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ABSTRACT

The secular dynamical evolution of a hierarchical three-body system in which a distant third object orbits around a
binary has been studied extensively, demonstrating that the inner orbit can undergo large eccentricity and inclination
oscillations. It was shown before that starting with a circular inner orbit, large mutual inclination (40◦–140◦) can
produce long timescale modulations that drive the eccentricity to extremely large values and can flip the orbit.
Here, we demonstrate that starting with an almost coplanar configuration, for eccentric inner and outer orbits, the
eccentricity of the inner orbit can still be excited to high values, and the orbit can flip by ∼180◦, rolling over its
major axis. The ∼180◦ flip criterion and the flip timescale are described by simple analytic expressions that depend
on the initial orbital parameters. With tidal dissipation, this mechanism can produce counter-orbiting exoplanetary
systems. In addition, we also show that this mechanism has the potential to enhance the tidal disruption or collision
rates for different systems. Furthermore, we explore the entire e1 and i0 parameter space that can produce flips.

Key words: binaries (including multiple): close – celestial mechanics – planets and satellites: dynamical
evolution and stability
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1. INTRODUCTION

The Kozai–Lidov mechanism (Kozai 1962; Lidov 1962)
has proven very useful for interpreting different astrophysical
systems. For example, it has been shown that its application can
explain hot Jupiter configurations and obliquity (e.g., Holman
et al. 1997; Wu & Murray 2003; Fabrycky & Tremaine 2007;
Veras & Ford 2010; Correia et al. 2011; Naoz et al. 2011, 2012).
Furthermore, close stellar binaries with two compact objects
are likely produced through triple evolution, and secular effects
may play a key role in these systems and in their remnants
(e.g., Harrington 1969; Mazeh & Shaham 1979; Soderhjelm
1982; Kiseleva et al. 1998; Ford et al. 2000; Eggleton &
Kiseleva-Eggleton 2001; Fabrycky & Tremaine 2007; Perets &
Fabrycky 2009; Thompson 2011; Katz & Dong 2012; Shappee
& Thompson 2013; Naoz et al. 2013a; Naoz & Fabrycky 2014).
Secular effects have been proposed as an important element both
in the growth of black holes at the center of dense star clusters
and the formation of short-period binary black hole (Blaes et al.
2002; Miller & Hamilton 2002; Wen 2003) and tidal disruption
events (Chen et al. 2009, 2011; Wegg & Bode 2011; Bode &
Wegg 2013; G. Li et al. 2014a, in preparation).

The Kozai–Lidov mechanism was first discussed by Kozai
(1962) and Lidov (1962), who applied the mechanism for
specific configurations where the outer orbit was circular and
one of the members of the inner binary was a test (massless)
particle. In this situation, the component of the inner orbit’s
angular momentum projected on the total angular momentum
of the whole system (z axis) is conserved. To lowest order,
the quadrupole approximation provides a valid presentation of
the system (Lidov & Ziglin 1974). In that case, the system
is integrable and the eccentricity and the inclination undergo
large oscillations when i > 39.◦2 due to the “Kozai resonance”
(Thomas & Morbidelli 1996).

Recently, Naoz et al. (2011, 2012) showed that relaxing
either one of these assumptions (i.e., an eccentric outer orbit

or non-negligible mass binary members) leads to qualitatively
different behavior. In this case, the z-component of the inner and
outer orbits’ angular momentum is not conserved. Considering
systems beyond the test particle approximation, or a circular
orbit, requires the octupole-level approximation (Harrington
1968, 1969; Ford et al. 2000; Blaes et al. 2002).

The octupole approximation can lead to extremely large
values for the inner orbit’s eccentricity (Ford et al. 2000; Naoz
et al. 2013a; Teyssandier et al. 2013). Furthermore, the inner
orbit’s inclination can flip its orientation from prograde to
retrograde, with respect to the total angular momentum (Naoz
et al. 2011, 2013a). We refer to this process as the eccentric
Kozai–Lidov (EKL) mechanism. It has been shown in Naoz
et al. (2013a) that the secular approximation can be used as
a tool for understanding different astrophysical settings, from
massive or stellar compact objects to planetary systems.

We focus on the octupole order when the inclination is set
to be almost coplanar. Lee & Peale (2003) considered the case
when the mutual inclination is zero, and they showed that the
eccentricity can oscillate due to the octupole effects. Here we
set the mutual inclination to be non-zero, but still very small.
We show both numerically and analytically, that an eccentric
inner orbit (e1 > 0.6) in almost coplanar configuration with an
eccentric outer orbit becomes highly eccentric (e1 � 0.9999)
due to the octupole effects. Provided that it avoids a direct
collision with or tidal disruption by the central object, it
undergoes a ∼180◦ flip. We derive the flip criterion analytically
(Equation (14)), and apply this mechanism to the retrograde hot
Jupiters and discuss its application to tidal disruptions.

The paper is organized as follows. In Section 2, we demon-
strate the coplanar flip and derive the analytical expression for
the flip criterion and timescale. In Section 3, we start the system
with a large range of parameter space to study the flip criterion
and timescale. Finally, in Section 4, we discuss the applications
of the coplanar flip to exoplanetary systems and tidal disruption
events.
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Figure 1. Configuration of the hierarchical three-body system. An object mP
orbits around the object m1 and forms an inner binary. The outer binary is
composed of the outer object m2 orbiting the center mass of m1 and mP. The
parameters of the inner and outer binary are denoted by the subscripts 1 and
2, respectively. The angle i represents the mutual inclination between the two
orbits, and J1 and J2 represent the orbital angular momenta of the inner and
outer binary, respectively. The near-coplanar case corresponds to i ∼ 0◦.

(A color version of this figure is available in the online journal.)

2. COPLANAR FLIP

The Kozai–Lidov mechanism relates to the hierarchical three-
body system as shown in Figure 1. The parameter ε,

ε = a1

a2

e2

1 − e2
2

, (1)

is small, where a is the semi-major axis and e is the eccentricity
of the inner “1” and outer “2” orbits (Naoz et al. 2013a).

In the test particle quadrupole approximation (mP → 0,
e2 = 0), the Kozai–Lidov resonance is between the longitude of
periapsis and the longitude of the ascending node of the inner
orbit (Kozai 1962). The eccentricity and the inclination oscillate
with large amplitudes when the inclination is over 40◦. This
resonance also exists if the test particle mass is significant. The
quadrupole approximation describes the orbital evolution when
the outer orbit is circular. When the outer orbit is non-circular,
the octupole approximation is needed, inducing variations in
eccentricity and inclination on longer timescales, and causing
excursions to even higher eccentricities and inclinations above
90◦ (Naoz et al. 2011, 2013a). However, starting with a circular
inner orbit, the inclinations that produce this behavior are
restricted to the range of ∼40◦–140◦.

When starting with an almost coplanar configuration (e1 =
0.8, i = 5◦), we find that the inner orbit can still flip if it
starts as eccentric (i.e., the high eccentricity low inclination
case: hereafter HeLi). We show the flip in Figure 2 using direct
N-body integrations, with the MERCURY software package
(Chambers & Migliorini 1997). The remarkable agreement
with the integration using the secular approximation up to the
octupole order is also shown in Figure 2.

The flip in the HeLi case is qualitatively different from the
low eccentricity high inclination case (hereafter, LeHi case, see
Figure 3 left panel). Specifically, in the initially coplanar case,
the oscillation amplitude of the inclination is small, maintaining
a coplanar configuration before the flip, as the eccentricity grows
monotonically to large values. The timescale for the inclination
to cross over 90◦ (namely, the flip timescale) is much shorter.
Moreover, the underlying resonances responsible for the flips
are different (G. Li et al. 2014a, in preparation). The HeLi case
is dominated by only the octupole order resonances. However,
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Figure 2. Consistency and convergence of the numerical method for the point
mass dynamical evolution of the inner orbit. We set m1 = 1 M�, m2 = 0.02 M�,
mP = 10−3 M�, a1 = 1 AU, a2 = 50 AU, i = 5◦, e1 = 0.9, e2 = 0.7,
ω1 = ω2 = Ω2 = 0◦, and Ω1 = 180◦. The green line represents the run
integrated using the secular approximation, and the dashed blue line represents
the results of the N-body simulation using the Mercury code. The results of
the two methods agree. In both cases, the test particle exhibits a 180◦ flip in a
coplanar configuration.

(A color version of this figure is available in the online journal.)
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Figure 3. Evolution of the inner orbit’s eccentricity and mutual inclination. We
set the mass of m1 and mP to a solar and a Jupiter mass, and the mass of the
outer perturber m2 to 0.03 M�, and ω1 = 0◦, Ω1 = 180◦, e2 = 0.6, a1 = 4 AU,
a2 = 50 AU. We use the secular approximation to calculate the dynamical
evolution of the point masses. The left panel shows the standard Kozai cycles
for comparison, (e1 = 0.01, i = 65◦), and the right panel shows the eccentric
coplanar scenario (e1 = 0.8, i = 5◦). For the former, both i and e1 oscillate
with large amplitudes, but in the eccentric coplanar case, e1 increases steadily
and i oscillates to maintain a coplanar configuration. The flip occurs much more
rapidly in the eccentric coplanar case.

(A color version of this figure is available in the online journal.)

the LeHi case is dominated by both the quadrupole order
resonances and the octupole order resonances. As a comparison,
we illustrate the difference in the HeLi case in the right panel of
Figure 3.

To illustrate the orbital evolutions, we show the movies3 of
the inner orbital evolution in the test-particle limit for both cases.
We set the z axis to be aligned with the total angular momentum
and the x axis is aligned with the ascending node of the outer
orbit. In the test particle limit, the outer orbit is stationary. In
the movies, the inner orbit is painted according to the value of

3 https://www.cfa.harvard.edu/∼gli/images/lowi.mp4;
https://www.cfa.harvard.edu/∼gli/images/highi.mp4
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the mean anomaly. The black arrow represents the normalized
orbital angular momentum, and the pink arrow represents the z
component of the angular momentum. The orbital flip can be
observed in the rapid reorientation of the pink arrow from the
+z to the z direction. The black arrow shows the orientation of
the orbit. The orbit rolls over its major axis when it flips. This
can be understood analytically as dJ1/dt is perpendicular to the
eccentricity vector at i = 90◦.

2.1. Analytical Derivation

The coplanar flip phenomenon can be understood analytically
in the test particle approximation (i.e., mP → 0). In the large
inclination regime, it was shown that the behavior associated
with the test particle approximation is valid for m2/mP > 7
(Teyssandier et al. 2013).

This test particle approximation in hierarchical three-body
systems was studied extensively in the past (Lithwick & Naoz
2011; Katz et al. 2011), but only in the regime of large
inclinations between the inner and outer orbits’ (and for small
initial inner eccentricity e1 < 0.5; Lithwick & Naoz 2011). Our
initial coplanar configuration simplifies the analytic treatment.
The ∼180◦ flip occurs due to the octupole-level terms, whose
importance can be estimated via ε.

We follow the equation of motion using a Hamiltonian de-
scription for the non-relativistic hierarchical three-body prob-
lem. We define the energy function as the negative of the Hamil-
tonian in the secular approximation up to the octupole level
(Lithwick & Naoz 2011). The Hamiltonian of such systems is
well documented in the literature (e.g., Harrington 1968, 1969;
Ford et al. 2000). The scaled energy function for the hierarchi-
cal three-body system in the test particle approximation to this
order is Fquad + εFoct:

Fquad = − (
e2

1/2
)

+ θ2 + 3/2e2
1θ

2

+ 5/2e2
1(1 − θ2) cos(2ω1), (2)

Foct = 5

16

(
e1 +

(
3e3

1

)
/4

)
× ((1 − 11θ − 5θ2 + 15θ3) cos(ω1 − Ω1)

+ (1 + 11θ − 5θ2 − 15θ3) cos(ω1 + Ω1))

− 175

64
e3

1((1 − θ − θ2 + θ3) cos(3ω1 − Ω1)

+ (1 + θ − θ2 − θ3) cos(3ω1 + Ω1)), (3)

where θ = cos i, ω1 is the argument of periapsis of the inner
orbit and Ω1 is the longitude of ascending node of the inner
orbit.

To the first order in i, the evolution of e1 and �1 = ω1 + Ω1
can be solved (we denote �1 = ω1 + Ω1 hereafter). Specifically,
ė1 and �̇1 depend only on e1 and �1:

ė1 = 5

8
J1

(
3J 2

1 − 7
)
ε sin(�1), (4)

�̇1 = J1

⎛
⎝2 +

5
(
9J 2

1 − 13
)
ε cos(�1)√

1 − J 2
1

⎞
⎠ , (5)

where J1 =
√

1 − e2
1. Combining the two differential equations,

we can express cos �1 as a function of e1:

cos �1 = 8e2
1 − C

e1
(
20 + 15e2

1

)
ε
, (6)
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Figure 4. Left panel: standard Kozai–Lidov scenario with initial conditions
e1 = 0.01, i = 65◦, m1 = 0.3 M�, m2 = 0.1 M�, a1 = 1 AU, a2 = 40 AU,
ω1 = 0◦, and Ω1 = 180◦. Right panel: the eccentric coplanar case, with initial
conditions e1 = 0.9, i = 5◦, m1 = 0.3 M�, m2 = 0.03 M�, a1 = 1 AU,
a2 = 40 AU, ω1 = 0◦, and Ω1 = 180◦. The evolution tracks represent the
change of Jz (Lithwick & Naoz 2011). The inclination i and e1 oscillate for
large initial inclinations, while in the low inclination case, i oscillates and e1
increases steadily. The dashed line represents the constant Fquad +εFoct curve at
ω1 = 0◦, which sets the maximum or minimum inclination during a quadrupole
cycle. The black solid line represents the constant Fquad curve. The maximum
inclination in each quadrupole Kozai cycle follows the constant Fquad curve
only in the HiLe mechanism.

(A color version of this figure is available in the online journal.)

where C is an integration constant, which is the energy that
corresponds to i = 0 and can be determined from the initial
condition. Substituting cos(�1) in the differential equation of
ė1, we obtain a separable first order differential equation:

ė1 = −5

8

(
4 + 3e2

1

)√√√√(
1 − e2

1

) (
1 −

(
C − 8e2

1

)2

25e2
1

(
4 + 3e2

1

)2
ε2

)
ε. (7)

Integrating Equation (7), we get e1 as a function of time.
Figure 3 shows that the eccentricity increases steadily and the

inclination oscillates in the low inclination scenario until the flip
occurs. This behavior can also be seen in Figure 4. The steady
change of e1 can be explained by Equation (4). Since

5

8
J1

(
3J 2

1 − 7
)
ε < 0, (8)

as (0 < J1 < 1), the sign of ė1 depends on sin(�1), and e1
reaches its extremum when sin(�1) = 0. In addition, since
�1 vanishes to the quadrupole order, the change of �1 is
small. Thus, e1 does not oscillate over the quadrupole timescale.
Instead, e1 increases or decreases monotonically to emin or emax.

Using the conservation of Fquad + εFoct, we can estimate
the evolution of the inner orbit in the low inclination case by
calculating the constant energy curve in Figure 4 (pink dashed
line). The total energy Fquad+εFoct depends on the four variables:
e1, i, ω1, and Ω1. To obtain the maximum inclination, imax as
a function of e1 as shown in Figure 4, we need to express ω1
and Ω1 as a function of e1 at i = imax. From the equation of
motion, i̇ ∝ sin(2ω1), thus the maximum of inclination occurs
at ω1 = 0. When ω1 = 0, cos � = cos Ω, thus, by substituting
Equation (6) in the conservation of Fquad + εFoct, we get imax
as a function of e1. The analytic expression is compared with
the numerical trajectory in Figure 4, where the evolution of e1

3
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Figure 5. Comparisons of the numerical results and the analytic expressions
for the point mass dynamical evolutions. The initial inclination is i = 5◦.
Left panel: the numerical results vs. the analytic criterion for the flip condition
(Equation (2)). The black line indicates the analytic criterion. The numerical
result is obtained from the secular integration, where the initial conditions are
m1 = 1 M�, m2 = 0.1 M�, a1 = 1 AU, a2 = 45.7AU, ω1 = 0◦, Ω1 = 180◦.
The blue crosses represent the flipped runs and the green pluses represent the
runs that do not flip in 104 tKozai, where tKozai is defined in Equation (15). Right
panel: the flip timescale for different initial eccentricity. The black line indicates
the flip time calculated analytically, and the colored crosses are the flip time
recorded in the numerical runs.

(A color version of this figure is available in the online journal.)

and i are obtained by integrating the equations of motion in the
secular approximation.

Moreover, Figure 4 shows another major difference between
the LeHi behavior and the HeLi case studied here. For the LeHi
case, energy conservation of the quadrupole approximation,
Fquad, can be used to find the maximum eccentricity and the
minimum inclination. However, the octupole correction is non-
negligible in the HeLi case.

The flip time can be estimated using Equation (7). Since
sin �1 < 1, e1 increases steadily before the flip, the flip
timescale can be estimated as

tflip =
∫ emax

emin

ė1
−1de. (9)

The initial conditions of this configuration are i ∼ 0, e1,0 →
1, where the subscript “0” represents the initial condition. Since
e1 increases monotonically until the flip, we set the minimum
eccentricity to be the initial eccentricity (i.e., emin = e1,0).
Furthermore, the maximum eccentricity is simply emax = 1.

On the other hand, when sin(� ) > 1, e1 decreases before
it increases. Since the flip always occurs at the maximum
eccentricity, the flip time is simply

tflip =
∫ emin

e0

ė1
−1de +

∫ emax

emin

ė1
−1de. (10)

We calculate emin with Equation (6) by setting cos(� ) = 1
and estimate the flip time. As shown in Figure 5, the analytical
flipping time, tflip, agrees well with the numerical results.

Deriving the flip condition is now straightforward. Rearrang-
ing Equation (6), we find

ε cos (�1) = 8e2
1 − C

e1
(
20 + 15e2

1

) , (11)

where C is the integration constant (energy at i = 0) introduced
in Equation (6). The difference on the left hand side between the

initial time and the flip time is bound by ε(1 − cos(�1)). When
the orbit flips, e1 → 1 and the difference on the right hand side
is

8 − C

35
− 8e2

1 − C

e1
(
20 + 15e2

1

) . (12)

Thus, a flip will happen when the following condition holds:

ε(1 − cos(�1)) >
8 − C

35
− 8e2

1 − C

e1
(
20 + 15e2

1

) . (13)

Substituting C from the initial condition, we obtain the flip
criterion:

ε >
8

5

1 − e2
1

7 − e1
(
4 + 3e2

1

)
cos(ω1 + Ω1)

. (14)

Figure 5 compares the analytical and the numerical results.
The left panel focuses on the flip criterion, whereas the black
line represents the analytical criterion, the green plus symbols
represent the numerical runs that do not flip in 104tKozai, and the
blue cross symbols represent the numerical runs that flip. The
timescale tKozai is defined as

tKozai = m1

m2

(a2

a1

)3(
1 − e2

2

)3/2(
1 − e2

1

)1/2
Pin, (15)

where Pin is the period of the inner orbit (Innanen et al. 1997;
Valtonen & Karttunen 2006). We start the runs for different
eccentricities and inclinations. The analytical criterion agrees
well with the numerical results. In the right panel of Figure 5,
we compare the flip timescale for three arbitrarily chosen
eccentricities. The analytical results also agree well with the
numerical results. Note that the small inclination assumption
holds for most of the evolution, as the actual flip has a much
shorter duration than the eccentricity growth that precedes the
flip.

3. SYSTEMATIC STUDY OF 180◦ FLIPS

We explored the entire e1 and i0 parameter space that can
produce flips. We systematically scanned the parameter space
of the initial conditions e1, i, and a2, and integrated for the
secular evolution of the inner orbit in the test-particle limit. For
systems that flipped within 1000 tKozai, we recorded the time
when the flip happens, where tKozai is defined in Equation (15).

At low eccentricity, the critical inclination (above which the
orbit flips) increases. This is consistent with the flip condition
of the HiLe mechanism (Lithwick & Naoz 2011; Katz et al.
2011), where here we have extended Figure 8 of Lithwick &
Naoz (2011) to larger initial e1. However, unlike Lithwick &
Naoz (2011), who scanned the e1(ω = 0) (i.e., the minimal
eccentricity) and i(ω = 0), we determine the initial conditions
that will lead to a flip. For the HeLi case, the result is
also consistent with the analytical flip condition described
in Section 2. At moderate eccentricity, the behavior of the
inner orbit is more complicated, and cannot be easily decried
analytically. Figure 6 depicts the numerical results of the
systematic exploration of the parameter space. The left panel of
Figure 6 shows the flip condition for different initial inclinations
and eccentricities, as a function of different ε. Not surprisingly,
stronger perturbations (i.e., larger ε) can cause flips in larger
regions of the parameter space. Consistent with Lithwick &
Naoz (2011), we also find that the intermediate regime of
e1,0 ∼ 0.4 allows for flips.
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Figure 6. Flip condition and the flip time. Left panel: the flip condition for
the whole parameter space of initial e1 and i for three different outer semi-
major axes, a2. The initial conditions for all the simulations are m1 = 1 M�,
m2 = 0.1 M�, a1 = 1 AU, ω1 = 0◦, Ω1 = 180◦. a2, e1, and i are different for
the runs. The simulations do not include the influence of tides. Initial conditions
above the colored lines in the e1–i plane exhibit an orbital flip. The red line
represents the case when a2 = 13.7 AU (ε = 0.1), the purple line represents
the case when a2 = 45.7 AU (ε = 0.03), and the blue line represents the case
when a2 = 137.5 AU (ε = 0.01). The flip condition agrees well with our
analytic estimates for the eccentric coplanar cases. The flip condition is more
complicated at moderate e1. Right panel: the flip time for a2 = 45.7 AU. The
flip time is shorter for the HeLi case. Note that when e1 is higher, tKozai is shorter
(see Equation (15)). Thus, the eccentric coplanar flip time is much shorter than
the standard Kozai.

(A color version of this figure is available in the online journal.)

The right panel of Figure 6 shows the flip time (similar to
the right panel of Figure 5, but this time for different initial
inclinations). We normalized the time by tKozai. Note that the
flip time of the eccentric coplanar scenario is shorter than that
of the HiLe mechanism (as is also apparent in the example in
Figure 2). In addition, when e1 > 0.5, the flip time is shorter as
e1 increases.

4. APPLICATION TO EXOPLANETS AND
TIDAL DISRUPTION EVENTS

The effect we discovered may have different interesting
applications. We briefly mention two of them in the following
sections. As shown in Figure 2, during the evolution the
eccentricity can reach very large values, which can result in
a small pericenter distance and collisions between the inner two
objects. In addition, if the objects do not collide, this allows
for tidal dissipation to take place. Specifically, it shrinks and
circularizes the orbit. If the tide takes place after the orbit
rolls over, a counter–orbiting inner orbit can be produced. This
configuration is interesting, as the inner orbit is almost coplanar
with the outer orbit but goes in the opposite direction.

4.1. Counter Orbiting Hot Jupiters

Hot Jupiters—massive extrasolar planets in a very close
proximity to their host star (∼1–4 day orbit)—are observed
to exhibit interesting characteristics. The planet’s projected
orbital orientation ranges from almost perfectly aligned to
almost perfectly anti-aligned with respect to the spin of the
star (Albrecht et al. 2012). In other words, the sky projected
angle between the stellar spin axis and the planetary orbit (the
spin–orbit angle, otherwise known as obliquity) is observed to
span the full range between 0◦ and 180◦.

Formation theories that rely on a planet slowly spiraling in
through angular momentum exchange with the protoplanetary
disk produce low obliquities (Lin & Papaloizou 1986, but
see Thies et al. 2011; Batygin 2012). The highly misaligned
configuration poses a unique challenge to planet formation and
evolution models. It was suggested that secular perturbations
due to a distant object (Fabrycky & Tremaine 2007; Veras &
Ford 2010; Correia et al. 2011; Naoz et al. 2011, 2012), planet-
planet scattering (Ford & Rasio 2008; Nagasawa & Ida 2011;
Chatterjee et al. 2011; Boley et al. 2012), and secular chaos
excursions (Wu & Lithwick 2011) can explain large obliquity,
but they cannot explain counter-orbiting configurations. Similar
results can be achieved if the star and protoplanetary disk
are initially in an aligned configuration for a fine-tuned initial
condition (see Batygin 2012). Furthermore, a test particle can
be captured in a 2:1 mean motion resonance and flip by ∼180◦
as migration continues (Yu & Tremaine 2001), and test particles
in a debris disk can be flipped due to the interaction of a closely
separated planet (Tamayo 2014).

We note that while the EKL mechanism can produce retro-
grade orbits (both in the inclination and obliquity sense; Naoz
et al. 2011, 2012, 2013a), it cannot produce counter-orbiting
hot Jupiters. This is because these studies initialized the inner
planet with a small eccentricity, which means that the initial
inclination needed to produce large eccentricity oscillations is
large ∼40◦–140◦. Furthermore, these initial conditions result in
an inclination that is more likely to be confined in the same
regime (Teyssandier et al. 2013). Thus, the final maximum hot
Jupiters obliquity reached in these experiments and others (e.g.,
Fabrycky & Tremaine 2007; Naoz et al. 2012) is ∼150◦. An
obliquity of ∼180◦ could be attributed to projection effects.

The coplanar ∼180◦ flip may play an important role in the
obliquity evolution of many exoplanetary systems. Coplanar
configurations are naturally produced if the planet and the
perturbing object (m2, a star or a planet) are formed in the same
disk, or if they are captured in the disk due to hydrodynamic
drag. Eccentricity may be excited by planet-planet scattering
or interactions with the protoplanetary disk (Ford & Rasio
2008; Nagasawa & Ida 2011). In addition, eccentric gas giant
exoplanets are observed at distances larger than 0.1 AU from
their host star (Ford et al. 2000).

During the orbital flip, the orbit becomes radial (e1 → 1),
which reduces the pericenter distance, and allows the tide
to operate. Tidal dissipation shrinks the orbit separation and
circularizes it (Matsumura et al. 2010). If this happens after
the orbital plane rolled over, a counter-orbiting hot Jupiter is
formed.

We illustrate this behavior in Figure 7 where the orbit flips
within 10 Myr from ∼6◦ to ∼170◦ and the obliquity flips from
0◦ to ∼173◦. This orbit reaches its equilibrium state in a circular
counter-orbiting configuration with a small semi-major axis
(0.032 AU). Such large obliquities may represent the observed
retrograde hot Jupiter HAT-P-7 b and HAT-P-14 b, where the
sky projected obliquities are 182.◦5 ± 9.◦4 and 189.◦1 ± 5.◦119,
(Winn et al. 2011).

In Figure 7, we adopt the “equilibrium tidal” model (Hut
1981; Eggleton et al. 1998; Eggleton & Kiseleva-Eggleton
2001). Its complete set of equations of motion can be found in
Fabrycky & Tremaine (2007). Specifically, this approach takes
into account the rotation of the star and the distortion of the
planet due to the rotation and tide of the star. In addition, it
assumes that the viscous timescales of the planet and the star
are constant and the tidal quality factor Q is proportional to the
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Figure 7. Evolution of the inner orbit under gravitational and tidal forces. The
result is obtained by integrating the secular equation of motion. We set the mass
and the radius of m1 to be those of the Sun, and the mass and the radius of mP
to be those of Jupiter, and m2 = 0.03 M�. The initial obliquity angle (ψ) is set
to be 0. We set a1 = 39.35 AU, a2 = 500 AU, e1 = 0.8, e2 = 0.6, ω1 = 0◦,
Ω1 = 180◦, and i = 6◦ for the initial condition. For tides, we set the dissipation
quality factor to be Q1 = 106, QJ = 105. The orbit flips after ∼10 Myr. During
the flip, e1 ∼ 1 and the tidal dissipation forces the orbit to decay and circularize.
The orbit reaches equilibrium with ψ ∼ 173◦, a1 ∼ 0.032 AU, and e1 ∼ 0.
General relativity precession of the inner and outer body is included following
Naoz et al. (2013b).

(A color version of this figure is available in the online journal.)

orbital period of the inner orbit (Hansen 2010). In the example
in Figure 7, we set the viscous timescale of the star and the
planet to 50 yr and 0.94 yr, respectively, which correspond to
the quality factors of Q ∼ 106 and 105 for a 10 day orbital
period. In this calculation, we also include general relativity
precession of the inner and outer body, following Naoz et al.
(2013b).

The example shown in Figure 7 predicts that this counter-
orbiting planet has an eccentric coplanar companion. We stress
that this does not mean that one should expect a high abundance
of counter-orbiting planets, or that one even exists. This mech-
anism can produce a large range of final inclinations depending
on when the tides start to dominate. The pericenter distance
shrinks before and during the flips, and when the tides become
important, their effect may effectively halt the orbital flip. In
addition, this mechanism drives the inner orbit eccentricity to
extremely high values and might result in the planet colliding
with or being tidally disrupted by the star. Calculating the frac-
tion of systems that will result in a counter-orbiting planet and
the fraction of planets that will collide with the star is beyond
the scope of this paper.

Related to the coplanar flips, we explain the behavior found
by Fabrycky & Tremaine (2007), where the spin–orbit angle
flips in the test particle quadruple limit while the inclination
does not flip. In this limit, where one of the members of the
inner orbit is a test particle and the outer orbit is circular, the z
component of the angular momentum is conserved. If the orbit
starts prograde i < 90◦, it will remain prograde. However, the
obliquity can flip from prograde to retrograde, as shown in the
top panel of Figure 8. This is a different kind of flip because
they occur in the x–y plane (as discussed below).

In the limit at i ∼ 90◦, dJ1/dt is in the direction of J1, and Ω1
shifts by 180◦ (Katz et al. 2011). Thus, J1 moves in a straight
line across the origin in the x–y plane and the orbit flips by
180◦ in the x–y plane. The orbital direction of the inner planet
is reversed, while the mutual inclination remains less than 90◦.
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Figure 8. The ∼180◦ flip of the spin–orbit angle when the mutual orbital
inclination is slightly less than 90◦. We set the mass and the radius of m1 to
be those of the Sun, and the mass and the radius of mP to be those of Jupiter,
and m2 = 0.03 M�. The initial spin–orbit angle (ψ) is set to be 0. We set
a1 = 40 AU, a2 = 500 AU, e1 = 0.01, e2 = 0.6, ω1 = 0◦, Ω1 = 180◦, and
i = 85◦ for the initial condition. The top panel shows the point mass dynamical
evolution of the inclination and the spin–orbit angle, and we can see that during
each Kozai cycle the inclination oscillates and the spin–orbit angle flips. In the
middle panel, e1 is plotted as a function of time. In the bottom panel, we show
that the longitude of the ascending node shifts by ∼180◦ abruptly at the end
of each Kozai cycle. This indicates the rapid ∼180◦ flip of the orbit in the x–y

plane.

(A color version of this figure is available in the online journal.)

This can be seen in the movies as well. The flip timescale is
the quadrupole Kozai timescale. Because the flip of the orbit is
abrupt, the tides from the planet cannot respond fast enough
to realign the stellar spin to the angular momentum of the
inner orbit. As a consequence, the spin–orbit angle crosses 90◦
(Figure 8). The behavior also persists when the inclination is less
than 90◦, but in that case the shift of the longitude of ascending
node and the change in obliquity are less than 180◦.

Similar to the HeLi flip, the flip in the x–y plane can also
produce ∼180◦ counter-orbiting planets with respect to the
stellar spin, however, this requires the perturber’s orbit to be
nearly perpendicular to the inner orbit. The flip in the x–y plane
may also be relevant for gravitational waves emitted by compact
object binaries, where the orbital flip changes the polarization
angle of the signal.

4.2. Tidal Disruption Events—Systematic Study

As mentioned above, the EKL mechanism (large and small
inclination) drives the inner orbit eccentricity to very large
values. This reduces the pericenter distance. When an object
moves close to m1, the tidal force of m1 can get stronger than
the object’s self-gravity and thus tidally disrupt the object.
For instance, stars may be tidally disrupted by supermassive
black holes if they pass very close to the black holes. Tidal
disruption of stars by black holes may produce the luminous
electromagnetic transients that have been observed (e.g., Bade
et al. 1996; Komossa & Greiner 1999; Gezari et al. 2003, 2006,
2008, 2009, 2012; van Velzen et al. 2011; Cenko et al. 2012).

We show an example of an object passing the Roche limit
in Figure 9. To mimic the case that produces a counter-orbiting
exoplanet (e.g., Figure 7), we use the same initial parameters but
with a different semi major axis (a1 = 39 AU). In addition, this
calculation includes both tidal dissipation and general relativity
precession effects, similar to Figure 7. In this case, during the
flip, the eccentricity increases, causing the pericenter to reach
the Roche limit of the planet and disrupting the planet.
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Figure 9. Example illustrating a tidal disruption event. The initial condition
is the same as in Figure 7, except a1 = 39 AU. Similar to Figure 7, both
tidal dissipation and general relativity precession effects are included (see text).
During the flip, e1 ∼ 1 and the tidal dissipation forces the orbit to decay (as
shown in the bottom panel). However, the tidal circularization is outrun by the
eccentricity excitation during the flip, and the object is disrupted before reaching
180◦ when rp < rL, where rL is the Roche limit of the object to m1.

(A color version of this figure is available in the online journal.)
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Figure 10. Maximum eccentricity. The maximum eccentricity reached during
the secular evolution in time 3tKozai (upper left panel), 5tKozai (upper right panel),
10 tKozai (lower left panel), and 30 tKozai (lower right panel) as a function of the
initial eccentricity (horizontal axis) and inclination (vertical axis). Tides are not
included in the simulation. The initial conditions of the runs are m1 = 1 M�,
m2 = 0.1 M�, a1 = 1 AU, a2 = 45.7 AU, e2 = 0.7, ω1 = 0◦, and
Ω1 = 180◦. The typical eccentricity reached at the first flip is ∼1–10−4, and the
eccentricity may increase to ∼1–10−6 after several flips. The HiLe case reaches
the maximum eccentricity later than the LiHe case. The inner orbit flips above
the black solid lines.

(A color version of this figure is available in the online journal.)

A very large eccentricity does not immediately imply a tidal
dissipation event, since this depends on the initial separation of
the orbit. We map the maximum eccentricity that can be reached
during the evolution, which may then be useful to examine the
likelihood of tidal disruption for specific systems.

Specifically, we study the maximum eccentricity reached
during the evolution for ε = 0.03. Since this depends on the
time the integration stops, we record the respective maximum
eccentricity of the inner orbit for integration times 3tKozai,
5 tKozai, 10 tKozai, and 30 tKozai. As shown in Figure 10, the
eccentricity of the inner orbit can be very close to 1, with

1 − e1,max ∼ 10−4 during the first flip, and 10−6 over longer
time periods.

This process is relevant for estimating the rates of planet–star
collisions (Hellier et al. 2009; Bear et al. 2011), stellar tidal
disruptions due to black hole binaries (Ivanov et al. 2005; Colpi
& Dotti 2011; Chen et al. 2011; Wegg & Bode 2011; Bode
& Wegg 2013; Stone & Loeb 2012; G. Li et al. 2014b, in
preparation), Type 1a supernovae (Katz & Dong 2012), star–star
collisions (e.g., Perets & Fabrycky 2009; Thompson 2011;
Katz & Dong 2012; Shappee & Thompson 2013; Naoz et al.
2013a; Naoz & Fabrycky 2014), and gravitational wave sources
(O’Leary et al. 2009; Kocsis & Levin 2012).

5. CONCLUSION

We have presented a new mechanism that flips an eccentric
inner orbit by 180◦ starting with a near-coplanar configuration
in a hierarchical three-body system with an eccentric outer per-
turber. We use the secular approximation to study the dynamics,
and show the agreement between the secular treatment and the
N-body simulation in Figure 2.

The HeLi flip is a different mechanism from the LeHi
flip discussed by Naoz et al. (2011, 2013a). The underlying
resonances causing the large oscillation in the inclination and
the flip are different: the LeHi flip is caused by both the
quadrupole and the octupole interactions. However, in the HeLi
case, only octupole resonances are in play (see G. Li et al. 2014a,
in preparation for further discussion). Moreover, for the low
inclination case, the orbital evolution is regular, which admits a
simple analytic flip criterion and timescale (which were shown
to agree with the numerical results in Figure 5). Specifically,
the flip criterion is shown in Equation (14). In addition, the
difference can be seen through the evolution of the orbit: the
eccentricity increases monotonically and the inclination remains
low before the flip, and the flip timescale of the coplanar case
is shorter compared with the high inclination case (see Figure 3
and movies). Finally, we explored the entire e1 and i0 parameter
space, including both the high inclination and low inclination
flips. We studied the flip condition for the initial condition in
Figure 6. The evolution of the near-coplanar systems is distinct
from the exact coplanar systems, because in the exact coplanar
systems the net force normal to the orbital plane is zero and
thus the orbit cannot flip. Therefore, the N-body simulations that
assume exactly zero inclination may miss some of the dynamical
behavior arises, even for small deviations from coplanarity.

Observations of the sky-projected obliquity angle of hot
Jupiters shows that their orbital orientation ranges from almost
perfectly aligned to almost perfectly anti-aligned with respect
to the spin of the star (Albrecht et al. 2012). We showed
in the hierarchal, nearly coplanar, three-body framework an
initial eccentric inner orbit can flip its orientation by almost
180◦ in the presence of an eccentric companion (Figures 5
and 6). During the planet’s evolution, its eccentricity is increased
monotonically, and thus tides are able to shrink and circularize
the orbit. If the planet has flipped by ∼180◦ before the tidal
evolution dominates, a counter-orbiting close-in planet can be
formed.

Figure 7 demonstrated this behavior. Not only does the fi-
nal planet inclination reach 180◦ with respect to the total an-
gular momentum, but also the obliquity. This is because the
timescale to torque the spin of the star is much longer than the
orbital flip timescale, the spin–orbit angle is similar to the incli-
nation at ∼180◦. Therefore, starting with an initially aligned
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spin–orbit configuration, the mechanism presented here can
produce counter-orbiting close-in planets for a nearly copla-
nar system. The counter orbiting exoplanets with a 180◦ obliq-
uity angle can be verified using the measured spin–orbit angle.
The true spin–orbit angle can be obtained from the sky pro-
jected spin–orbit measurement using the Rossiter–McLaughlin
method and the line-of-sight spin–orbit angle measurement us-
ing astroseismology.

We note that we do not expect an excess of counter orbiting
planets, because this mechanism can drive the inner orbit to an
extremely large eccentricity (see Figure 10), therefore the planet
may often end up plunging into the star before circularizing due
to tidal effects. A systematic survey of the likelihood of creating
counter-orbiting planets is beyond the scope of this paper.

In addition to exoplanetary systems, this mechanism can
be applied to many different astrophysical settings, which can
tap into the parameter space of hierarchical three-body system
that has large initial eccentricities and low inclinations. As
the eccentricity can be excited to ∼1–10−6 (Figure 10), this
mechanism may result in an enhanced rate of collisions or tidal
disruption events for planets, stars, and compact objects with a
hierarchical three-body configuration.
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Foundation Fund of the Institute for Advanced Study and NASA
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