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ABSTRACT

Accretion disks are likely threaded by external vertical magnetic flux, which enhances the level of turbulence via
the magnetorotational instability (MRI). Using shearing-box simulations, we find that such external magnetic flux
also strongly enhances the amplitude of banded radial density variations known as zonal flows. Moreover, we report
that vertical magnetic flux is strongly concentrated toward low-density regions of the zonal flow. Mean vertical
magnetic field can be more than doubled in low-density regions, and reduced to nearly zero in high-density regions
in some cases. In ideal MHD, the scale on which magnetic flux concentrates can reach a few disk scale heights. In
the non-ideal MHD regime with strong ambipolar diffusion, magnetic flux is concentrated into thin axisymmetric
shells at some enhanced level, whose size is typically less than half a scale height. We show that magnetic flux
concentration is closely related to the fact that the turbulent diffusivity of the MRI turbulence is anisotropic. In
addition to a conventional Ohmic-like turbulent resistivity, we find that there is a correlation between the vertical
velocity and horizontal magnetic field fluctuations that produces a mean electric field that acts to anti-diffuse the
vertical magnetic flux. The anisotropic turbulent diffusivity has analogies to the Hall effect, and may have important
implications for magnetic flux transport in accretion disks. The physical origin of magnetic flux concentration may
be related to the development of channel flows followed by magnetic reconnection, which acts to decrease the
mass-to-flux ratio in localized regions. The association of enhanced zonal flows with magnetic flux concentration
may lead to global pressure bumps in protoplanetary disks that helps trap dust particles and facilitates planet
formation.
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1. INTRODUCTION

The magnetorotational instability (MRI; Balbus & Hawley
1991) is considered the most promising mechanism for trigger-
ing turbulence and transporting angular momentum in accre-
tion disks. The properties of the MRI depend on magnetic field
geometry. Without external field, the MRI serves as a dynamo
process that keeps dissipating and re-generating magnetic fields
in a self-sustained manner (e.g., Stone et al. 1996; Davis et al.
2010; Shi et al. 2010). On the other hand, MRI turbulence be-
comes stronger when the disk is threaded by external (vertical)
magnetic flux (Hawley et al. 1995; Bai & Stone 2013a). Such
external magnetic flux may be generically present in accre-
tion disks, especially in protoplanetary disks (PPDs), from both
observational (Chapman et al. 2013; Hull et al. 2014; Zaman-
inasab et al. 2014) and theoretical (Tchekhovskoy et al. 2011;
Bai & Stone 2013a, 2013b; Bai 2013; Simon et al. 2013) points
of view.

Numerical studies of the MRI turbulence have shown that it
tends to generate long-lived, large-scale axisymmetric banded
density/pressure variations. They are termed zonal flows, with
geostrophic balance between radial pressure gradients and the
Coriolis force (Johansen et al. 2009). In PPDs, zonal flows
have the attractive potential to concentrate dust particles into
pressure bumps, which may serve as a promising mechanism
for planetesimal formation (Dittrich et al. 2013), and also as
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dust traps to overcome the rapid radial drift of mm sized grains
(Pinilla et al. 2012).

Without external magnetic flux, the existence of zonal flows
is robust based on local shearing-box simulations (Simon et al.
2012), although they are not unambiguously identified in global
simulations (Uribe et al. 2011; Flock et al. 2012). In the presence
of net vertical magnetic flux, enhanced zonal flow has been
reported from local shearing-box simulations in the ambipolar-
diffusion-(AD)-dominated outer regions of PPDs (Simon &
Armitage 2014). Such enhanced zonal flow is further found
to be associated with the re-distribution of vertical magnetic
flux (Bai 2014): flux is concentrated into thin shells in the
low-density regions of the zonal flow, while the high-density
regions have almost zero net vertical magnetic flux (see Figure 8
of Bai 2014).

Magnetic flux concentration by MRI turbulence is evident in
earlier shearing-box as well as global simulations containing net
vertical magnetic flux, although it has not been systematically
studied in the literature. For instance, we show in Figure 1 the
time evolution of radial profiles for the mean gas density ρ̄
and the mean vertical magnetic field B̄z around disk midplane
extracted from runs B2 and B4 in Bai & Stone (2013a). These
are isothermal ideal magnetohydrodynamic (MHD) stratified
shearing-box simulations of the MRI in the presence of relatively
strong net vertical magnetic flux. The net vertical field is
characterized by β0, the ratio of gas to magnetic pressure (of
the net vertical field) at the disk midplane, with β0 = 100 and
104, respectively. We see from the top panels that strong zonal
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Figure 1. Time evolution of the radial profiles of mean density ρ̄ (top) and mean vertical magnetic field B̄z (bottom) in the midplane region from the ideal MHD,
vertically stratified simulations of Bai & Stone (2013a). Left and right panels correspond to runs B2 (midplane β0 = 102) and B4 (midplane β0 = 104) in that paper.
The average is taken azimuthally and vertically within z = ±2H . The color scales are centered at the mean value, and span the same range relative to the mean. This
figure may be viewed in parallel with the top and bottom panels in Figure 7 of Bai & Stone (2013a).

(A color version of this figure is available in the online journal.)

flows are produced with density variations of about 30% and 5%
around the mean values, respectively. The bottom panel shows
the corresponding magnetic flux distribution. Concentration of
magnetic flux in the low-density region of the zonal flow is
obvious when β0 = 102, and the high-density region contains
essentially zero net vertical magnetic flux. With weaker net
vertical field β0 = 104, magnetic flux concentration is still
evident but weaker. We emphasize that the systems are highly
turbulent where the level of density and magnetic fluctuations
is much stronger than their mean values (see Figures 3 and 4 of
Bai & Stone 2013a).

In this work, we systematically explore the phenomenon of
magnetic flux concentration by performing a series of local
shearing-box simulations (Section 2), both in the ideal MHD
regime and in the non-ideal MHD regime with AD as a proxy
for the outer regions of PPDs. All simulations are unstratified
and include net vertical magnetic flux. A phenomenological
model is presented in Section 3 to address the simulation results.
Using this model, we systematically explore parameter space in
Section 4. While we focus on unstratified simulations in this
work, we have tested that the phenomenological model can be
applied equally well to stratified simulations such as shown
in Figure 1. A possible physical mechanism for magnetic flux
concentration, together with its astrophysical implications, are
discussed in Section 5. We conclude in Section 6.

2. MAGNETIC FLUX CONCENTRATION IN
SHEARING-BOX SIMULATIONS

We first perform a series of unstratified three-dimensional
shearing-box simulations using the Athena MHD code (Stone
et al. 2008). The orbital advection scheme (Stone & Gardiner
2010) is always used to remove location-dependent truncation
error and increase the time step (Masset 2000; Johnson et al.
2008). The MHD equations are written in Cartesian coordinates
for a local disk patch in the corotating frame with angular
velocity Ω. With (x, y, z) denoting the radial, azimuthal, and

vertical coordinates, the equations read

∂ρ

∂t
+ ∇ · (ρv) + vK

∂ρ

∂y
= 0, (1)

∂ρv

∂t
+vK

∂ρv

∂y
+∇×(ρvv+T) = −1

2
ρΩvxey+2ρΩvyex, (2)

∂ B
∂t

= −3

2
BxΩey + ∇ ×

[
v × B +

( J × B) × B
γρiρ

]
, (3)

where T ≡ (P +B2/2)I− B B is the total stress tensor, ρ, P, vK ,
v, and B denote gas density, pressure, background Keplerian
velocity, background-subtracted velocity, and magnetic field,
respectively. We adopt an isothermal equation of state P = ρc2

s

with cs being the sound speed. The unit for magnetic field is
such that magnetic permeability μ = 1, and J = ∇ × B is the
current density. The disk scale height is defined as H ≡ cs/Ω.
We set ρ0 = Ω = cs = H = 1 in code units, where ρ0 is the
mean gas density. The last term in the induction equation is due
to AD, with γ being the coefficient for momentum transfer in
ion-neutral collisions, and ρi is the ion density. The strength
of AD is measured by the Elsasser number Am ≡ γρi/Ω,
the frequency that a neutral molecule collides with the ions
normalized to the disk orbital frequency (Chiang & Murray-
Clay 2007). We consider both the ideal MHD regime, which
corresponds to Am → ∞, and the non-ideal MHD regime with
Am ∼ 1, appropriate for the outer regions of PPDs (Bai 2011a,
2011b).

All our simulations contain net vertical magnetic field Bz0,
measured by initial plasma β0 = 2P0/B

2
z0, the ratio of gas

pressure to the magnetic pressure of the net vertical field. We
perform a total of 9 runs listed in Table 1. Typical simulation run
time ranges from T = 1080Ω−1 (∼172 orbits) to T = 2700Ω−1

(∼430 orbits). Physical run parameters include β0 and Am,
while numerical parameters include simulation box size and
resolution. Fiducially, we adopt box size of Lx × Ly × Lz =
4H ×4H ×H , resolved with 192×96×48 cells for ideal MHD
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Table 1
List of All Shearing-box Simulations

Run Box size (H) β0 Am αMax αRey 〈β〉 | Δρ/ρ0 B
Max
z /Bz0 αm αt Q′ αxy t (Ω−1)

ID-4-4 4 × 4 × 1 400 ∞ 0.15 0.055 3.6 0.26 1.8 0.22 0.054 −0.11 −0.12 360–660
ID-4-16 4 × 4 × 1 1600 ∞ 0.070 0.026 7.4 0.37 2.2 0.086 0.033 −0.081 −0.072 360–720
ID-4-64 4 × 4 × 1 6400 ∞ 0.034 0.010 14 0.23 2.1 0.032 0.010 −0.050 −0.033 600–780

ID-2-16 2 × 4 × 1 1600 ∞ 0.083 0.022 5.7 0.014 1.33 · · · · · · · · · · · · 480–600
ID-8-16 8 × 8 × 1 1600 ∞ 0.069 0.025 7.1 0.44 2.0 0.014 0.032 −0.089 −0.069 1260–1500
ID-16-16 | 16 × 16 × 1 1600 ∞ 0.070 0.024 6.9 0.29 1.4 · · · · · · · · · · · · 1170–1350

AD-4-16 4 × 4 × 1 1600 1 1.5E−3 9.1E−4 2.1E+2 0.061 1.6 5.6E−3 1.1E−3 −0.093 2.6E−3 1080–1440
AD-4-64 4 × 4 × 1 6400 1 4.8E−4 6.0E−4 5.0E+2 0.081 2.6 1.6E−3 4.9E−4 −0.064 1.2E−3 1200–1440
AD-2-64 2 × 4 × 1 6400 1 4.4E−4 4.1E−4 5.3E+2 0.024 2.0 7.6E−3 5.8E−4 −0.048 1.1E−3 210–450

simulations. For non-ideal MHD simulations, we increase the
resolution to 256 × 128 × 64 cells, which helps better resolve
the MRI turbulence (see discussion below). We also explore the
effect of horizontal domain size by varying Lx from 2H to 12H
while keeping the same resolution (and Ly = max[Lx, 4H ]).
We set β0 = 1600 as the standard value, but we also consider
β0 = 400 and 6400 for comparison.

All simulations quickly saturate into the MRI turbulence in a
few orbits. Standard diagnostics of the MRI include the Maxwell
stress

Mxy ≡ −BxBy, (4)

and the Reynolds stress ρvxvy . Their time and volume averaged
values normalized by pressure give the Shakura–Sunyaev pa-
rameters αMax and αRey, respectively. In Table 1, we list these
values for all our simulations, averaged from t = 360Ω−1 on-
ward. Also listed is the plasma β parameter, the ratio of gas to
magnetic pressure at the saturated state. We see that in both ideal
and non-ideal MHD runs, αMax and αRey increases with net ver-
tical magnetic flux, as is well known (Hawley et al. 1995; Bai &
Stone 2011). Also, they all roughly satisfy the empirical relation
αβ ≈ 1/2 in both ideal MHD and non-ideal MHD cases (Black-
man et al. 2008; Bai & Stone 2011), where α = αMax + αRey.

To ensure that our simulations have sufficient numerical
resolution, we have computed the quality factor Qz ≡ λMRI/Δz
(Noble et al. 2010), where λMRI is the characteristic MRI
wavelength based on the total (rms) vertical magnetic field
strength. For the most unstable wavelength in ideal MHD,
we have λMRI = 9.18β

−1/2
z (Hawley et al. 1995), where

βz = 2P/B2
z is the plasma β parameter for the vertical

field component. In non-ideal MHD with Am = 1, we find
λMRI = 17.47β

−1/2
z (Bai & Stone 2011). Similarly, one can

define Qy ≡ λc/Δy, where λc is defined the same way as λMRI
but using βφ instead of βz. In general, the MRI is well resolved
when Qy � 20 and Qz � 10 (Hawley et al. 2011). We find that
in all our simulations are well resolved based on this criterion.
Further details are provided in Section 4.

In Figure 2, we show the time evolution of the radial profiles
of various diagnostic quantities for our fiducial ideal and non-
ideal MHD runs. The results are discussed below. Other runs
will be discussed in Section 4.

2.1. The Ideal MHD Case

In this ideal MHD run, we see that a very strong zonal flow
is produced, with density contrast up to 50%. In the mean time,
there is a strong anti-correlation between gas density and mean
vertical magnetic field, with most magnetic flux concentrated in
the low-density regions. In this fiducial run with radial box size

Lx = 4H , there is just one single “wavelength” of density and
mean field variations. The phase of the pressure maxima drifts
slowly in a random way over long timescales, accompanied by a
slow radial drift of the mean field profile; but, overall, the system
achieves a quasi-steady-state in terms of density and magnetic
flux distributions.

Combined with Figure 1, we see that both unstratified and
stratified shearing-box simulations show similar phenomenon of
magnetic flux concentration and zonal flows. This fact indicates
that the same physics is operating, independent of buoyancy.
We stress that the mean vertical field, even in the highly
concentrated region, is much weaker than the rms vertical field
from the MRI turbulence. Therefore, the physics of magnetic
flux concentration lies in the intrinsic properties of the MRI
turbulence.

From the last three panels on the left of Figure 2, we see
that the action of the Maxwell stress (which is the driving
force of the zonal flow) is bursty. Such behavior corresponds
to the recurrence of the channel flows followed by dissipation
due to magnetic reconnection (Sano & Inutsuka 2001). The
Maxwell stress is most strongly exerted in regions where
magnetic flux is concentrated. Interestingly, magnetic pressure
shows bursty behavior similar to the Maxwell stress, but its
strength does not show obvious signs of radial variation. On
the other hand, turbulent velocity in the x−z plane, given by
δv2 = δv2

x + δv2
z , is strongest in regions with weaker magnetic

flux during each burst.4 While we are mostly dealing with time-
averaged quantities in this work, one should keep in mind about
such variabilities on timescales of a few orbits.

2.2. The Non-ideal MHD Case

On the right of Figure 2, we show the time evolution of the
radial profiles of main diagnostic quantities from our fiducial
non-ideal MHD simulation AD-4-16. Zonal flows and magnetic
flux concentration are obvious from the plots. One important
difference from the ideal MHD case is that the scale that
magnetic flux concentrates is much smaller: we observe multiple
shells of concentrated magnetic flux whose width is around
0.5H or less. The shells may persist, split, or merge during
the evolution, while their locations are well correlated with
the troughs in the radial density profile. Many other aspects
of the evolution are similar to the ideal MHD case, such as
the action of Maxwell stress, and the distribution of PB and
δv2. These flux-concentrated shells closely resemble the shells
of magnetic flux observed in stratified simulations shown in

4 By contrast, we find δv2
y (after removing the zonal flow) peaks in regions

with magnetic fluctuation.
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Figure 2. Time evolution of the radial profiles of main diagnostic quantities from our fiducial ideal MHD run ID-4-16 (left) and fiducial non-ideal MHD run AD-4-16
(right). For each run, from top to bottom, we show the evolution of mean density ρ̄, normalized mean vertical magnetic field B̄z/Bz0, magnetic pressure PB, Maxwell
stress Mxy, and turbulent velocity fluctuation δv2 = δv2

x + δv2
z .

(A color version of this figure is available in the online journal.)

Figure 8 of Bai (2014). Again, the similarities indicate that
the physics of magnetic flux concentration is well captured in
unstratified simulations.

In our unstratified simulations, the zonal flow is weaker
than in the ideal MHD cases, where the amplitude of density
variations is typically 10% or less. The level of radial density
variations in stratified simulations is typically larger (Simon &
Armitage 2014; Bai 2014). Meanwhile, it appears that magnetic
flux concentration is more complete in stratified simulations:
most of the magnetic flux is concentrated into the shells,
while other regions have nearly zero net vertical flux (see
Figure 8 of Bai 2014). Also, the flux-concentrated shells are
more widely separated in stratified simulations. Note that these
stratified simulations contain an ideal-MHD, more strongly
magnetized and fully MRI turbulent surface layer, which may
affect the strength of the zonal flow at disk midplane (via the
Taylor–Proudman theorem) as well as the level of magnetic
flux concentration. Nonetheless, addressing these differences is
beyond the scope of this work.

Finally, we note that the zonal flow and magnetic flux con-
centration phenomena were already present in our earlier AD
simulations (Bai & Stone 2011; Zhu et al. 2014). These simula-

tions either focused on the Shakura–Sunyaev α parameter, or the
properties of the MRI turbulence, while the radial distribution
of magnetic flux was not addressed.

3. A PHENOMENOLOGICAL MODEL

In this section, we consider our fiducial run ID-4-16 for a
detailed case study. We take advantage of the fact that the
system achieves a quasi-steady-state in its radial profiles of
density and magnetic flux, and construct a phenomenologi-
cal, mean-field interpretation on magnetic flux concentration
and enhanced zonal flows. We use overbar to denote quan-
tities averaged over the y−z dimensions (and certain period
of time), which have radial dependence. We use 〈·〉 to rep-
resent time and volume averaged values in the entire simula-
tion domain at the saturated state of the MRI turbulence. In
Figure 3 we show the radial profiles of some main diagnostic
quantities. They are obtained by averaging from t = 360Ω−1

to 720Ω−1, where the density and magnetic flux profiles ap-
proximately maintain constant phase. Detailed analysis are
described below.
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Figure 3. Radial profiles of various quantities in the saturated state of run ID-4-16, as indicated in the legends in each panel. Dashed-dotted lines are fits to the
measured profiles based on the phenomenological model in Section 3.

(A color version of this figure is available in the online journal.)

3.1. Force Balance

Zonal flow is a result of geostrophic balance between radial
pressure gradient and the Coriolis force

c2
s

2Ω
∂ρ

∂x
= ρvy ≈ ρ0vy. (5)

From the top left panel of Figure 3, we see that the above formula
accurately fits the measured profile of vy .

The pressure gradients are driven by radial variations of the
Maxwell stress, balanced by mass diffusion (Johansen et al.
2009). Using Dm to denote the mass diffusion coefficient, one
obtains

2

Ω
∂Mxy

∂x
= −Dm

∂ρ

∂x
. (6)

Therefore, in a periodic box, the density variation should be anti-
correlated with the Maxwell stress. Asserting Dm ≡ αmcsH and
assuming αm is a constant, we obtain

ΔMxy

〈Mxy〉 ≈ − αm

2αMax

Δρ

ρ0
, (7)

where ΔA ≡ A − 〈A〉 for any quantity A.
We can fit the mass diffusion coefficient based on

Equation (7), and obtain αm ≈ 1.2αMax ≈ 0.086. Also from

the top left panel of Figure 3, we see that the fitting result agrees
extremely well with the measured profile of Mxy .

3.2. Magnetic Flux Evolution

The evolution of vertical magnetic flux is controlled by the
toroidal electric field via the induction Equation (3)

∂Bz(x)

∂t
= −∂Ey

∂x
, (8)

where in ideal MHD, the toroidal electric field can be decom-
posed into

Ey = Ey1 + Ey2 = vxBz − vzBx. (9)

In the above, the first term describes the advective transport of
magnetic flux by turbulent resistivity

Ey1 = vxBz ≈ ηtJ y = −ηt∂xBz, (10)

where ηt ≡ αtcsH is the turbulent resistivity. The outcome is
that accumulation of magnetic flux tends to be smeared out. We
can fit the value of αt from the profiles of Bz and Ey1 to obtain
αt ≈ 0.033, which is the same order as αMax. While the data are
somewhat noisy, we see from the bottom left panel of Figure 3
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that the profile of Ey1 is well fitted from Equation (10). This
is the basic principle for measuring turbulent resistivity from
the MRI (Guan & Gammie 2009; Lesur & Longaretti 2009;
Fromang & Stone 2009).

The second term in (9) describes the generation of vertical
field by tilting the radial field. Since we expect vz = 0 and
Bx = 0 in the MRI turbulence, its contribution must come from a
correlation between vz and Bx, which is primarily responsible for
magnetic flux accumulation. The fact that the system achieves
a quasi-equilibrium state indicates that their sum Ey ≈ 0.
Therefore, contribution from Ey2 must balance the turbulent
diffusion term Ey1. This is indeed the case, as we see from
Figure 3.

3.3. Turbulent Diffusivity

The saturated state of the system has a mean toroidal current
J y = −∂Bz/∂x but zero mean toroidal electric field Ey ≈ 0.
Applying an isotropic Ohm’s law to the system would yield
infinite conductivity. This is obviously not the case. The issue
can be resolved if the turbulent conductivity/diffusivity is
anisotropic.

More generally, we write

Ei = ηikJ k, (11)

where i, j, k denote any of the x, y, z components, and one sums
over index k. Given the mean J y , we have analyzed all other
components of the mean electric field. We find that the mean
vertical electric field Ez is consistent with zero, while there is a
non-zero mean radial electric field

Ex = Ex1 + Ex2 = vzBy − δvyδBz. (12)

Note that in the second term Ex2, we have removed the
component vyBz, which corresponds to the advection of vertical
field due to disk rotation and is physically irrelevant to the MRI
turbulence.

In the bottom right panel of Figure 3, we show the radial
profiles of Ex and Ex1. We see that Ex is approximately in
phase with −Ey1 and Ey2. This observation indicates that at
the saturated state, the system is characterized by an anisotropic
turbulent diffusivity that is off-diagonal, given by

Ex ≈ ηxyJ y. (13)

We can fit the value of ηxy ≡ αxycsH to obtain αxy ≈
−0.072 ≈ −αMax. In the bottom right panel of Figure 3, we
see that although the fitting result is not perfect, it captures the
basic trend on the radial variations of Ex . It is satisfactory since
some features can be smoothed out over the time average due to
the (small) phase shift of the density/magnetic flux profiles.

Anisotropic diffusivities in MRI turbulence have been noted
in Lesur & Longaretti (2009), who measured most components
of the diffusivity tensor by imposing some fixed amplitude mean
field variations in Fourier space. In particular, they found that the
value of ηxy is typically negative,5 and the value of |αxy | can be
a substantial fraction of αMax. Also, they found that |ηxy | is
typically a factor of several larger than the diagonal component,
which is our equivalence of ηt . Our measurements of ηxy are
consistent with their results.

5 Note that they used a different coordinate system from ours. Our ηxy

corresponds to their −ηyx , and our ηt corresponds to their ηxx .

3.4. Connection between Anisotropic Diffusivity
and Magnetic Flux Concentration

We see from the bottom right panel of Figure 3 that contribu-
tions to Ex is completely dominated by Ex1 = vzBy , indicating
a correlation between vz and By. In Section 3.2, we see that mag-
netic flux concentration is mainly maintained by Ey2 = −vzBx ,
indicating an anti-correlation between vz and Bx. Since By and
−Bx are correlated in the MRI turbulence (to give the Maxwell
stress −BxBy > 0), it is not too surprising that the two correla-
tions are related to one another: Ey2 and Ex1 are in phase as we
see in Figure 3.

Our analysis suggests that magnetic flux concentration is a
direct consequence of the anisotropic diffusivity/conductivity
in the MRI turbulence. In addition to the conventional turbulent
resistivity, given by Ey1, another anisotropic component, result-
ing from correlations between vz and the horizontal magnetic
field, contributes to both Ey2 and Ex1. The latter exhibits as ηxy ,
while the former acts to concentrate vertical magnetic flux.

3.5. Analogies to the Hall Effect

We note that the generation of Ex from J y in the presence of
mean vertical field is analogous to the classical Hall effect. If
we empirically set ηxy ≡ QBz0, the electric field in the saturated
state may be written as

E ≈ QJ × B. (14)

Since only J y and Bz are non-zero, this leads to a net Ex ,
consistent with our measurement.

The analogy above prompts us to draw another analogy be-
tween the microscopic Hall effect and magnetic flux concentra-
tion, which was demonstrated in Kunz & Lesur (2013). For the
microscopic Hall effect, the Hall electric field can be written as

E
h ≈ Q′ J × B. (15)

It generates a mean toroidal electric field via

E
h

y ≈ Q′Bx(∂xBy) ≈ −Q′ ∂Mxy

∂x
. (16)

We can fit Ey2 using the above relation to obtain Q′ ≈ −0.080
in code unit. As seen in Figure 3, the radial profile of Ey2 is fitted
very well. Also note that both Q and Q′ are negative based on our
fitting results to Ex and Ey2. While different phenomenological
considerations are used to arrive at Equations (14) and (15), the
directionality of the two electric field components is in line with
the Hall-like interpretation.

Encouraged by the analogies above, if we insert Equation (16)
as an ansatz for Ey2, then the evolution of vertical magnetic flux
can be written as

∂Bz

∂t
≈

(
ηt + Q′ dMxy

dBz

)
∂2Bz

∂x2
. (17)

In general, we expect Mxy to increase with net vertical flux
until the net vertical field becomes too strong: dMxy/dBz >
0 (Bz > 0). From our measurement, we have Q′ < 0.
Therefore, the second term in Equation (17) acts as anti-
diffusion of vertical magnetic flux. It is likely that this term
dominates over turbulent diffusion at the initial evolutionary

6
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Figure 4. Time evolution of the radial profiles of ρ (top) and Bz/Bz0 (bottom) from our ideal MHD runs with different β0: ID-4-4 (left) and ID-4-64 (right).

(A color version of this figure is available in the online journal.)

stage to trigger magnetic flux concentration, while turbulent
diffusion catches up at later stages when sufficient magnetic
flux concentration is achieved. Together with Equation (7), we
see that the gradient of Maxwell stress is responsible for both
launching of the zonal flow and magnetic flux concentration.
This provides a phenomenological interpretation why magnetic
flux always concentrates toward low-density regions. Given our
crude phenomenological treatment, however, we cannot provide
more detailed descriptions on the flux concentration process
and phase evolution, nor can we explain its saturation scale and
amplitude without involving many unjustified speculations.

Our Equation (17) closely resembles Equation (26) of Kunz
& Lesur (2013), which were used to explain magnetic flux
concentration due to the microscopic Hall effect. The coun-
terpart of our Q′ in their paper is positive. Therefore, strong
concentration of magnetic flux occurs only when the Hall ef-
fect and net vertical field become sufficiently strong (so that
Mxy decreases with Bz). In our case, since Q′ is negative, mag-
netic flux concentration is expected even for relatively weak net
vertical field.

3.6. Summary

In sum, we have decomposed the turbulent diffusivity from
the MRI turbulence into two ingredients. There is a conven-
tional, Ohmic-like turbulent resistivity ηt . In addition, we find
correlations of vz with By and Bx in the presence of vertical mag-
netic flux gradient. The former leads to an anisotropic diffusivity,
which is analogous to the classical Hall effect. The latter effec-
tively leads to anti-diffusion of vertical magnetic flux, which is
responsible for magnetic flux concentration, and is analogous
to the microscopic Hall effect.

We emphasize that anisotropic turbulent conductivity/
diffusivity is an intrinsic property of the MRI turbulence. While
we draw analogies with the Hall effect, it represents an phe-
nomenological approach and simply reflects our ignorance
about the MRI turbulence. The readers should not confuse this
analogy with the physical (classical or microscopic) Hall effect,
which would lead to polarity dependence (on the sign of Bz0).
Magnetic flux concentration, on the other hand, has no polarity
dependence.

4. PARAMETER EXPLORATION

The main results of a series of simulations we have performed
to explore parameter space are summarized in Table 1. We
follow the procedure in Section 3 to analyze the properties
related to zonal flows and magnetic flux concentration. In
doing so, we choose a specific time period in each run where
the density and magnetic flux profiles maintain approximately
constant phase. They are listed in the last column of the table.
In many cases, multiple periods can be chosen, and we confirm
that the fitting results are insensitive to period selection. To
characterize the strength of the zonal flow and magnetic flux
concentration, we further include in the table Δρ/ρ0, the relative

amplitude of radial density variations, and B
Max
z /Bz0, the ratio

of maximum vertical field in the time-averaged radial profile to
its initial background value. Runs ID-2-16 and ID-16-16 never
achieve a quasi-steady state in their density and magnetic flux

distribution, we thus simply measure Δρ/ρ0 and B
Max
z /Bz0 over

some brief periods, leaving other fitting parameters blank in
the table.

4.1. Ideal MHD Simulations

All our ideal-MHD simulations have achieved numerical
convergence based on the quality factor criterion discussed in
Section 2. In particular, in the run with weakest net vertical
field ID-4-64, we find Qy > 45 and Qz > 25 for any x,
meaning that the resolution is about twice more than needed
to properly resolve the MRI. Runs with stronger net vertical
field give further larger quality factors. Below we discuss the
main simulation results.

4.1.1. Dependence on Net Vertical Field Strength

We first fix the simulation domain size (Lx = 4H ) and vary
the strength of the net vertical magnetic field to β0 = 400 and
β0 = 6400. The time evolution of ρ and Bz/Bz0 in the two
runs are shown in Figure 4. We see that in general, enhanced
zonal flow requires relatively strong net vertical magnetic field.
Our run ID-4-64 with β0 = 6400 has notably weaker density
contrast of ∼20% compared with ∼40% in our fiducial run
ID-4-16. It also takes longer time for strong concentration of
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Figure 5. Time evolution of the radial profiles of ρ and Bz/Bz0 from our ideal MHD runs with different Lx: ID-2-16 (top left), ID-8-16 (bottom left), and ID-16-16
(right).

(A color version of this figure is available in the online journal.)

magnetic flux to develop. This is in line with the vertically
stratified simulations shown in Figure 1. In the limit of zero net
vertical flux, the density contrast is further reduced to ∼10%
(Johansen et al. 2009; Simon et al. 2012).

For the selected time periods, we find that the phenomeno-
logical description in Section 3 works well of all ideal MHD
simulations. There is a systematic trend that the mass diffu-
sion coefficient αm, turbulent resistivity αt , Q′, and |αxy | all
increase with increasing net vertical field. In particular, αt and
αxy roughly scale in proportion with αMax.

We do not extend our simulations to further weaker net
vertical field, where the MRI would be under-resolved. On the
other hand, we note that without net vertical magnetic flux,
oppositely directed mean vertical magnetic fields tend to decay/
reconnect, rather than grow spontaneously (Guan & Gammie
2009). Therefore, concentration of vertical magnetic flux occurs
only when there is a net vertical magnetic field threading
the disk.

Combining both our unstratified simulation results and the
results from stratified simulations of shown in Figure 1, we
expect strong concentration of magnetic flux and enhanced zonal
flow to take place for net vertical field β0 � 104.

4.1.2. Dependence on Radial Domain Size

In our fiducial run ID-4-16, only one single “wavelength” of
density and magnetic flux variations fit into our simulation box.
We thus proceed to perform additional simulations varying the
radial domain size, and show the time evolution of their density
and magnetic flux profiles in Figure 5.

We first notice that when using a smaller box with Lx = 2H ,
the zonal structures become much weaker. They appear to be
more intermittent, have finite lifetime, and undergo rapid and
random radial drift. One can still see that magnetic flux is
concentrated toward low density regions, although the trend
is less pronounced than that in our fiducial run. Also, the
system never achieves a quasi-steady state on its magnetic flux
distribution. We note that most previous unstratified simulations
of the MRI adopt even smaller radial domain size with Lx =
H (e.g., Hawley et al. 1995; Fleming et al. 2000; Sano &
Inutsuka 2001; Lesur & Longaretti 2007; Simon et al. 2009).
Therefore, the intermittent features discussed above would make
signatures of magnetic flux concentration hardly noticeable
in these simulations. We also note that the phenomenon of
magnetic flux concentration should occur in earlier unstratified
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simulations with relatively large radial domain such as in Bodo
et al. (2008) and Longaretti & Lesur (2010). Nonetheless, these
works have mostly focused on the volume-averaged turbulent
transport coefficients rather than sub-structures in the radial
dimension.

Enlarging the radial domain size to Lx = 8H , we see that the
system initially develops two “wavelengths” of zonal structures
(t = 300–1000Ω−1), with magnetic flux concentrated into two
radial locations corresponding to the density minima. Later on,
however, the two modes merge into one single mode with much
stronger density variation. The magnetic flux in the two radial
locations also merge to reside in the new density trough. From
this time, the system achieves a quasi-steady state configuration.
We find that for turbulent diffusivities, our model provides
excellent fits, and the values of αt , Q′, and αxy agree with
those in the fiducial run ID-4-16 very well. This indicates well
converged basic turbulent properties with simulation domain
size, and our phenomenological description on magnetic flux
concentration works reasonably well in a wider simulation box.
On the other hand, we find that Equation (7) no longer yields a
good fit between the density and Maxwell stress profiles, leaving
the value of αm poorly measured (the reported value represents
an underestimate). This is most likely due to the more stochastic
nature of the forcing term (Maxwell stress) in a wider simulation
box, which has been discussed in Johansen et al. (2009).

Further increasing the radial domain size to Lx = 16H ,
we find that the system initially breaks into multiple zonal
structures. Magnetic flux still concentrates toward low-density
regions, but the density and magnetic flux profiles show long-
term evolutions. Even by running the simulation for more than
400 orbits, no quasi-steady configuration is found. The later
evolution of the system is still dominated a single “mode” of
zonal structure in the entire radial domain, but there are more
substructures associated with multiple peaks of magnetic flux
distribution. The overall level of magnetic flux concentration is

weaker, with typical B
Max
z /Bz0 ∼ 1.5 or less, and the typical

scale of individual magnetic flux substructure is around ∼2H .
While we may speculate that this simulation better represents
realistic (fully ionized) disks, we also note that the simulation
box size of this run is already large enough that the local
shearing-sheet formulation would fail if the disk is not too thin
(e.g., aspect ratio H/R � 0.03), and we have not included
vertical stratification. Overall, in the ideal MHD case, the
properties of the zonal flow and magnetic flux concentration
do not converge with the box size in shearing-box simulations.

Finally, we notice that evidence of magnetic flux concentra-
tion is already present in earlier global unstratified simulations
with net vertical flux. Hawley (2001) found in his simulations
the formation of a dense ring near the inner radial boundary
and various low density gaps (i.e., zonal flows) within the disk,
which were tentatively attributed to a type of “viscous” instabil-
ity. Steinacker & Papaloizou (2002) obtained similar results and
identified the trapping of vertical magnetic flux in the density
gaps, although they did not pursue further investigation. While
shearing-box simulation results do not converge with box size,
these global unstratified simulation results lend further support
to the robustness of magnetic flux concentration in more realistic
settings.

4.2. Non-ideal MHD Simulations

With strong AD, we first show in Figure 6 the radial profiles
of main diagnostics from our fiducial run AD-4-16, with

fitting results overplotted, which compliments our discussions in
Section 2.2. We first notice from the top right panel that because
the MRI turbulence is weaker due to AD, the mean vertical field
dominates over the rms fluctuations of the vertical field in the
flux-concentrated shells. This is also the case in most stratified
shearing-box simulations for the outer regions of PPDs in Bai
(2014). Magnetic fluctuations in Bx and By do not show strong
trend of radial variations.

Secondly, we find that for this run, magnetic flux concen-
tration is still mainly due to turbulent motions. In the bottom

left panel of Figure 6, we also show E
AD
y , the toroidal elec-

tric field resulting from AD. We see that the contribution from

E
AD
y is small compared with the other two components Ey1 and

Ey2. Therefore, the phenomenological description in Section 3
is equally applicable in the non-ideal MHD case. It provides
reasonable fits in the mean Ex and Ey profiles. We will discuss
further on the role of AD in Section 4.2.1.

We also notice that while the radial density variation and
Maxwell stress are still anti-correlated, they are not well
fitted from relation (7). Correspondingly, the mass diffusion
coefficient αm is not very well measured. Again, this is likely due
to the stochastic nature of the forcing term (Maxwell stress). As
we see from Figure 2 (third panel on the right), many bursts of the
Maxwell stress are exerted over an extended range of the radial
domain, covering multiple peaks and troughs in the magnetic
flux profile. Although on average regions with strong magnetic
flux concentration have stronger Maxwell stress, the “kicks”
they receive are not as coherent as its ideal MHD counterpart
(third panel on the left). In this situation, it is more appropriate
to apply the stochastic description of the zonal flow in Johansen
et al. (2009) rather than the simple form of Equation (6).

In Figure 7, we further show the time evolution of density
and magnetic flux profiles from two other runs AD-2-64 and
AD-4-64 with β0 = 6400 and Am = 1. We see that the
evolutionary patterns from the two runs are very similar to
each other. They are also qualitatively similar to our run
AD-4-16 discussed earlier, with magnetic flux concentrated into
thin shells whose sizes are �0.5H . We have also tested the
results with larger box size Lx = 6H , and find very similar
behaviors as smaller box runs. This is very different from the
ideal MHD case, and provides evidence that the properties of
magnetic flux concentration converge with simulation box size
down to Lx = 2H in unstratified simulations. The convergence
is mainly due to the small width of the flux-concentrated shells
and their small separation. Nevertheless, we again remind the
readers that properties of magnetic flux concentration and zonal
flows can be different in the more realistic stratified simulations,
as mentioned in Section 2.2.

In the bottom panels of Figure 7, we see that the properties of
the zonal flow in our run AD-4-64 show long-term evolutions
over more than 100 orbits, and stronger density contrast is
developed toward the end of the run (which again may relate to
stochastic forcing). Similar long-term evolution behavior was
also reported in unstratified simulations of Bai (2014). Despite
the value of αm being poorly determined, other quantities αt ,
αxy , and Q′ are found to be similar between the two runs
AD-2-64 and AD-4-64. Their values are a factor of ∼2 smaller
than in run AD-4-16 with twice the net vertical field, consistent
with expectations of weaker turbulence. In addition, we see
that magnetic flux concentration is even more pronounced with
weaker net vertical field β0 = 6400 than with β0 = 1600.
Combining the results from stratified simulations of Bai (2014),
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(A color version of this figure is available in the online journal.)

we see that strong magnetic flux concentration can be achieved
with very weak net vertical field, at least down to β0 = 105.

We have also computed the quality factors for these two runs
with β0 = 6400, and find Qy � 20 over the entire simulation
domain, Qz ∼ 10–15 in high density regions, and Qz ∼ 20–30
in low-density regions. The small Qz value in high-density
regions is mainly due to weaker (rms) vertical field, hence larger
βz, as a result of magnetic flux concentration and zonal flows.
We see that the relatively high resolution (64 cells per H in z)
that we have adopted for these non-ideal MHD simulations is
necessary to guarantee proper resolution of the MRI over the
entire simulation domain, especially the high-density regions of
the zonal flow.

Finally, by comparing run AD-4-16 with run ID-4-16, we see
that the Maxwell stress αMax is reduced by a factor of ∼50 due
to AD. On the other hand, we find that the amplitudes of Ey1 and
Ey2 are reduced by just a factor of ∼20. Since both αMax and Ey

result from quadratic combinations of turbulent fluctuations, this
fact indicates that while turbulence gets weaker, the correlation
between vz and Bx becomes tighter in the AD case. To quantify
this, we further define

δx ≡ 〈|vzBx |〉〈
v2

z

〉1/2〈
B2

x

〉1/2 , δy ≡ 〈|vzBy |〉〈
v2

z

〉1/2〈
B2

y

〉1/2 , (18)

where the overbar indicates averaging over the horizontal and
vertical domain at individual snapshots, and the angle bracket
indicates further averaging over the radial domain and selected
time period in Table 1. For all ideal MHD runs, we consistently
find that δx ∼ 0.07–0.09 and δy ∼ 0.09–0.11. For all non-ideal
MHD runs, we find δx ∼ 0.10–0.11 and δy ∼ 0.14–0.16. It is
clear that non-ideal MHD simulations give larger δ values. In
the ideal MHD case, the actual correlations between vz and Bx,
By are weaker than indicated by the δ values due to stronger time
fluctuations.6 Recently, Zhu et al. (2014) noticed that the MRI
turbulence with AD has very long correlation time in vertical
velocity (see their Figures 9 and 13). The more coherent vertical
motion in the AD-dominated MRI turbulence might also be
related to the stronger correlation between vz and Bx, By and
efficient magnetic flux concentration.

4.2.1. Role of Ambipolar Diffusion on Magnetic Flux Concentration

As previously discussed, AD appears to play a minor role in
magnetic flux concentration in run AD-4-16, as shown in the
bottom left panel of Figure 6. On the other hand, we find that
with weaker net vertical field as in run AD-4-64 (β0 = 6400),

6 If we take the time average before computing the absolute values, we obtain
δx,y ∼ 0.01–0.03 in the ideal MHD case and δx,y ∼ 0.04–0.07 in the non-ideal
MHD runs.
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Figure 7. Time evolution of the radial profiles of ρ and Bz/Bz0 from our
two non-ideal MHD runs with different radial domain size: AD-2-64 (top) and
AD-4-64 (bottom).

(A color version of this figure is available in the online journal.)

AD acts to enhance the level of magnetic flux concentration. In

Table 1, we see that the value B
Max
z /Bz0 is systematically higher

in run AD-4-64 compared with run AD-4-16. In Figure 8, we
show the radial profiles of Bz as well as various components of
Ey . We see that vertical flux is squeezed into thinner shells
with much sharper magnetic flux gradients compared with
run AD-4-16 (top right panel of Figure 6). Very interestingly,

the AD electric field E
AD
y is mostly anti-correlated with Ey1,

suggesting that it plays an anti-diffusive role, and its contribution
is comparable with Ey2. We have also checked the simulations
in Bai (2014), where the midplane β0 = 104–5, and found that

again, contribution from E
AD
y to magnetic flux concentration is

comparable to, and sometimes more than, that from Ey2.
AD is generally thought to be a diffusive process, which

tends to reduce the magnetic field strength by smoothing out
the field gradients. However, unlike Ohmic resistivity, AD is
highly anisotropic. It also preserves magnetic field topology
since it represents ion-neutral drift without breaking field lines.
Brandenburg & Zweibel (1994) demonstrated that AD can in
fact lead to the formation sharp magnetic structures, especially
near magnetic nulls. This dramatic effect was attributed to two
reasons. First, magnetic flux drifts downhill along magnetic
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Figure 8. Equivalence of the top right and bottom left panels of Figure 6, but
for run AD-4-64.

(A color version of this figure is available in the online journal.)

pressure gradient, and second, reduction of diffusion in weak
field regions. They also showed via a two-dimensional example
that even without magnetic nulls, sharp current structures can
be formed. While the situation is different in our case, stronger
concentration of magnetic flux with sharp vertical flux profiles
can be considered as another manifestation on the effect of AD
in forming sharp magnetic structures. Weaker net vertical field
leads to weaker MRI turbulence, allowing the effect of AD to
better stand out.

5. DISCUSSION

Our simulation results demonstrate that magnetic flux con-
centration and enhanced zonal flows are robust outcome of the
MRI in the presence of net vertical magnetic flux, at least in
shearing-box simulations. We have also tested the results using
an adiabatic equation of state with cooling, where we set the
cooling time to satisfy Ωtcool = 1. We find exactly the same
phenomenon as the isothermal case with strong zonal flows of
similar amplitudes and strong flux concentration. Magnetic flux
concentration in low-density regions of the MRI turbulence was
also observed in Zhu et al. (2013), where the low-density region
was carved by a planet. Concentration of magnetic flux enables
the planet to open deeper gaps compared with the pure viscous
case. Their results further strengthen the notion of magnetic flux
concentration as a generic outcome of the MRI turbulence.

In broader contexts, the interaction of an external magnetic
field with turbulence has been studied since the 1960s. Observa-
tions of the solar surface show that magnetic flux is concentrated
into discrete and intermittent flux tubes with intricate topology,
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where the field is above equipartition strength to suppress con-
vection. They are separated by convective cells with very lit-
tle magnetic flux. It is well understood, both theoretically and
numerically, that in a convective medium, magnetic flux is ex-
pelled from regions of closed streamlines and concentrates into
flux tubes in between the convective cells (e.g., Parker 1963;
Galloway & Weiss 1981; Nordlund et al. 1992). In the inter-
stellar medium, concentration of magnetic flux in MHD tur-
bulence has also been suggested (Vishniac 1995; Lazarian &
Vishniac 1996), via a process which they referred to as turbulent
pumping. Our findings are in several aspects different from the
formation of flux tubes. For example, the distribution of mean
vertical magnetic field is quasi-axisymmetric rather than patchy.
Also, the level of concentration is modest, with mean vertical
field typically weaker than the turbulent field, and the over-
all distribution of magnetic energy is approximately uniform.
Nevertheless, our findings add to the wealth of the flux con-
centration phenomena, and deserve more detailed studies in the
future.

5.1. A Possible Physical Picture

Here we describe a possible physical scenario for magnetic
flux concentration in the MRI turbulence. It is schematically
illustrated on the top panel of Figure 9, which is divided into
three stages.

We consider the unstable axisymmetric linear MRI modes in
the presence of net vertical magnetic field (stage 1), the so-called
“channel flows.” The channel flows exhibit as two counter-
moving planar streams, and are found to be exact even in the
non-linear regime (Goodman & Xu 1994). The vertical fields are
advected by the streams to opposite radial directions, generating
radial fields. The radial fields further generate toroidal fields
due to the shear. As a result, oppositely directed radial and
toroidal fields are produced and grow exponentially across each
stream (stage 2). Eventually, the growth is disrupted by parasitic
instabilities or turbulence (Pessah & Goodman 2009; Latter et al.
2009), effectively leading to enhanced reconnection of such
strongly amplified, oppositely directed horizontal fields around
each stream. The outcome is represented by two field loops in
stage 3. Eventually, these loops are dissipated, and we are back
in stage 1.

In the picture above, the material in the loop (stage 3) is
originally threaded by net vertical flux. However, due to re-
connection, material is pinched off from the original vertical
field lines. Therefore, the mass-to-flux ratio in these field lines
decreases. In other words, magnetic flux is effectively concen-
trated into low-density regions. This mechanism resembles the
idea of turbulent pumping (Vishniac 1995; Lazarian & Vishniac
1996), but relies on the specific properties of the MRI. In
brief, the reconnection process following the development of
the channel flows effectively pumps out the gas originally
threaded by vertical field lines, which results in magnetic flux
concentration.

As we have briefly discussed in Section 2.1, the evolution
of the MRI shows recurrent bursty behaviors characteristic
of discrete channel flows on large scales, followed by rapid
dissipation. The overall behaviors are qualitatively similar to
the cyclic picture outlined above. A more detailed study carried
out by Sano & Inutsuka (2001) lends further support to this
picture.

In the presence of strong AD, the above picture is more
easily visualized since in the flux-concentrated shells the mean
vertical field dominates the turbulent field. In the bottom panels

Figure 9. Top: schematic illustration of a possible mechanism for magnetic flux
concentration due to the MRI, where the bold lines represent magnetic field lines.
See explanation in Section 5.1. Bottom: a snapshot at t = 300Ω−1 from run
AD-2-64 showing the azimuthally averaged toroidal (up) and vertical (down)
magnetic fields. Arrows indicate the azimuthally averaged in-plane velocity
field (up) and magnetic field (down).

(A color version of this figure is available in the online journal.)

of Figure 9, we show a snapshot of azimuthally averaged
field quantities from our run AD-2-64. We see that the flux-
concentrated shells (at both x ∼ −0.7H and x ∼ 0.4H ) show
clear signature of sinusoidal-like variations in z, indicating the
development of channel flows. Given the mean vertical field
strength with β0 = 6400, the net vertical field in the flux-
concentrated shells can be two to four times stronger, with
βz ∼ 400–1600. The corresponding most unstable wavelength
is about 0.5–1H , consistent with observed features. In the upper
panel, we see that toroidal fields are amplified to relatively
strong levels (βy ∼ 100). Oppositely directed toroidal fields are
separated by sharp current sheets, ready for reconnection to take
place. Also, the location of the current sheets approximately
coincides with the location where radial field in the channel
mode changes sign, consistent with expectations.

Admittedly, the saturated state of the MRI turbulence, espe-
cially in the ideal MHD case, contains a hierarchy of scales
where the processes described above may be taking place. The
final result would be a superposition of loop formation and re-
connection at all scales. The simple picture outlined here is only
meant to be suggestive. More detailed studies are essential to
better understand the physical reality of magnetic flux concen-
tration in the MRI turbulence.
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5.2. Implications for Magnetic Flux Transport

The properties of the MRI turbulence strongly depend on the
amount of net vertical magnetic flux threading the disk (Hawley
et al. 1995; Bai & Stone 2013a). Therefore, one key question
in understanding the physics of accretion disks is whether they
possess (or how they acquire) net vertical magnetic flux, and
how magnetic flux is transported in the disks.

Conventional studies on magnetic flux transport generally
treat turbulent diffusivity as an isotropic resistivity. Balancing
viscous accretion and isotropic turbulent diffusion, it is generally
recognized that for a magnetic Prandtl number of the order
of unity (appropriate for the MRI turbulence, e.g., Guan &
Gammie 2009; Lesur & Longaretti 2009; Fromang & Stone
2009), magnetic flux tends to diffuse outward for thin accretion
disks (Lubow et al. 1994; Guilet & Ogilvie 2012; Okuzumi et al.
2014).

Our results indicate, at least for thin disks (where the
shearing-sheet approximation is valid), that the distribution of
magnetic flux in accretion disks is likely non-uniform. Spruit
& Uzdensky (2005) showed that if magnetic flux distribution
is patchy, inward dragging of magnetic flux can be much more
efficient because of reduced outward diffusion and enhanced
angular momentum loss on discrete patches. While in our
study magnetic flux concentrates into quasi-axisymmetric shells
rather than discrete bundles, we may expect similar effects to
operate as a way to help accretion disks capture and retain
magnetic flux.

Given the highly anisotropic nature of the MRI turbulence,
our results also suggest that it is important to consider the full
turbulent diffusivity/conductivity tensor in the study of mag-
netic flux transport. While the full behavior of this tensor is still
poorly known, our results have already highlighted its poten-
tially dramatic effect in magnetic flux evolution. Additionally,
magnetic flux evolution can also be strongly affected by global
effects, which requires careful treatment of disk vertical struc-
ture, as well as properly incorporating various radial gradients
that are ignored in shearing-box (Beckwith et al. 2009; Guilet
& Ogilvie 2014).

5.3. Zonal Flow and Pressure Bumps

Our results suggest that magnetic flux concentration and
zonal flows are intimately connected. In the context of global
disks, radial variations of concentrated and diluted mean vertical
field lead to variations of the Maxwell stress or effective
viscosity ν. Steady state accretion demands νΣ = const (Pringle
1981). Correspondingly, the radial profile of surface density
(hence midplane gas density) is likely non-smooth. The density/
pressure variations drive zonal flows as a result of geostrophic
force balance. Therefore, the enhanced zonal flows reported
in stratified shearing-box simulations with net vertical magnetic
flux (Simon & Armitage 2014; Bai 2014) are likely a real feature
in global disks.

In PPDs, the radial pressure profile is crucial for the growth
and transport of dust grains (e.g., Birnstiel et al. 2010), the
initial stage of planet formation. Planetesimal formation via the
streaming instability favors regions with small radial pressure
gradient (Johansen et al. 2007; Bai & Stone 2010). Sufficiently
strong pressure variations may even reverse the background
pressure gradient in localized regions to create pressure bumps,
which are expected to trap particles or even planets (e.g.,
Kretke & Lin 2012). Numerical modelings indicate that such
pressure bumps are needed in the outer region of PPDs to

prevent rapid radial drift of millimeter sized grains (Pinilla et al.
2012).

Realistic stratified global disk simulations with net vertical
magnetic flux is numerically difficult and the results can be
affected by boundary conditions. Keeping the potential caveats
in mind, radial variations of surface density and Maxwell stress
are present in the recent global stratified simulations by Suzuki
& Inutsuka (2014), and pressure bumps are also observed in
some of their runs. Long-lived zonal flows as particle traps
are also seen in the recent global unstratified simulations by
Zhu et al. (2014). Therefore, we speculate that because of
strong magnetic flux concentration, enhanced zonal flows have
the potential to create pressure bumps in the outer regions
of PPDs.

6. CONCLUSIONS

In this work, we have systematically studied the phenomenon
of magnetic flux concentration using unstratified shearing-box
simulations. In the presence of net vertical magnetic field, the
non-linear evolution of the MRI generates enhanced level of
zonal flows, which are banded quasi-axisymmetric radial den-
sity variations with geostrophic balance between radial pressure
gradient and the Coriolis force. We find that vertical magnetic
flux strongly concentrates toward the low-density regions of the
zonal flow, where the mean vertical field can be enhanced by a
factor of ∼2. High-density regions of the zonal flow has much
weaker or even zero mean vertical field.

In ideal MHD, we find that strong magnetic flux concentration
and zonal flow occur when the radial domain size Lx reaches
∼4H . The typical length scale of magnetic flux concentration
is ∼2H , but the general behaviors of flux concentration do
not show clear sign of convergence with increasing simulation
box size up to Lx = 16H . In non-ideal MHD with strong
AD, magnetic flux concentrates into thin shells whose width
is typically less than ∼0.5H . AD facilitates flux concentration
by sharpening the magnetic flux profiles, especially when net
vertical flux is weak. The properties of the system converge
when the radial domain size reaches or exceeds ∼2H .

Concentration of magnetic flux is a consequence of
anisotropic turbulent diffusivity of the MRI. At the saturated
state, a turbulent resistivity tends to smear out concentrated
magnetic flux. This is balanced by an anti-diffusion effect re-
sulting from a correlation of vzBx , which has the analogy to the
microscopic Hall effect. In addition, a correlation of vzBy yields
a radial electric field, mimicking the classical Hall effect. We
provide a phenomenological description that reasonably fits the
simulation results. The physical origin of magnetic flux concen-
tration may be related to the recurrent development of channel
flows followed by enhanced magnetic reconnection, a process
which reduces the mass-to-flux ratio in localized regions.

Systematic studies of turbulent diffusivities in the presence
of net vertical magnetic flux are crucial to better understand
the onset of magnetic flux concentration, together with its
saturation amplitude. They are also important for understanding
magnetic flux transport in general accretion disks. Association
of magnetic flux concentration with zonal flows also has
important consequences on the structure and evolution of PPDs.
This relates to many aspects of planet formation, especially on
the trapping of dust grains and planetesimal formation. In the
future, global stratified simulations are essential to provide a
realistic picture on the distribution and transport of magnetic
flux, as well as global evolution of accretion disks.
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