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ABSTRACT

We describe redMaPPer, a new red sequence cluster finder specifically designed to make optimal use of ongoing and
near-future large photometric surveys. The algorithm has multiple attractive features: (1) it can iteratively self-train
the red sequence model based on a minimal spectroscopic training sample, an important feature for high-redshift
surveys. (2) It can handle complex masks with varying depth. (3) It produces cluster-appropriate random points
to enable large-scale structure studies. (4) All clusters are assigned a full redshift probability distribution P(z).
(5) Similarly, clusters can have multiple candidate central galaxies, each with corresponding centering probabilities.
(6) The algorithm is parallel and numerically efficient: it can run a Dark Energy Survey-like catalog in ~500 CPU
hours. (7) The algorithm exhibits excellent photometric redshift performance, the richness estimates are tightly
correlated with external mass proxies, and the completeness and purity of the corresponding catalogs are superb. We
apply the redMaPPer algorithm to ~10,000 deg? of SDSS DRS data and present the resulting catalog of ~25,000
clusters over the redshift range z € [0.08, 0.55]. The redMaPPer photometric redshifts are nearly Gaussian, with a
scatter o, ~ 0.006 at z &~ 0.1, increasing to o, & 0.02 at z &~ 0.5 due to increased photometric noise near the survey
limit. The median value for |Az|/(1 + z) for the full sample is 0.006. The incidence of projection effects is low
(£5%). Detailed performance comparisons of the redMaPPer DRS cluster catalog to X-ray and Sunyaev—Zel’dovich

catalogs are presented in a companion paper.
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1. INTRODUCTION

Over the past several years, galaxy clusters have been recog-
nized as powerful cosmological probes (e.g., Henry et al. 2009;
Vikhlinin et al. 2009; Mantz et al. 2010; Rozo et al. 2010; Clerc
et al. 2012; Benson et al. 2013; Hasselfield et al. 2013). Galaxy
clusters are one of the key probes of dark energy for ongoing
and upcoming photometric surveys such as the Dark Energy Sur-
vey (DES; The DES Collaboration 2005), Pan-STARRS (Kaiser
et al. 2002), the Hyper-Suprime Camera (HSC),'? and the Large
Synoptic Survey Telescope (LSST; LSST Dark Energy Science
Collaboration 2012).

Because galaxies are obviously clustered on the sky, rich
galaxy clusters have been detected as far back as the 1800s
(Biviano 2000), with the first large catalogs generated from
galaxy overdensities on photographic plates created 50 years ago
(e.g., Abell 1958; Zwicky et al. 1968; Abell et al. 1989). More
recently, the advent of multi-band data has led to a proliferation
of optical cluster-finding algorithms. These algorithms use
various techniques for measuring clustering in angular position
plus color/redshift space, ranging from simple matched filters
to more complicated Voronoi tessellations. These cluster finders
can be divided into roughly two classes: those based on

12 http://www.naoj.org/Projects/HSC/HSCProject.html

photometric redshifts (e.g., Kepner et al. 1999; van Breukelen &
Clewley 2009; Milkeraitis et al. 2010; Durret et al. 2011; Szabo
et al. 2011; Soares-Santos et al. 2011; Wen et al. 2012), and
those utilizing the cluster red sequence (e.g., Annis et al. 1999;
Gladders & Yee 2000; Koester et al. 2007a; Gladders et al. 2007,
Gal et al. 2009; Thanjavur et al. 2009; Hao et al. 2010; Murphy
et al. 2012). However, relatively few of these optical catalogs
have been utilized for cosmological parameter constraints (e.g.,
Rozo et al. 2007, 2010; Mana et al. 2013).

Given the above landscape, it is a fair question to ask whether
the world really needs yet another photometric cluster-finding
algorithm. As we describe below, we believe that the answer to
this question is yes. In particular, there are a variety of important
features that any reasonable optical cluster finder must have in
order to properly exploit the photometric data that will become
available with ongoing or near-future photometric surveys such
as the DES or LSST.

What must we require of current photometric cluster finders?
The key features are as follows.

1. The algorithm must be able to smoothly detect galaxy
clusters in a consistent way across a broad redshift range.
This can be a challenge for photometric redshift (“photo-z”)
and red-sequence-based algorithms alike. For photometric-
redshift-based algorithms, one must be cautious because
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biases and scatter in reported photo zs increase at fainter
magnitudes where spectroscopic training and validation
samples can be highly incomplete. For red-sequence-based
cluster finders, one must confront the fact that the 4000 A
break characteristic of the early-type galaxy spectra moves
across filters. While g — r is an ideal color for cluster
detection at low redshift, one should rely primarily on r — i
at intermediate redshifts and i—z at higher redshifts (and
we note that this will also affect photo-z-based finders). By
z ~ 1, near-infrared (NIR) photometry is required. Being
able to smoothly transition from one color to the next—or
better yet, to always use all available photometric data—is
paramount.

2. To the extent possible, the algorithm should self-train to the
available data. For instance, algorithms reliant on a priori
parameterizations of the red sequence could easily result in
systematic biases if the a priori parameterization differs
from reality. Note that this also impacts photo-z-based
cluster finders, since there can be unknown and difficult-
to-calibrate biases in the photometric redshifts of cluster
galaxies.

3. The algorithm should be numerically efficient, capable of
running on extremely large data sets within reasonable time
frames with modest computational resources.

4. The algorithm must be able to properly account for complex
survey masks, including varying depth.

5. The algorithm must allow the construction of proper cluster-
random points that adequately characterize the effective
survey volume for cluster detection in order to enable large-
scale structure studies. In particular, it is worth emphasizing
that because galaxy clusters are extended objects on the sky,
the galaxy mask used to construct the cluster catalog is not
the appropriate mask characterizing the angular and redshift
selection of galaxy clusters for any particular cluster finder.

6. The algorithm should produce a full P(z) distribution for
every cluster. Similarly, given that the center of a galaxy
cluster can be observationally uncertain, there should be a
corresponding centering distribution in the plane of the sky
P(n). Note that if one adopts the prior that a galaxy resides
at the center of a galaxy cluster, then the probability P(#)
collapses to the probability that any given cluster galaxy is
the correct cluster center. Our expectation is that just as P(z)
allows one to adequately recover the redshift distribution of
galaxy clusters in a statistical sense, so too will centering
probabilities for cluster galaxies allow one to statistically
recover the angular distribution of clusters in the sky, a
point that is of critical importance for large-scale structure
studies.

7. In order to maximize the cosmological utility of the derived
cluster samples, the richness estimators should be fully
optimized for the purpose of minimizing the scatter in the
richness—mass relation.

The red-sequence Matched-filter Probabilistic Percolation
(redMaPPer) cluster-finding algorithm is our solution to the
above list of must-haves. Concerning the last point in particular,
over the past several years we have empirically explored
what works and what does not work in estimating cluster
richness (Rozo et al. 2009, henceforth R09, 2011; Rykoff et al.
2012, henceforth R12). For instance, we have demonstrated
that estimating membership probabilities for every galaxy is
very effective, while using hard color cuts to derive cluster
membership can lead to large biases. We have fully optimized
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the optical detection radii, as well as the luminosity cuts
employed when counting galaxies. We have also investigated
whether total galaxy counts or total cluster luminosity is a better
mass proxy, and whether or not trying to add blue galaxies into
richness estimates results in improvements. All of these lessons
have gone into the creation of the redMaPPer cluster finder.

There, is however, one feature of redMaPPer that represents
more of a personal bias as opposed to an empirically driven
choice, namely, the fact that redMaPPer is a red sequence cluster
finder. Indeed, operationally, redMaPPer can be easily adapted
to work in photo-z space rather than working directly in color
space. However, we are wary of reliance on photometric red-
shifts, which become increasingly difficult to characterize for
faint galaxies due to a lack of spectroscopic training and valida-
tion samples. Furthermore, cluster galaxies are a very particular
population, and photo-z estimates tailored for clusters should
be derived separately from the total galaxy population. Though
there have been some studies comparing different cluster find-
ers (e.g., Goto et al. 2002; Bahcall et al. 2003; Lopes et al.
2004; Rozo & Rykoff 2014), we have not seen any conclusive
evidence for photo-z-based algorithms outperforming red se-
quence methods or vice versa. Here we have opted to rely on a
red sequence method when developing redMaPPer. Of course,
at high enough redshift, as the red sequence begins to disappear,
it is obvious that photometric redshift methods must necessar-
ily perform better (e.g., Eisenhardt et al. 2008; Brodwin et al.
2011). We do not, however, expect this to be a problem for
near-future large photometric surveys. Note that while it is true
that redMaPPer also relies on spectroscopic training samples, an
important advantage of our novel red sequence modeling algo-
rithm is that we do not require a locally representative training
sample: our spectroscopic training galaxies can be the bright-
est cluster galaxies at all redshifts, with no degradation in the
performance of our photometric redshift estimates.

The redMaPPer algorithm is designed to handle an arbitrary
photometric galaxy catalog, with an arbitrary number of pho-
tometric bands (=3), and will perform well provided that the
photometric bands span the 4000 A break over the redshift range
of interest. It is thus well suited to current surveys such as the
Sloan Digital Sky Survey (SDSS; York et al. 2000) for low-
and moderate-redshift clusters (z € [0.05, 0.55]), as well as up-
coming surveys such as DES for low- and high-redshift clusters
(z < 1). As a case study, in this gaper we present the redMaP-
Per catalog as run on 10,400 deg” of photometric data from the
Eighth Data Release (DR8; Aihara et al. 2011) of the SDSS. We
will make the full DR8 redMaPPer catalog available after this
paper is accepted for publication.

The layout of this paper is as follows. In Section 2, we describe
the SDSS data used for this work, followed in Section 3 with an
overall outline of the redMaPPer cluster finder. In Section 4, we
describe the multicolor richness estimator A, which is an update
of the single-color richness estimator used in R12. In Section 5,
we describe our strategy for dealing with stellar masks and
regions of limited depth in the survey. In Section 6, we describe
the self-training of the red sequence parameterization used to
detect clusters, as well as measure their photometric redshifts,
which is described in Section 7. In Section 8, we describe
our new probabilistic cluster centering algorithm. Finally, in
Section 9, we put all these pieces together into the redMaPPer
cluster finder. The resulting SDSS DRS8 redMaPPer cluster
catalog is described in Section 10. Next, in Section 11, we
describe a new, more accurate method of using the survey data
to estimate the purity and completeness of the cluster catalog,
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and in Section 12, we describe how these methods can be applied
to generate a cluster detection mask over the full sky. A summary
is presented in Section 13. In the appendices, we present several
systematic checks, including Appendix B, which contains an
estimate of the minimum number of training spectra required for
an accurate red sequence calibration. A full detailed comparison
of redMaPPer and other large photometric survey catalogs to
X-ray cluster catalogs is presented in a companion paper (Rozo
& Rykoff 2014, henceforth Paper IT). When necessary, distances
are estimated assuming a flat ACDM model with Q,, = 0.27
and 4 = 1.0 Mpc, i.e., all quoted distances are in 4~ Mpc.

2. DATA

As discussed above, the redMaPPer algorithm is designed to
handle an arbitrary photometric galaxy catalog, with an arbitrary
number of photometric bands (>>3). Of course, the quality of the
output depends on the quality of the photometry. As a case study,
in this paper we run redMaPPer on SDSS DRS data, due to its
large area and uniform coverage.

2.1. SDSS DRS8 Photometry

The input galaxy catalog for this work is derived from SDSS
DRS data (Aihara et al. 2011). This data release includes more
than 14,000 deg? of drift-scan imaging in the northern and
southern Galactic caps. The survey edge used is the same as that
used for Baryon Acoustic Oscillation Survey (BOSS) target
selection (Dawson et al. 2013), which reduces the total area
to 210,500 deg® with high-quality observations and a well-
defined contiguous footprint. Similarly, bad field and bright star
masks are based on those used for BOSS.

The BOSS bright star mask is based on the Tycho catalog
(Hgg et al. 2000). However, this catalog is incomplete at the
bright end. Cross-matching 7ycho to the Yale Bright Star Catalog
(Hoffleit & Jaschek 1991), covering 9000 of the brightest stars
in the sky (mostly visible to the naked eye), we have found
an extra 70 stars—including very bright stars such as Arcturus
and Regulus—that obviously impacted galaxy photometry and
detection. We have also found that very large, bright galaxies
such as M33 cause significant problems for photometry in the
area, including many spurious sources marked as galaxies. To
handle these issues, we have visually inspected and masked
obviously bad regions around 63 objects brighter than V < 10
from the New General Catalogue (NGC; Sinnott 1988) that
are in the DR8 footprint, as well as the bright stars mentioned
above. In total, an additional 36 deg? (~0.3% of the total area)
is removed by our combined bright star and galaxy mask. After
accounting for all the masked regions, the input galaxy catalog
covers 10,400 degz.

As discussed in R12, the careful selection of a clean input
galaxy catalog is required for proper cluster finding and richness
estimation. Our input catalog cuts are similar to those from
Sheldon et al. (2012) used for BOSS target selection, with
some modifications. First, we select galaxies as classified by the
default SDSS star/galaxy separator. We further limit our catalog
to i < 21.0, approximately the 10o limiting magnitude for the
survey.'> We then filter all objects with any of the following
flags set in the g, r, or i bands: SATUR_CENTER, BRIGHT,
TOO_MANY_PEAKS, and (NOT BLENDEDOR NODEBLEND). Unlike
the BOSS target selection, we have chosen to keep objects
flagged with SATURATED, NOTCHECKED, and PEAKCENTER.

13 Although we note that the limiting magnitude is not precisely constant over
the survey.
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Particular care has to be made in avoiding overaggressive
flag cuts because of the way that the SDSS photo pipeline
handles dense regions such as cluster cores. In these cases,
the central galaxy (CG) and many satellites may be originally
blended into one object and then deblended. However, if there
is a problem with one part of the parent object—such as
a cosmic-ray hit that is not properly interpolated—then this
bad flag is propagated to all the children. We have found
that removing objects marked with SATURATED, NOTCHECKED,
and PEAKCENTER often masks out cluster centers, while truly
saturated objects such as improperly classified stars are also
rejected via the SATUR_CENTER flag cut. Overall, by including
these objects we increase the number of galaxies in the input
catalog by less than 2%, and our tests have shown no significant
effect on the richness measurements except for a few clusters for
which the cores were inadvertently masked out when galaxies
with the above flags were removed. In total, there are 56.5
million galaxies in the input catalog.

In this work, we use CMODEL_MAG as our total magnitude
in the i band, and MODEL_MAG for u, g, r, i, and z when
computing colors. We limit our input catalog to galaxies that
have m; < 21.0, approximately the 100 limit for galaxy
detection such that the characteristic magnitude error for our
faintest objects is ~0.1. The DR8 iibercalibration procedure
yields magnitude uniformity on the order of 1% in griz and 2%
in u. The resulting color scatter introduced by the photometry is
significantly narrower than the width of the cluster red sequence.
All magnitudes and colors are corrected for Galactic extinction
using the dust maps and reddening law of Schlegel et al.
(1998, SFD).

2.2. Spectroscopic Catalog

Although our cluster finder uses only photometric data, we
require spectroscopic data to calibrate the red sequence and
to validate our photometric redshifts. For this purpose we
use the SDSS DR9Y spectroscopic catalog (Ahn et al. 2012).
This spectroscopic catalog has over 1.3 million galaxy spectra,
including over 500,000 luminous red galaxies (LRGs) atz ~ 0.5
from the CMASS sample. As detailed below, we only use ~20%
of the available data in our training and use the remaining data
set to validate our photometric redshifts.

3. OUTLINE OF THE CLUSTER FINDER

The redMaPPer algorithm finds optical clusters via the red
sequence technique. More specifically, it is built around the
optimized richness estimator A developed in R09 and R12. The
algorithm is divided into two stages: a calibration stage, where
we empirically calibrate the properties of the red sequence as a
function of redshift, and a cluster-finding stage, where we utilize
our calibrated model to identify galaxy clusters and measure
their richness. The algorithm is iterative. First, an initial rough
color calibration is used to identify clusters. These clusters are
then used to better calibrate the red sequence, which enables a
new cluster-finding run (see also Blackburne & Kochanek 2012
for a similar approach within the context of cluster finding with
spectroscopic data sets). These two calibration/cluster-finding
stages are iterated several times before a final cluster-finding
run is made.

The calibration itself is also an iterative procedure described
in detail in Section 6. We start with a set of “training clusters”
that have a red CG with a spectroscopic redshift to calibrate
the red-sequence model. As we show in Appendix B, our
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minimal training requirements for unbiased cluster richness and
photometric redshift estimation are ~40 clusters per redshift bin
of width £0.025. In the case of SDSS DRS, the spectroscopic
availability greatly surpasses this requirement by many orders
of magnitude. However, for upcoming surveys such as DES
probing much higher redshifts, this will no longer be the case,
and we have developed redMaPPer with these limitations in
mind.

For the present work on DR8, we construct our sample of
training clusters from red spectroscopic galaxies. These red
galaxies are used as “seeds” to look for significant overdensities
of galaxies of the same color. The significant overdensities thus
become our training clusters that are used to fit a full linear
red sequence model (including zero point, tilt, and scatter)
to the sample of all high-probability cluster members with a
luminosity L > 0.2 L,. This luminosity threshold is optimal for
richness measurements (R12). In this way we effectively transfer
the “seed” spectroscopic redshift to all high-probability cluster
members, which enables a much more accurate measurement of
the red sequence. This is especially true for fainter magnitudes
where there is very limited spectroscopic coverage. Note that
because the algorithm utilizes all colors simultaneously, the
“scatter” is characterized not by a single number but by a
covariance matrix.

Given a red sequence model, the cluster finding proceeds
as follows (see Section 9 for details). First, we consider
all photometric galaxies as candidate cluster centers (thereby
assuming that the center of a cluster is located at a galaxy
position). We use our red sequence model to calculate a
photometric redshift for each galaxy (z.q; see Section 7.1) and
evaluate the goodness of fit of our red galaxy template. Galaxies
that are not a reasonable fit to the red galaxy template at any
redshift are not considered as possible CGs for the purpose
of cluster ranking. We note that as long as a cluster has at
least one galaxy that is a reasonable fit to the template, that
cluster will be considered in the first step of the cluster-finding
stage. We then use the zq value of the candidate CG as an
initial guess for the cluster redshift. Based on this redshift, we
compute the cluster richness A and its corresponding likelihood
using a multicolor generalization of the method of R12 (see
Section 4). When a significant number of red sequence galaxies
(=3) are detected within a 500 2 ~! kpc aperture, we reestimate
the cluster redshift by performing a simultaneous fit of all the
high-probability cluster members to the red-sequence model.
This procedure is iterated until convergence is achieved between
member selection and cluster photometric redshift (z;; see
Section 7.2). The resulting list of candidate cluster centers is
then rank-ordered according to likelihood. Starting with the
highest-ranked cluster we measure the richness and membership
probabilities. These probabilities are then used to mask out
member galaxies for lower-ranked clusters in a process we term
“percolation” (see Section 9.3). In this way we prevent double-
counting of galaxy clusters.

4. RICHNESS ESTIMATOR X

The redMaPPer richness estimator, A, is a multicolor exten-
sion of the richness estimator developed in R09 and R12, which
we now use to denote A to indicate that it is a single-color
richness. Here we review how we calculate A and highlight the
differences relative to R12.

Let x be a vector describing the observable properties of
a galaxy (e.g., multiple galaxy colors, i-band magnitude, and
position). We model the projected distribution within and around
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clusters as a sum S(x) = Au(x|))+b(x), where A is the number
of cluster galaxies, u(x|)) is the density profile of the cluster
normalized to unity, and b(x) is the density of background (i.e.,
nonmember) galaxies. The probability that a galaxy found near
a cluster is actually a cluster member is simply

Au(x|r)

Au(x|D) +b(x)’ M

Pmem = p(X) =
We note that in Section 9.3, the definition of the membership
probability will be modified to allow for proper percolation of
the cluster finder. This modification will only impact clusters
that are close to each other along the line of sight and at
comparable redshifts. Regardless, the total number of cluster
galaxies A must satisfy the constraint equation

B B Au(x|r)
P=d = 3 Au(x|n) +b(x)’ @

R<R.(})

The corresponding statistical uncertainty in X is given by

Var(h) = ) pxla) [1 = p(x[2)]. 3)

In principle, these sums should extend over all galaxies. In
practice, one needs to define a cutoff radius R. and a luminosity
cut Loy. InR12 and Rozo et al. (2011) we showed that the scatter
in the mass—richness relation is expected to be minimized when
Loy = 0.2 L, while the optical radial cut scales with richness
via
R.(A) = Ro(1/100.0), @)

where Ry = 1.0A 'Mpc and 8 = 0.2. We adopt these
parameters in redMaPPer.

To determine the cluster richness of a galaxy cluster, note that
A is the only unknown in Equations (2) and (4). Therefore, we
can numerically solve Equation (2) for A using a zero-finding
algorithm. The solution to Equation (2) defines A and naturally
produces a cluster radius estimate R, via Equation (4). We
emphasize that this cluster radius is not a proxy for any sort
of standard overdensity radius such as Rsoo. or Ragg.'*

AsinR12, we consider three observable properties of galaxies
for our filter function u(x): R, the projected distance from the
cluster center; m;, the galaxy i-band magnitude; and a color
variable. Ideally, our color variable would be the full color
vector (e.g.,¢ = {u — g, g —r,r —i,i — z} in the case of SDSS
data). However, practical considerations forced us to reduce this
information to a single 2 value that gives the goodness of fit of
our red sequence template. In doing so, we effectively compress
the information contained in the multidimensional color vector
into a single number that measures the “distance” in color space
between the galaxy of interest and our red-sequence model. This
is described in more detail below.

We adopt a separable filter function

u(x) = [21 RE(R)]p(mi)pu(x°), ®)

where 2(R) is the two-dimensional cluster galaxy density
profile, ¢(m) is the cluster luminosity function (expressed in
apparent magnitudes), and p,(x?) is the x? distribution with
v degrees of freedom. The pre-factor 2w R in front of X(R)
accounts for the fact that given X(R), the radial probability
density distribution is 2t RE(R). We summarize below the filters
used in redMaPPer.

14" Rso0c (Raoom) is the radius enclosing an overdensity of 500 (200) times the
critical (mean) density of the universe.
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4.1. The x? Filter

Assume we have a multicolor red sequence model for which
we have (c|z, m;), the mean color of the red sequence galaxies
for any given redshift z and i-band magnitude m;. Furthermore,
assume we have a corresponding covariance matrix Ciy(z) to
describe the intrinsic scatter and correlations of galaxy colors
about the mean.

When comparing a given galaxy with color vector ¢ to
the model color, with the assumption of Gaussian errors the
distribution of galaxies will be represented by a x 2 distribution:

x2(@) = (¢ — {elz, m;)) (Cine(z) + Cerr) ™" (€ — €|z, m;)), (6)

where c is the color vector of the galaxy under consideration, m;
is the observed galaxy magnitude, {(c|z, m;) is the model color,
and Cjn(z) is the corresponding covariance matrix, which itself
depends on redshift. The matrix C,, describes the photometric
error of the galaxy under consideration.

For red sequence cluster members, x2 will be distributed
according to the x? distribution with v degrees of freedom,

()(2)(\1/2*1)67)(2/2

22T (v)2) 7

ou(x?) =

where v is the number of colors employed when estimating
x2. Note that for v = 1 the x? filter does not reduce to
the single color filter of R12. This is because our distance
measurement x> does not distinguish between galaxies that are
too red and galaxies that are too blue, so there is some loss of
information when moving from color space to x2. While a full
v-dimensional Gaussian color filter would work better than our
x?2 filter—and would exactly reduce to the single color A, from
R12 when v = 1—the problem of background estimation for
such a filter is much more difficult. In particular, in the case of
DRS, it requires one to estimate the galaxy density in a five-
dimensional space: {m;, u — g, g —r,r —i,i — z}. We found
these background estimates to be very noisy, so we compressed
the color information to a single variable x 2. In this way, at any
given redshift the background depends only on m; and 2.

4.2. The Radial and Luminosity Filters

For the radial filter, we follow R09 and R12 and adopt a
projected NFW profile (Navarro et al. 1995), which is a good
description of the dark matter profile in N-body simulations.
In addition, it has been found to be a good description of the
radial distribution of cluster galaxies (Lin & Mohr 2004; Hansen
et al. 2005; Popesso et al. 2007). In R12 it was shown that in
order to minimize the scatter in the mass—richness relation the
NFW filter works as well as or better than other possible radial
profiles. Therefore, we refer readers to Section 3.1 of R12 for
details on the form of the radial filter.

For the luminosity filter, we similarly follow R09 and R12 and
adopt a Schechter function (e.g., Hansen et al. 2009), written as

¢(mt) 166 10—0.4(m,'—m*)(ot+1) exp(—10_0'4(mi_m*)). (8)

In an update from R12, we have set « = 1.0 independent
of redshift, which provides a better description of the data.
The characteristic magnitude, m,, is the same as used in
R12, calculated for a k-corrected passively evolving stellar
population (Koester et al. 2007b). In the redshift range 0.05 <
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z < 0.7, appropriate for DR8, m,(z) is well approximated
(6 < 0.02 mag) by the following polynomials:

22.44 +3.361In(z) + 0.273 In(z)?
—0.06181n(z)* — 0.0227 In(z)*

22.94+3.081n(z) — 11.221In(z)* if z > 0.5.
—27.111n(z)* — 18.021n(2)*

if z < 0.5,

Wl*(Z) =

€))

For each cluster, m, is taken at the appropriate redshift and
the luminosity filter is normalized to unity at the appropriate
magnitude cutoff. As with R12, this is taken to be 0.2 L,, or
m, + 1.75 mag. Although in the current version of redMaPPer
both o and m, are fixed as described above, in future releases
we will replace these parameters with those directly measured
from calibration clusters. We emphasize, however, that modest
changes to the shape of the luminosity filter result in insignificant
changes to the recovered richness. Of course, changes to the
magnitude limit above which one counts galaxies have an
obvious systematic impact on the richness as one moves up and
down the luminosity function, although we have found that these
modest shifts do not significantly impact the mass—richness
scatter (see R12).

4.3. Background Estimation

As in R12, we assume that the background density'” is uni-
form, such that b(x|z) = 27 RE,(m;, x*|z), where Z,(m;, x*|z)
is the galaxy density as a function of galaxy i-band magnitude
and x2, where x? is evaluated using the red sequence model
at redshift z. In this way, the effective background for every
cluster is different and depends on the cluster redshift. Note
that since clusters reside in overdense regions, this mean back-
ground is likely an underestimate of the true background, but the
incurred bias is small (see R12 and Rozo et al. 2011) and is irrel-
evant for cosmological purposes, as it is completely degenerate
with the amplitude of the richness—mass relation. Variability of
the background (which is expected) is more problematic and
can lead to catastrophic projections. These are expected to be
small (Rozo et al. 2011) and will be addressed in a future paper
(E. Rozo et al., in preparation).

To calculate the mean galaxy density, we first calculate the
x? value for all galaxies in a grid of redshifts with spacing
0.02. For computation purposes, we only calculate the x?
for galaxies that are brighter than 0.1 L, at a given redshift
bin. This implies that the magnitude range being sampled is
different for each redshift bin. At each redshift we bin the full
galaxy catalog in x> and magnitude using a cloud-in-cells (CIC)
algorithm (e.g., Hockney & Eastwood 1981) and divide by the
survey area. For our cells, we use x2 € [0,20] with a bin
size of 0.5, and i € [12, myy,] with a bin size of 0.2. The
%2 < 20 cut can be justified by the fact that the sum total
of cluster membership probability in the redMaPPer catalog
for galaxies with 2 € [15,20] is only 0.7%. That is, our
x% < 20 cut impacts our results at well below the 1% level.
The final galaxy number density is normalized by the width
of each color and magnitude bin. To evaluate the background
at an arbitrary redshift, we linearly interpolate between the
backgrounds computed along our redshift grid. As noted in
R12, because the background is measured per square degree,
the average number of background galaxies as a function of x?2,

15 We use the term “background” to mean all unassociated galaxies, including
objects behind and in front of the cluster.
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magnitude, and redshift is automatically accounted for as the
angular size of the clusters changes with redshift.

5. HANDLING MASKED REGIONS
AND LIMITED DEPTH

In an ideal world, our survey would have uniform depth, be
deep enough to reach 0.2 L, at all redshifts of interest, and there
would be no missing and/or masked regions, e.g., due to bright
stars. Most previous optical cluster finders make this simple
assumption.'® Here, we describe how we can properly correct
for these effects. Our approach is conceptually straightforward.
Given a cluster model and a geometric and magnitude mask, we
can effectively calculate the fraction of cluster galaxies that we
expect to be masked out. This correction factor is then applied
to the “raw” richness to compensate for the masked region. In
practice, this correction can be self-consistently incorporated
into the richness estimation, as described below. Our method is
simple to implement with any geometric mask, including those
that describe variations in depth. However, we do not take into
account masks that contain one or more missing bands.

5.1. The Correction Term

Looking back at Equation (2), we have
u(x;)
= _, 10
lZ)»u(x[)+b(x,<) ( )

where x; describes the radial position, color (via x?), and
luminosity (via m;) of each galaxy. This formulation works if
we can see all galaxies, but in reality we cannot. Let us then
pixelize all observable space x into infinitesimal pixels, and let
N; be the number of galaxies in pixel i. Most pixels have N; = 0,
but a few have N; = 1. Thus, the sum over all galaxies can be
rewritten in terms of a sum over all pixels via

_ - ulxi)
! _IZNI Au(xi)+b(xi)' (11)

In the case of masking, we can only observe the galaxies that
are inside the mask, so we can split this sum into

. . u(xi) : M(xi)
= Xn: N; au(x;) +b(x;) * Z Ni au(x;) +b(x;) (12)

out

The “in” term is the raw A that we usually compute, and it can
be replaced by the standard sum over all observed galaxies. The
“out” term is now a correction to the standard expression, call

it C,
u(x;)
C = - 13
Z "au(x;) +b(x;) (13)
In terms of C, Equation (2) can be rewritten as
u(x)
—C = 14
Z Au(x)+b(x) (14

Now, while C is unknown (we cannot see the masked region),
we can compute its expected value for a cluster of richness X.
Using the fact that

(Ni) = [Au(x;) + b(x;)]Ax;, (15)

16 An exception is 3DMF (Milkeraitis et al. 2010), for which they calculate
the fractional area masked for each cluster.
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we see that the expectation value of C is given by
(C|A) =/ dx u(x). (16)
out

In the above equation, we have made explicit the fact that C
depends on A, both via the cutoff radius used in the sum over
galaxies and because the radial filter depends on A. Thus, in the
presence of missing data, our richness estimate is given by the

solution to
u(x)
= E _— 17
por Au(x) +b(x)

Note, however, that because C is an unknown, there must
also be additional measurement error associated with this
unknown correction. To calculate the variance of C, we note
that Var(N;) = (N;). To compute Cov(N;, N;) = (N;N;) —
(N, )(N i), we first compute (N;N;). For infinitesimal pixels,
N;N; = 1 implies that both pixels i and j contain cluster
galax1es or that one pixel contains a cluster galaxy while the
other pixel contains a background galaxy, or that both pixels
contain a background galaxy. Consequently,

1—(CIA)

P(Nl'Nj =1)= sz[)»(k—l)u,-uj+k(uibj+ujb;)+b;bj]. (18)

Since <NiNj) = P(NiNj = 1), subtracting off <N,')(Nj>, we
arrive at
Cov(N;, Nj) = _Ax2uiuj (19)

fori # j. Putting it all together, we arrive at

> Ny pi— Y > Cov(N;, Nj)pip; (20)
i i jA

Var(C) =

2
= / dx u(x)p(x) — |:/ dx u(x)p(x)i| . 21
out out

To propagate the error in C into the error in A, we set

di
0 = —

22
7c oc, (22)

()

where o = [Var(C)]'/2. The derivative of A with respect to C
is evaluated numerically about the expectation value of (C|)),
where A is the solution to Equation (17).

For future reference, it will be useful to define the “scale
factor” |

S(z) = (Cp2) (23)

for the case in which the only source of masking is due to limited
depth. With this definition, a cluster with richness A has a total
of 1/S(z) galaxies above the limiting magnitude of the survey.

In addition, it is useful to calculate the fraction of the effective
cluster area that is masked solely by geometrical factors such as
bright stars, bad fields, and survey edges. This is complementary
to S(z) defined above in that it contains all the masking except
the magnitude limit. The cluster mask fraction is then

foul dx u(x)
[dx u(x)

This quantity is very useful because clusters that are strongly
affected by edges are more likely to be catastrophically miscen-
tered and to have poor richness estimates. Consequently, when
defining our cluster catalog, we will apply a cut in fiask-

f mask — (24)
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5.2. Evaluating the Mask Correction

Evaluation of the mask correction and its associated error
on A can be difficult. Fortunately, this problem is well suited
to Monte Carlo integration. First, define the selection function
S(x), so that S(x) = 1 if the galaxy is in a region where it is
detected, and S(x) = O if the position x is masked out. Then,
for any function f(x),

/dxf(x)=fl [1 = S@)1f(x)dx, (25)

where the integral on the right-hand side is over the full cluster
region, i.e., R € [0, R(A)], L > L, and over all colors.
Applying this to Equation (16), we find

() :/ [1— S()Jux)dx. (26)
cluster

Since u(x) is the probability distribution for x, we can evaluate
the above integral using Monte Carlo integration by randomly
sampling N sets of model galaxy parameters from the u(x) filter
function and then computing the sample mean of the function
1 — S(x). That is, (C) is simply the fraction of random draws
that fall in the masked region. Similarly, we can evaluate the
integrals defining Var(C) via

2
11 11
Var<C)=WZp(x,»)—[Wmei)] L@
out

out

where N is again the total number of random draws. For sim-
plicity, we have replaced the 1 — S(x) terms with a summation
over all galaxies that are outside the detectable region due to
the mask, as these are the only galaxies that contribute to the
summand.

One of the slowest part of this process is drawing random
realizations of x;. However, these random draws do not need to
be independent from cluster to cluster. In practice, we generate
a template distribution of 5000 galaxies and scale the radius
and magnitude to the appropriate values for each galaxy cluster.
We find that this number of galaxies gives accurate results for
the recovered richnesses and richness errors, except for galaxy
clusters that are largely masked out. Consequently, our final
cluster selection criteria include the requirement that the cluster
mask fraction, fiask, 1S less than 20%. In Appendix E, we
demonstrate with DR8 data that given our filter function this
formalism accurately corrects for masked regions and limited
depth.

6. CALIBRATION OF THE RED SEQUENCE
6.1. Outline

Suppose we have a complete sample of red galaxies with
spectroscopic redshifts down to the limiting magnitude of the
survey. One can then directly fit a red sequence model to
these galaxies to calibrate the color as a function of redshift
for these galaxies. The question then becomes, how does one
get a sample of red spectroscopic galaxies? Note that in order
to calibrate the tilt of the red sequence, it is important to include
a significant number of less luminous galaxies, which are more
difficult to come by.

Our solution is to simply use the cluster members themselves.
If we know the spectroscopic redshift of a cluster, then all the
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cluster members can be tagged with the spectroscopic redshift
of their CG, leveraging one spectroscopic redshift into many.
Of course, from photometric data one can only identify likely
cluster members, so the fit of the red sequence model must
account for contamination by non-cluster members.

In order to fit the red-sequence model, all that is required is a
sample of galaxy clusters with known spectroscopic redshifts.
As discussed in Section 3, we only require a limited set of these
training clusters. These training clusters can be derived from
external X-ray and Sunyaev—Zel’dovich (SZ) catalogs, or from
spectroscopic follow-up of likely centrals in dense regions by
running redMaPPer with an ad hoc red sequence model.

In the specific case of SDSS DRS, we construct this training
cluster sample based on existing spectroscopic galaxy samples.
Each spectroscopic galaxy is used as a “‘seed” around which we
look for galaxy clusters by identifying nearby overdensities of
galaxies with the same color as the seed galaxy. The details
of these steps are described below. We emphasize that our
calibration is performed using only 2000 deg? of SDSS data. As
we show in Appendix B, while we have the full wealth of SDSS
spectroscopic data at our disposal, an equivalent red-sequence
model may be derived from only 400 CGs from z € [0.05, 0.6].

6.2. Selecting Seed Galaxies and the Initial Color Model

The initial calibration of the red sequence relies on spectro-
scopic “seed” galaxies. This may simply be a set of training clus-
ters with spectroscopy (see Appendix B), or in the case of DRS,
a broad spectroscopic sample that contains a sufficient number
of red galaxies in galaxy clusters. For SDSS spectroscopy, the
first step is to identify the subsample of spectroscopic galaxies
that are red. This is achieved by using a single color that samples
the 4000 A break for early-type galaxies. With SDSS data, we
use g — rfor z < 0.35 and r — i for z > 0.35. Because we wish
to have a relatively clean selection of red-sequence galaxies as
our seeds, we approach the problem of selecting these galax-
ies in several steps. We emphasize that some of these steps are
only necessary for cutting the full list of SDSS spectra to an
appropriate red galaxy sample.

Step 1: Perform an approximate red galaxy selection. To
make this selection, we bin the galaxies in redshift bins of width
£0.025. We then use the error-corrected Gaussian Mixture
Method (Hao et al. 2009) to estimate the mean and intrinsic
width oy (z) of the red-sequence galaxies. Those galaxies
within 20 of the expected mean for red galaxies are considered
approximately red.

Step 2: Use this approximate red galaxy selection to measure
the mean color of the red galaxies as a function of redshift.
Given our approximate red galaxy sample, we refine our initial
estimate of the mean color—redshift relation by minimizing the
function

5=l =@l (28)

where ¢(z) is our model for the color as a function of redshift.
The function ¢(z) is defined via spline interpolation, and the
values of the spline nodes are the parameters with respect
to which s is minimized. The spline nodes are placed on a
redshift grid with spacing of 0.1. Our use of ¢(z) indicates
that this is our early calibration model, which is distinct from
the full model color (c|z) that is derived at the end of the
calibration procedure. In defining the function s, we rely on
the sum of absolute values rather than the sum of the squares to
make the resulting minimization more robust to gross outliers.
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Figure 1. Sample of red spectroscopic galaxies selected for training in 2000 deg?
of DRS. Top panel shows g — r color and bottom panel r — i color. The red
galaxy selection is done in g — r (r — i) at z < 0.35 (z > 0.35), selecting all
galaxies within 26i,(z) of the spectroscopic redshift of the galaxy. Note that this
selection leaves a small number of outliers in the complementary color, as well
as a small number of large outliers with anomalously large photometric errors.

(A color version of this figure is available in the online journal.)

The function s is minimized using the downhill-simplex method
of Nelder & Mead (1965) as implemented in the IDL. AMOEBA
function.

Step 3: Use the mean color—redshift relation to estimate the
width of the color—redshift relation. We can now improve upon
our initial estimate of the width of the color—redshift relation by
minimizing the function

s =Y lle; — &z)| — MAD], (29)

where Gi(z) = 1.4826 x MAD, where MAD is the median
absolute deviation of the sample about the median, and the
factor of 1.4826 relates the MAD to the standard deviation for
a Gaussian distribution. The value MAD is again defined via
spline interpolation, with the free parameters being the values
of the function at the nodes.

Step 4: Generate a final sample of seed galaxies. Finally, with
the full red spectroscopic galaxy model in hand (¢(z), Gin(2)),
we can cleanly select our seed sample. We select all galaxies
within 26i,(z) of the model color at the spectroscopic redshift
of the galaxy, using g — ratz < 0.35and r — i at z > 0.35.

In Figure 1, we show the final seed spectroscopic galaxy
selection for the g — rand » — i colors. The large red points show
the median colors at the node positions, and the dashed red lines
show the cubic spline interpolation. Note that the single-color
selection leaves a small number of outliers in the complementary
color. In addition to the seed galaxies, we will make use of our
red spectroscopic galaxy color model in the following section.

6.3. Single Color Member Selection

Having selected our seed galaxies and calibrated a rough ini-
tial color—redshift relation, we now proceed to find likely cluster
members around each of our seed galaxies. For this first itera-
tion, we rely on single-color-based membership. Specifically, in
R12, we demonstrated that for moderately rich (A 2 20) clus-
ters, one can reliably estimate the red sequence directly from
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the data as follows. First, we select all galaxies within a color
window around the seed galaxy. Next, we fit for the amplitude
and tilt of the red sequence of that galaxy cluster directly from
the galaxy data. However, in extending this algorithm to high
redshift, we found that large photometric errors can introduce an
unacceptable amount of noise in the initial color box selection
of galaxies. Therefore, rather than drawing a color box around
the color of the CG for the initial fit, we draw the color box
around the model color ¢(z) calibrated in the previous section.
In detail, we perform the following.

1. Take a red galaxy of known spectroscopic redshift (the
“seed”).

2. Select all galaxies within 500 42 ~! kpc of the spectroscopic
galaxy, as well as 20 of the model color determined in
Section 6.2. For the model color, we use g — rat z < 0.35
and r — i at z > 0.35. The width o of the color box is set
to 0.05 and 0.03, respectively, which we expect to be the
approximate red sequence width (e.g., R12).

3. Fit the red sequence (slope and intercept) of these galaxies.

4. Measure the single-color A, using the method of R12 and
a fixed aperture of 500 2! kpc.

5. For all overdensities with A., > 10, take the galaxies with
NONZEro Pmem and assign them the spectroscopic redshift of
the initial seed galaxy. In practice, we limit our analysis to
those galaxies with pyen > 0.7.

At this point, we have leveraged the spectroscopic seed
galaxies to generate a set of red galaxies as faint as 0.2 L,
over the redshift range of interest. Although not all of these
galaxies are true cluster members, we have an estimate pmem of
the probability that each such galaxy is indeed a red-sequence
cluster member, as in Equation (1). Consequently, we can model
the contamination of non-red-sequence galaxies in our sample,
as shown below.

We emphasize that it is essential that we leverage our
spectroscopic redshifts to fainter magnitudes to properly model
the red sequence. In the case of DR, our initial seed galaxy
sample is composed of 42,000 galaxies associated with A > 5
clusters, almost all of which are preferentially bright. By
contrast, our final calibration sample (see Section 6.5) is
composed of over 600,000 red sequence galaxies that extend
to much fainter magnitudes. This is illustrated in Figure 2.
The magnitude distribution of our seed galaxies in the redshift
slice z € [0.24,0.26] (solid black histogram) is contrasted
with the membership-weighted magnitude distribution of our
final photometrically selected training sample (red dashed
histogram). We see that the gain in the effective number of
red sequence training galaxies is enormous, allowing for an
accurate calibration of the red sequence (amplitude, tilt, and
scatter) as a function of redshift. We have explicitly verified
that modest changes to the cuts applied in this section do not
impact our final calibration of the red sequence resulting from
the subsequent analysis described in the next section.

6.4. Modeling the Red Sequence

Given a list of galaxies with multidimensional color (c),
redshift (z, taken to be the cluster redshift), and membership
probability (pmem), Wwe can now proceed to calibrate the full red
sequence model. Our model is well motivated by observations
of galaxy clusters, in that the red sequence at any given redshift
in a given color can be described by a simple linear relation
between color and i-band magnitude m; with intrinsic scatter
oint. For example, Figure 3 shows the composite red sequence
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Figure 2. Magnitude distribution of the red spectroscopic seed galaxies (black
histogram) and photometrically selected cluster galaxies with ppem > 0.7 (red
dashed histogram) in the redshift slice z € [0.24, 0.26]. The “cluster member”
histogram weights each galaxy by its membership probability. The gain in the
training sample of faint red-sequence galaxies through our photometric selection
is of critical importance for an accurate calibration of the red sequence as a
function of redshift, particularly at the faint end.

(A color version of this figure is available in the online journal.)

at z = 0.25 for both g — r and r — i colors, for all galaxies
selected in the final calibration iteration with ppem > 0.9.

Our red-sequence model is defined in terms of smoothly
evolving functions of redshift characterizing the amplitude and
slope of the mean color-redshift relation and the corresponding
covariance matrices. We have opted to use a cubic spline
interpolation to parameterize these functions. Given the large
number of colors (four for SDSS) and broad redshift range, our
model necessarily contains a large number of free parameters.
For instance, in our SDSS DRS8 implementation, we required a
total of 118 parameters to fully characterize the red sequence
model. In principle, we would like to fit the full red sequence
model simultaneously. However, to make the problem more
tractable, we fit the red-sequence parameters governing the mean
relation and the diagonal elements of the covariance matrix one
color at a time. Once these terms are in place, we fit the off-
diagonal terms of the covariance matrix. We are also cautious
that our model does not have too many free parameters given the
training data such that overfitting becomes possible. As shown
in Appendix B, this can be a problem in the case of very sparse
training data.

An additional complication comes from the fact that our
selection of red-sequence galaxies is not entirely clean. Our
fit of the red sequence must take into account the background
density of nonmember galaxies, as described below. In addition,
we also have to contend with blue cluster galaxies that are not
taken into account by a global background term. These blue
galaxies will tend to have two effects. First, as the blue fraction
increases at lower luminosities, they will tend to steepen the
apparent red sequence tilt. Second, the blend of red and blue
galaxies will tend to broaden the apparent intrinsic width of the
red sequence.

In order to deal with both of these effects of blue cluster
galaxies, we have taken a pragmatic approach. When fitting the
red sequence for a given color, we first perform a sharp color
cut to concentrate on the core of the red galaxy distribution.
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Figure 3. Composite red sequence at 0.25 < z < 0.26 for color-selected
galaxies with ppmem > 0.9. A linear model (red dashed line) with roughly
constant intrinsic scatter is a good representation of the red sequence in both
g — rand r — i. We note that the pyem > 0.9 cut is employed for illustration
purposes only.

(A color version of this figure is available in the online journal.)

Naively, this cut would introduce biases in the recovered red-
sequence model, leading to underestimates of the scatter. We
avoid this difficulty by explicitly modeling such a color cut into
our likelihood function. All that remains is to specify the color
cut. Here we apply a color cut of 1.50 about the median color
of the high-probability member galaxies, where o is the median
absolute deviation of the color about the median.

6.4.1. Measuring the Model Mean and Color Scatter

As noted above, we begin by measuring the model color
(clm;, z) as a function of galaxy magnitude m; and cluster
redshift z for each color, one at a time. The first step in this
process is to define the pivot point 772;(z) used to calibrate the
amplitude and tilt of the mean red-sequence relation at redshift
z. We write

(clz, m;) = ¢(2) + 5(2)[m; — m;(2)). 30

We wish to select a pivot point that is characteristic of most
cluster members. To do so, starting from our full members list,
we apply a pmem > 0.7 cut. Using this subsample, we minimize
the cost function E, where

E=Ymi ). (31

where m;(z) is defined via spline interpolation, and the model
parameters are the value of 717;(z) at the nodes.

Having defined our pivot point as a function of redshift, we
turn to calibrating the amplitude and slope of the mean relation,
i.e., ¢(z) and 5(z) in Equation (30). As a first step, we do a rough
estimate of the amplitude and scatter, which we will use to isolate
the core of the color distribution of member galaxies. These
rough estimates for the amplitude and scatter are denoted ¢(z)
and &' (z) and are obtained by selecting galaxies with ppen > 0.7
and then fitting for these functions as was done in Section 6.2.
Specifically, the functions are spline interpolated, with model
parameters being the value of these functions at the nodes.
The best-fit parameters are found by minimizing Equation (28),
and &' (z) is defined by minimizing Equation (29). The primary
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difference between these new color estimates and scatter relative
to those derived in Section 6.2 is that these parameters are
now appropriate to the full red sequence rather than simply the
(brightest) spectroscopic galaxies.

We now turn to measuring the actual model parameters
defining the amplitude ¢(z), slope §(z), and scatter C!™(z). As
before, we use a cubic spline interpolation to parameterize these
smoothly evolving functions of redshift. For DRS, we have
chosen to use a node spacing of 0.05 for ¢(z), 0.1 for 5(z), and
0.15 for C ‘j‘}t(z). We have found that a relatively tight spacing is
required for ¢(z), as this function can change relatively rapidly at
filter transitions. Fortunately, ¢(z) is the most robust parameter
and thus is amenable to smaller node spacings. The slope and
scatter are not expected to vary as rapidly and are also noisier
to estimate, so we have chosen wider node spacings. Overall,
the calibration is not very sensitive to the node spacings chosen
provided that there are sufficient calibration galaxies (though
see Appendix B).

Starting from the photometrically selected galaxy training
set from the previous section, we first apply a color cut
lc — ¢(z)] < 1.50(z), which ensures that the red-sequence
parameters are based on the core of the red galaxy distribution
and are therefore less likely to be biased by blue galaxies. In our
model, the probability that a red-sequence cluster galaxy has a
color c is given by a truncated Gaussian distribution,

1 e—(C—<C\Z,m1>)2/202
2o

1.55(2) ’
erf (_ﬁo' )

G(c) =

(32)

where the expectation value (c|m;, z) is defined in terms of our
model functions ¢(z) and 5(z) as per Equation (30), and the
scatter o is the sum in quadrature of the intrinsic scatter and the
photometric error of the galaxy,

o =+/02+02(2),

where ojn(z) = ./ C}‘j‘.‘ is the intrinsic scatter of the red sequence.

The erfterm in the denominator accounts for the fact that G(c)
is truncated at ¢(z) &=6'(z), under the approximation ¢(z) = ¢(z).
This approximation is only used in the overall normalization of
the distribution.

The total probability distribution for all of our calibration
galaxies must account for the fact that some of our galaxies
are in fact background galaxies, so the full color distribution is
given by

(33)

P(C) = pmemG(C) + (1 - pmem)b(ca mi)’ (34)

where b(c, m;) is the distribution in color and magnitude of
galaxies about random points. The shape of the background
function is obtained by binning all galaxies in color and
magnitude bins and using a CIC algorithm as in Section 4.3.

In the end, our task is to calculate the set of ¢(z), 5(z), and
C'™(z) values at the given cubic spline nodes that maximizes
the total likelihood given by

Ing = ZlnP,-.
i

As above, we accomplish this maximization by making use of
the downhill-simplex method. The maximum likelihood point

defines the model functions ¢(z), §(z), and C}‘}‘(z). We emphasize

(35)

10

RYKOFF ET AL.

Figure 4. Color as a function of redshift for the sample of red-sequence galaxies
with pmem > 0.9. The red points indicate the ¢(z) values at the spline node
positions, and the long-dashed lines are the spline interpolation. The short-
dashed red lines indicate the 3oj, range. Note that the colors in the figure are not
corrected for red sequence tilt. The cyan dash-dotted line shows the color model
for the bright spectroscopic sample from Figure 1, which tend to be brighter and
redder than the full population. We caution that the intrinsic width of the red
sequence can be wider than the ppem > 0.9 subpopulation of galaxies in this
illustration suggests, since high-probability membership requires the galaxy to
fall close to the expected average color. Conversely, the larger number of outliers
in g — rabove reflects the fact that the photometric errors in g — r at high redshift
are larger than the intrinsic width of the red sequence.

(A color version of this figure is available in the online journal.)

that the likelihood is explicitly truncated as the data are, so that
the recovered scatter is unbiased relative to the full population
of cluster member galaxies, as we have confirmed with simple
mock red sequences and blue clouds.

In Figure 4, we show the color evolution of red-sequence
galaxies with ppen > 0.9 for the ¢ — r and r — i colors
in DR8. The red points indicate the ¢(z) values at the spline
node positions, and the long-dashed lines are the smooth
interpolation. The short-dashed lines indicate the 3oj, range.
Note that the colors in the figure are not corrected for red
sequence tilt. We caution that the intrinsic width of the red
sequence can be wider than naively indicated by the ppen > 0.9
galaxies, since high-probability galaxies must reside closer to
the average red-sequence model.

6.4.2. Measuring C;’,‘c’(z)

With the intercept and slope of the red sequence in hand, as
well as the diagonal elements of the covariance matrix, we now
estimate the off-diagonal elements of the covariance matrix,
C}‘}(‘(z). Once again, we use a cubic spline interpolation, with
the same 0.15 node spacing as used for C}“-t(z).

In order to make the calculation tractai)le, to constrain the
off-diagonal elements of the covariance matrix, we consider
the problem piecewise, tackling two colors at a time. Each
individual piece of the covariance matrix constrained in this
way will be positive-definite and thus a valid covariance matrix.
Unfortunately, due to noise in the estimation of the parameters,
this method does not guarantee that the total covariance matrix,
Cint(z), will also be positive-definite.

To ensure that Ciy(z) is positive-definite, we constrain the
parameters for pairs of colors in a specific priority order,
ensuring that the best-constrained colors have precedence. In
the case of DR8 data in the redshift range z € [0.05, 0.6], these
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are g — r and r — i. Then, at each step in the downhill-simplex
estimation described below we do not allow any terms in C};}'(z)
that result in a minimum eigenvalue in the fotal covariance
matrix Cip(z) that is less than 0.01%. In this way, the first color
pair to be constrained (g — r, r — i) is essentially free, while the
final (and noisiest) color pair to be constrained (u — g, i—z) will
not result in a non-invertible covariance matrix Ciy(z).

To perform the pairwise constraints on the off-diagonal
elements, let us consider the residuals in two colors x; and x;.
We start with Equation (30),

x =c—(clm;, z) = (€(2) +5(2)[m; — mi(2)]). (36)
The probability density function (pdf) is again a Gaussian,
though this time we explicitly leave the covariance matrix in
the equation

1 1
G(X) = W exXp |:— EXC X:| , (37)

where x = {x;, xx} is the vector of residuals, and the total
covariance matrix C is

C = Cin(2) + Cen(2). (38)

Here C;,(z) and C,;(z) are the covariance matrices characteriz-
ing the intrinsic scatter and photometric error, respectively. The
intrinsic scatter is simply

2
o .
_ int,
Cint - ( /

I Oint, j Oint, k

I G, jUint,k> (39)

2
Oint,k

where o; and o} are known from the previous section, and ris the
only unknown. The covariance matrix Ce;(z) is derived from the
photometric error in each band. Given two colors ¢; = m, —mg
and ¢; = m, — ms, the covariance matrix characterizing the
photometric error is given by

02 +02 n
_ a B
Cenl2) = ( . +G§> (40)
and ,
_ |- ify=g8
n {0 otherwise. @1

Here we are assuming that neighboring colors are of the form
cqp and ¢y, 1.€., that the “shared” magnitude is mg = m,,. The
covariance between photometric errors arises precisely because,
for example, the neighboring colors ¢ — r and r — i are both
derived from the same r-band magnitude.

The color distribution function of the full galaxy population is
again given by Equation (34), noting that now the background
term b(c;, cx, m;) is given by a three-dimensional binning in
two colors and i-band magnitude. In addition, we implement
a prior on r with 0 mean and width 0.45 for each of the
nodes. We find that this prior reduces the noise in the parameter
constraints, which is especially important at high redshift where
the photometric errors dominate and the covariance matrix is
largely unconstrained. At the same time, this prior allows high
correlations (r ~ 0.9) if strongly favored by the data. Our total
likelihood is now given by

2
lnL’:Zln}’i—Zw, 42)
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where Zn is a sum over all the nodes, and r, is the correlation
coefficient at that node. That is, the prior is placed at each of
the nodes. Maximization of the likelihood function defines the
final values for the correlation coefficients that characterize the
intrinsic scatter covariance matrix.

6.5. Iterating the Red-sequence Model

We emphasize that the estimation of the red-sequence pa-
rameters in the previous section depends on the membership
probabilities (pmem) Of the red-sequence galaxies. Of course,
the membership probabilities themselves depend on the red-
sequence model. In order to obtain a red-sequence model that
is consistent with the membership probabilities, we take an
iterative approach.

After we calibrate the red-sequence parameters based on
single-color membership probabilities, we run the cluster finder
on the training data, as described in Section 9. During these cal-
ibration runs, we restrict ourselves to finding clusters associated
with our seed galaxies so that we can affirmatively associate a
spectroscopic redshift with each cluster. We note that our clus-
ter finder starts with the photometric redshift estimate (zeq) of
each cluster galaxy, so spectroscopic galaxies whose colors are
incompatible with the red sequence at the spectroscopic red-
shift never result in galaxy clusters. Thus, our training sample
at this point results in robust clusters with spectroscopic red-
shifts. Further, failures in the photo-z of the galaxies for red-
sequence galaxies are rare (see Figure 7), so any such failures
simply slightly reduce the sample of training clusters, without
otherwise adversely affecting our training sample. The resulting
cluster catalog includes cluster member lists and new member-
ship probability estimates pyem based on the full color model.
With these in hand we can re-estimate the red-sequence model
as described in Section 6.4.

As we iterate, the largest shifts in the model occur between
the first and second iteration, reflecting the shift from estimating
membership probabilities based on a single color to estimating
membership probabilities with the full multicolor data. Figure 5
shows the red-sequence parameters (c(z), 5(z), and U}“‘) for each
of the first three iterations of our red-sequence calibration. For
illustration, only the figures for the g — r color are shown. The
color at the reference magnitude /7;(z) and slopes characterizing
the average color of red-sequence galaxies converge quickly
and are generally well measured, except for u — g at high
redshift, where the large photometric errors in # make our model
estimates noisy. The scatter model, on the other hand, converges
slowly, particularly at high redshift, where the intrinsic scatter
is often subdominant to photometric errors. As we now show,
however, by the third iteration our model is well converged.

We define convergence of the red-sequence model in terms
of the relevant quantity for our purposes, i.e., the cluster
richness A. That is, we require that cluster richness estimates
be insensitive to further iterations. To this end, we have run the
calibration through 10 iterations. Given the red-sequence model
for each of these 10 iterations, we estimate the photometric
redshift and cluster richness of a standard set of galaxy clusters
while fixing the CG of these systems. Let then X; and z; denote
the richness and redshift estimates, respectively, from iteration
i. We bin the clusters in narrow redshift slices (£0.01), and we
calculate (1) the median ratio X; /A3 and (2) the median offset
(A; — X3)/03, where o3 is the error estimate in the richness as
estimated from iteration 3.

In Figure 6, we show the results of these iteration checks
for the first six iterations in the DRS training region. Even for
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Figure 5. Top: average color, ¢(z) for g — r, at the pivot magnitude 71;(z), for the
first (red dotted line), second (blue dashed line), and third (magenta solid line)
iterations of the calibration as a function of redshift. Middle: as for top, with

red sequence slope 5(z). Bottom: as for top, with intrinsic scatter a/i."t = Ci/‘}‘.

(A color version of this figure is available in the online journal.)

the first iteration, for which ppem was estimated using a single
color, the bias is always <10% (though at the lowest redshift
that shift is ~10). However, after the third iteration, the biases
are always <1% at low redshift and <5% at high redshift. The
bottom panel shows that after the third iteration the biases are
<0.10. Thus, we rely on the output of our third iteration for our
final cluster catalog.

7. PHOTOMETRIC REDSHIFT ESTIMATION

At the end of our calibration we have a complete red sequence
model as a function of redshift. Note, however, that in order to
estimate the richness of a photometric cluster we need to know
the cluster redshift. If we have some initial, reasonably accurate
redshift guess zj,; for each cluster, we can estimate the cluster
richness and determine the high-probability cluster members.
We then simultaneously fit our red sequence model to all high-
probability cluster members to derive an improved redshift
estimate, and we iterate this procedure through convergence.
We now describe this full procedure in detail, including the
construction of our initial cluster redshift guess zjni.

7.1. Redshift Initialization: Zyeq

For the full SDSS DR8 survey, we have multiple photometric
redshifts based on large training sets (e.g., Csabai et al. 2007;
Sheldon et al. 2012). However, these methods have certain
limitations. First, they require training sets that span a broad
range of magnitudes, which, although abundant at z < 0.5 for
SDSS data, will be much sparser at higher redshifts for large
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Figure 6. Top: average richness bias as a function of redshift for the first six
iterations of the red-sequence model for the DRS training region, as compared
to A3, the richness computed in the third iteration. Even for the first iteration, the
bias is <10% at all redshifts. After the third iteration, the biases are always <1%
at low redshift and <5% at high redshift. Bottom: error-normalized average
deviation relative to the baseline. After the third iteration, the bias is always
<0.1o0.

(A color version of this figure is available in the online journal.)

surveys such as DES. Second, these methods—in particular
p(z) methods such as that of Sheldon et al. (2012)—are very
good at estimating the ensemble of redshifts for a broad class of
galaxies. However, our needs are much more specific: we wish
to have a good initial single-value estimate of the redshift of
the CG of galaxy clusters to initialize our cluster photometric
redshift estimation procedure. To that end, we have developed
our own photometric redshift estimator z..4, which is specifically
designed to work on red sequence galaxies.

Given a red-sequence galaxy at redshift z with i-band mag-
nitude m;, color vector ¢, and photometric error Ce(z), the
probability distribution of its color is simply

P(c) o« exp (—%)ﬁ) , 43)

where x? is given by Equation (6), i.e.,

x* = (€ = (elz.m;)) (Cin(@) + Cen(2) ™ (€ = {elz, my)).

(44)
The corresponding log-likelihood is therefore simply In £ =
—0.5x2. In practice, we also include an additional volume prior
that accounts for the fact that there is more volume at higher
redshifts. Assuming that the luminosity function does not evolve
over the redshift uncertainties, the probability that a galaxy of a
given luminosity is at redshift z is

dv
P o = =1 +2’Di(2)cH™\(2), (45)
which leads us to the likelihood
2
X av
InLiegg=—"—+In|—|. 46
n Lred > + n‘ i ‘ (46)

The redshift estimator z,.4 is that which maximizes the above
likelihood. We use the “red” subscript to indicate that the redshift
estimator assumes a red-sequence galaxy model. We maximize
the likelihood along a redshift grid with §z = 0.005 and then
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Figure 7. Top left: uncorrected photometric redshift z,eq for cluster member galaxies in DR8 with ppem > 0.9, as a function of the CG spectroscopic redshift zcg.
Bottom left: the black triangles show the mean redshift offset zreq — zcg in several redshift bins. The red long-dashed line is the rms of these offsets, while the blue
short-dashed line is the average estimated redshift error. The dotted magenta line is the fraction of 4o outliers as a function of redshift. Top right: corrected photometric
redshift zreq, using Equation (50), for cluster member galaxies in DR8, as in the left panel. Bottom right: bias, scatter, and outlier fraction, as in the left panel, now for

the corrected redshitt.
(A color version of this figure is available in the online journal.)

use parabolic interpolation to find the correct maximum. This
search is restricted to galaxies with m; < m,(z) + 2.5, since
galaxies fainter than this fall well below the luminosity threshold
used to define cluster richness (recall that m,(z) is defined in
Section 4.2). The error estimate for z,q is estimated as the
standard deviation of the redshift over its posterior, i.e.,

(47)

where
_ de Lrea(2)Z"

)= [dz Lrea(z)

We could, of course, store the posterior of the redshift distribu-
tion, but we have chosen not to do so since the only use of z;eq in
the redMaPPer algorithm is that of providing an initial redshift
estimate for galaxy clusters.

The top left panel of Figure 7 shows z;.q for DR8 cluster
training galaxies with ppem = 0.9 versus the spectroscopic
redshift of the corresponding CG z¢g. We see that z,.q performs
very well, with low bias and scatter, and very few gross outliers.
The “flare-up” of the points around zcg ~ 0.35 is due to the
4000 A break moving from the g — r to the r — i color.

The performance of z.q is better illustrated in the bottom left
panel of the same figure. The black triangles show the mean
offset z,.q — zcg in redshift bins, the blue dashed line shows the
average error in z.eq as estimated above, while the red dashed
line shows the observed rms of the redshift offset in each of the
redshift bins. The magenta dotted line shows the fraction of 4o
outliers. It is clear from the figure that our errors are somewhat
overestimated, and that there is a small redshift bias in z;q.

We correct for the deficiencies revealed in the left panel of
Figure 7 by applying an afterburner. Specifically, for the above
cluster sample we define the mean redshift offset as a function

(48)
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of redshift,

dz(z) = ((z0g — zca) |2ca) . (49)

where z?ed is the original, uncorrected redshift estimate defined
above. That is, dz(z) is the curve traced by the black triangles
in the bottom left panel of Figure 7. We define a corrected Z;eq
redshift, as the solution to the equation
Zred = Z?ed + d2(Zreq). (50)
In practice, the above treatment is slightly simplified, since our
correction afterburner allows for the redshift bias to be a function
of magnitude. For details, we refer the reader to Appendix A.1.
In the right panel of Figure 7, we show the corrected value
of zreq as a function of z¢g after applying our afterburner, again
for a sample of galaxies with ppem > 0.9. The notation is the
same as for the left panel. The biases are improved at high
redshift, although there are still some residual issues at z ~ 0.4
where zeq is biased by ~0.30. The reason the biases are not
completely removed is due to the asymmetric and non-Gaussian
nature of the scatter at the filter transition. We also note that the
afterburner removes residual biases observed as a function of
m; (not shown). The overall small bias and scatter in z.q allow
us to use this photometric redshift estimate as a good initial
guess with which to initialize our photometric cluster redshift
estimator.

7.2. Cluster Redshift Estimation: 7,

Our approach to computing the cluster photometric redshift
z, 1s essentially an iterative extension of z..4. Specifically, given
a CG candidate, we perform the following steps.

1. Start with a cluster redshift z, ;, where i indexes the
iteration. In the first iteration, we set 2, o = Zred-
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2. Calculate the richness A around the candidate CG setting
Zeluster = Za.i» and get the associated set of membership
probabilities pmem-

3. Select high membership probability galaxies to estimate a
new redshift z, ;;; by maximizing the likelihood function
given by Equation (52) below.

4. Repeat from step 2 until convergence, such that |z, ;j+1 —
Zk,ii < 0.0002.

All that remains then is the definition of a suitable likelihood
function. To begin, let us assume that we have a sample of
known cluster member galaxies. Then, the log-likelihood of the
observed colors for these galaxies would be

InL = Z X’

In Equation (44) we take into account the log of the determinant
of the covariance matrix, In |C|. We have found that, unlike the
case of zeq, including this term improves the performance of z;
when the intrinsic scatter is varying rapidly. This makes sense,
given that when utilizing multiple galaxies, one can directly
probe the scatter in the red sequence, which is an observable
that is inaccessible when estimating single-galaxy photo zs.

Of course, in practice, we do not have a list of known
members, but rather a list of likely members with membership
probabilities One might be inclined to adopt a sharp cut
Pmem = Pmin 10 order to define a likelihood that can be used to
estimate the cluster redshift. However, we find that a sharp cut
in pmem leads to numerical instabilities in the iterative process
because galaxies can scatter in and out of the sample in the
course of the iteration.

To overcome this problem, we adopt instead a soft cut and
define a new likelihood

1n|C| 51)

X +ln|C|]

L=y —————,

where each galaxy contributes a weight w that smoothly varies
fromw =1 at ppem = 1 to w = 0 at ppem = 0.

The assignment of these weights is somewhat ad hoc. We
assume that w(pmem) follows a Fermi-Dirac distribution. The
transition from w = 0 to w = 1 occurs at pyg, which is the
probability threshold that accounts for 70% of the total richness,

i.e.,
074 =Y Pumem-

Pmem 2 P70

(52)

(33)

The advantage of defining the probability threshold in this
way—as opposed to a redshift independent threshold p.y,—is
that py¢ varies with cluster redshift in such a way that one always
uses the same fraction of cluster galaxies when estimating
redshifts. Were we to take a constant ppe, cut, the number
of galaxies contributing to z; would decrease with increasing
redshift, since galaxy pmem values decrease as the photometry
becomes noisier. The width of the distribution is set to 0.04,
which we found is sufficient to regularize the iterative process.
Thus, our galaxy weights are defined via

1
Pmem)/0.04] + 1
In Figure 8, we illustrate how the iterative process in our red-

shift estimate works. Fundamentally, each loop in the iteration
takes a zj, value for the redshift and produces a redshift zqy, and

w(pmem) = (54)

exp [(p7o —
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Figure 8. Redshift difference zout — zin for one loop of our iterative photometric
redshift estimator, as a function of the input redshift zj,. Two typical, well-
behaved clusters are shown with red short-dashed lines. However, ~1%-2% of
clusters have convergence curves like the blue long-dashed line. These appear
to be projection effects between multiple nearby structures.

(A color version of this figure is available in the online journal.)

we wish to find the stable point where zoy = Zin. In the figure,
we show zu(zin) for three sample clusters. For the two typical
clusters denoted with red short-dashed lines, this function is well
behaved, and we quickly achieve convergence. However, there
are also ~1%—-2% of clusters that have convergence curves like
the blue long-dashed line. These appear to be projection effects
between multiple nearby structures. As detailed in Section 9.3,
redMaPPer often fragments these clusters along the line of sight,
as it should. However, which cluster is “dominant” and which
is a satellite depends on the initial photometric redshift estimate
(z1,0)-

Given an estimate for z;, we can also map out the posterior
P(Zyuelz3). Defining x2 . via

Yoo = Y whi*+In[Cl1—min (Y wix? +In[Cl1) . (55)
we adopt the posterior

eXP(— Xmorm/2) 14V /dz]|
f dxriorm eXp(_Xr%orm/z) |dV/dZ| ’

where dV /dz is the comoving volume per unit redshift. The
above expression defines our estimate of the redshift probability
distribution of each cluster. In addition, we fit this distribution
with a Gaussian to estimate the redshift error o, .

Finally, in order to ensure that z; is unbiased, we apply an
afterburner correction, much in the same way as was done
for z;q, only now we demand that the redshift be unbiased
in the sense that (zuwelza) = z,. We relegate the details to
Appendix A.2.

In the top panel in Figure 9, we compare our photometric
redshift estimates to the spectroscopic redshift of the CG (where
available) for all clusters in DR8 with A/S(z) > 20 (i.e., every
cluster must have 20 galaxy detections). The bottom panel
shows the residuals (red triangles), as well as the rms of the
distribution (red long-dashed line) and average estimated error
o;, (blue short-dashed line). There are small biases that are
nevertheless detected with high confidence. We do not yet fully
understand the origin of these biases, but intend to return to this

P(Ztrue |ZA) =

(56)
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Figure 9. Top: z, vs. spectroscopic redshift of the assigned cluster CG for
redMaPPer clusters in DR8 with A/S(z) > 20. Bottom: red triangles show
the mean offset z;, — zcg in various redshift bins. The blue short-dashed line
shows the average redshift error on z;, while the red long-dashed line shows the
measured rms of the redshift offset distribution. The vast majority of outliers are
due to errors in cluster centering, i.e., the offset z, — zcg is large not because z;,
is incorrect, but rather because the chosen CG is not actually a cluster member.

(A color version of this figure is available in the online journal.)

problem in a future paper. We see too that there is a feature at
0.35 < z < 0.45, in both the bias and scatter, reflecting the
additional difficulties introduced by the fact that the 4000 A
break goes from being sampled by ¢ — r to r — i. This is
also the redshift range where we start running into the limit of
the DR8 photometry, which further aggravates these failures.
Indeed, these features are greatly reduced when redMaPPer is
run on deeper data (e.g., SDSS Stripe 82 co-adds; Annis et al.
2011, not shown).

One interesting thing to note about the top panel in Figure 9
is that the “large” (Az ~ 0.1) redshift offsets in this plot do not
reflect errors in the cluster redshift estimates, but rather cluster
miscentering. That is, when we compare z, to the redshift of
the CG, large offsets are primarily due to our selection of a CG
that is not, in fact, a cluster member. To demonstrate this, we
have created a “clean” sample of clusters where we demand
that there be at least two spectroscopic cluster members with
Pmem > 0.8 within 1000 km s~! of the spectroscopic redshift of
the CG, thereby ensuring that the CG is in fact a cluster member.
Of the 13,178 redMaPPer clusters in DR8 with spectroscopic
redshifts, 1829 (or 14%) meet this criterion. The corresponding
comparison of z; to zcg in this case is shown in Figure 10.
We see that this photometric redshift plot is very clean. The few
outliers left (<0.2%) are likely multiple systems in projection. In
particular, the obvious outlier cluster at z, ~ 0.22 corresponds
to the cluster represented by the blue long-dashed line shown in
Figure 8.

We can get a better sense of the fraction of gross redshift
outliers from Figure 11, where we show the fraction of 3o,
40, and 50 outliers. A cluster is considered an No outlier
if |zx — zcgl = Nog. To estimate the fraction of outliers
as a function of redshift, for each redshift z we collect all
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Figure 10. zcg vs. z; as in Figure 9, but demanding that the cluster contain
at least two cluster members with pmem > 0.8 with spectroscopic redshifts
within 1000 km s~! of the redshift of the assigned CG. This removes clusters
centered on non-cluster-member galaxies. Of the 13,178 redMaPPer clusters in
DRS8 with spectroscopic redshifts, 1,829 (or 14%) meet this criterion. The few
remaining outliers (<0.2%) appear to be redshift failures from multiple systems
in projection.

(A color version of this figure is available in the online journal.)
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Figure 11. Fraction of redshift outliers, as a function of photometric cluster
redshift. A cluster is said to be an No outlier if |z; — zcg| = No, . We show
the fraction of 30, 40, and 5o outliers, as labeled. These are computed using the
full redMaPPer cluster sample, with no additional spectroscopic requirements
on member galaxies (unlike in Figure 10).

(A color version of this figure is available in the online journal.)

clusters with redshift z; € [z — 0.025, z + 0.025] and directly
measure the fraction of No outliers. By moving the window
[z — 0.025, z + 0.025], we recover the outlier fraction as a
function of redshift. We see that ~1% of our galaxy clusters
are 40 redshift outliers. We note that the outlier fraction is
considerably larger than expected if the errors were simply
Gaussian. We emphasize that this fraction is measured using
the full cluster sample, not the cleaned version used to produce
Figure 10.

Finally, in Figure 12 we test whether the redMaPPer estimates
for the cluster redshift probability distributions P(Ze|z;) are
accurate. First, we select all clusters with spectroscopic CGs to
create a “true” N(zcg), shown with a black solid histogram. We
note that this is not representative of the full cluster population
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Figure 12. Comparison of the true and predicted N(z) distribution for
redMaPPer DR8 clusters with CGs with spectroscopic redshifts and 1/S > 20.
We note that this is not representative of the full cluster population due to uneven
spectroscopic sampling. The black solid histogram shows the “true” N(zcg).
The red dashed histogram shows the results of binning the central values of z;
for the same clusters, leading to obvious biases. The yellow band (£1o errors)
shows the results of summing the cluster P(z) values and provides a good fit to
the data.

(A color version of this figure is available in the online journal.)

due to uneven spectroscopic sampling. We compare this to two
estimates of N(z) using the same set of clusters. First, we bin
clusters using the central values of z;, shown with the red
dashed histogram. Second, we integrate Y P(Zyue|z;) over the
appropriate redshift bins, shown with a yellow band (including
the expected measurement errors and Poisson sampling, =10).
The red dashed histogram is obviously not a good fit to the
spectroscopic redshift distribution. In particular, there is an
artificial peak near the filter transition at z = 0.35. This is
properly smoothed out by our probability distribution estimate
(yellow band), which is a good fit to the spectroscopic data
(x2/dof = 45.0/40).

8. CLUSTER CENTERING

The issue of galaxy cluster centering is very important for
constraining cosmology with photometric surveys. In particular,
miscentered clusters are a leading source of systematic error in
stacked weak-lensing mass estimates (e.g., Johnston et al. 2007,
Mandelbaum et al. 2008; Rozo et al. 2010), as well as mean
velocity dispersions (e.g., Becker et al. 2007). In addition, the
cluster richness estimates themselves depend on the choice of
center (Lopes et al. 2006). Thus, a well-characterized centering
model is essential for precision cosmology.

We assume that every galaxy cluster halo has a bright,
dominant galaxy residing at its center (e.g., Matthews et al.
1964; Oemler 1976; Schombert 1986; von der Linden et al.
2007, 2014; Menanteau et al. 2013; Mahdavi et al. 2013; Song
et al. 2012b; Stott et al. 2012; see also Paper II). In our current
implementation, we also assume that the CG is red, which is the
case for the vast majority of massive clusters. The exceptions
are strong cool-core clusters such as A1835 (Allen 1995), where
there is enough star formation for the broadband color of the CG
to no longer be consistent with that of a red-sequence galaxy
(e.g., McNamara et al. 2006). Although blue CGs are more
common (although still rare) at the group scale (e.g., George
et al. 2011, 2012; More et al. 2011; Tinker et al. 2012), the
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redMaPPer clusters are much more massive than the scale at
which this is an issue.

Miscentering of galaxy clusters wherein the CG is undergoing
strong star formation is a known failure of the redMaPPer
centering algorithm (see Section 8.4 and Paper II). Simply
removing the requirement that CGs be consistent with the red
sequence—i.e., relying solely on luminosity and proximity—
can fix some of these clusters, but at the expense of miscentering
~10% of the clusters on foreground galaxies.!” Likewise, our
tests have shown that both galaxy centroids and luminosity-
weighted galaxy centroids result in worse centering properties
than the algorithm currently implemented below (e.g., see also
George et al. 2012). Thus, centering on red galaxies is, as far as
we can tell, the “least bad” option. In its current implementation,
the centering success rate is ~85% (see Paper II). We intend
to continue working on improving our centering model for
future data releases, as this is currently the dominant source
of systematic failures in the redMaPPer cluster catalog.

8.1. Basic Framework

We introduce a fundamentally new way of thinking about
identifying the CG of a cluster: rather than specifying a unique
cluster center, redMaPPer estimates the probability that a given
galaxy is the CG of the cluster. Some clusters have well-defined
cluster centers, exhibiting a single galaxy with a centering
probability P., =~ 1, whereas others can have two or more
reasonable central candidates, with the most likely center having
Peen = 50%. We note that these centering probabilities are the
angular position equivalent of the standard photo-z distributions
P(z). That is, just as a cluster has an uncertain redshift position
characterized by a redshift probability distribution, so too does
the cluster have an uncertain angular position on the sky,
characterized by the probability of any given galaxy of being the
correct cluster center. The importance of this new way of treating
cluster centering is that it opens up the possibility of a statistical
treatment of cluster centering akin to the statistical treatment of
photometric redshifts, allowing us to improve our estimates of
the cluster richness functions and cluster correlation functions.
A detailed description of this framework will be presented and
tested in a future work.

The key insight that allows us to estimate centering probabili-
ties is that there are three different types of galaxies in a cluster: a
central galaxy (“CG”), satellite galaxies, and unassociated fore-
ground and background galaxies. Let x be an observable vector
for a galaxy, e.g., color (via zq), luminosity (m;), and position
of each galaxy. We define ucen, U, and us, as the distribution
of x for central, satellite, and background galaxies, respectively.
The ucen and ugy filters are assumed to depend on cluster red-
shift and richness, while us, depends only on cluster redshift
(via zreq). We use the subscript “fg” as we expect that fore-
ground galaxies will be more likely to be misidentified as CGs.
Given a galaxy with observable x, the probability that it is the
CG of a cluster is

Ucen

pcen(xp\v ZA) = Pfree s

(57)
Ucen + Asatlhsar + Utg

where py. is the probability that a galaxy has not been partially
masked by a higher ranked cluster (as described in Section 9.3;
typically pgee & 1), and Age = A — 1 is the total number of

17 We note that foreground galaxies are much more likely to be confused as
centrals than background galaxies because they tend to be brighter in apparent
magnitude.
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satellite galaxies. This formula can be thought of as the simple
definition of probabilities, or it can be interpreted as a Bayesian
classification algorithm.

Note, however, that the probability pce, is not the same thing
as the probability P, that the galaxy is the unique CG of
the cluster. By assumption, there can be only one CG, so if
galaxy i is the CG, then every other galaxy j ## i must not be a
central. Consequently, the probability that galaxy i is the CG of a
cluster is

Pcen X pcen(xi)l_[(l - pcen(xj))~
J#

(58)

The proportionality constant is set by the condition that there is
just one CG in the cluster,

1= Z Pcen(xi)~

In addition to the CG probability, we can also calculate
the probability that a cluster is centered on a satellite galaxy,
given by

(39)

Asatlhsat

Poy = (1 - Pcen) (60)

)‘salusat + Utg

All that remains for us to be able to estimate centering
probabilities is the definition of the filters ucen, Usat, and ug.

8.2. Centering Filters

With the basic formalism laid out, we need to specify the
observable x and the corresponding filters. There are three
observables that we use to select the CG: the galaxy i-band
magnitude m;, the red sequence photometric redshift z..q of the
galaxy, and a weight w that characterizes the local cluster galaxy
density around the proposed CG. We also explored replacing
our photometric redshift z.q with x2, the “distance” in color
space to the red sequence. However, we have found empirically
that z..q works better for estimating central probabilities, in that
small amounts of star formation and/or small color errors due
to deblending have a much smaller impact on 7.4 than they do
on x2. We consider each of the filters in turn.

8.2.1. Luminosity Filter: ¢ce,

The magnitude of the CG is correlated with both richness and
redshift, so we define the CG magnitude filter as

1 <_(mi - "_11')2) ©1)
oo, P 202 :

m
where in principle both m; and o,, depend on richness and
redshift. In practice, we expect o, to be roughly redshift
independent, whereas m; obviously depends on redshift. We
assume that m; traces m,(z), so that the full richness- and
redshift-dependent parameterization of m; is

¢cen(mi |n_11 P Gm) =

m;i(zy, A) = m.(z;) + Ao+ Ay In [%:| , (62)

p

where Ag and A; are redshift-independent constants, and A, is
the median richness of the sample. Our algorithm for fitting for
Ap and A; is detailed below.
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8.2.2. Photometric Redshift Filter: G on(Zreq)

For the photometric redshift filter, we use the red-sequence
photometric redshift z,.q for each galaxy in the field. We model
this as a Gaussian function, with the form

! —~(2rea — 22)°
Geen(Zred|2) = \/EO‘ exp < r2e<;2 x ) . (63)
Zred Zred

As the error in the single galaxy photometric redshift dominates
that from the cluster photometric redshift, we have set the scatter
in Geen(2Zreq) to that of the individual galaxy. In addition to
the photometric redshift filter, we employ a hard cut such as
%2(zred) < 100 (with 4 degrees of freedom). Investigations
of DR8 spectroscopic galaxies have shown that galaxies with
x> > 100 are all catastrophic outliers in z;q, Which is not
surprising considering the bad fit to the red-sequence template.
By allowing galaxies with x? < 100, we allow some flexibility
for galaxies that have slightly offset colors to still be considered
as CGs. This is especially an issue for SDSS DRS for bright,
nearby CGs that may have color shifts caused by deblending
problems.

8.2.3. Local Galaxy Density Filter: feo,(w)

The motivation behind the local galaxy density filter is to
define an observable w that is a pseudo-gravitational potential
connecting each galaxy to every other cluster member. The
weight w assigned to a given central candidate is

N7 [e2 21172
w ZIH[Z(pmem(xz)Ll[r,’ +7‘C] ):| ’ (64)

Rc()‘)_l Z(pmem(xi)Li)

where the sum is over all galaxies within the scale radius R ()
around the candidate central, r. = 50 h~! kpc is a core radius
used to soften the 1/r dependence, L; is each galaxy’s i-band
luminosity, and ppem are the usual A membership probabilities.
The denominator is chosen to make the argument of the natural
log dimensionless and to remove the obvious dependence of
the numerator of w on the total number of terms in the sum.
Normalized in this fashion, we expect that w does not scale
with cluster richness or redshift.

We assume that for CGs, w follows a lognormal distribution

Seen(w),

fcen(w) =

=2
_ (In(w) — een) ] ©5)

1

As noted above, we expect W, to be richness and redshift
independent. On the other hand, o, will certainly depend on
richness. The noise in w should scale with raw galaxy counts
(A/S)'/2, where S(z) is the redshift-dependent factor that relates
the raw galaxy counts to a richness estimate when the survey is
not sufficiently deep to reach 0.2 L, at the redshift of the cluster
(see Equation (23)). For Poisson noise, we set

5o\
Ow = Oy,cen S s
P

where oy, cen 1S a constant that we fit for. As above, the pivot
point A, should be chosen to match the median richness of the
sample.

(66)
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With these definitions, the product

Ucen = Peen(Mi]2, )G cen(Zred) feen(W]za, A) (67)

is the filter characterizing the distribution of CGs.

8.2.4. Satellite Filter: uy,

Satellite galaxies on the red sequence can be described by a
filter function analogous to Equation (67). Therefore, we have
Ugar = ¢sat(m[ |)"a m*)Gsat(Zred)fsat(wkka )")s (68)
where fq(w) is defined in the same way as Equation (65),
except with parameters appropriate for the satellite galaxies,
Wsye and o, s The satellite luminosity function, ¢y, is a
Schechter function as described in Equation (8). The redshift
filter Gy (Zreq) is identical to G cen(Zreq)-

8.2.5. Foreground Filter: uy,

The foreground filter is defined as the expected number of
unassociated galaxies within the cluster radius R.(A),

2

- R:
Ugg = 2g,z(mi, Zred)ffg(w)d_sz (69)
A
where X, . is the background density per deg? per m; per Zyeq,
calculated in a similar fashion as the red sequence background
described in Section 4.3. In addition, the area subtended by
the cluster in Mpc? must be converted to deg® via the angular
diameter distance d, with d4 measured in Mpc deg~'. Finally,
the fy, filter describes the local galaxy density filter from
Equation (65), with parameters appropriate for random points
(wg and oy, ) as described below.

8.3. Implementation

Implementing this formalism requires that we calculate the
parameters that describe the filters for CGs, satellite galaxies,
and foreground/background galaxies. Of course, calibrating
these parameters depends on having a training sample to start
with. As usual, we approach this problem in an iterative fashion,
where the centering model is constrained at the same time as
the redMaPPer red-sequence model. In the first iteration, we
generate a catalog with roughly correct centering and use this
to provide an initial calibration of the filters. In subsequent
iterations we make use of the centering filters and use the output
to recalibrate. This procedure is iterated until convergence.

8.3.1. First Iteration and Initial Filter Calibration

First, we implement a rough centering algorithm: for every
cluster, we simply select the brightest high-probability (pmem >
0.8) member galaxy as the central galaxy of the cluster. In this
fashion, we obtain a full training catalog with a set of CGs that
should be roughly correct.

‘We now use this first iteration of a CG catalog to determine the
filter parameters that we will use in subsequent iterations. Note
that because the initial CG catalog contains some miscenterings,
when calibrating the CG filters it is important to account for this
contamination.

If a cluster is improperly centered on a satellite galaxy, it is
most often centered on the brightest satellite. Consequently, the
luminosity distribution of satellites that are mistaken as central
is not simply a Schechter function (¢s,). Rather, the luminosity
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distribution of satellite galaxies in the CG catalog is given
by ¢(m;|A, m,), the magnitude distribution of the brightest
satellite in clusters of richness A. The expected magnitude and
Zred distribution of the galaxies in our CG catalog is

;O(mia Zred|Z) = Pcen¢cen(mi)G(Zred|Z)
+ Py p1(m;) G (Zreal|2)
2

= TR
+ (1 - Pcen - sat)zg,zd_v (70)

2
A

where P, is the probability that the galaxy in question is the
central galaxy, as in Equation (58), and Py, is the probability
that the cluster is centered on the brightest satellite galaxy. The
redshift, z, is the spectroscopic redshift of the “seed” galaxy
used in the training step.

Our primary goal is to constrain the parameters Ay, Aj, and
o, However, we also have the parameters P, and Py, which
are unknown in the first iteration. For these parameters, we have
found that setting them in the first iteration at any reasonable
initial estimate (P., € [0.7,0.9]; Ps;x € [0.05,0.2]) has no
marked effect on the final calibration of the filter parameters.
Therefore, for simplicity we set P, = 0.9 and Py, = 0.05 for
each individual cluster in this first iteration.

Before we can continue, we must estimate the parameters for
¢1(m;|A, m,). This is modeled as a Gaussian distribution with
central value

Mgy = My (2) + Cy, + 8¢, In(X /A ), 71)
where m..(z) is obtained from Equation (9) and A, is the median
richness of the sample. The width of the distribution is similarly
modeled as

Osat = Co,¢y + S, IN(A/Xp). (72)

The central value must scale with richness because as we sample
more galaxies from the luminosity function, we are more likely
to find a very bright galaxy. In order to obtain these parameters,
we run a simple Monte Carlo with the luminosity function
parameters from Section 4.2. For « = —1.0 with A, = 30,
we find that ¢y, = —0.95, 54, = —0.32, ¢5 4, = 0.40, and
So.¢, = —0.09. We note that these parameters depend only on
a and A, and thus do not need to be updated in subsequent
iterations.

Finally, in order to constrain the parameters Ay, A;, and o,
we define our likelihood based on Equation (70) as

InL =" "Inp(m;, zeal2). (73)

By maximizing this likelihood with respect to Ag and A, we can
use our training clusters to estimate the u., filter parameters.

8.3.2. Calibrating the w Filters

We now turn to calibrating the w filters. We begin by
calibrating the foreground and satellite filters, fr(w) and
Jsar(w). For these purposes we assume that all satellites follow
the same spatial profile independent of brightness. Both fg,(w)
and fi(w) can be calibrated in a Monte Carlo fashion. We
note that foreground galaxies will uniformly sample the cluster
area JTRS(A); thus to evaluate fr(w), we draw random points
uniformly within the disk of every training cluster and compute
the corresponding ff,(w) parameters, wry and oy, .
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Figure 13. Histograms of w parameter for central (black solid), satellite (red
long-dashed), and foreground/random (blue short-dashed) galaxies. It is clear
that there is some power here to differentiate between CGs and satellites and
foregrounds, but it is not perfect. However, there is some advantage in being
able to reject a bright galaxy with a low local density as a likely interloper that
does not fit the CG model.

(A color version of this figure is available in the online journal.)

The satellite filter fg,(w) is computed in a similar fashion.
First, for every training cluster we randomly select a cluster
member with a probability p that is proportional to the member-
ship probability. For this randomly selected member we com-
pute w at the location of that satellite. After computing w for
all the training clusters, we compute the corresponding fsa(w)
parameters, Wy, and oy, at-

We can now turn our attention to the distribution fie,(w).
Consider now the distribution f(w) for all CGs. This total
distribution is then

SW) = Peen feen(w)+ Py foa(w)+(1 — Peen— Psat)ffg(w)- (74)
The only unknowns in this equation are the mean we, and rms
Ow,cen fOr the central filter, so we write the likelihood

In L(een, O cen) = _ In f(w), (75)

where the sum is over all training clusters. We then maximize
this likelihood to find Wee, and rms o7y, cep.

In Figure 13, we show the central, satellite, and foreground
f(w) filters for the final training iteration. It is clear that there is
some power here to differentiate between CGs and satellites and
foregrounds, but it is far from perfect. In particular, satellites are
only slightly less well connected than CGs.

8.3.3. Subsequent Iterations

As noted above, in our first iteration our catalog of CGs
is constructed using a simple centering algorithm: i.e., select
the brightest high-probability member as the cluster center. In
subsequent iterations of the cluster finder calibration we use
the probabilistic centering algorithm described in Section 8.1.
After application of our centering algorithm, we have the
important advantage that each cluster now comes tagged with
Peen and Py Therefore, we can now repeat the calibrations from
Sections 8.3.1 and 8.3.2 while using the correct P, and P, for
each individual galaxy. In this way we continuously improve our
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Figure 14. SDSS image of A1835, a well-known cool-core cluster with strong
star formation in the CG (marked with a red circle). The two candidate
redMaPPer centers are denoted with blue circles, and the true center is missed
due to its strong deviation from the red sequence.

(A color version of this figure is available in the online journal.)

centering model with multiple iterations of the cluster-finding
algorithm.

8.4. A Note on Blue Central Galaxies

At the beginning of this section, we noted that CGs under-
going strong star formation pose a particular problem for the
redMaPPer centering algorithm. In Figure 14 we show an SDSS
image of A1835, a well-known strong cool-core cluster with
star formation in the CG. The true center is denoted with a red
circle, while the top two candidate redMaPPer centers are cir-
cled in blue. As expected, when the color of the CG is far from
the red sequence, our centering algorithm instead chooses one
of the bright red satellites as a possible center. However, we
emphasize that the cluster will not be missing, it will simply be
miscentered.

We have also made use of SDSS spectra to get an initial
estimate on the rate of bad centers due to galaxies that do
not agree with our color model (both very blue and very red).
We have taken every cluster with a spectroscopic central and
a second brighter spectroscopic galaxy that is within r < R,
and |zcg — Zspec| < 1.50,, where o, is the expected velocity
dispersion based on the cluster richness (E. Rozo et al., in
preparation). If this galaxy is not in the top five members list
for the cluster, it is considered a possible catastrophic center. In
all, 4.6% of the clusters fit this category. Visual inspection of
the richest clusters shows that the majority of these galaxies are
in the outskirts of the cluster and are not centrals, confirming
that the redMaPPer centering algorithm is not simply taking the
brightest member as the center. Alternatively, we can look at the
subset of these galaxies that are not in the members list and thus
were not considered as candidate centrals at all. Only 0.7% of
clusters contain such galaxies. From these estimates, we expect
that the rate of miscentering due to galaxies that are too blue to
be selected as CGs is <2%.



THE ASTROPHYSICAL JOURNAL, 785:104 (33pp), 2014 April 20

/ Input Catalog /

First Pass

A 4

I—P Check each galaxy 4—I

No

Consistent with
red sequence?

Yes

Likelihood Sorting

\ 4
Sort galaxies by
cluster likelihood

Percolation

A 4

Compute A, z, using
masked catalog

P_

v

Determine most likely center

v

Recompute A, z, using
new centers

v

Mask catalog using pmem

RYKOFF ET AL.

Figure 15. Process flowchart for the redMaPPer cluster finder.

9. THE CLUSTER FINDER

We have now described in detail all the ingredients that
go into the redMaPPer cluster finder. Here, we focus on how
these ingredients are blended within the context of the cluster
finder to produce a catalog. In particular, we discuss how
clusters are ultimately defined and percolated to ensure that
every cluster is found once and only once. From a practical
perspective, the cluster finding is broken into three stages. First,
we look for overdensities around each individual galaxy using
Zred @S an estimate of the cluster redshift. Second, we calculate
the cluster likelihoods for each of the galaxies that have a
sufficient overdensity. Third, after sorting by cluster likelihood,
we percolate through the full catalog while probabilistically
masking out cluster members. A process flowchart for reference
in this section is shown in Figure 15.

9.1. First Pass

In the first pass, we wish to identify galaxies that are credible
centers of galaxy clusters. This task involves a lot of data
handling, and so we wish to make it as efficient as possible.

We begin by taking every galaxy in the input catalog with
Xz(zred) < 20 and brighter than 0.2 L, at the red-sequence
photometric redshift z..q.'® These are very generous cuts, yet
they reduce the input DR8 catalog from 56 million galaxies
to 23 million possible cluster centers in the redshift region
0.05 < zeq < 0.6. Next, we take all galaxies within 0.5~ Mpc
of a candidate center and measure A, setting the cluster redshift

18 1n the case of the training runs, we take every “seed” galaxy at the
spectroscopic redshift.
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to zreq- Candidate centers with A/S < 3 are rejected. The scale
value § = 1/(1 — C) (from Section 5.1) is used to ensure that
we have detected at least three red galaxies above the magnitude
limit. This cut rejects a further ~60% of the catalog of candidate
centrals. Finally, for all centers that pass these cuts we calculate
2,. as described in Section 7.2 to better refine the redshift of
the possible cluster.

9.2. Likelihood Sorting

Given our list of possible clusters from the first pass, we
now calculate the cluster likelihood for each of these clusters.
The total likelihood is a combination of the A likelihood and
the centering likelihood. To calculate the A likelihood, we
first calculate the richness XA using the optimized radial scale
parameters with Ry = 1.04~' Mpc and 8 = 0.2 as described in
Section 4. The A likelihood is then given by

A
g = =5 =3 Il = pmem), (76)

where X is evaluated at the cluster photometric redshift z,.
Next, following Section 8 and Equation (67), the centering
likelihood is given by

In Leen = In[@een(m; |z, A)Geen(Zred) feen(W]zi, A1, a7

where we combine the luminosity, z.4, and local galaxy density
w of each galaxy. The total likelihood used in the ranking of
possible cluster centers is

InL =InL; +1InLes. (78)
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Note that the amplitude of the XA likelihood function is
typically much larger than that of the centering likelihood. Thus,
to zeroth order, clusters are first ranked by A likelihood. Two
candidate centrals with similar A likelihoods are then ranked
according to the central likelihood. As will be described below,
we refine the choice of cluster center in the percolation step,
so the initial centering likelihood is not especially influential in
determining the final cluster center.

9.3. Percolation

Having rank-ordered the cluster candidates according to
likelihood, we now need to percolate the list to assign galaxies
to clusters and ensure that no cluster is counted multiple times.
The basic outline of the percolation proceeds as follows.

1. Given cluster number i in the list, recompute A and z;
based on the percolated galaxy catalog. At the beginning of
the percolation, the percolated galaxy catalog is simply the
input galaxy catalog.

2. Determine the cluster center and centering probability via
the method outlined in Section 8.

3. Perform a final calculation of A and z; with respect to the
new CG.

4. Update the percolated galaxy catalog by masking out
galaxies based on their membership probabilities.

5. Remove all lower-ranked possible centers that have a
membership probability pypem > 0.5 of being a member of
cluster i. Note that these galaxies are still allowed to provide
membership weight to lower-ranked clusters as part of the
percolated galaxy catalog.

6. Repeat step 1 for the next cluster galaxy in the ranked list.

9.3.1. Masking Galaxies

Masking galaxies based on their membership probabilities is
the “probabilistic percolation” step of the redMaPPer algorithm.
To perform this step, we keep track of the “total probability”
that a galaxy belongs to a cluster, which we call pien. The
probability pgee = 1 — Praken 1S the probability that the galaxy
does not belong to any cluster. Initially, one has puyen = 0 and
Pree = 1 for all galaxies. Upon finding a galaxy cluster, the
entire galaxy catalog is percolated by updating the probability
Dtaken Via
(719)

Praken,i+1 = Ptaken,i T Pfree,i Pmem>
where pmenm is given by Equation (1).

Now, when we reestimate the richness of cluster i + 1, we
must take into account the fact that some of the galaxies have a
nonzero probability of belonging to a cluster j < i + 1. We do
so by modifying the richness calculation from Equation (2) via

A= Z pfreepmem(x|)‘)~

The first factor above is simply the probability that a galaxy is
“free” to belong to the new cluster, and pyen is the standard
membership probability from Equation (1). For instance, sup-
pose a galaxy has a probability ppem = 0.3 of belonging to the
first cluster in the rank-ordered list. In this case, the galaxy still
has 70% of its probability to give to a cluster lower in the list. In
practice, when quoting cluster membership probabilities pyem
we report not the raw ppen value as given by Equation (1), but
rather the product piree Pmem fOr that galaxy—cluster pair. That
is, the reported value is the correct probability that the given
galaxy belongs to the cluster under consideration. For galaxy
clusters that are sparse in the sky (e.g., at high richness) these
corrections are negligible.

(80)
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9.3.2. Extent of Clusters and Percolation Radius

As noted above, cluster richness is measured within a radius
R.()) that optimizes the signal-to-noise ratio of the richness
measurements (R12), but is not in any way chosen to be related
to standard definitions of the extent of a halo, say, Ryg.. For
cosmological purposes, it is useful to differentiate between the
radius R.(A), which defines the richness measurement, and the
percolation radius that is used to mask out cluster members
and blend or deblend nearby systems. In particular, ideally
one selects the percolation radius so that it matches as best
as possible the percolation radii employed in the halo definition
used to calibrate the corresponding halo mass function.

In the Appendix of R12 we used maxBCG clusters to obtain
an approximate scaling of mass to A richness.'® We found that
the slope of the mass—A relation is consistent with 1, and that
Roooc & 1.5R.(A). Consequently, we have adopted 1.5R.(}) as
our default percolation radius. That is, galaxies are masked out
to this radius. We note that while galaxies outside the R (1)
radius are not used in the summand in Equation (2), we can still
estimate pmem in exactly the same way as we do with all other
galaxies out to an arbitrary radius, which is how we implement
the large percolation radius above.

In practice, for the A/S > 20 richness threshold we have
employed, changing the mask radius by £50% has a very small
impact on the resulting cluster catalog. Only a small number
of clusters (~5%)—primarily satellites of the richest A > 100
clusters—are affected at all by making this change. We expect
to return to the question of what the optimal masking radius is
in future work, particularly within the context of cosmological
constraints from galaxy clusters.

9.4. A Sample Cluster

At this point, it would be useful to investigate a sample rich
cluster to explore the distribution of cluster members. We have
selected RM J164019.8+464241.5 (A2219), one of the richest
clusters in SDSS, at a redshift of z = 0.23. In Figure 16 we
show four aspects of this cluster. In the top left panel, we
show the SDSS image of the cluster. In the top right panel,
we show the distribution of cluster members with ppem > 0.05,
with the symbol size proportional to the membership probability.
As can be seen in the histogram of ppen in the bottom-right
panel, this distribution is strongly peaked near pyen > 0.9. We
note that we do not show another, larger peak at ppem = 0,
for the vast majority of galaxies in the field that are not red
sequence cluster members. Finally, in the bottom-left panel we
show the distribution of cluster members as a function of radius.
The red dashed line shows the expected distribution of galaxies
for an NFW profile with r, = 0.5 h~! Mpc, thus showing that
the radial distribution of cluster galaxies is broadly consistent
with the NFW model.

10. THE redMaPPer SDSS DR8 CLUSTER CATALOG

We have run the redMaPPer cluster-finding algorithm in the
SDSS DRS8 photometric catalog described in Section 2. The
full cluster finder run contains all clusters with A > 5S(z;)
and z;, € [0.05, 0.6]. However, we have chosen to apply very
conservative cuts to our catalog. The cuts we apply are as
follows.

19 As shown in Appendix F, A¢o used in R12 is within ~10% of the
multicolor A used in this work.
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Figure 16. Top left: SDSS image of RM J164019.8+464241.5 (A2219). Top right: locations of cluster members with pyem > 0.05, with the symbol size proportional
to the membership probability. Bottom left: distribution of cluster members as a function of radius. The red dashed line shows the expected distribution of galaxies
for an NFW profile with r; = 0.5 h~! Mpc. Bottom right: distribution of pmer, for cluster members. This is strongly peaked near ppem > 0.9. We note that we do not
show another, larger peak at pmem = 0, for the vast majority of galaxies in the field that are not red sequence cluster members.

(A color version of this figure is available in the online journal.)

1. The richness is cut to A > 205(z;). Roughly speaking, this
requires that every cluster have at least 20 galaxy counts
above the flux limit of the survey or 0.2 L, at the cluster
redshift, whichever is higher. From R12, we estimate that
this results in an effective mass cut of Mgy > 10'* M.

. The redshift range is cut to z; € [0.08,0.55], so as to
minimize edge effects from the training sample.

. Only clusters with fi,sk < 0.2 are included (see
Equation (24)), ensuring that clusters are not overly com-
promised by bad fields, bright stars, and survey edges.

The resulting cluster catalog contains 25,236 systems. In
Figure 17 we show the full footprint of the catalog. The color
scale shows the density contrast relative to the mean cluster den-
sity, where red regions are denser than average and blue regions
are less dense, as estimated using all A > 5, z; € [0.1,0.3]
clusters so as to give a better sense of the large-scale structure
in the survey. The image was produced by binning the catalog
into a Mangle simple pixelization scheme of depth 7 (Swanson
et al. 2008).

In Figure 18, we show the comoving density of redMaPPer
clusters with 1. /S(z) > 20 over the full redshift range of interest.
The comoving density is roughly constant at z; < 0.35 where

~
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Figure 17. Footprint of the redMaPPer DR8 catalog, with clusters binned into
a Mangle simple pixelization scheme of depth 7. All clusters with A > 5 and
zp € [0.1,0.3] are shown to better illustrate the large-scale structure in the
catalog.

(A color version of this figure is available in the online journal.)
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Figure 18. Comoving density of redMaPPer DR8 clusters as a function of
photometric redshift (z;) for clusters with A/S(z) > 10, 20, 40. All densities
have been computed by taking the sum of cluster p(z). The comoving density
is roughly constant at z; < 0.35, where the catalog is volume limited (denoted
by the vertical dashed line). Above this redshift the comoving density falls off
rapidly as the detection threshold rapidly increases.

(A color version of this figure is available in the online journal.)
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Figure 19. Two-dimensional histogram of A vs. z, for redMaPPer clusters.
The red dashed line shows the redshift-dependent richness cut of A > 20S5(z).
Although this figure generally shows a smooth distribution, the boost in low
richness clusters at the transition redshift of z = 0.35 is apparent; this redshift
is denoted by the vertical dashed line.

(A color version of this figure is available in the online journal.)

the catalog is volume limited. At z; ~ 0.35 the richness and
redshift scatter are significantly boosted by both the 4000 A
break filter transition and the magnitude limit of the survey
reaching 0.2 L,. Therefore, the comoving density is boosted
by low richness clusters scattering up into our sample. A full
accounting for this scatter must be made in order to precisely
calculate the redMaPPer abundance function, which we leave
to future work. Above this redshift the magnitude limit starts to
kick in (via the scale factor S(z)), and we only observe the most
massive clusters. As an illustration of this effect, in Figure 19,
we plot the richness A versus the photometric redshift z; for
the final redMaPPer catalog. The red dashed line shows the
redshift-dependent richness cut A > 20S(z).

Finally, we show a sample redMaPPer cluster. In Figure 20,
we show REDM J003208.2+180625.3, the richest redMaPPer
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Figure 20. SDSS composite image of the cluster RM J003208.2+180625.3, the
richest redMaPPer cluster not found within the MCXC cluster catalog. This
system has A = 236 £ 12 at a redshift of z; = 0.396 &= 0.013 and is associated
with a source in the ROSAT Bright Source Catalog. This particular cluster has
three candidate centers, denoted with blue circles, with Pe, = {0.5, 0.25, 0.25}.

(A color version of this figure is available in the online journal.)

cluster not found within the MCXC cluster catalog (Piffaretti
et al. 2011), a system with A = 236 £ 12 at redshift z;, =
0.396 £ 0.013. We note that this cluster is associated with a
source in the ROSAT Bright Source Catalog (Voges et al. 1999).
The specific data available for each of the clusters and members
are described in Appendix G, and a detailed comparison of the
redMaPPer clusters to X-ray and SZ catalogs is presented in
Paper II.

11. PURITY AND COMPLETENESS

Purity and completeness can mean many different things
depending on the context. There is a tendency to think of purity
as the probability that a cluster in the catalog is a real cluster,
and to think of completeness as the probability that a real cluster
is in the catalog. However, it is often incorrect to think of these
quantities as calibrating failure rates of the algorithm. Here,
we adopt specific definitions of purity and completeness and
discuss their implications. For an alternative definition of purity
and completeness by comparing redMaPPer-detected clusters
to X-ray catalogs, we refer the reader to Paper II.

For cluster cosmology, the relevant quantity is the probability
of detecting a halo of mass M with richness Aqps, Which can be
decomposed into a convolution of two components,

P()Vobs|M) = /d)\trueP()\obs|)\true)P()¥true|M)- (81)

The probability P(Aque|M) is a feature of the universe and
must be properly marginalized over in any cosmological study
that relies on the cluster number function. Constraining this
probability distribution can also be supplemented by utilizing
realistic mock catalogs (e.g., Song et al. 2012a; R. H. Wechsler
et al., in preparation), which we return to in future work.
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On the other hand, P(Aops|Awue) 18 a feature of the cluster-
finding algorithm itself. This probability fully contains all of the
information associated with measurement error in our catalog. In
the present work, we define completeness and purity as specific
integrals over this distribution.

Purity and completeness, used as a simple parameterization of
P (Xobs| Arue ), can be estimated in several ways. Perhaps the sim-
plest consists of removing galaxy clusters, randomizing galaxy
positions, and then reinserting galaxy clusters. The cluster-
finding algorithm can then be rerun, and one can determine
which clusters are detected, and how many “false” clusters are
detected (e.g., Goto et al. 2002; Koester et al. 2007b; Hao et al.
2010). However, as shown in the literature (Lopes et al. 2004;
Rozo etal. 2011), such an algorithm is fundamentally flawed be-
cause background galaxies are not uniformly distributed. Con-
sequently, we take a somewhat different approach, as described
below.

1. Generate random points. We generate a list of random
points uniformly sampling the input survey mask. These
points are to be the centers of mock clusters that will be
inserted into the dataset. This procedure ensures that we
sample all the systematics in the survey, as well as the effect
of masked regions. We note that these locations are not
sampled from the DR8 galaxy positions.

2. Sample “true” cluster richness and redshift. Using the
full cluster catalog (A > 5), we randomly sample galaxy
clusters to generate pairs of parameters (Ayue, Zrye)- This
ensures that our model cluster distribution has the same
richness and redshift distribution as the final catalog,
including covariances.

3. For each pair of sampled values (Arye, Ztrue), asSign them
a spatial location using a random point from step 1, and
sample galaxies using the cluster model. Using the same
method as in Section 5.2, we use Monte Carlo sampling to
generate 5000 galaxies with the model radial and luminosity
profiles. From this sample of 5000 cluster galaxies, we
randomly sample Aqye galaxies from within R.(Agye), as
well as kAgye galaxies from R.(Ayue) < ¥ < Re(2Arye),
where k scales with A as appropriate for the radial profile.
This ensures that our fake clusters do not have artificial hard
edges.

4. Measure hops for the generated fake cluster at the random
location, and repeat 100 times. When measuring Aops, We
mask out galaxies according to the bright stars and edges
in the survey mask, as well as applying any necessary
magnitude limits. We do not, however, make corrections
for higher-order effects such as blending of galaxies.

In this way, we generate a map over the full sky of the
detectability of clusters as a function of redshift and richness,
while taking into account the large-scale structure that is already
imprinted on the galaxy catalog. This is a more stringent test
than a random-background test, but still does not capture the
additional effect that correlated large-scale structure can have
on the galaxy clusters. However, we expect that these additional
effects are subdominant: while the correlation length of galaxy
clusters can be as large as ~20 Mpc, the typical length scale over
which projections are effective is ~100 Mpc or more, so for most
of this volume 1 + £ =~ 1. Roughly speaking, we would expect
no more than 20% corrections to our estimated impurity from
these effects, so, for example, if 5% of our clusters suffer from
projection effects in this analysis, it is likely that this fraction
is underestimated by ~0.2 x 0.05 = 1%. A more detailed
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Figure 21. Expectation value of the measured richness ({(Aobs)) Vs. input richness
(Airue) for simulated clusters in the narrow redshift range 0.2 < z < 0.22. Note
that although Ay is a fixed value, each cluster has a distribution of Aqps and
we have plotted the mean value. To measure completeness, we consider the
subsample of clusters in a richness bin in Aye, defined by the vertical red short-
dashed lines. While most of the cluster sample falls within a tight locus around
Aobs ~ Ague, there are some clusters that fall above the 40 contours defined
by the diagonal red short-dashed lines. These outliers are projection effects,
where we placed a fake cluster atop an existing richer structure, and are counted
toward incompleteness. For reference, the one-to-one line is shown with the
magenta dotted line. To measure purity, we consider the subsample of clusters
in arichness bin in Aqps, defined by the blue long-dashed lines. The clusters that
are significant outliers with low Aqye are impurities where the measured cluster
is the result of a projection effect of multiple systems. The gray region denotes
“unphysical” projections where Agbs 2> 2Arue, and as such the fake cluster with
richness e is the secondary rather than the primary halo.

(A color version of this figure is available in the online journal.)

treatment of projection effects will be presented in a future
work (see also the discussion on the impact of the background
on A in Rozo et al. 2011).

One additional concern with regard to the above test is that
the clusters that we input into our data set are produced with the
same filters that we used to find galaxy clusters. As discussed
in Rykoff et al. (2012), the choice of luminosity and radial
filters has negligible impact on the richness measurements. Rozo
et al. (2011) also demonstrated that cluster ellipticity is largely
irrelevant. Thus, we expect our results to be robust to changes
to the cluster model used to generate the inserted clusters. We
have verified this by inserting real redMaPPer clusters as above,
where the cluster galaxies are sampled from the members list
according to their membership probabilities. Our results are
nearly identical to those derived from the model clusters above.

In Figure 21, we illustrate how we use the above outputs to
define purity and completeness. The figure shows the expecta-
tion value (Aqps) for the observed richness of a galaxy cluster
versus Aqye for a narrow redshift slice (0.2 < z < 0.22). Note
that although A is a fixed value, each cluster has a distribution
of Aobs, and we have plotted the mean value.

To define completeness, consider the subsample of galaxy
clusters in some richness bin in Ayye, €.2., that defined by the
vertical red short-dashed lines in Figure 21. The bulk of this
cluster sample falls within a tight locus around the Agps X Agrye
line, with some noise associated with background fluctuations.
The mean relation can be measured, including its scatter, using
fitting methods robust to outliers (we rely on median statistics).
The diagonal red short-dashed lines show the +40 scatter, and
points outside this region are gross outliers. We see that all such



THE ASTROPHYSICAL JOURNAL, 785:104 (33pp), 2014 April 20

outliers fall above the main cloud of points: these are projection
effects, where we placed a fake galaxy cluster atop an existing
richer structure. It is precisely to characterize these outliers that
we do not limit our model clusters to avoid the existing structure
in the catalog. The completeness c(Ayye) s defined as the fraction
of the non-outlier points to the total number of clusters in the
richness bin, i.e., it is the ratio of the number of clusters within
the red dashed parallelogram (Aps is consistent with Ay Within
the scatter) to the number of clusters in the Ay bin.

Note that with this definition c(Ayye) < 1 does not imply
that we are missing clusters. Instead, it is simply estimating
the fraction of clusters at a given Ayye that suffer from severe
projection effects. Similarly, for clusters with Ay, near the
detection threshold, a fraction of these clusters will have Aqpg
less than the detection threshold. Thus, these clusters are only
“missing” due to well-understood observational scatter.

Similarly, we can estimate purity by considering clusters
in a bin in Agg, €.g., that defined by the blue long-dashed
lines in Figure 21. Several of the clusters in this bin are clear
outliers compared to their corresponding Ayy.. The fraction of
such outliers in the Aqps bin is the impurity. However, we note
one additional restriction; that is, we discard all outliers with
Aobs = Mrue/2, denoted by the gray region in the figure. We note
that in any projection effect, Agbs = Amain + Aproj» the richness
of the main and projected halo, respectively. By definition, the
main halo has a richness Amain = Aobs/2, and we are concerned
with calculating the purity of main halos only. Thus, any fake
cluster with Agye < Agbs/2 is necessarily a projection on a
real, significantly richer cluster in the catalog and should be
discarded in this analysis. As with the completeness calculation,
we emphasize that the resulting purity is the fraction of galaxy
clusters as a function of the observed richness that suffer from
projection effects and does not represent an absence of galaxies.

To formalize all of the above discussion, we define the
completeness in a bin of richness Ayye as

in Agye bin

A
)\01 dXobs P()\obsp\true)

completeness =
N (Airue)

. (82

where the sum is over all clusters in a given bin of Ayy.. We
define Ay = Awue — 40, with the restriction that Ay > 20;
M = Apue +40; 0% = 02, +07; and N (Ayye) is the total number
of clusters in the bin. We estimate oj, directly from the output
as the intrinsic scatter in the Agps—Aque relation, and we have
chosen to define an outlier (incomplete) cluster as any cluster
that has a measured richness g that is more than 4o discrepant
from its true richness Aye.
By the same token, the purity is defined as

A
Zin Aobs bin f)ho] d)tobs P()‘-obs Mtrue)

A

purity = — ,
Zin hobs bin f)w:,:; dXobs P(Lobs| Mrue)

(83)

where now the sums are over all clusters in a given bin of
Aobs. Note that we have the additional restriction that the
sum is restricted to systems with Ayye = (Aobs) /2. We define
Ao = Ague — 40inc and Aj = Ayye + 4oy as before, and Aqps | and
Aobs,2 are the extent of the richness bin in question.

In Figure 22, we show the completeness and purity as a
function of richness for five redshift bins for the DR8 galaxy
and cluster catalog. At low redshifts (z < 0.3) the completeness
is essentially 299% at A > 30, but falls below this threshold
due to clusters randomly scattering in and out of the selection
threshold. At higher redshift, as we encounter the magnitude
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Figure 22. Top: completeness as a function of input richness, Aye, in five
redshift bins for the DR8 catalog. At low redshift, the completeness at A < 30
falls off as measurement errors scatter clusters in and out of our A > 20
selection threshold. At higher redshifts, the selection threshold increases, as
does the measurement error, leading to a broader decrease extending to higher
richness values. Bottom: Purity—i.e., fraction of galaxy clusters not affected
by projection effects—as a function of measured richness, Aops, in five redshift
bins.

(A color version of this figure is available in the online journal.)

limit of the DRS catalog our richness threshold increases and
thus the richness at which these threshold effects come into play
also increases.

Our purity is >95% for all richness and redshift bins, with
the richest systems being less pure. This can be understood
very simply: consider a chance superposition of two clusters
of richness A leading to a single detection of richness 2A. This
factor of two shift has a much more dramatic impact on the
overall abundance function at the rich end, simply because the
richness function is steeper there, i.e., a constant projection
fraction in Ay translates into a projection fraction that decreases
with Aops. Again, all these “impurities” actually correspond
to real clusters; it’s just that the observed richness has been
systematically overestimated.

One curious feature of our purity is that it seems to increase
with decreasing richness and with increasing redshift. This is
a consequence of our definition: at lower richness and higher
redshifts, the measurement errors in the richness are larger, so
a cluster that is a 40 outlier needs to be more and more of an
extreme projection, which makes such 4o outliers rarer. That is,
the purity increases not because there are fewer projections, but
rather because the projections that do occur become increasingly
less important relative to the observational errors in the richness
estimates.

In this context, it is important to emphasize that the purity
that we have defined here is fundamentally different from the
purity that is usually defined for X-ray or SZ cluster finding.
Let us take SZ as a specific example: a false detection in SZ
occurs when random Gaussian noise in the map produces a
fluctuation that can be mistaken for an SZ cluster. In our galaxy
catalog, galaxies are detected at >100, so a “false detection”
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of a cluster near our threshold (A = 20) would require 20
simultaneous 100 noise fluctuations collocated in the sky and
strongly correlated across all five bands to mimic red sequence
colors. If regions with bad photometry have been properly culled
out (by application of the BOSS mask), this simply does not
happen. Every galaxy overdensity identified by redMaPPer is a
true galaxy overdensity: there are no true false detections driven
by observational noise. The key, however, is that the galaxy
overdensity is a cylindrical galaxy overdensity that may contain
more than one massive halo, and it is precisely this rate that we
have tried to characterize with our definition of purity.

12. CLUSTER MASKS

One of the great advantages of using model clusters placed
randomly on the real sky is that we can use the same output
to map the detectability of redMaPPer clusters across the entire
survey. In this way, we can directly construct a set of random
points directly applicable to the cluster mask, which is not the
same as the galaxy mask that defines the survey. An appropriate
set of random points is essential for cross-correlation studies for
cluster cosmology (e.g., Landy & Szalay 1993).

As an illustration of the difference between the galaxy mask
that defines the survey and the cluster mask that defines the
redMaPPer catalog, we have run a dense sample of random
points in the vicinity of Arcturus using the methods described
in Section 11. This very bright star contaminates the SDSS
photometry over a large area and thus effectively masks out a
region of the sky that is 0°8 in radius. To isolate the effect of
the survey mask, all the random points shown are associated
with model clusters of the same true richness A, = 40, with a
redshift distribution appropriate for redMaPPer.

In Figure 23, we show the map of the detectability of
Arue = 40 clusters in a 4° x 4° region around Arcturus. Each
pixel shows the fraction of time a sample cluster is detected, us-
ing Equation (82), where black is 0% and white is 100%. In the
low-redshift bin (0.1 < z < 0.2, top-left panel) the detectability
of Aye = 40 clusters is essentially 100% outside the Arcturus
mask, except for a few pixels around bright Tycho stars. Note,
however, that due to our requirement that the area of a cluster
must not be significantly masked out ( f.x < 0.2), the edge for
the detectability of a cluster at these redshifts is slightly farther
from the center of Arcturus than the edge of the galaxy mask
(denoted by the red dashed line). At higher redshift these edges
drift closer to each other as the angular extent of the clusters
decreases. However, in the highest-redshift bin (0.4 < z < 0.5,
bottom right panel) the cluster is only detected ~60% = 30% of
the time (see Figure 22) due to the survey depth. The detectabil-
ity varies significantly when clusters approach the threshold, and
we see a strong dependence on the local depth and structure.

13. SUMMARY

In this paper, we have introduced redMaPPer, a red-sequence
cluster finder that is designed to make optimal use of large
photometric surveys. As a case study in the implementation
of the algorithm, we have run on the SDSS DR8 photometric
catalog. We have shown that redMaPPer improves significantly
on previous cluster finders (see also Paper II), with many features
that will be required to take advantage of upcoming surveys such
as DES and LSST. In particular:

1. redMaPPer is based on a multicolor extension of the
optimized richness estimator A, which has been shown to
be a good mass proxy (R12 and Paper II).
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Figure 23. Map of detectability of redMaPPer clusters of Ayye = 40 in the
region of the DR8 galaxy mask in the vicinity of Arcturus (red dashed circle).
Each panel is 4° on a side. At low redshift (0.1 < z < 0.2, top left panel)
a cluster will be detected essentially 100% of the time, except when it falls
directly on top of a star (including typical Tycho stars, which show up as small
black regions in the plot). Note that due to our requirement that no more than
20% of the area of the cluster is masked out, the effective mask from Arcturus
is slightly broader than that of the survey mask. At higher redshift this effect is
smaller because the clusters subtend a smaller physical region on the sky. In the
0.4 < z < 0.5 bin (bottom right panel) the cluster is only detected ~60% £30%
of the time (see Figure 22).

(A color version of this figure is available in the online journal.)

2. redMaPPer is self-training, with a modest requirement in
the number of training spectra, which can themselves be
limited to the brightest cluster galaxies. This makes it par-
ticularly well suited to high-redshift surveys. Furthermore,
the multicolor red-sequence model makes optimal use of
all color data at all redshifts, with no sharp features as the
4000 A break transitions between filters.

3. redMaPPer can handle complex survey masks. Both mask-
corrected richness values can be computed, as well as
cluster-appropriate random point catalogs for large-scale
structure studies.

4. All clusters are assigned a redshift probability distribution
P(z), which enables a more accurate reconstruction of the
redshift distribution of the cluster population relative to
simple point-redshift estimates.

5. The centering of clusters is fully probabilistic. In this way,
the uncertainty in the position of the cluster can be handled
in an analogous way to the redshift uncertainty provided
by P(z2).

6. The algorithm is numerically efficient and can be run on
large surveys with modest computing power.

Using the red-sequence model derived in the redMaPPer
calibration phase, we have derived two red-sequence-based
photometric redshifts. The first, z..q, is a red sequence template-
based photo z, which has been designed to generate a good
“first-guess” estimation of the redshift in each cluster. We have
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also shown, in Appendix C, that z,,q compares very well to
existing DR8 photometric redshifts for this specific class of
galaxies. However, z.q has the advantage that it requires many
fewer spectroscopic training galaxies. Moreover, these galaxies
can be the brightest galaxies in the clusters, with no penalty to
the performance of z.q at the faint end of the galaxy sample.
The second, z;, is a very precise photo z derived from fitting all
cluster members simultaneously to the red sequence model. In
addition, we derive a P(z) estimator for z;, which we show is
superior to point-based photometric redshifts for the purposes
of estimating the redshift distribution of the galaxy clusters. In
DRS, this is especially true in the region of the filter transition
at z ~ 0.35.

As a case study in the implementation of the algorithm, we
have run redMaPPer on the 10,400 deg” BOSS region from the
SDSS DRS8 photometric catalog. Using red galaxy spectroscopic
redshifts from one-fifth of the total area from z € [0.05, 0.6],
we are able to constrain a robust red sequence model that
defines both the richness and photometric redshift estimators.
The photometric redshifts, z;, have small bias and low scatter,
ranging from o, = 0.006 at z ~ 0.1 to o, = 0.020 at z ~ 0.5,
due to increased photometric noise near the survey limit. The
rate of catastrophic outliers is low, with only ~1% of galaxy
clusters appearing as 4o outliers. Note that because of our high
photo-z precision, a cluster at z = 0.1 with a redshift offset
as small as Az = 0.025 is considered a catastrophic redshift
failure. Furthermore, we show that the majority of these outliers
are bad centers rather than bad redshifts; when the catalog is
cleaned by demanding that central and satellite galaxies with
spectroscopy must all be within 1000 km s~!, the failure rate
decreases to <0.2%.

After running redMaPPer on the full DRS photometric
catalog, we apply a conservative selection cut of 1/S(z) > 20,
for a total of 25,236 clusters in the redshift range of z €
[0.08, 0.55]. As shown in Paper II, the comoving density of
redMaPPer clusters satisfying this cut is lower than that of all
other SDSS photometric cluster catalogs. The scale factor, S(z),
given by Equation (23), defines the correction factor on the
richness caused by the survey depth. The catalog is volume-
limited at z < 0.35, where S = 1 and the survey depth is
brighter than the fiducial luminosity cut of 0.2 L, used by the A
richness. Because our selection threshold corresponds to a total
of 20 galaxy detections, as we lose galaxies at high redshift due
to the magnitude limit of the survey, these 20 galaxies must all be
due to bright members. Therefore, the corresponding richness
threshold of 20/5(z) is much higher. This increased detection
threshold results in fewer galaxy clusters at high redshifts. Our
adopted richness threshold of 20 detected red-sequence galaxies
is chosen to provide the most robust cluster catalog possible,
with a mass threshold of M > 10'* M, where our catalog is
volume limited at z < 0.35 (R12; Paper II). Although the full
redMaPPer catalog extends to lower richnesses, we expect that
performance will worsen as one moves toward lower and lower
richness thresholds.

Finally, we investigate the purity and completeness of our
cluster-finding algorithm, focusing on the observationally rele-
vant probability distribution P (Aops|Aiue). We have defined im-
purity and incompleteness as the fraction of clusters for which
the observed richness g is significantly different from the true
richness Ayye. These outliers are caused by projection effects:
when two halos are merged together, this manifests itself as
incompleteness (a cluster with richness Ay, 1S up-scattered sig-
nificantly, so it is “missing” from where it should have been) or
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impurity (the richness Aqps of such a cluster is significantly over-
estimated). We note that while the completeness of redMaPPer
is near 100%, the purity is ~95% at the rich end, increasing
at lower richness. This decrease simply reflects larger observa-
tional error (in a proportional sense) for lower richness clusters;
i.e., “outliers” become more rare not because projection effects
are less rare, but because projection effects become subdominant
to observational uncertainties. Our estimate of the incidence of
projection effects is thus ~5%, similar to what was estimated in
Rozoetal. (2011). A more detailed analysis of projection effects
for redMaPPer clusters will be presented in a future work.

In Paper II, we present a detailed comparison of the
redMaPPer cluster catalog to various X-ray and SZ catalogs
with high-quality mass proxies. In all cases, we show that the
redMaPPer richness A is a low scatter mass proxy with high
completeness and low impurity compared to these “truth” ta-
bles. We also compare the performance of redMaPPer to other
photometric cluster finders that have been run on SDSS data and
show that redMaPPer outperforms these other algorithms in all
metrics (e.g., photo-z performance, mass scatter, and purity and
completeness), though some do perform equally well in subsets
of these categories in specific redshift ranges.

While this present work has focused on the application
of redMaPPer to the SDSS DR8 catalog, we emphasize that
this algorithm was developed specifically for upcoming large
photometric surveys such as DES and LSST. In particular,
its ability to simultaneously utilize all available photometric
data, its smooth handling of the filter transition of the 4000 A
break across filter passes, and its ability to self-calibrate using
only minimal spectroscopic training samples of bright cluster
galaxies are all specifically designed to enable cluster finding
in these new photometric data sets. This will be especially
advantageous at z 2 0.7 in the Southern Hemisphere, where
we do not have the advantages of more than a decade of survey
data from the SDSS spectrograph. Thus, in short order we expect
that redMaPPer will be capable of producing large, high-quality
catalogs of ~80,000 clusters at z < 1 with DES, opening a new
era of high-redshift cluster cosmology.
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APPENDIX A

PHOTOMETRIC REDSHIFT CORRECTION
PARAMETERS

A.l. Constraining z,.q Correction Parameters

Our approach to constraining the z,q4 correction parameters
C;(z) and 5,(z) is similar to that employed for the red-sequence
calibration (note the z subscript). As before, we have chosen to
constrain these parameters at a given node spacing, using cubic
spline interpolation between the nodes. The node spacing we
have chosen for DRS is 0.05 for ¢,(z) and 0.10 for 5,(z), suited
to the characteristic variation scales.

One significant complication that we have to deal with is that
we have membership probabilities for all the galaxies. In order
to properly make use of the probabilities, as in Equation (34)
we need to know the background pdf. Unfortunately, there is
no first-principle way of calculating the z,.q background as a
function of zuu.. Therefore, we have chosen to assume that
the background is a Gaussian function with zero mean and
finite width, and to marginalize over this background as a set of
nuisance terms. As above, we assume that the background width,
05(2), is a smoothly interpolated function with a node spacing
of 0.10. To ensure that we are calculating the correction factors
appropriate for red galaxies, and not blue cluster members and
interlopers, we limit ourselves to galaxies with ppey > 0.7.

Given a model correction,

<CZ|ZU”UC’ m;) = Ez(ztrue) + Ez(ztrue)[mi - %(Z)(Ztﬂle)]’ (A1)
then we have a Gaussian pdf for the true galaxies,
G = 1 exp _[(Zred - erue] - (Cz|Ztrue’ mi>]2
1 = ’
\ 4 27{ GZI'Sd ere(l
(A2)
and for the background,
1 —[Zred — Ztrue]2>
G, = ex . (A3)
2 V2o, P ( 205
The total likelihood is then
L= w[pmemGl + (1 - pmem)GZ]a (A4)

where we have made the addition of a weight function, w, which
is a smooth function of x? that de-weights galaxies with large
x? and that are possible outliers. The weight w is

1

exp [(x2 — x35)/02] + 1’

(A5)

w =

where ng is the 951 percentile of all galaxies with ppey > 0.7.
As before, we find the c,(z), 5.(z), and o,(z) parameters by
maximizing ¥ £ using the downhill-simplex method.

28

RYKOFF ET AL.
A.2. Constraining z, Correction Parameters

Our approach to constraining the z, correction parameters is
analogous to that used for the z,.q parameters in Appendix A.1.
However, our job is a little easier because we are applying
corrections such that (zyue|z;) 1S unbiased rather than the
converse. Therefore, the correction term can be a function of z;.
For DR8&, we use a cubic spline interpolation with node spacing
of 0.04 for (c.,. |z,). In addition, we allow an additional variance
term as we find that our raw z;, errors are underestimated. For
0;,.int We use a smooth function with a node spacing of 0.10.
To ensure that we are using well-measured clusters, we limit
ourselves to calibration clusters that have A/S(z) > 10, where
S is the scale factor defined in Equation (23). Essentially, this
limits us to clusters with at least 10 red galaxies above the
luminosity threshold or magnitude limit.

Given a model correction {c . |zy) and intrinsic scatter
correction o, in;, we have a Gaussian pdf for the clusters,

1 _ _ _ 2
G = exp ( [(zi — zca) - (Czpe 2] > (A6)
\/EC}O[ Zatot

Vo +o? . .

where oo = . oo.int The total likelihood is then given
by InL = Y InG. As before, we find (¢, |z.) and az%\,int by
maximizing this likelihood using the downhill-simplex method.

With this parameterization in hand, we can calculate the
corrected z;, and error as z, = Zj paw + (Cz..122), and azz_h =
oi raw T ozz)uim. However, we find that after applying these
corrections there may still be small residuals in the training
sample. Therefore, we iterate on this solution two further times
to obtain a final corrected redshift z;.

After the calibration is complete, we must also apply these
corrections to the P(Zuwe|z)) estimation for each cluster. To
replicate the z, offset represented by (c . |z:), we first offset
the central value of the P(z) distribution. Next, to replicate the
increased scatter we “‘expand the space” between the P(z) bins,
so that a Gaussian fit to P(z) will measure the same width as
the corrected o, value. We find that this does an adequate job
of maintaining asymmetries in the P(z) distribution that show
up near the filter transitions.

APPENDIX B
HOW MANY TRAINING CLUSTERS?

When calibrating the red sequence in Section 6 on DR8 data,
we make use of all the spectroscopy available in our 2000 deg?
training region. However, much of this is superfluous. First, most
of the spectroscopic galaxies—even the LRG samples—are not
in massive clusters. Second, our strategy of leveraging CG
spectroscopy to all the galaxies in a cluster means that we do
not require thousands of clusters to perform the calibration. In
this section, we investigate how many training clusters—each
represented by a single spectroscopic redshift for the CG —are
required to create an accurate and unbiased richness and redshift
estimate.

To test the number of required training clusters, we follow
the method of Section 6.5 to measure the bias in the recovered
richness and photometric redshift values on a predetermined set
of test clusters. For our test suite, we select the {5, 10, 20, 40, 80}
richest clusters per redshift bin of £0.025 in the training region.
The redshift binning is used to ensure that we have a relatively
uniform coverage over the redshift range of interest. In practice,
of course, the training clusters need not be so uniformly sampled.
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Figure 24. Top left: average richness bias as a function of redshift for {5, 10, 20, 40, 80} training clusters per redshift bin of width +0.025, compared to the richness
using the full DR8 training sample. All curves use the same set of 4300 test clusters. Bottom left: error normalized average deviation relative to the baseline. With
at least 40 ( 10) clusters per redshift bin of :I:O 025 biases are always <0 30 (<O 50) Thus with only 400 well- chosen spectra of the brightest galaxies we can

{5 10, 20, 40, 80} training clusters per redshift bin of width £0.025, compared to the spectroscopic redshift of the CG, zcg. Bottom right: error-normalized average
deviation relative to the baseline. With at least 20 clusters per redshift bin of £0.025, we achieve the same redshift performance as is possible with all SDSS spectra.

(A color version of this figure is available in the online journal.)

For each of these spectroscopic training sets we recalibrate the
red sequence and measure the richness A and redshift z, for each
of the test clusters from Section 6.5.

In Figure 24, we show the results of these test runs. The left
panel shows the richness bias and significance of the bias as a
function of redshift for the various training samples. Although
we can get a reasonable calibration of the red sequence with
as few as five spectra per £0.025 redshift bin, the resulting
richnesses are significantly biased (~1c) at the transition
redshift z ~ 0.35. In order to achieve unbiased richness
estimates (<0.30), we require ~40 clusters per redshift bin.
We assume that any residual biases are due to the noise in
estimating the off-diagonal elements of the covariance matrix.
This results in a total of ~400 spectra to achieve essentially the
same fidelity of calibration as we can achieve with millions of
SDSS spectra. The right panel shows the photometric redshift
bias and significance, similar to the left panel. For accurate
photo-z estimation, we require even fewer training spectra: ~20
per redshift bin, or a total of 200.

For upcoming photometric surveys such as DES, we can
obtain these spectra by first running a crude run with an
approximate red sequence model. After selecting bright CGs,
these can easily be followed up spectroscopically, as they are the
most luminous galaxies at any redshift. For example, over 85%
of the training spectra required for DR8 training are brighter than
m; < 18.5. Thus, our method allows for an incredibly efficient
use of limited spectroscopic resources to enable science in large
photometric surveys.

APPENDIX C
COMPARISON OF z;¢ TO SDSS DR8 PHOTO zs

We consider two sets of photometric redshift estimates
available for all of DR8. The first, “zZppoto, uses an updated

method of Csabai et al. (2007),%° and the second, “p(z),” uses

20 See http://www.sdss3.org/dr8/algorithms/photo-z.php.
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the method of Sheldon et al. (2012). In this section, we make use
of high-probability cluster member galaxies to compare these
photometric redshifts to z.q at both bright magnitudes (where
training galaxies are plentiful) and at fainter magnitudes.

For our “pseudo-spectroscopic” test sample, we start with all
clusters with A > 5 and a CG with spectroscopic redshift zcg.
We then select all members with ppen > 0.9. We thus expect a
contamination rate of up to 10%, although the real rate should be
smaller than this. By assigning each high-probability member
to the spectroscopic redshift of the CG, we can leverage the
red sequence to obtain spectroscopic quality redshifts to much
fainter magnitudes than available in the SDSS main or LRG
spectroscopic samples.

Figure 25 shows the density map of the photometric redshift
biases as a function of magnitude for Zred, Zphoto» and p(z) for
a narrow redshift slice of 0.195 < zcg < 0.205. For z,4 and
Zphoto» W€ have assumed a pdf that is Gaussian with mean z;eq
(Zphoto) and width o, (0v,,,)- For the p(z) values, we use a
spline interpolation to smooth the pdf and normalize the area
to unity. On the right-hand side are projected histograms from
the density field. The dotted red lines show the z;¢q distribution
for comparison. Note that the density plot clearly shows the
separation in magnitude between central and satellite galaxies.
Both zreq and zppoto perform well down to the 0.2 L, limit of
the redMaPPer richness estimation, while the p(z) values have
a broader distribution at the faint end. There is also obvious
structure in the photo-z bias as a function of magnitude.

Figure 26 shows the same map for a narrow redshift slice of
0.395 < zcg < 0.405. While all the photometric redshifts
handle the luminous galaxies very well, there appear to be
slight biases at the faint end in the case of the DR8 zppoto,
and a bifurcation of the distribution for the p(z) redshifts. The
evolution of the bias in the p(z) estimates is due to a combination
of effects. First, the r-band magnitude was used as an input to
the photo-z estimator. For a field galaxy, a fainter magnitude
correlates with a higher redshift. For cluster galaxies, however,
galaxies of a wide range of luminosity occupy the same cluster.
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Figure 25. Top: density of total p(zreq — zc) as a function of i-band magnitude
m; for all cluster members with pypem > 0.9 and 0.195 < zcg < 0.205 in
clusters with & > 5. The right panel shows the total pdf at all magnitudes. There
is a small bias in zreq, though it is constant with magnitude. Middle: same as
top panel, with zphoto calculated with the algorithm of Csabai et al. (2007). The
performance is good down to 0.2 L. The right panel compares the distribution
for zphoto (black line) to zreq (red dotted line). Bottom: same as top panel, with
p(2) values from Sheldon et al. (2012). While the bright galaxy performance is
good, there are biases at the faint end and the distribution is significantly wider.

(A color version of this figure is available in the online journal.)

As aresult, when using magnitude-based photo-z estimators on
galaxies in clusters, one should expect an increasing bias with
magnitude, which is simply a manifestation of the intra-cluster
luminosity function. The large width of the error distributions
relative to the other estimators is due primarily to the lack of
training set galaxies in that range. As discussed in Sheldon
et al. (2012), the main focus was on recovering the full » < 21.8
galaxy sample. To avoid biases induced by training set selection,
the authors did not include the most recent BOSS LRG samples
in that work and deferred LRG-optimized p(z) estimates to
a future paper. It is also worth pointing out that, despite the
extra width of the error distributions obtained when using
p(2), the recovered redshift distributions obtained by summing
the p(z) of Sheldon et al. (2012) are still superior to the
distributions estimated using the DR8 zppq0 OF single-point zreq
estimates.

There are two important messages from this comparison.
First, the performance of state-of-the-art photo-z estimators
appears to be sufficiently accurate for bright galaxies that we
would likely be able to use these in the initialization phase
of redMaPPer without any loss. Second, z..q appears to be at
least as good—if not better—than what is currently achieved,
with much smaller spectroscopic training samples. As shown
in Appendix B, we can achieve this redshift performance with
only 2400 of the brightest CG spectra. With the technique of
assigning the spectroscopic redshift of the CGs to the members,
we effectively increase the faint end of our training sample.
This is very useful for future surveys because of the high cost
of obtaining spectroscopic redshifts of faint galaxies.
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(A color version of this figure is available in the online journal.)

APPENDIX D
COMPUTING PERFORMANCE BENCHMARKS

The redMaPPer algorithm has been designed to be fast,
efficient, flexible, and trivially parallelized. As there are two
parts to running redMaPPer, the calibration and cluster-finding
stages, we split the performance benchmarks into two parts.

For the calibration phase, the runtime depends on the number
of training spectra and clusters. For the DR8 training sample
on 2000 deg”, the full calibration takes ~30 CPU hr on a three-
year-old 2.8 GHz AMD Opteron 8389. Current Intel processors
can run the calibration roughly twice as fast. For the minimal
training sample of 40 clusters per redshift bin (see Appendix B)
calibration takes ~13 CPU hr.

The cluster-finding stage is designed to be split into chunks of
arbitrary size on the sky. For these purposes, we use the Mangle
simple pixelization scheme (Swanson et al. 2008), although
any pixelization scheme will work. As long as the overlap
region between pixels is wider than twice the largest size of
any cluster in the catalog, then the percolation of clusters within
each cell is guaranteed to be unique. For the DRS catalog, this
corresponds to a border region of 125, corresponding to twice
the size of a cluster of richness ~300 at z = 0.05, given the
mask radius parameters. In total, running the cluster finder on
the full DRS catalog requires ~500 CPU hr including all galaxy
mask corrections. On a modestly sized compute cluster this can
be run in much less than one day.

APPENDIX E
VALIDATING THE CORRECTION C

In Section 5, we laid out our methodology for correcting
the richness for survey holes and a magnitude limit that is
brighter than 0.2 L,. In order to validate the calculation of
the correction term C described in that section, we have taken
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Figure 27. Top: richness calculated with a m; < 19.6 cut vs. full A richness,
for clusters with 0.15 < z < 0.3. The magnitude cut of m; < 19.6 is equivalent
to 0.2 L, at z = 0.2, so all clusters at z > 0.2 in this test have S(z) > 1. The
corrected richness is consistent with the full richness. Bottom: scale factor ﬁ
vs. photometric redshift. Black squares show the scale factor and uncertainty in
the scale factor estimated in the m; < 19.6 run (shifted slightly for clarity). Red
diamonds show the measured shift and width. Our measured values agree with
our model. However, at the largest corrections we are slightly overestimating
the correction term and the uncertainty in the correction term.

(A color version of this figure is available in the online journal.)

a subsample of clusters with 0.15 < z < 0.3 and simulated a
more restrictive magnitude limit. We have chosen a magnitude
limitof m; < 19.6, whichis 0.2 L, atz = 0.2, so that all clusters
at higher redshift will have their richness corrected according to
our formalism. The average correction for the z = 0.3 clusters
is similar to that for the highest redshift clusters in our catalog,
so this test will sample the full range of corrections employed.

In Figure 27 we show the results of our test. In the top panel
we show Ajg¢ versus A, for all clusters with 0.2 < z < 0.3,
where A9 ¢ is the richness calculated with a magnitude limit of
m; < 19.6 and A is the standard A with a 0.2 L, cut. When
calculating A9, we have re-fit the photometric redshift z, to
ensure that our comparison is as fair as possible. It is clear in the
top panel that the correction richness scales with uncorrected
richness, with some scatter as expected. In the bottom panel
we show the richness scale value (S = ﬁ = Ascaled/Araw)
as a function of redshift. The black squares show the median
estimated value of S derived from Equation (16), while the
black error bars represent the median error in S as derived from
Equation (22). The red diamonds show the median measured
value of S, and the red error bars represent the observed width
in the distribution of S. Our predicted correction factor does
scale with redshift as expected. However, our errors are slightly
overestimated for the largest corrections.

APPENDIX F
COMPARING A TO Mg

We now explore how the richness estimate used in this work,
A, compares to the single-color richness A, used in R12.
As detailed in Section 4, the primary difference in richness
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Figure 28. (a) Average ratio between the single-color Ao vs. redshift for both
Ag—r (blue dotted line) and A, _; (red dashed line). As discussed in the text, this
offset is likely due to different background models. In all cases the difference
between the full multicolor A and the color appropriate for the redshift range
(g — rforz < 0.35 and r — i for z > 0.35) is less than 10%. (b) Width of
the Aco1/A distribution as a function of redshift. The scatter is <15% for the
appropriate color except for the transition redshift of z ~ 0.35. (c) Average
offset normalized by the richness error. Thus, using the single color Az, is
systematically biased high by ~1o at low redshift, and A,_; is systematically
biased low by 0.2¢ at high redshift.

(A color version of this figure is available in the online journal.)

estimators is the replacement of the Gaussian color filter with a
multicolor x? filter. However, we emphasize that there is also
a subtle difference in the background model, as described in
Section 4.1. That is, the X2 filter does not distinguish between
galaxies that are too red or too blue relative to the model, and
while the red sequence model is symmetric, the background
model is not.

To make our comparisons, we have started with all redMaPPer
clusters with A > 20. We then calculate Ag_, and A,_;
using the appropriate color model from the red sequence
parameterization. Our expectation is that A,_, should trace A
at low redshift where the dominant signal is from the g — r
color, and A,_; should trace A at high redshift.

In Figure 28, we show the statistics from comparing A,_, and
Ar—; to A. In the top panel we show the median ratio as a function
of redshift. At all redshifts the bias between the appropriate
Acol @and A is <10%. In the bottom panel, we show the median
normalized deviation, which is ~1o at low redshift and less so
at high redshift where the richness errors are much larger due
to the magnitude limit. We attribute this bias at low redshift
to the different background model employed, as galaxies that
are redder than the red sequence are down-weighted in the A
model compared to the A., model. These biases are not large,
but they are significant and thus show the importance of using
the same color model and consistent survey data to achieve the
best richness estimation.

The middle panel of Figure 28 shows the width of the Ao /A
distribution as a function of redshift. The scatter is <15% for the
appropriate color except at z ~ 0.35, where the 4000 A break
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Table 1

redMaPPer DR8 Cluster Catalog Format
Column Name Format Description
1 ID 17 redMaPPer cluster identification number
2 NAME A20 redMaPPer cluster name
3 RA F12.7 Right ascension in decimal degrees (J2000)
4 DEC F12.7 Declination in decimal degrees (J2000)
5 Z_LAMBDA F6.4 Cluster photo-zz;
6 7Z_LAMBDA_ERR F6.4 Gaussian error estimate for z;,
7 LAMBDA F6.2 Richness estimate A
8 LAMBDA_ERR F6.2 Gaussian error estimate for A
9 S F6.3 Richness scale factor (see Equation 23)
10 Z_SPEC F8.5 SDSS spectroscopic redshift for most likely center (—1.0 if not available)

(This table is available in its entirety in a machine-readable form in the online journal. A portion is shown here for guidance

regarding its form and content.)

Table 2

redMaPPer DR8 Member Catalog Format
Column Name Format Description
1 D 17 redMaPPer cluster identification number
2 RA F12.7 Right ascension in decimal degrees (J2000)
3 DEC F12.7 Declination in decimal degrees (J2000)
4 R F5.3 Distance from cluster center (5! Mpc)
5 P_MEM F5.3 Membership probability pmem
6 IMAG F6.3 i-band cmodel magnitude (dereddened)
7 IMAG_ERR F6.3 error on i-band cmodel magnitude
8 MODEL_MAG_U F6.3 u model magnitude (dereddened)
9 MODEL_MAGERR_U F6.3 error on ¥ model magnitude
10 MODEL_MAG_G F6.3 g model magnitude (dereddened)
11 MODEL_MAGERR_G F6.3 error on ¢ model magnitude
12 MODEL_MAG_R F6.3 r model magnitude (dereddened)
13 MODEL_MAGERR_R F6.3 error on r model magnitude
14 MODEL_MAG_I F6.3 i model magnitude (dereddened)
15 MODEL_MAGERR_I F6.3 error on i model magnitude
16 MODEL_MAG_Z F6.3 z model magnitude (dereddened)
17 MODEL_MAGERR_Z F6.3 error on z model magnitude
18 Z._SPEC F8.5 SDSS spectroscopic redshift (—1.0 if not available)
19 OBJID 120 SDSS DR8 CAS object identifier

(This table is available in its entirety in a machine-readable form in the online journal. A portion is shown here

for guidance regarding its form and content.)

is transitioning from g to r. It is in this transition region that a
single-color richness estimator does especially poorly and we
have the biggest advantage of using a multicolor estimator.

APPENDIX G

DESCRIPTION OF COLUMNS IN THE
DRS8 CLUSTER CATALOG

The full redMaPPer DRS8 cluster and member catalogs are
available at http://risa.stanford.edu/redmapper/ in FITS format,
and from the online journal in machine-readable formats. A
summary of the cluster catalog information is given in Table 1.
A summary of the member information is given in Table 2.
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