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ABSTRACT

Planets such as 55 Cancri e orbiting stars with a high carbon-to-oxygen ratio may consist primarily of silicon and
carbon, with successive layers of carbon, silicon carbide, and iron. The behavior of silicon–carbon materials at
the extreme pressures prevalent in planetary interiors, however, has not yet been sufficiently understood. In this
work, we use simulations based on density functional theory to determine high-pressure phase transitions in the
silicon–carbon system, including the prediction of new stable compounds with Si2C and SiC2 stoichiometry at
high pressures. We compute equations of state for these silicon–carbon compounds as a function of pressure, and
hence derive interior structural models and mass–radius relationships for planets composed of silicon and carbon.
Notably, we predict a substantially smaller radius for SiC planets than in previous models, and find that mass radius
relationships for SiC planets are indistinguishable from those of silicate planets. We also compute a new equation
of state for iron. We rederive interior models for 55 Cancri e and are able to place more stringent restrictions on its
composition.
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1. INTRODUCTION

The chemical diversity of stars in the universe has been sug-
gested to result in an even greater chemical diversity among
the planets which they host. According to condensation mod-
els (Bond et al. 2010; Kuchner & Seager 2005), a key variable
determining the chemical makeup of planets is the carbon-to-
oxygen ratio of the disk. In stellar nebulae with carbon–oxygen
ratios in excess of 0.8 (Bond et al. 2010), condensation mod-
els propose that solid bodies within the ice line would consist
primarily of silicon carbide and carbon rather than the sili-
cate materials of our own solar system, leading to the forma-
tion of solid planets consisting of silicon, carbon, and possibly
iron with minimal oxygen (Bond et al. 2010). Recent work on
carbon-based planets has been particularly motivated by the de-
tection of planets in the 55 Cancri system, whose C/O ratio is
particularly high. In particular, the planet 55 Cancri e, whose
mass–radius relationship suggests that it may be insufficiently
dense to have a silicate composition (Demory et al. 2011), has
been modeled as consisting of layers of carbon, SiC, and iron
(Madhusudhan et al. 2012). Recent interpretations of spectro-
scopic data Nissen (2013), however, have called into question
whether stars with C/O ratios over 0.8 indeed exist. With this
in mind, it is important to compute accurate interior models
and mass–radius relationships for carbide planets to assist in
resolving the controversy of the composition of planets such as
55 Cancri e.

The accuracy of interior models of carbon-based planets has
been hampered by a lack of experimental or theoretical data
on the behavior of silicon–carbon materials at high pressures.
The best available equations of state (EOSs) for high-pressure
silicon carbide are based on the extrapolation of experimental
data (Aleksandrov et al. 1989; Seager et al. 2007). Although
the high-pressure phase diagram of carbon and the EOS have

been extensively studied up to extremely high pressures of
100 Mbar using ab initio theory (Martinez-Canales et al. 2012),
the phase diagrams of silicon carbide and pure silicon have
not been studied at multi-megabar pressures. Furthermore,
as we will show, the assumption that SiC remains the sole
stable stoichiometry of the silicon–carbon binary system at
extreme pressures is not justified, analogous to the anomalous
stoichiometries seen at high pressures in materials such as
MgSiO3 (Umemoto et al. 2006) and H2O (Zhang et al. 2013;
Pickard et al. 2013). In order to build accurate interior models
of silicon–carbon-rich planets, and hence to determine the
expected mass–radius relationships for silicon–carbon planets
as a function of composition, it is thus necessary to model more
accurately the high-pressure behavior of these materials.

In this work, we compute the high-pressure phase diagram
and EOSs of the silicon–carbon binary system up to pressures of
40 Mbar. We use an ab initio random structure search algorithm
to find relevant high-pressure phases of silicon, carbon, silicon
carbide, and SinCm compounds of alternative stoichiometries.
We predict new high-pressure phases of silicon carbide and
silicon, and new stable high-pressure compounds with Si2C
and SiC2 stoichiometry. We compute EOSs for each relevant
material and derive mass–radius relationships for silicon–carbon
planets with interior pressures up to 40 Mbar. Our EOS for SiC
is 12% denser than that used by Seager et al. (2007) leading to
substantially smaller radii for silicon–carbon planets than had
previously been suggested. We derive layered models for planets
which take the novel Si2C and SiC2 phases into account. In
addition, we revise earlier EOSs for high-pressure iron. Our new
results allow a refinement of the interior models of 55 Cancri e
derived by Madhusudhan et al. (2012), which allows us to place
stronger constraints on possible compositional models for this
planet; in particular, we eliminate the possibilities of pure SiC
or SiC–iron compositions.
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2. PHASE DIAGRAM OF THE
SILICON–CARBON SYSTEM

For pressures higher than 4 Mbar that cannot be reached with
diamond anvil cell experiments, our understanding of planetary
materials relies primarily on theoretical methods. In order to
compute the EOSs of silicon and carbon containing materials
at high pressure, it is first necessary to know the phase dia-
gram of the silicon–carbon binary system including the onset
of phase transitions and the stoichiometric relationships, which
requires a search through the space of possible structures to
find the ground-state phase and stoichiometry as a function of
pressure. The Ab Initio Random Structural Search (AIRSS) al-
gorithm (Pickard & Needs 2006) has emerged as a successful
method for finding stable crystal structures of materials, par-
ticularly at high pressures, with an efficiency comparable to
more algorithmically complex methods such as genetic algo-
rithms. In the AIRSS methodology, randomly generated cell
geometries are filled with randomly positioned atoms. Efficient
geometry relaxation procedures are used to find the nearest lo-
cal minimum. Although most randomly generated structures do
not lead to the absolute ground-state structure, it is found that
a sufficiently large portion do so to allow the identification of
ground state. Consistently and repeatedly finding a single struc-
ture to be lower in enthalpy than all competing structures may be
considered to be reasonable evidence that it is the true lowest-
enthalpy structure at that pressure. Although no optimization
scheme can be guaranteed to find the lowest-enthalpy struc-
ture, the past success of AIRSS (Pickard & Needs 2011) gives
us reasonable confidence in its ability to produce ground-state
structures.

Here, ab initio random structure searches were undertaken
at 10, 20, and 40 Mbar. For each set of pressure and stoi-
chiometry (C, Si, SiC, and SimCn structures detailed below),
we begin by generating at least 800 random structures of be-
tween 1 and 4 stoichiometric units. All density functional theory
(DFT) simulations in this paper used the VASP code (Kresse
& Furthmüller 1996), pseudopotentials of the projector aug-
mented wave type (Blöchl 1994), and the exchange-correlation
functional of Perdew et al. (1996). The positions are initially
optimized using a conjugate gradient algorithm until the differ-
ence between successive energies is less than 0.001 eV, using a
plane wave cutoff of 500 eV and a grid of 4 × 4 × 4 k points
to sample the Brillouin zone. Following the initial runs, the 50
structures lowest in enthalpy are subjected to a second, more
accurate minimization which uses a denser 12×12×12 k-point
grid and a 1200 eV cutoff energy for the plane wave expan-
sion. Finally, to obtain accurate enthalpy–pressure curves, we
recompute the stablest few structures using a 1200 eV cutoff
and 32 × 32 × 32 k points to ensure accurate and comparable
enthalpies between structures with different cells. As a sole ex-
ception, a 24×24×24 k-point grid was used for the SiC rocksalt
structure due to memory constraints; however, this should not
have an appreciable effect on our results.

High-pressure phases of elemental carbon have been the study
of a multiplicity of previous studies (Yin 1984; Grumbach
& Martin 1996; Correa et al. 2008), and most recently an
AIRSS study (Martinez-Canales et al. 2012) which predicted
zero-temperature phases of carbon up to 100 Mbar. We find
an identical progression of ground-state structures, shown in
Figure 1. Our transition pressures match those of previous
calculations, with carbon in the diamond phase transitioning
to the BC8 phase at 10.0 Mbar and then to the simple cubic

Figure 1. Pressure vs. enthalpy plot for the examined structures at zero
temperature for (a) carbon, (b) SiC, and (c) silicon. Only structures that represent
the thermodynamic ground state at some pressure between 10 and 40 Mbar are
shown.

(A color version of this figure is available in the online journal.)

structure at 28.9 Mbar, compared to 9.9 and 29.0 Mbar in
Martinez-Canales et al. (2012).

Pure silicon has been the study of fewer high-pressure
theoretical studies. A transition from the hexagonal close packed
(hcp) to the face-centered cubic (fcc) structure was predicted
and experimentally confirmed to occur at 0.78 Mbar by Duclos
et al. (1987). Using AIRSS, we confirm that the fcc structure
remains the ground-state structure at 10 and 20 Mbar. However,
at 40 Mbar, we find the body centered cubic (bcc) structure to be
more stable. From a plot of enthalpy versus pressure (Figure 1),
we find a transition from bcc to fcc at 27 Mbar.

Although silicon carbide exhibits a complex phase diagram
at lower pressures, the high-pressure phase diagram is relatively
simple. At 10.5 kbar, silicon carbide is known experimentally to
transform into the rocksalt phase (Sekine & Kobayashi 1997).
No other structure has been predicted at higher pressures. Our
calculations find the rocksalt phase to remain stable at pressures
as high as 10 and 20 Mbar. At 40 Mbar, however, we find a new
SiC structure with Cmcm symmetry to be the stablest geometry.
This structure is found to be structurally identical to the B33
structure of CrB, and is a layered structure in which each C or
Si atom has five equally near neighbors of the opposite species
within one layer unit, and two slightly further neighbors of the
opposite species in the next layer. The structural parameters of
the Cmcm SiC structure are given in Table 1. The transition
from the rocksalt to the Cmcm structure is found to occur at
27 Mbar.

We now turn our attention to the search for silicon–carbon
structures with alternative stoichiometries. Here, we restrict
our attention to structures with simple integer ratios of atomic
species—C:Si = 1:2, 1:3, 1:4, 2:3, 2:1, 3:1, 4:1, and 3:2—since
these ratios account for the overwhelming majority of known
binary compounds. The space of compounds with each of these
stoichiometries up to four functional units per cell was searched
at 40 Mbar, and the enthalpy of the stablest compounds at
each stoichiometry plotted as a function of elemental ratios
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(a)

(b)

Figure 2. (a) Convex hull diagram depicting enthalpy vs. carbon fraction for compounds in the silicon–carbon binary system at 40 Mbar. (b) Phase diagram showing
the stable mixture of phases formed for silicon–carbon stoichiometries as a function of composition and pressure from 10 to 40 Mbar.

(A color version of this figure is available in the online journal.)

Table 1
Lattice Vectors and Atomic Positions for the Cmcm SiC Structure at 40 Mbar

SiC Cmcm x y z

Lattice vectors (Å)
a1 2.1351 0.1690 −1.5335
a2 −0.0882 2.4599 −0.9668
a3 −0.5811 0.0249 3.6518

Atomic positions (relative)
C 0.6968 0.8015 0.0786
C 0.1964 0.4908 0.2504
C 0.6966 0.8016 0.5783
C 0.1965 0.4908 0.7506
Si 0.6962 0.3475 0.7145
Si 0.1965 0.9449 0.1141
Si 0.6967 0.3474 0.2149
Si 0.1969 0.9449 0.6144

in a convex hull diagram as seen in Figure 2. The convex
hull diagram depicts the stability of material phases as a func-
tion of their chemical composition. If a point lies below the
line joining two adjacent compositions, then this structure is
stable relative to an (unmixed) combination of the adjacent
phases. At 40 Mbar, we find that two new stoichiometries
have become stable relative to the combination of other com-
pounds: SiC2 (stabler than SiC + C) and Si2C (stabler than
SiC + Si).

The SiC2 structure found at 40 Mbar is a structure with Cmmm
symmetry. The Cmmm structure consists of alternating rows
of silicon atoms which are bonded to four silicon atoms in
a planar configuration, and a second class of carbon atoms
which are bonded to six silicon atoms. We are not aware
of any other compound displaying this crystal structure. The
structural parameters of the Cmmm structure are given in Table 2.
Subsequent AIRSS searches at 20 and 10 Mbar found this
structure to remain the ground-state stoichiometry at these lower
pressures.

For Si2C, a structure with I4/mcm symmetry was found to
be the ground state at 40 Mbar. Examination of this structure
reveals it to be identical to the C16 structure of Al2Cu. In this
structure, carbon atoms form close-packed linear chains with
each carbon atom equidistantly spaced from eight Si atoms.

Table 2
Lattice Vectors and Atomic Positions for the Cmmm SiC2 Structure at 40 Mbar

SiC2 Cmmm x y z

Lattice vectors (Å)
a1 3.6247 1.2835 −0.1061
a2 −0.3351 2.0508 −1.4277
a3 0.1642 −0.3192 1.7582

Atomic positions (relative)
C 0.4788 0.5500 0.8103
C 0.8888 0.8451 0.1057
C 0.2987 0.1399 0.4007
C 0.8888 0.3450 0.1056
Si 0.1713 0.7037 0.4644
Si 0.6062 0.9862 0.7467

Table 3
Lattice Vectors and Atomic Positions for the I4/mcm Si2C

Structure at 40 Mbar

Si2C I4/mcm x y z

Lattice vectors (Å)
a1 2.1800 −0.2998 −1.4105
a2 −0.5306 2.9222 −1.4388
a3 0.0467 −0.5678 2.613

Atomic positions (relative)
C 0.3254 0.6211 0.9416
C 0.8247 0.6211 0.9415
Si 0.4163 0.1209 0.6241
Si 0.7339 0.1213 0.2590
Si 0.2335 0.4383 0.2585
Si 0.9166 0.8039 0.6245

The structural parameters of this structure are given in Table 3.
Similar to the SiC2 case, AIRSS searches at 20 and 10 Mbar
found this structure to remain the ground-state stoichiometry at
these lower pressures.

Next, we computed the EOSs of each of the SiC2 and Si2C
structures and the formation energy relative to SiC + Si or
SiC + C. Figure 3 shows the enthalpy of the Si2C and SiC2
phases relative to separate phases of SiC and C/Si. We find that
SiC + Si will form the I4/mcm Si2C phase at 13 Mbar, with the
formation enthalpy continuing to increase with pressure. The
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(a)

(b)

Figure 3. Pressure vs. enthalpy graphs showing the relative enthalpy of
(a) combined SiC and C structures compared to the Cmmm SiC2 and
(b) combined SiC and Si structures compared with the I4mcm Si2C structure.

(A color version of this figure is available in the online journal.)

Cmmm SiC2 structure becomes stable at a higher pressure of
23 Mbar relative to SiC + C. The phase transition to the simple
cubic structure of carbon, however, results in the formation
enthalpy of SiC2 decreasing above 29 Mbar. Although SiC2
remains stable relative to SiC + C at 40 Mbar, the highest
pressure studied here, a transition back to SiC + C stability
is possible at higher pressures but lies beyond the scope of this
work.

3. EQUATION OF STATE RESULTS AND
MASS–RADIUS RELATIONSHIP

Having established the phase diagram of the silicon–carbon
system, we now compute the volume and enthalpy results as a
function of pressure. Since our goal is to determine mass–radius
relationships on a planetary scale, for the purpose of this
calculation we ignore low-pressure phases such as graphite and
the many phases of SiC existing below 10 kbar, which affect
only the first few tens of kilometers of the planet; this leads
to an underestimate of the planetary volume on the order of

Table 4
Equation of State Data Including Density and Enthalpy per Atom

for Silicon–Carbon Material Phases

Species Structure Pressure Density Enthalpy
(Mbar) (g cc−1) (eV atom−1)

C Diamond 1.0 4.1426 −5.8554
C Diamond 2.0 4.6079 −3.0188
C Diamond 3.0 5.0240 −0.4400
C Diamond 4.0 5.3709 1.9546
C Diamond 5.0 5.6865 4.2046
C Diamond 6.0 5.9734 6.3385
C Diamond 7.0 6.2415 8.3749
C Diamond 8.0 6.4960 10.3284
C Diamond 9.0 6.7340 12.2096
C Diamond 10.0 6.9604 14.0268
C Diamond 11.0 7.1741 15.7870
C Diamond 12.0 7.3839 17.4964
C Diamond 13.0 7.5829 19.1591
C Diamond 14.0 7.7756 20.7795
C Diamond 15.0 7.9613 22.3609
C Diamond 16.0 8.1328 23.9063
C Diamond 17.0 8.3161 25.4182
C Diamond 18.0 8.4859 26.8992
C Diamond 19.0 8.6534 28.3510
C Diamond 20.0 8.8121 29.7756
C Diamond 25.0 9.5705 36.5412
C Diamond 30.0 10.2607 42.8134
C Diamond 35.0 10.8991 48.6925
C Diamond 40.0 11.4956 54.2475
C BC8 5.0 5.8732 4.5184
C BC8 10.0 7.1824 14.0330
C BC8 15.0 8.2055 22.1157
C BC8 20.0 9.0754 29.3157
C BC8 22.5 9.4708 32.6710
C BC8 25.0 9.8458 35.8926
C BC8 27.5 10.2027 38.9965
C BC8 30.0 10.5449 41.9959
C BC8 32.5 10.8719 44.9013
C BC8 35.0 11.1826 47.7221
C BC8 40.0 11.7922 53.1367
C sc 5.0 6.1418 6.0218
C sc 10.0 7.5009 15.1244
C sc 15.0 8.5423 22.8679
C sc 20.0 9.4457 29.7732
C sc 25.0 10.2435 36.0862
C sc 30.0 10.9662 41.9489
C sc 32.5 11.3106 44.7409
C sc 35.0 11.6362 47.4525
C sc 37.5 11.9506 50.0899
C sc 40.0 12.1622 52.6657
SiC Rocksalt 1.0 5.0817 −2.2463
SiC Rocksalt 2.0 5.7612 1.5787
SiC Rocksalt 3.0 6.3364 5.0081
SiC Rocksalt 4.0 6.8246 8.1638
SiC Rocksalt 6.0 7.6553 13.9003
SiC Rocksalt 7.0 8.0183 16.5516
SiC Rocksalt 8.0 8.3380 19.0894
SiC Rocksalt 9.0 8.6729 21.5284
SiC Rocksalt 10.0 8.9794 23.8815
SiC Rocksalt 11.0 9.2668 26.1583
SiC Rocksalt 12.0 9.5408 28.3667
SiC Rocksalt 13.0 9.8064 30.5134
SiC Rocksalt 14.0 10.0632 32.6039
SiC Rocksalt 15.0 10.3100 34.6429
SiC Rocksalt 16.0 10.5489 36.6347
SiC Rocksalt 17.0 10.7793 38.5825
SiC Rocksalt 18.0 11.0035 40.4896
SiC Rocksalt 19.0 11.2231 42.3587
SiC Rocksalt 20.0 11.4365 44.1922
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Table 4
(Continued)

Species Structure Pressure Density Enthalpy
(Mbar) (g cc−1) (eV atom−1)

SiC Rocksalt 25.0 12.4322 52.8943
SiC Rocksalt 30.0 13.3344 60.9563
SiC Rocksalt 35.0 14.1631 68.5109
SiC Rocksalt 40.0 14.9340 75.6493
SiC Cmcm 10.0 9.1215 24.9617
SiC Cmcm 15.0 10.7121 35.4056
SiC Cmcm 20.0 11.8882 44.5932
SiC Cmcm 25.0 12.9173 52.9655
SiC Cmcm 27.5 13.3928 56.9134
SiC Cmcm 30.0 13.8407 60.7266
SiC Cmcm 32.5 14.2806 64.4197
SiC Cmcm 35.0 14.6951 68.0041
SiC Cmcm 37.5 15.0985 71.4900
SiC Cmcm 40.0 15.4883 74.8858
Si fcc 1.0 5.0745 1.9484
Si fcc 2.0 5.9749 7.2012
Si fcc 3.0 6.6483 11.8067
Si fcc 4.0 7.2212 16.0004
Si fcc 5.0 7.7143 19.8961
Si fcc 6.0 8.1534 23.5609
Si fcc 7.0 8.5695 27.0385
Si fcc 8.0 8.9486 30.3586
Si fcc 9.0 9.2956 33.5467
Si fcc 10.0 9.6443 36.6189
Si fcc 11.0 9.9552 39.5890
Si fcc 12.0 10.2541 42.4682
Si fcc 13.0 10.5431 45.2657
Si fcc 14.0 10.8236 47.9890
Si fcc 15.0 11.0940 50.6447
Si fcc 16.0 11.3505 53.2382
Si fcc 17.0 11.5983 55.7744
Si fcc 20.0 12.3085 63.0787
Si fcc 25.0 13.3673 74.4149
Si fcc 30.0 14.3139 84.9295
Si fcc 35.0 15.1764 94.7971
Si fcc 40.0 15.9766 104.1368
Si bcc 5.0 7.7133 19.8943
Si bcc 10.0 9.6918 37.1199
Si bcc 15.0 11.2153 51.0325
Si bcc 20.0 12.4740 63.3130
Si bcc 25.0 13.5778 74.4802
Si bcc 30.0 14.5602 84.8214
Si bcc 35.0 15.4580 94.5157
Si bcc 40.0 16.2821 103.6850
Si2C I4mcm 10.0 9.6143 28.4635
Si2C I4mcm 11.0 7.3242 34.2719
Si2C I4mcm 12.0 8.2958 34.9181
Si2C I4mcm 13.0 10.4987 35.4821
Si2C I4mcm 14.0 10.7799 37.6943
Si2C I4mcm 15.0 11.0457 39.8521
Si2C I4mcm 16.0 11.3001 41.9598
Si2C I4mcm 17.0 11.5455 44.0213
Si2C I4mcm 18.0 11.7847 46.0399
Si2C I4mcm 19.0 12.0179 48.0185
Si2C I4mcm 20.0 12.2461 49.9598
Si2C I4mcm 22.5 12.7836 54.6642
Si2C I4mcm 25.0 13.2938 59.1794
Si2C I4mcm 27.5 13.7768 63.5289
Si2C I4mcm 30.0 14.2369 67.7320
Si2C I4mcm 32.5 14.6785 71.8039
Si2C I4mcm 35.0 15.1003 75.7578
Si2C I4mcm 37.5 15.5097 79.6042
Si2C I4mcm 40.0 15.9022 83.3526
SiC2 Cmmm 5.0 7.0230 10.0434
SiC2 Cmmm 10.0 8.7326 21.4377

Table 4
(Continued)

Species Structure Pressure Density Enthalpy
(Mbar) (g cc−1) (eV atom−1)

SiC2 Cmmm 15.0 10.0603 31.0094
SiC2 Cmmm 20.0 11.1627 39.4868
SiC2 Cmmm 22.5 11.6592 43.4307
SiC2 Cmmm 25.0 12.1212 47.2148
SiC2 Cmmm 27.5 12.5706 50.8590
SiC2 Cmmm 30.0 12.9951 54.3792
SiC2 Cmmm 32.5 13.4098 57.7884
SiC2 Cmmm 35.0 13.7925 61.0970
SiC2 Cmmm 37.5 14.1736 64.3142
SiC2 Cmmm 40.0 14.5414 67.4479

10 km for an Earth-sized planet. EOS data for all silicon-carbon
structures are shown in Table 4.

In Figure 4, we compare our DFT-based SiC EOS calcula-
tions with two EOSs that were previously constructed for SiC.
First, we show a Birch–Murnaghan fit that was constructed
from the high-pressure diamond anvil cell experiments by
(Aleksandrov et al. 1989). The density of SiC was deter-
mined with X-ray diffraction measurements up to a pressure of
0.425 Mbar. Results were fit to a third order Birch–Murnaghan
equation (Birch 1947). Even though this equation was con-
structed to describe the compression of materials, significant
uncertainties are introduced when one extrapolates this EOS fit
by two orders in pressure. It is therefore not too surprising that
our DFT calculations predict densities for SiC that are between
20 and 35% higher. Seager et al. (2007) combined the experi-
mental results by Aleksandrov et al. with the predictions from
the Thomas–Fermi–Dirac theory (Salpeter & Zapolsky 1967) in
order to construct a modified polytrope EOS for SiC for the pur-
pose of planetary interior modeling, which was later also used
by Madhusudhan et al. (2012). The densities derived from the
modified polytrope EOS are approximately 12% lower than we
obtained with DFT calculations. This correction directly implies
that the radii of SiC planets have previously been significantly
overestimated (Seager et al. 2007; Madhusudhan et al. 2012).
Since DFT has been validated for a wide range of materials and
thermodynamic conditions (Tuckermann 2002; Kirchner et al.
2012; Parrinello 1997), and the Thomas–Fermi–Dirac theory
only becomes valid at ultra-high pressures where chemical
bonds can no longer exist, we consider our DFT results signifi-
cantly more reliable in the megabar regime under consideration.

Following Seager et al. (2007), we solve the equations of
hydrostatic equilibrium and mass conservation to derive the
mass–radius relationship of different planets:

dP

dr
= −Gmρ

r2
, (1)

dm

dr
= 4πr2ρ. (2)

We start the integration in the planet’s center with r = 0,
m = 0, and a central pressure, P = Pc, and then integrate
outward until the pressure decreases to zero. m(r) indicates the
mass that is enclosed in radius r. The second equation describes
how m(r) changes when a new mass shell is added. The first
equation characterizes the change in pressure that balances the
difference in gravitational potential that an additional layer
introduces. For efficiency reasons, we solve these equations

5



The Astrophysical Journal, 793:34 (9pp), 2014 September 20 Wilson & Militzer

Table 5
Equation of State Data Including Density and Enthalpy

per Atom for Iron Phases

Species Structure Pressure Density Enthalpy
(Mbar) (g cc−1) (eV atom−1)

Fe bcc 0.01391 8.182839 −8.35683
Fe bcc 0.03448 8.270199 −8.21149
Fe bcc 0.05611 8.358808 −8.06053
Fe bcc 0.08061 8.448687 −7.89181
Fe bcc 0.10821 8.539859 −7.70367
Fe bcc 0.13809 8.632347 −7.502
Fe bcc 0.16915 8.726176 −7.29448
Fe bcc 0.20034 8.821370 −7.08826
Fe bcc 0.23143 8.917954 −6.88488
Fe bcc 0.26156 9.015952 −6.68991
Fe bcc 0.2911 9.115392 −6.50123
Fe bcc 0.32414 9.216300 −6.2928
Fe bcc 0.36147 9.318702 −6.05975
Fe bcc 0.40234 9.422627 −5.80725
Fe bcc 0.44599 9.528103 −5.54044
Fe bcc 0.49285 9.635160 −5.25717
Fe bcc 0.54237 9.743826 −4.96109
Fe bcc 0.59418 9.854132 −4.65468
Fe bcc 0.64755 9.966110 −4.34239
Fe hcp −0.05944 8.862207 −8.76171
Fe hcp 0.0001 9.050161 −8.37696
Fe hcp 0.02166 9.122843 −8.23894
Fe hcp 0.11463 9.393801 −7.65712
Fe hcp 0.34582 9.968777 −6.2743
Fe hcp 0.48708 10.273923 −5.46578
Fe hcp 0.64798 10.591651 −4.5723
Fe hcp 0.8323 10.922616 −3.57983
Fe hcp 1.04156 11.267516 −2.48742
Fe hcp 1.27955 11.627091 −1.28317
Fe hcp 1.55108 12.002130 0.047882
Fe hcp 1.85678 12.393473 1.49897
Fe hcp 2.20624 12.802017 3.10511
Fe hcp 2.59825 13.228717 4.84903
Fe hcp 3.04297 13.674591 6.7634
Fe hcp 3.54628 14.140731 8.85877
Fe hcp 4.11476 14.628300 11.1471
Fe hcp 4.75869 15.138545 13.6519
Fe hcp 5.48213 15.672798 16.3703
Fe hcp 6.30191 16.232489 19.3449
Fe hcp 7.23062 16.819149 22.598
Fe hcp 8.28052 17.434424 26.1466
Fe hcp 9.45438 18.080079 29.9736
Fe hcp 10.7696 18.758013 34.1072
Fe hcp 12.2673 19.470268 38.642
Fe hcp 13.9755 20.219044 43.6245
Fe hcp 15.892 21.006712 49.0066
Fe hcp 18.0594 21.835830 54.8622
Fe hcp 20.5019 22.709162 61.2107
Fe hcp 23.2418 23.629694 68.0552
Fe hcp 26.3366 24.600658 75.4824
Fe hcp 29.8175 25.625557 83.5108
Fe hcp 33.714 26.708186 92.1264
Fe hcp 37.9519 27.852670 101.117
Fe hcp 42.6806 29.063490 110.737

with a fourth-order Runge–Kutta method using a fixed step
size of dr = 50 km. Alternatively a simple Euler integration
with dr = 1 km may also be used. The EOS only enters
through ρ = ρ(P ). We neglect temperature effects, which
were estimated by Seager et al. (2007) to increase the radius of
planets by only 1̃.2%. For each material’s phase, we construct

Figure 4. Upper panel compares the density of SiC as a function of pressure
predicted from our DFT calculations with the Birch–Murnaghan fit to the
experimental data (Aleksandrov et al. 1989) and modified polytrope EOS by
Seager et al. (2007). The discontinuity of the DFT curve marks the phase
transition from the rocksalt to the Cmcm structure. Since our DFT calculations
predict SiC to be more dense at megabar pressures, we predict the radii of SiC
planets to be significantly smaller, which is illustrated in the lower panel. Thus,
55 Cancri e can no longer be composed purely of SiC. A lighter outer layer,
e.g., one made of carbon, is needed to explain the observed mass and radius.

(A color version of this figure is available in the online journal.)

a separate spline function, ρ = ρ(P ), to interpolate our DFT
results. When a phase transition occurs at a certain pressure, we
switch discontinuously from one spline function to the next.

We integrated Equations (1) and (2) for pure SiC planets
to learn how differences in the EOS affect the mass–radius
relationship. Figure 4 shows that our DFT results imply that
SiC planets are approximately 5% smaller than predicted by
Seager et al. (2007) and Madhusudhan et al. (2012). Because
of this correction, it is no longer valid to model 55 Cancri e as
a pure SiC planet, which was one possible scenario that was
recently proposed by Madhusudhan et al. (2012) among other
interior models. Our DFT results instead predict 55 Cancri e
to have another light outer layer in addition to the SiC core. A
likely candidate would be a carbon layer.

Following Madhusudhan et al. (2012), we constructed a suite
of ternary interior models with an iron core, an SiC mantle, and
an outer carbon layer. The central pressure, Pc, and the pressures
where we switch from iron to SiC, P1, and from SiC to carbon,
P2, are free parameters. We constructed a fine three-dimensional
grid ranging from 6.5 � Pc � 24.5 Mbar and 0 � P1/Pc � 1
and 0 � P2/P1 � 1. We selected models where the sum of
the χ2 deviations in mass and radius from the observed values
were less than two. We adopted a radius value of 2.173+0.097

−0.098 RE

that combined Spitzer and Microvariability and Oscillations of
STars observations (Gillon et al. 2012) rather than constructing
interior models for each radius measurement separately. A mass
of M = 8.39 ± 0.38 ME (Endl et al. 2012) was assumed. All
valid models are summarized in the compositional diagram in
Figure 5. When we performed this analysis with a modified
polytrope EOS for SiC, our results are consistent with those by
Madhusudhan et al. (2012) and a planet of pure SiC would be
consistent with observations. However, when we switch to using
our more accurate DFT EOS for SiC, maximum SiC fraction
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Figure 5. SiC vs. iron mass fraction for three-layer iron–SiC–C planet models
that were constructed to match the observed mass and radius of 55 Cancri e,
M = 8.39 ± 0.38 ME and 2.173+0.097

−0.098 RE . The hatched area shows valid models
based on a modified polytrope EOS of SiC (Seager et al. 2007). Using the our
DFT SiC EOS, the permitted SiC fraction shrinks significantly (red filled area).
The inset shows the same information in a conventional ternary compositional
diagram where each corner corresponds to a planet made of only one material.
The DFT results imply that 55 Cancri e is composed of 48% carbon or more.

(A color version of this figure is available in the online journal.)

drops to only 52%. Because we predict SiC to be a denser
material, a thick outer carbon layer must compensate for this
change.

In Figure 5, we compare the iron and SiC mass fractions
from our Fe–SiC–C models that match the observed mass and
radius. In the inset, we display the same information in a ternary
composition diagram, as in Valencia et al. (2007), where each
corner corresponds to a planet of one material only. When we
compared the effects of using our DFT EOS for SiC with the
modified polytrope EOS from Seager et al. (2007), all other
model parameters were kept constant. Both EOSs consistently
predict that 55 Cancri e can only contain up to 18% iron. This
limit appears to be insensitive to changes in the SiC and Fe
EOSs because the density of iron is so much higher than that
of the other materials. Based on our DFT results, we predict
55 Cancri e to be consistent with a carbon-rich planet with a
carbon fraction of 48% or more. All permitted models fall into
a triangle in composition space that is spanned by three limiting
cases: (1) pure carbon planet, (2) an iron-free SiC–C planet with
48% carbon, and (3) an SiC–free iron–carbon planet with 82%
carbon. It is not possible to resolve this degeneracy with the
existing constraints on mass and radius. In principle, additional
information can be obtained from in situ simulations (Bond et al.
2010).

4. INTERIOR STRUCTURE OF Si–C PLANETS

In this section, we explore how the formation of the novel
compounds, SiC2 and Si2C, will affect the interior structure of
Si–C planets. It is our goal to determine under which conditions
these compounds form, what layers emerge in the planet’s
interior, and how much of each compound is produced over
time. As it turns out, the mass–radius relation is not affected very
much because SiC2 and Si2C form at relatively high pressures,
but we address these interior questions here so that a planetary
model can readily be constructed for other classes of materials.
From our DFT simulations, we derived the compositional phase
diagram in Figure 3. This diagram describes which minerals
would form from a Si–C mixture at a certain pressure. For
example, a carbon-rich Si–C mixture would split into SiC and

carbon for pressures up to 25 Mbar. For higher pressures, this
mixture would split into SiC2 and SiC or, for carbon fractions
larger than 67%, would form SiC2 and carbon. For silicon-rich
assemblages, a similar change is triggered by the formation of
Si2C at 13.6 Mbar.

First, we will discuss the formation of a carbon-rich planet
with a carbon atom fraction of 95%. We assume homogeneous
accretion of SiC and carbon in fixed proportions. Materials
in the planetary interior differentiate and form separate layers
that are sorted by density Turcotte & Schubert (2014). Each
layer is assumed to be homogeneous but have distinct chemical
composition and be fully convective.

For an accreting carbon-rich planet, these assumptions and
the phase diagram in Figure 3 imply the formation of a two-
layer planet with a SiC core and carbon mantle until the planet
exceeds a critical size. For a carbon fraction of 95%, this critical
size corresponds to a planet with a radius of 2.886 RE and a
mass of 24.92 ME as illustrated in Figure 6(a). The SiC core
would be comprised of only 2.77 ME and have a radius of
1.04 RE . If the pressure at the core–mantle boundary exceeds
25 Mbar, then SiC2 will form from SiC and carbon. Since SiC2
has an intermediate density, this new layer will form between
the SiC core and carbon layer. If additional SiC–C material
is accreted onto the surface of the planet, then the increased
gravitational force will temporarily increase the pressure at
the SiC2–C boundary beyond 25 Mbar. When the sinking SiC
material arrives at the bottom of the carbon layer, it will react
with the carbon present to form additional SiC2. Assuming that
plenty of SiC is available, this implies the existence of a feedback
mechanism that stabilizes the pressure at the SiC2–C boundary
at 25 Mbar during accretion.

However, determining whether sufficient SiC is available
at the SiC2–C boundary is not straightforward. If one grows
the planet assuming a constant total composition and that the
SiC2–C boundary remains at the critical pressure of 25 Mbar,
then some reactant SiC material has to come from the SiC core.
Assuming that the core provides sufficient SiC, the planet will
assume the state of chemical equilibrium shown in Figure 6(b).
As the planet mass increases from 27.68 to 29.00 ME during
accretion, the SiC core would shrink from 2.77 to only 1.32 ME
in such a model. This would require a significant amount of
gravitational energy and it is not obvious which mechanism
could provide that. However, planetary interiors are complex
and the equilibrium model is certainly one that needs to be
considered. The scenario of a shrinking SiC core would share
some similarities with the core erosion that has been proposed
to occur in giant planets (Guillot et al. 2004; Wilson & Militzer
2012a, 2012b; Wahl et al. 2013).

In the absence of any obvious energy source that would
be needed to shrink the SiC and bring the whole planet into
chemical equilibrium, we also wish to discuss an alternative
dynamic scenario, where no mass is removed from the SiC core.
We assume that the SiC core would grow to the maximum size
that is reached when the pressure at the SiC2–C boundary attains
25 Mbar. From that point on, the SiC2 layer would only grow
from newly accreted SiC material sinking through the carbon
layer. As the planet mass increases from 27.68 to 29.00 ME,
the SiC core would only be more compressed and its radius
would shrink from 1.04 to 1.02 RE. A comparatively thin SiC2
layer would form that comprises only 0.20 ME compared to
2.37 ME in the equilibrium scenario. The SiC2 layer would be
starved for SiC and the pressure at the SiC2–C boundary would
reach 26.2 Mbar (Figure 6(c)). This exceeds the 25 Mbar needed
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Figure 6. Interior models for Si–C planets with carbon fraction of 95%. The left panel (panel (a)) illustrates the largest size such a planet can reach before an
intermediate SiC2 layer forms. The middle panel (panel (b)) shows a planet in chemical equilibrium with such a layer. The right panel (panel (c)) displays an
alternative, dynamic interior model for the same total mass where the SiC core was not permitted to be absorbed into the forming SiC2 layer.

(A color version of this figure is available in the online journal.)

Si core

SiC layer

(a)

R=0.83 R
E

18.7 Mbar

13.6 Mbar

R=2.091 R
E

M=1.16 M
E

M=10.46 M
E

Total M=11.62 M
E

R
E

SiC layer

(b)

R=1.30 R
E

29.2 Mbar

13.6 Mbar

R=2.243 R
E

M=4.84 M
E

M=11.31 M
E

Total M=16.15 M
E

Si
2
C core

Si core

SiC layer

Si
2
C layer

(c)

R=1.03 R
E

R=0.79 R
E

28.5 Mbar

22.0 Mbar

18.0 Mbar

R=2.255 R
E

M=1.36 M
E

M=1.16 M
E

M=13.63 M
E

Total M=16.15 M
E

Figure 7. Interior models for Si–C planets with carbon fraction of 45%. Similar to Figure 6, the left panel (panel (a)) shows the largest possible planet without an
intermediate Si2C layer. The middle panel (panel (b)) displays a planet in chemical equilibrium where the SiC core has been absorbed completely into the Si2C layer
with such a layer. The right panel (panel (c)) shows an alternative, dynamic interior model where the SiC core was not permitted to shrink.

(A color version of this figure is available in the online journal.)

for SiC2 formation but there is insufficient SiC available. This
condition is also consistent with the phase diagram in Figure 3.

For a fixed planet mass and carbon fraction, the deviations
in the predicted radii between the equilibrium and the dynamic
scenario are very small. For a planet of 29 ME, we obtained 2.892
and 2.895 RE, respectively. We conclude that either model can
be use to compare with observations in the future.

For a silicon-rich planet with a carbon atom fraction of
45%, the differences between the equilibrium and the dynamic

scenario are a bit more pronounced because the Si2C already
forms 13.6 Mbar. A planet may accrete up to 11.62 ME
and reach a radius of 2.091 RE before the Si2C layer forms
(Figure 7(a)). According to the equilibrium model, the SiC core
would then be completely absorbed into the growing Si2C layer
(Figure 7(b)) as the planet reaches a total mass of 16.15 ME. An
amount of 4.84 ME of Si2C would be formed according to the
equilibrium picture, while in the dynamic scenario one would
predict an intermediate Si2C layer of only 1.36 ME to form.
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Figure 8. Mass–radius relationship for different types of planets in Earth units.
The arrows indicate the minimum mass that is required for carbon- and silicon-
rich planets to form intermediate layers of SiC2 and Si2C, respectively. The
mass percentage of carbon is indicated in the caption when appropriate.

(A color version of this figure is available in the online journal.)

Figure 7 shows that the predicted planet radii are again very
similar.

In Figure 8, we summarize the mass–radius relationships of
different types of planets. For this purpose, we also revisited
the accuracy of the iron EOS used in Seager et al. (2007) by
performing DFT calculations of the relevant bcc and hcp phases.
Our computed EOS data for iron are shown in Table 5. We
identified a modest correction. At 10 and 40 Mbar, we predict
densities 2.2% and 4.7% higher. The predicted radii of pure iron
planets with 5 and 10 Earth masses would shrink by 1% and
2%, respectively.

We added the different types of Si–C planets to Figure 8.
As expected, Si–C planets with 45% and 95% carbon closely
track the results of the pure SiC and pure carbon planets,
respectively. The formation of intermediate Si2C and SiC2 layers
does not significantly affect the mass–radius relationship. More
surprising is that the radii of pure SiC planets are very similar
to those of rocky planets made of 100% silicates. Our revision
of the SiC EOS put this material much closer to silicate rocks.
Therefore, SiC cannot serve as a low-density material to explain
the interior structure when observations suggest a radius larger
than that of pure silicate planets.

5. CONCLUSIONS

We have conducted extensive simulations of the phase dia-
gram and EOS of the silicon–carbon system at pressures up to
40 Mbar. Using ab initio random structure search methods, we

predicted a new phase of silicon carbide and a bcc to fcc transi-
tion in silicon. In addition, we find two phases, SiC2 and Si2C,
which are formed at high pressures for carbon-rich or silicon-
rich stoichiometries, respectively. Our newly calculated EOS
for silicon carbide is approximately 5% denser at high pressures
than the extrapolated EOS used in previous works, leading to a
significant downwards revision of predicted mass–radius rela-
tionships for SiC–C planets and eliminating the possibility of a
55 Cancri e model made of pure SiC. We also present a revised
EOS for iron.

At present, 55 Cancri e remains the sole identified candidate
for a silicon–carbon dominated exoplanet, however, its C/O
ratio remains the subject of controversy. Future work to identify
and characterize additional carbon planet candidates may be
able to resolve the question of the existence and composition of
carbon-based planets.
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