and analytic solutions in terms5 of
the power-law slope d ln vf /d ln t = 1/3. These numerical
results show that the velocity-space front scenario as well

5 The constant offset between the curves in Figure 5 is not significant; it
merely reflects the subjective nature of the choice f (v, t)/fκ = 0.5 for the
location of the velocity front.
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as Equation (39) provide a generally good description of the
way particles are accelerated toward the kappa distribution
in this model.

7. STOCHASTIC ACCELERATION BY A
LARGE-SCALE ELECTRIC FIELD WITH
STRONG PITCH-ANGLE SCATTERING

The primary energy release in solar flares involves the re-
connection of magnetic fields to produce electric fields. Vari-
ous authors have considered the role of magnetic reconnection
in particle acceleration, including large-scale sub-Dreicer (e.g.,
Benka & Holman 1994) and supra-Dreicer (e.g., Litvinenko &
Somov 1993; Litvinenko 1996) electric fields. Here we extend
the analysis of large-scale coherent electric fields to include the
role of turbulent pitch-angle scattering. A main objective of this
analysis is to point out that efficient pitch-angle scattering of
the particles in a region of constant electric field strength can
still create an effect akin to stochastic acceleration, possibly
suppressing the runaway phenomenon (Benka & Holman 1994)
and preventing the production of an unacceptably large unidirec-
tional current in these acceleration models. As we are interested
in the formation of kappa distributions by turbulent acceleration
we also discuss the conditions leading to a turbulent diffusion
coefficient of the desired form Dturb(v) ∼ v−1.

Under the action of an accelerating electric field E‖ (stat-
volt cm−1) parallel to the ambient magnetic field B, the one-
dimensional kinetic equation for a gyrotropic (∂f/∂φ = 0)
distribution function f (z, β, v, t) is

∂f

∂t
+ v cos β

∂f

∂z
+

eE‖
me

b · ∇vf = v

λ

1

sin β

∂

∂β

(
sin β

∂f

∂β

)
,

(69)
where z (cm) is the position of the gyrocenter along the
magnetic field with direction b = B0/B0, β is the pitch angle
(cos β = v · B0/vB0 = v‖/v) and v =

√
v2

‖ + v2
⊥ is the particle

speed. In the case under consideration, the acceleration region
is characterized by an electric field of constant magnitude E‖
aligned with the direction b of the magnetic field. Transforming
to the variables (z, μ, v, t), with μ = cos β, this may be
rewritten as

∂f

∂t
+ μv

∂f

∂z
+

eE‖
me

μ
∂f

∂v
+

eE‖
me

(1 − μ2)

v

∂f

∂μ

= v

λ

∂

∂μ

[
(1 − μ2)

∂f

∂μ

]
. (70)

The last term in this equation describes pitch-angle diffusion,
which tends to isotropize the distribution function on a (velocity-
dependent) timescale given by

τpa(v) = λ(v)

v
, (71)

where the mean free path λ(v) is generally a function of v.
For instance, collisional pitch-angle scattering produces
isotropization of the distribution function on timescale τpa ∼ v3

(∼v3
te) corresponding to λ ∼ v4 (∼T 2 for thermal particles) and

the absence of an external electric field.6

6 For λ ∼ v4, Equation (70) is identical to the model studied by Kruskal &
Bernstein (1964) in the context of the formation of runaway electrons in
plasmas, while the case of a velocity-independent mean free-path λ ∼ v0

corresponds to the standard Drude model of electric resistivity studied by
Lorentz (1905).

Acceleration of the particles is described by the third term in
Equation (70), i.e.,

v̇ = eE‖
me

μ, (72)

which shows that fluctuations in μ are also responsible for
fluctuations in v. The isotropization effect of pitch angle
scattering becomes dominant whenever τpa(v) = λ(v)/v is
a decreasing function of v; in fact, for λ ∼ vα and hence
τpa(v) ∼ vα−1 (Equation (71)), it can be shown that when α < 1
the particle distribution function remains close to isotropic
despite the presence of the constant electric force (Piasecki
1981; Krapivsky & Redner 1997; Chernov & Dolgopyat 2007).
No runaway phenomenon occurs in this case. The combined
effect of the electric field and pitch-angle scattering shows
up as isotropic diffusive acceleration of electrons and an
unlimited growth of their kinetic energy in the absence of
collisional energy losses. The corresponding velocity-space
diffusion coefficient can then be computed from the Taylor
(1922) formula

Dturb(v) = e2E2
‖

m2
e

∫ ∞

0
〈μ(0) μ(t) 〉 dt = e2 E2

‖ λ(v)

3 m2
e v

. (73)

In the case where the mean free path λ(v) is independent of v,
this may be written

Dturb(v) = D0

v
, (74)

with

D0 = e2 E2
‖ λ

3 m2
e

. (75)

As discussed in Section 3, in such a case the acceleration
time τacc(v) ∼ v2/Dturb(v) (Equation (4)) and the collisional
deceleration time τc(v) (Equation (6)) have the same velocity
dependence (∼v3). Indeed, since Dturb(v) ∝ τpa(v) = λ/v ∼
v−1, Equation (4) shows that dv/dt ∼ v/τacc ∼ v−2, so that
dE/dt ≡ me v dv/dt ∼ v−1 ∼ E−1/2; the kinetic energy thus
grows like E ∝ t2/3 (see Equation (39)). The role of collisional
energy losses is to allow the distribution of electrons to steadily
converge toward the stationary kappa distribution (17) as a result
of the balance between turbulent acceleration and friction.

In the above reasoning we have completely ignored the finite
size of the acceleration region which imposes a maximum
energy gain bounded by the finite electric potential drop across
the acceleration region. Unfortunately, our treatment (Section 5)
of escape from a finite-length acceleration region does not apply
to the case of a stationary electric field—whereas the maximum
energy gained by particles from time-dependent electric fields in
a finite length acceleration region depends on the confinement
(escape) time τesc, the amount of energy gained by particles
under the influence of a time-independent electric field is
independent of the amount of time these particles stay confined
in the acceleration region. Further, given that only particles
moving parallel to the applied electromotive force eE‖ gain
energy, while those flowing antiparallel to the applied force lose
it, a spatial asymmetry remains in such an acceleration model,
despite the effects of isotropization. This is an undesirable
feature of the model, requiring that some form of fragmentation
of the electric field, such as oppositely directed electric fields
on different magnetic field lines (e.g., Holman 1985; Emslie
& Hénoux 1995; Anastasiadis et al. 1997; Vlahos et al. 2004;
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Bian & Browning 2008; Gordovskyy & Browning 2012; Cargill
et al. 2012; Gordovskyy et al. 2013), must be invoked.

The value of κ in the distribution (17) is the ratio
(Equation (14)) of the collision parameter Γ (Equation (3)) to the
diffusion parameter D0 (Equation (12)) and hence, in a model
involving stochastic acceleration by direct electric field, relates
the ambient density n to the (square of the) strength of the accel-
erating electric field E‖ (Equation (75)). Thus the shape of the
accelerated electron distribution constrains the values of one or
both of these physical parameters. We now briefly explore the
nature of this constraint as imposed by the observed shape of
solar flare hard X-ray spectra.

Using Equations (14) and (75), we find that the value of the
power-law index κ in the distribution (17) is given by

κ = Γ
2D0

= 3

2

(
λc

λ

) (
ED

E‖

)2

, (76)

where we have introduced the usual collisional mean free-path

λc = (kBT )2

4πne4 ln Λ
(77)

and the Dreicer field

ED ≡ kBT

eλc
= 4πn e3 ln Λ

kBT
, (78)

i.e., the field strength required to accelerate an electron to the
thermal energy over a distance equal to the collisional mean
free path. As discussed in Section 3, observations of solar flare
hard X-ray spectral shapes reveal that a typical value for κ is
κ � 5 (Equation (27)), which therefore provides the following
constraint on the value of the accelerating electric field:

E‖ �
(

3

10

λc

λ

)1/2

ED. (79)

Moreover, normalizability of the kappa distribution (17) re-
quires that κ > 3/2, or E‖ < (λc/λ)1/2 ED . For typi-
cal conditions in the flaring loop-top source coronal plasma,
T � 2 × 107 K and n � 1011 cm−3, leading to a colli-
sional mean free path λc � 5 × 106 cm and a Dreicer field
ED � 3 × 10−4 V cm−1. Recently, Kontar et al. (2014) have
argued, on the basis of the observed variation of hard X-ray
source size with energy, that the turbulent mean free path λ
is in the range 108–109 cm. Thus, λc/λ � 0.005–0.05, leading
(Equation (79)) to E‖ � (0.05–0.1)ED � (2–3)×10−5 V cm−1.
Such a value of E‖ is broadly consistent with the acceleration
of electrons to deka-keV energies over observed loop lengths
L � 109 cm.

8. SUMMARY AND CONCLUSIONS

Driven by RHESSI observations of confined loop-top hard
X-ray sources in solar flares, we have considered a model with
cospatial stochastic acceleration, collisional deceleration and
thermalization, and hard X-ray bremsstrahlung emission. For a
turbulent diffusion coefficient associated with the acceleration
mechanism of the form Dturb ∼ 1/v, and in the absence
of particle escape, the electron distribution asymptotically
approaches a kappa distribution (17) with time.

The approach toward this asymptotic steady-state kappa
distribution proceeds as a “wavefront” in velocity space, with

electrons of speed v accelerated at successively greater times
t ∼ v3 ∼ E3/2. This velocity-space front scenario, as well
as the basic timescales involved, are supported by the results
of numerical simulations. For sufficiently high velocities, the
time taken to approach the kappa distribution becomes long
enough that escape of electrons from the acceleration region
can no longer be neglected. The effect of this was considered
analytically in the limit of a small escape rate, when the
acceleration region effectively behaves as a thick-target.

With the high-spectral-resolution hard X-ray observations
from RHESSI, the form of the hard X-ray-emitting (and hence,
in this context, accelerated) electron distribution can be de-
termined with impressive accuracy. Analysis of the spatially
integrated spectra from loop-top sources therefore provides a
test of the predictions of the current model. Further, quanti-
tative analysis of the energies, both low and high, at which
the inferred electron distribution approaches and/or deviates
from the asymptotic, escape-free, kappa distribution provides
information on the value of the physical parameters of the
model, such as the acceleration region length L and the diffusion
coefficient parameter D0.
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Commission through the “Radiosun” (PEOPLE-2011-IRSES-
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by grant number NNX10AT78G from NASA’s Heliospheric
Physics Division.
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