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ABSTRACT

Extensive simulations of planetary microlensing are necessary both before and after a survey is conducted: before
to design and optimize the survey and after to understand its detection efficiency. The major bottleneck in such
computations is the computation of light curves. However, for low-mass planets, most of these computations
are wasteful, as most light curves do not contain detectable planetary signatures. In this paper, I develop a
parameterization of the binary microlens that is conducive to avoiding light curve computations. I empirically
find analytic expressions describing the limits of the parameter space that contain the vast majority of low-mass
planet detections. Through a large-scale simulation, I measure the (in)completeness of the parameterization and
the speed-up it is possible to achieve. For Earth-mass planets in a wide range of orbits, it is possible to speed up
simulations by a factor of ∼30–125 (depending on the survey’s annual duty-cycle) at the cost of missing ∼1% of
detections (which is actually a smaller loss than for the arbitrary parameter limits typically applied in microlensing
simulations). The benefits of the parameterization probably outweigh the costs for planets below 100 M⊕. For
planets at the sensitivity limit of AFTA-WFIRST, simulation speed-ups of a factor ∼1000 or more are possible.
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1. INTRODUCTION

Gravitational microlensing searches for planets are beginning
to yield statistically interesting sample sizes (Gould et al.
2010; Cassan et al. 2012) that are set to increase significantly
with the advent of new and proposed surveys on the ground
(MOA-II, Sumi 2010; OGLE-IV, Udalski 2011; KMTNet, Kim
et al. 2010), and in space (Euclid, Penny et al. 2013; WFIRST,
Spergel et al. 2013). Full understanding of the results of
these surveys and the planning of optimal observing strategies
requires extensive computationally expensive simulations for
the calculation of detection efficiencies or yield predictions.

The major bottleneck in the simulation of planetary mi-
crolensing is the computation of light curves. To compute the
magnification of the binary microlensing event with a finite
source for a single data point requires either the solution of
multiple complex fifth-order polynomials or costly inverse ray
shooting. Each light curve typically consists of thousands of
data points, and each simulation typically requires thousands
to millions of trial light curves to be generated in order to ob-
tain reasonable Poisson uncertainties due to the low per-event
probability of planet detection.

Significant effort has been invested in increasing the speed
at which one can compute the base unit of the light curve –
the binary lens magnification. Various approaches have been
taken to compute finite source magnifications, either by contour
integration combined with numerical solution of the lens equa-
tion (Gould & Gaucherel 1997; Dominik 1998; Bozza 2010),
inverse ray shooting (Rattenbury et al. 2002; Dong et al. 2006;
Bennett 2010), or a hybrid of the two (Dong et al. 2006; Dominik
2007). Others have dug deeper and improved the efficiency of
the basic numerical functions these are built upon (Skowron &
Gould 2012). Further gains are made by avoiding finite source
calculations where approximations will suffice, e.g., the hex-
adecapole approximation (Pejcha & Heyrovský 2009; Gould
2008).

Perhaps more important in reducing the computational ex-
pense of microlensing calculations is the choice of an efficient
parameterization. The majority of work on this front has focused
on the problem of fitting an observed microlensing event with
a binary lens model. In this situation, most of the parameter
space is uninteresting—one would prefer to avoid a brute force
exploration of parameter space and go straight to the desired an-
swer. This is typically achieved by using a parameterization that
matches the features of the event being studied in order to reduce
correlations between parameters and decrease the parameter-
space volume that must be searched (e.g., Albrow et al. 1999;
An et al. 2002; Cassan 2008; Bennett et al. 2012). Simula-
tions to determine detection efficiencies or predict yields have
the opposite goal of exploring the entire parameter space. The
specialized parameterizations developed for modeling observed
events are often difficult to apply to such brute force parameter
explorations because the prior distributions of specialized pa-
rameters (e.g., caustic crossing durations) are not easily mapped
from the more fundamental parameters (e.g., Einstein crossing
timescale, mass ratio, and projected separation; Cassan et al.
2010).

Despite the desire to search the entire parameter space, it is
known that most of it contains uninteresting microlensing events
that do not show signs of the planets that orbit the lens. If it is
possible to identify this region of parameter space before calcu-
lating the light curve, it is possible to avoid costly light curve
calculations and significantly speed-up planetary microlensing
simulations. This paper introduces a new parameterization (the
Caustic Region Of INfluence, or CROIN) that makes it possi-
ble to easily identify uninteresting regions of parameter space,
while keeping a set of geometric parameters with uniform prior
distributions. This allows remarkable efficiency gains in the
simulation of low-mass planetary microlensing, up to factors of
a thousand in reduced computation time. The structure of the
paper is as follows. Section 2 describes the standard binary mi-
crolensing parameterization, the new CROIN parameterization,
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and how to transformation between them. In Section 3, we es-
timate the speed-up that the CROIN parameterization enables,
before assessing its accuracy and any biases it introduces in
Section 4. In Section 5, we discuss first the region of parameter
space in which the CROIN parameterization is useful, before
discussing its possible applications. We conclude in Section 6.

2. THE METHOD

Before describing the CROIN parameterization, we first
review the standard parameterization and the three caustic
topologies that are possible for a binary lens. We conclude
the section by describing how to convert between the two
parameterizations.

2.1. The Standard Parameterization

The light curve of a microlensing event is determined by the
magnification pattern of the lens and the trajectory of the source
passing through it. The magnification pattern of a binary lens is
determined by just two parameters: s, the projected separation of
the lens components in units of the Einstein ring radius rE, and
q = M/M∗, the mass ratio of the components, where M is the
mass of the planet and M∗ is the mass of the primary. The source
trajectory is described by three parameters that have uniform
distributions: t0, the time of closest approach of the source to
a reference point; u0, the impact parameter at closest approach
(normalized to the Einstein radius); and α, the angle made by the
source trajectory relative to the binary axis, which points from
the primary to the planet. Finally, the Einstein crossing timescale
tE, is the time taken for the source to travel one angular Einstein
radius θE. In this work we choose the reference point as the
position of the primary lens, though there are a proliferation of
preferred reference points, each with their own advantages and
disadvantages.

2.1.1. The Range of u0 and t0

When simulating microlensing events, one is forced to choose
a range for the parameters u0 and t0 from which to draw uni-
formly, which is usually a compromise between efficiency and
completeness. The choice for t0 is relatively straightforward,
and is usually the range of time over which data will be taken,
possibly with some margins outside this range to capture plan-
etary signals in the wings of events just outside the observing
window. The choice for the maximum value of |u0|, u0, max is
more complicated. The probability of detecting a planet falls as
u0 increases, but is finite for u0 � |s − 1/s| (where s − 1/s is
the approximate position of the planetary caustics; Han 2006),
which, given projection effects, can become large, meaning that
one is forced to compromise between completeness and com-
putation time. A choice of u0, max = 3 is common for planetary
microlensing simulations, but inevitably some fraction of planet
detections are lost (in Section 4 we find ∼5% for u0, max = 3
and ∼20% for u0, max = 1).

2.2. The Caustic Region Of INfluence (CROIN)
Parameterization

The deviations of the binary lens magnification pattern from
that of a single lens are strongest at the caustic curves (Schneider
& Weiss 1986) and fall off rapidly outside the caustic (e.g.,
Gaudi & Petters 2002a, 2002b). The caustics are therefore a
natural choice for the reference point of an improved impact-
parameter-based parameterization.
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Figure 1. Top panel: the CROIN impact parameter uc plotted against projected
separation s for a large number of simulated planetary microlensing events.
Gray points are a sample (∼1 of all simulated events), while colored points are
events where the planet was detected, with colors coded to different ranges of
mass ratio q (because of the smaller number of detections with log q � −6, we
use a larger point size to emphasize them). Note that except for the “goat-horn”
features, most detections lie below the gray non-detections. The colored lines
show our adopted limits for the size of the CROIN uc, max, with the line drawn
at the maximum of the q-range corresponding to its color, i.e., the black line is
uc, max(s, q) = 10−3. Bottom panel: the same data, but now for each point uc is
normalized by uc, max.

(A color version of this figure is available in the online journal.)

In the CROIN parameterization, we define the time of closest
approach tc and impact parameter uc with respect to a reference
point (xc, yc) centered on the planetary caustic(s). With the
number, position, and size of caustics differing for each lens
topology, we must therefore choose a different reference point
and impact parameter range uc, max for each topology. We treat
each topology separately below. Because we will use the center
of the planet signature as our reference point, we assume the
range of tc will be the range of time over which data will be
taken; this assumption relies on the planetary signature being
short compared to the season length, which we show is justified
in Section 4.

2.2.1. Defining uc, max

In order to define expressions for uc, max, we employed a
plot of uc against the projected separation s, as shown in
Figure 1. For this we used a simulation of WFIRST-AFTA
from (Spergel et al. 2013) covering a large, but non-uniform
range of planet mass ratio.1 Once the reference point is defined

1 Specifically, the planet semimajor axis was drawn from a log-uniform
distribution and the planet mass was drawn from the Cassan et al. (2012) mass
function that is forced to saturate at 5.5 M⊕ (2 dex−2 planets per star) as
described by Penny et al. (2013). This mass function, coincidentally, roughly
cancels out the microlensing detection efficiency (until it saturates) and so is
useful for producing a roughly uniform number of planet detections as a
function of mass. This choice of mass function here has no impact on the
results.
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Figure 2. Plots showing the caustics for lenses with close (red), resonant (green),
and wide (blue) topologies for a lens with mass ratio q = 10−5. In each
case the primary lens is located at (x, y) = (0, 0) and the planet is located at
(+s, 0). The middle panels zoom in on the boxes shown in the lower panel.
The central caustics of the close and wide topology lenses are plotted, but are
too small to be resolved, in the middle panel, so the top panel zooms in on
the middle panel by more than a factor of 170 to reveal their structure. The
circles in the lower panel show the size of the CROIN for each example caustic
topology.

(A color version of this figure is available in the online journal.)

(see the following subsections), the standard (u0, t0) parameters
are easily transformed to (uc, tc) as described in Section 2.3.
The plot is shown in the top panel of Figure 1, with colored
points marking planet detections of differing mass ratio and
light gray points marking a small fraction of the simulation’s
non-detections. Here and throughout the paper we consider a
planet to be detected if it causes a Δχ2 > 160 between the fit
of a single point lens light curve model and the true light curve,
which is standard for simulations of space-based microlensing
surveys (see Yee et al. (2013) for a discussion).

The goal of plotting uc against s is to identify a functional
form for uc, max as a function of s and q above which there
are very few detections. This is very similar to the process one
follows when using the rejection method for drawing random
deviates from a general probability distribution function (Press
et al. 1986), except that here we do not need to guarantee that
the “comparison” function is always greater than the probability
density function. The first attempt at defining a functional form
used analytic approximations of the size of the caustics scaled by
a constant factor to include planet detections via non-caustic-
crossing trajectories, but we found that these did not fit the
upper envelope of detections very well, regardless of the scaling
factor. The final form for uc, max was found by modifying these
expressions with further analytic functions of s and q for each
topology. Several iterations through candidate functional forms
and their numerical parameters were made before arriving at
those presented below. The following three subsections present
the final forms for the reference points and uc, max for each
caustic topology in turn and justify the choices made. Figure 2
shows examples of the CROIN for a planet with q = 10−5

relative to the caustics for each topology.

2.2.2. Close Topology

The lens has a close topology when the condition

q

(1 + q)2
< s−8

(
1 − s4

3

)3

(1)

is satisfied (Erdl & Schneider 1993). The close topology lens
has three caustics: a central caustic near the primary and two
identical planetary caustics off the binary axis. The most promi-
nent feature of close lenses with low-mass ratios is an elongated
region of demagnification on the binary axis between the two
planetary caustics. The positions of the planetary caustics can be
very accurately approximated analytically (Bozza 2000b; Han
2006), therefore we choose the reference point for the close
topology to be

(
xc

c , y
c
c

) =
(

1

1 + q

[
s − 1 − q

s

]
, 0

)
, (2)

where we have used Bozza’s slightly more accurate expression
for the x position of the caustics and the superscript “c” repre-
sents the close topology. Similarly, the superscripts “w” and “r”
will represent wide and resonant topologies, respectively.

The size of the CROIN that we choose for the close
topology is

uc
c, max =

{
0 if s < 0.1

(4 + 90 s2)
√

q

s
√

1+s2
otherwise

. (3)

For very small separations, s < 0.1, we have assumed that
there will be no planet detections, which is reasonable even
for massive planets. For larger separations, the term in square
brackets is a modifier and the fractional term is an analytic
estimate for the separation between the two planetary caustics
(Han 2006). We chose the separation of the planetary caustics
to set the CROIN size because the demagnification region lies
between these two caustics. The constant term in the modifier
accounts for the fact that the demagnification region is elongated
along the binary axis somewhat (i.e., actually larger than the
separation between the caustics). The strong s2 term attempts to
grow the CROIN to include the central caustic as the projected
separation approaches resonance and the central caustic grows
and begins to cause a significant number of detections in
relatively high-magnification events. Detections via the central
caustic form the “goat horn” feature in the scatter plot of
detections in Figure 1, and it can be seen that for planets with
q � 103.5 the s2 growth term will begin to significantly degrade
the efficiency gains of the CROIN parameterization, but not so
for lower mass ratios where the

√
q term keeps uc, max < 1.

2.2.3. Wide Topology

The lens has a wide topology when (Erdl & Schneider 1993)

s >

√(
1 + q

1
3
)3

1 + q
. (4)

The wide topology has two caustics: a central caustic like the
close topology lens and a single planetary caustic that lies on
the binary axis. We choose the center of the planetary caustic as
our reference point. Again, accurate analytical expressions for
this position exist (Bozza 2000a; Han 2006)

(
xw

c , yw
c

) =
(

s − 1

[1 + q]s
, 0

)
. (5)
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Figure 3. Plot of the CROIN impact parameter uc against mass ratio q for
resonant topology lenses from Figure 1. Gray points are non-detections while
black points are detections. Lines show potential power laws that could be used
to describe the upper envelope of detections. The solid line, |uc| = 4.5 q1/4,
shows the actual choice for ur

c, max.

We choose the CROIN size for wide topologies to be

uw
c, max = [4 + min(90 s2, 160 s2)]

√
q. (6)

The
√

q term is simply the size of the Einstein ring of the planet
at large s � 1. Similar to the close topology, contours of the
deviation from the magnification of a point lens are elongated
along the binary axis, and a similar constant plus growth term
modifier is applied. For s > (4/3)2, the 160 s−2 term is used to
grow the CROIN as s shrinks closer to resonance, but below this
the CROIN is large enough to cover the central caustic and the
90 s2 term begins to shrink the CROIN as s decreases further in a
way that approximately matches the slope of the upper envelope
of the right-hand goat horn.

2.2.4. Resonant Topology

The resonant topology only has a single caustic near the
primary lens. While the planetward (positive x) side of the
resonant caustic is larger in extent than the side closest to the
primary that extends to negative x, it is significantly weaker, and
negative perturbations to the magnification pattern extend away
from the caustic on the negative side. We therefore choose the
primary lens position as the reference point

(
xr

c, y
r
c

) = (0, 0). (7)

The CROIN size for resonant lenses is chosen to be

ur
c, max = 4.5 q

1
4 . (8)

There is only a small range of s with a resonant configuration
for small mass ratios, so there is little use in attempting to find
a dependence on s. We found the simple scaling by examining
the detections in Figure 3 and fitting a power law by eye to their
upper envelope. A q1/3 power law fits the distribution as well
as a q1/4, but we choose the latter in order to be lenient at low q
where our statistics are poor.
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(A color version of this figure is available in the online journal.)

2.3. Converting Between Parameterizations

Both the CROIN and standard parameterizations are impact-
parameter-based. Converting the parameters of one to that of
the other is simply a case of moving the origin. We provide the
more general conversion for a CROIN center that may lie off
the binary axis at (xc, yc), though in all the cases we consider
here the center of the CROIN lies on the binary axis. The off-
axis situation may occur if you wished to extend the CROIN
parameterization to smaller separations by taking the center of
the secondary caustics as the CROIN center, or were considering
multiplanet systems where it is no longer possible for all the
planets to lie on the same axis.

Figure 4 shows the geometry of the coordinate transformation.
From this geometry it is relatively straightforward to derive the
following expressions

tc − t0

tE
= xc cos α + yc sin α, (9)

uc − u0 = −xc sin α + yc cos α. (10)

These expressions are general and apply to the transformation
between any two impact-parameter-based parameterizations. If
one’s preferred reference point for the standard parameterization
differs from the position of the primary lens, the above formulae
can be adapted with the further transformations xc → (xc − x0)
and yc → (yc−y0), where (x0, y0) is the position of the alternate
reference point relative to the primary lens.

3. SPEED-UP USING CROIN

The simplest way to define and estimate the speed-up that the
CROIN allows over the standard parameterization is to ask what
fraction of events drawn from the standard parameter range fall
within the CROIN parameter range. The speed-up is the inverse
of this fraction. This can be computed trivially by Monte Carlo
sampling without actually simulating events. We did this for
a range of s and q and show the results in Table 1. In these
computations, we drew u0 uniformly from the range −u0, max to
u0, max with u0, max = 3, α uniformly from 0–2π , and assume that
there is a 100% duty cycle, i.e., that the microlensing events peak
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Table 1
Speed-up as a Function of s and q

log s

log q −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00

−2 1.8 1.2 1.0 2.1 1.0 2.0 8.9 26
−3 6.7 2.9 1.9 3.8 1.7 5.3 28 83
−4 20 8.0 6.0 6.6 5.5 15 88 265
−5 67 24 18 11 17 48 276 854
−6 208 76 57 20 55 155 922 2733
−7 691 248 193 36 179 462 2785 8628

Notes. Assumes 100% duty cycle and u0, max = 3; speed-up increases for lower
duty cycles. Bold values indicate the traditional lensing zone (Wambsganss
1997).

within the period when the survey is observing (the observing
season). This may not be a good assumption for surveys with
short seasons, as we discuss in Section 4.1. In the traditional
lensing zone (0.6 � s � 1.6; Wambsganss 1997) the speed-up
is fairly modest until q � 10−5. At large separations, s � 5, the
speed-up is always considerable, and for low mass ratios it is
extreme.

4. ACCURACY AND BIAS

Our goal now is to assess the accuracy of the CROIN
parameterization and make ourselves aware of any biases in the
parameter distributions of detected planets that it introduces. To
assess bias, we just want to measure accuracy as a function of
various parameters.

The accuracy and bias is impossible to measure without
reference to some observational setup, because this is what
determines whether or not a planet will be detected. The
simulations described in this paper are of the WFIRST-AFTA
mission, which is likely to be the most sensitive microlensing
survey it is cost-effective to perform, so the accuracy of the
CROIN parameterization for other surveys is likely to be higher
than that which we determine for WFIRST-AFTA. While one
may consider the absolute number of detections per unit of time
to be the best measure of survey sensitivity, for the purposes
of assessing the accuracy of the CROIN parameterization this
is not actually the case, because the total number of detections
is primarily determined by the number of microlensing events
that are monitored. Instead, it is the noise floor and the cadence
that determine the most subtle features that can be detected.
Of the currently imagined microlensing surveys, WFIRST-
AFTA undoubtedly has the lowest noise floor due to its space-
based photometry and high-resolution (minimizing the effect of
blending). In the simulations here we have assumed a noise floor
of 1 mmag, which would be extremely difficult to achieve from
the ground. In terms of planned cadence, WFIRST at 15 minutes
has one of the highest cadences for a microlensing survey,2

though KMTNet has a slightly higher cadence at 10 minutes.
This is not a sufficiently large difference to counter WFIRST’s
space-based advantage, though we will discuss how to adjust
the CROIN for different cadences in the next subsection.

The simulation data we used in Section 2.2 does not have
enough low-mass planet detections to properly assess any
biases that using the CROIN introduces, so we ran significantly

2 Current ground-based follow-up networks achieve cadences ∼1 minute
when observing extremely high-magnification events (e.g., Dong et al. 2009),
but the CROIN parameterization was not designed for high-magnification
events, which are well served by the standard parameterization anyway.

Table 2
Simulation Parameters

Parameter

Survey WFIRST-AFTA
Cadence 15 minutes
Season length 72 days
Seasons 6
Out-of-season gaps ∼110 days or ∼840 days
Noise floor 1 mmag

Standard CROIN
u0 range −3 → 3 No limit
t0 range 0 → 2010 No limit
uc range No limit −uc, max → uc, max

tc range No limit In season

Table 3
Incompleteness of Each Parameterization

Mass Incompleteness fmissed

CROIN Standard

1 M⊕ 1.34% ± 0.22% 6.88% ± 0.10%
100 M⊕ 6.87% ± 0.91% 5.22% ± 0.33%

larger simulations. These simulations were too computationally
expensive to cover a large range of masses, so we only performed
simulations of planets at two fixed masses: 1 Earth mass and
100 Earth masses. For each planet mass we performed two
simulations. The first drew event parameters from the standard
parameterization, and we used this to compute the accuracy
of and biases introduced by the CROIN parameterization; we
refer to this simulation as the standard simulation. The second
simulation (referred to as the CROIN simulation) drew event
parameters using the CROIN parameterization, and we used
this to compute the accuracy of the standard parameterization,
i.e., to estimate the number of planet detections that are missed
by imposing a cut on u0.

These simulations are essentially identical to the WFIRST
simulations in (Spergel et al. 2013), and which will be presented
in detail in M. T. Penny et al. (in preparation). Full details of
the simulation mechanics are given by Penny et al. (2013). The
important details of the simulations are summarized in Table 2.

We measure the accuracy of each parameterization relative to
the other by defining the incompleteness fmissed. For the CROIN
parameterization, we measure it with respect to the standard
parameterization, i.e., fmissed is the fraction of planet detections
drawn from the standard parameterization limits for which the
CROIN parameters are within the CROIN parameterization lim-
its. We do the opposite to measure the standard parameterization
incompleteness by running a simulation and drawing uc and tc
uniformly and weighting events appropriately to take into ac-
count the variable uc, max. Our results are summarized in Table 3.
We find that for 1 M⊕ planets, the CROIN parameterization has
1.3% incompleteness relative to the standard parameterization.
For 100 M⊕ planets the CROIN parameterization’s incomplete-
ness is 6.9%. The CROIN completeness relative to the standard
parameterization is worth comparing with its opposite, the stan-
dard completeness relative to the CROIN parameterization. For
1 and 100 M⊕ planets this is 6.9% and 5.2%, respectively when
u0, max = 3. If we had chosen u0, max = 1, the incompleteness of
the standard relative to the CROIN parameterization would have
been 21% for both 1 and 100 M⊕ planets. As we shall see below,
the planet detections that the standard parameterization misses
are primarily planets with large separations that are likely to
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Figure 5. Top: red and black lines plot of the number of 1 M⊕ planet detections
as a function of the time of closest approach of the source to the primary lens
(t0) for events simulated with the standard and parameterizations, respectively.
The gray line shows the distribution of t0 for all microlensing events that were
detectable in the standard simulation (where detectable means the event caused
a Δχ2 > 500 deviation relative to a flat light curve). Bottom: the same, but
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Lower panels of each plot zoom in on the lowest portion of the main plot to
show low-level features. Error bars show the typical uncertainties on the number
of detections in the in-season bins (bin-width is 6 days). Dashed lines show the
boundaries of the WFIRST seasons, which last 72 days.

(A color version of this figure is available in the online journal.)

be observed as “free-floating” planets with no detection of the
host’s microlensing event.

4.1. Biases

Using the CROIN parameterization will necessarily bias the
results of a simulation, so we must be aware of how each
parameter will be affected and the magnitude of any bias. We
consider how using the CROIN parameterization affects the
distribution of each of the fundamental binary microlensing
event parameters, beginning with t0.

Figure 5 shows the number of planet detections Ndet as a
function of both t0 and tc. For the WFIRST survey, 24% of
detectable microlensing events (where the microlensing event
causes a Δχ2 > 500 deviation relative to a flat baseline) peak
outside the observing seasons, and a significant fraction (∼10%)
of all planet detections occur in such events. In this plot, the
detections from the CROIN simulation are restricted to the same
parameter range as the standard simulation (|u0| < 3, 0 < t0 <
2010 days). The t0 distributions from each simulation match
extremely well, implying that any bias in the t0 distribution due
to the use of the CROIN parameterization is small.

The comparison of the t0 and tc distributions of planet
detections in Figure 5 demonstrates the value of using the
CROIN parameterization in low-duty cycle simulations. For
1 M⊕ planets just 0.8 ± 0.2 of planets have tc falling outside
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Figure 6. Upper panel: the event timescale distribution of planet detections
for 1 M⊕ (red/pink) and 100 M⊕ (black/gray) planet detections. The histogram
drawn with a solid line is the result of the standard simulation. The lighter colored
solid fill shows those events in the standard simulation that fall within the CROIN
parameter limits. The dashed line shows the results of the CROIN simulation.
Lower panel: the incompleteness fmissed of the CROIN parameterization relative
to the standard simulation. If the incompleteness is less than 10−3 a point is
plotted on the bottom axis (e.g., the points below tE = 5 days). Color coding is
the same as in the upper panel.

(A color version of this figure is available in the online journal.)

the observing season, whereas if we were to restrict ourselves
to only events with t0 in season to improve the efficiency of our
simulations, we would miss 10.5% ± 0.7% of planet detections
(for 1 M⊕ planets). For 100 M⊕ planets, the fractions outside the
season are more comparable due to the longer timescale of the
planetary perturbation. In this case, 4.8% ± 0.8% of detections
have tc fall outside the season, while 9.6% ± 1.0% have t0 fall
outside the season.

Figure 6 plots the incompleteness of the CROIN parameter-
ization relative to the standard parameterization as a function
of the event timescale in the bottom panel, and demonstrates
the bias introduced by using the CROIN parameterization in the
top panel. Looking at the top panel, we can see that the bias
in the timescale distribution introduced by the CROIN param-
eterization will be a small change in the slope of the already
steeply declining large-timescale tail. However, while the ap-
parent change in shape of the timescale distribution is difficult
to notice (by comparing the solid to the dashed line), the incom-
pleteness steadily rises as tE increases, and approaches 100%
for the extremely rare, longest-timescale events.

We can use this trend of incompleteness with the event
timescale to judge the impact of changing the cadence of
observations, despite running our simulations at a fixed cadence.
For an microlensing event with fixed q and fixed source
angular diameter relative to the Einstein radius, increasing
the timescale by some factor has exactly the same effect on
the χ2 as increasing the cadence by the same factor. We
can therefore estimate the necessary change in uc, max by finding
the required uc, max that would make the incompleteness match
that of the whole sample in bins of tE. Figure 7 shows this
for both simulations. uc, max scales as roughly as t

1/2
E , implying

that it should also scale as f 1/2, where f is the frequency of
observations. Of course, we have assumed a fixed mass and not
a fixed mass ratio, so this argument may not be strictly valid.
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Figure 7. Plot of the uc, max that would be required to maintain the average
incompleteness of 1.3% for 1 M⊕ planets (red points) or 6.9% for 100 M⊕
planets (black points) as a function of tE. Arrows represent upper limits. The
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1/2
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cadence relative to the 15 minute WFIRST cadence we have simulated, because
increasing the timescale will cause the Δχ2 of a planet detection to change in
the approximately the same way as increasing the cadence for a fixed mass-ratio
planet.

(A color version of this figure is available in the online journal.)

However, the mean mass ratio across the entire range of tE only
changes by a factor of ∼2 compared to the factor of ∼100 range
of tE, so the effect of the changing mean mass ratio is likely to
be small.

Figure 8 shows the distributions of u0, s, α, and q for the
planet detections in the standard and CROIN simulations. It is
the distributions of u0 and s where the largest differences can
be seen between the standard and CROIN parameterizations.

Unsurprisingly, the CROIN parameterization performs poorly
for high-magnification events, and the threshold |u0| for poor
performance gets larger for larger planet masses. For the highest-
magnification events, the incompleteness seems to saturate at
around 10% for 1 M⊕ planets and ∼20% for 100 M⊕ planets,
before falling as a power law as |u0| increases with an index
that seems to depend on the planet mass. The saturation at
fmissed < 1 for small u0 is not too surprising, because the
CROIN parameterization deals well with high-magnification
events with resonant topologies (when it is centered on the
primary lens), and when s is close to 1 but not resonant the
CROIN can grow large enough to encompass the primary
lens. The plot of the cumulative incompleteness shows that
for any reasonable choice of uc, max, the total incompleteness
of the CROIN parameterization relative to the standard will not
increase significantly, e.g., for 1 M⊕ planets and u0, max = 1,
fmissed = 1.57% compared to 1.34% for u0, max = 3.

Use of the CROIN does not significantly bias the distribution
of s compared to using the standard parameterization. However,
not using the CROIN does steepen the tail of the distribution
at large s. As previously noted, however, the majority of these
events that the standard parameterization misses will appear
to be free-floating planets with no sign of a the host star’s
microlensing event. The largest incompleteness as a function
of s occurs when the goat horns that are seen in Figure 1 caused
by high-magnification events cross the uc, max curve. This occurs

Table 4
Speed-up for Different Duty Cycles with 0.1 < a < 100 AUa

Duty-cycle 100% 80% 25% Incompletenessb

Example KMTNet WFIRST (%)
Mass (M⊕)

10000 1.4 1.7 5.5 18
1000 1.9 2.4 7.7 9.8
100 3.7 4.6 15 5.3
10 10 13 41 2.8
1 31 39 124 1.5
0.1 99 124 397 0.8
0.01 312 390 1247 0.4

Notes.
a Semimajor axis is distributed logarithmically.
b Incompleteness estimated using Equation (11) from Section 4.1 assuming an
average mass ratio of 8.1 × 10−6(M/M⊕).

at different values of s for different planet masses (with s being
further away from 1 for larger planet masses).

The incompleteness as a function of the source trajectory
angle α is not of much interest, but we include it in Figure 8
for completeness. Note, however, that for Earth-mass planets,
the incompleteness seems to be smallest for trajectories that are
either parallel or perpendicular to the binary axis. This pattern
is not repeated for 100 M⊕ planets.

The final plot in Figure 8 shows the distribution of mass ratios
for our 1 and 100 M⊕ simulations, as well as the incompleteness
as a function of mass ratio. To extend the range of mass
ratios that we consider, and to get a sense of the trend, we
also plot the incompleteness as measured from the simulation
we used to define uc, max, which is shown in Figure 1. The
range of semimajor axis is smaller in the standard simulation
(0.3 < a < 30 AU, red and black points) than the Figure 1
simulation (0.1 < a < 100 AU), but this has a negligible effect
due to the strong decline in the number of detections as the
separation becomes large or small. The trend is well described
by a power law, with incompleteness increasing with q. A fit to
the data from all the simulations yields the relation

fmissed = (1.6 ± 0.3)%
( q

10−5

)0.27±0.04
. (11)

5. DISCUSSION

5.1. Speed versus Accuracy

With estimates of the speed-up from Section 3 and the
accuracy from Section 4, we can now objectively assess the
usefulness of the CROIN parameterization. In Table 4, we
summarize both the speed-up and accuracy it is possible to
achieve for realistic simulations that will cover a range of
semimajor axes and masses. We have computed the speed-up in
the same way as in Section 3, but this time assumed a distribution
of semimajor axes in the range 0.1 < a < 100 AU and a
range of duty cycles representative of realistic microlensing
surveys. For 100 M⊕ planets, an incompleteness of ∼5% seems
a reasonable incompleteness for most applications, and this can
provide a significant speed-up of 4–15×. A 10% incompleteness
for 1000 M⊕ planets, however, seems too large, and the speed-
up is a factor of two smaller. The CROIN parameterization
therefore seems most likely to be useful for planets of 100 M⊕
and below. For planets of Earth-mass and below the speed-ups
are huge, at the minor cost of an inaccuracy of the order of 1%
or less.
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(A color version of this figure is available in the online journal.)

The dominant cause of the inaccuracy of CROIN parameter-
ization is the missing planet detections caused by the central
caustic of close and wide separation planets. However, it is rela-
tively easy to use a strategy that does not miss these detections.
Rather than use the CROIN for the origin of the parameterization
and drawing |uc| < uc, max, one would use the standard parame-
terization, drawing events from its usual limits (e.g., |u0| < 3).
Now, one would perform two tests on the parameters: the first
would check if was a high-magnification event (with some limit
on |u0|), and the second would convert the standard parameters
to the CROIN parameters and check that the CROIN parameters
were within the limits defined in this paper. If either of the tests
were passed, then the light curve would be computed, otherwise
the event would be assumed to be a non-detection. To do this
correctly, one would need to perform a similar study to this
to determine the u0 limits for central caustic planet detections.
As we were concerned primarily with speeding up low-mass
planet simulations, where the number of detections due to non-

resonant central caustics is expected to be extremely small, we
have not conducted this study.

Finally, it should be noted that the speed-up that will actually
be achieved may be smaller than that we estimate here if light
curves that contain detectable planet signatures take longer to
generate than ones that do not. This will quite often be the case
if one is using the hexadecapole approximation to avoid finite
source calculations (Pejcha & Heyrovský 2009; Gould 2008).
Even so, the actual speed-up is still worthwhile.

5.2. Potential Uses

The magnitude of speed-up it is possible to achieve with the
CROIN parameterization make its application to microlensing
simulations and detection efficiency calculations immediately
obvious. The advent of new and proposed microlensing surveys
has encouraged a flurry of new work on microlensing simu-
lations (Shvartzvald & Maoz 2012; Green et al. 2012; Penny
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et al. 2013; Spergel et al. 2013; Henderson et al. 2014; Ipatov
et al. 2014). Interpretation of these new high cadence surveys
will be significantly easier than for previous observations in
survey plus follow-up mode (e.g., Gould et al. 2010), but will
still require extensive calculations of detection efficiencies over
a large parameter space (e.g., Gaudi & Sackett 2000; Gaudi
et al. 2002; Tsapras et al. 2003; Snodgrass et al. 2004). In fact,
the increased cadence and area of the surveys will make such
analyses significantly more computationally expensive (though
Moore’s law will help to a certain extent). A larger challenge
will be presented by the advent of space-based microlensing
planet searches. These will provide an order of magnitude more
microlensing events to search for planets, but will also mea-
sure the light curves significantly more accurately, increasing
the demands on the light curve computations, which are al-
ready probably close to maximum efficiency. Maximizing the
scientific return of space-based surveys will require extensive
simulations to optimize the various aspects that can affect the
mission, from hardware to survey design. This has proved chal-
lenging so far, with only limited parameter exploration possible
for low-mass planets. The CROIN parameterization represents
an important way to broaden the scope of planning for these
missions, increasing the size of parameter space that can be
explored.

The CROIN parameterization may also find use in the mod-
eling of individual gravitational microlensing events. As men-
tioned in Section 1, parameterizations centered on the caustics
are already in use. The analytic limits on the impact parameters
of these parameterizations could be useful in restricting a pa-
rameter search. However, as downhill fitting will quickly move
a trial solution to a local minimum of the parameter space, any
speed-up will be modest.

6. CONCLUSIONS

We have proposed a parameterization of binary gravitational
microlensing applicable to planetary microlensing. We have
empirically determined an analytic functional form for the limits
of the impact parameter within which the vast majority of
planetary detections can be expected. We have shown that by
using this parameterization and its analytic limits it is possible
to speed-up simulations of planetary microlensing by factors of
10–1000 depending on the mass of planet being investigated.
This comes at a cost of excluding a small percentage of planet
detections, though this is smaller than or comparable to the
loss due to arbitrary truncation of the space of the standard
parameterization.
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Department of Astronomy Jefferson Chair.
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