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ABSTRACT

We suggest a generalized definition of self-organized criticality (SOC) systems: SOC is a critical state of a
nonlinear energy dissipation system that is slowly and continuously driven toward a critical value of a system-wide
instability threshold, producing scale-free, fractal-diffusive, and intermittent avalanches with power law–like size
distributions. We develop here a macroscopic description of SOC systems that provides an equivalent description
of the complex microscopic fine structure, in terms of fractal-diffusive transport (FD-SOC). Quantitative values for
the size distributions of SOC parameters (length scales L, time scales T, waiting times Δt , fluxes F, and fluences
or energies E) are derived from first principles, using the scale-free probability conjecture, N (L)dL ∝ L−d , for
Euclidean space dimension d. We apply this model to astrophysical SOC systems, such as lunar craters, the asteroid
belt, Saturn ring particles, magnetospheric substorms, radiation belt electrons, solar flares, stellar flares, pulsar
glitches, soft gamma-ray repeaters, black-hole objects, blazars, and cosmic rays. The FD-SOC model predicts
correctly the size distributions of 8 out of these 12 astrophysical phenomena, and indicates non-standard scaling
laws and measurement biases for the others.
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1. INTRODUCTION

Although the paradigms of self-organized criticality (SOC)
systems appear to be very intuitive and self-explaining, such as
the self-adjusting angle of repose in Per Bak’s sandpile (Bak
et al. 1987), or the stick-slip motion of earthquakes (Gutenberg
& Richer 1949), theoreticians find it hard to establish a rigorous
general definition of SOC systems. Part of the problem is the
subtle differences between “criticality” in fine-tuned systems
that undergo percolation or phase transitions, such as the Ising
model (Ising 1925), versus “SOC” systems, which do not
need any fine-tuning (e.g., Christensen & Moloney 2005). A
solid definition of SOC systems should (1) be able to make
quantitative predictions that are testable by observations and (2)
provide discrimination criteria between SOC and alternative
transport processes occurring in complex systems (such as
random walk, branching theory, network theory, percolation,
aggregation, or turbulence). A mathematical definition of SOC
includes “non-trivial scale invariance (with spatio-temporal
correlations) in avalanching (intermittent) systems as known
from ordinary critical phenomena, but with internal, self-
organized rather than external tuning of a control parameter
(to a non-trivial value)” (Pruessner 2012). Alternatively, we
may define SOC from a more physical point of view: SOC is
a critical state of a nonlinear energy dissipation system that
is slowly and continuously driven toward a critical value of a
system-wide instability threshold, producing scale-free, fractal-
diffusive, and intermittent avalanches with power law–like size
distributions. This definition applies to SOC phenomena as
diverse as sandpiles, earthquakes, solar flares, or stockmarket
fluctuations.

The major problem is that SOC is a microscopic process in
complex systems, which cannot easily be described by macro-
scopic equations, unlike entropy-related processes in classical
thermodynamics. In order to obtain insights into SOC processes,

microscopic processes in complex systems have been simulated
by iterative numerical codes, such as cellular automaton mod-
els, where a single time step is quantified by a mathematical
redistribution rule, which operates on a microscopic level. Such
SOC models are also called slowly driven interaction-dominated
threshold systems, which all share some common properties,
such as a large but finite number of degrees of freedom, a thresh-
old for nonlinearity, a redistribution rule once the local variable
exceeds the threshold, and a continuous but slow driver (Jensen
1998, p. 126; Pruessner 2012, p. 7). Such numerical simulations
produce power law-like probability distributions of SOC param-
eters, which are generally considered to be a necessary (but not
satisfactory) criterion to identify SOC.

In this study, we derive a macroscopic description of SOC pro-
cesses by analytical means, which are supposed to mimic the
statistics of microscopic, spatially unresolved, next-neighbor
interactions in SOC systems. The situation is similar to clas-
sical thermodynamics, where macroscopic parameters such as
temperature, pressure, or entropy describe the microscopic state
(e.g., the Boltzmann distribution), resulting from atomic col-
lisions and other energy dissipation processes. The analytical
approximation of complex spatial structures is accomplished
by the concept of fractals (i.e., monofractals or multi-fractals).
Our analytical framework of SOC processes includes geomet-
ric, temporal, physical, and observable parameters, for which
physical scaling laws exist that determine the spatio-temporal
evolution and the statistical distributions. However, the main dif-
ference to classical thermodynamics is the nonlinear nature of
complex systems, while thermodynamic systems are governed
by incoherent random noise that add up in a linear way.

2. AN ANALYTICAL MACROSCOPIC SOC MODEL

Our analytical description of SOC models entails four dif-
ferent aspects: (1) geometric parameters and geometric scaling
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laws; (2) temporal parameters and spatio-temporal evolution
and transport; (3) physical scaling laws; and (4) instrument-
dependent observables. These four domains are treated sepa-
rately in the following.

2.1. The Scale-free Probability Conjecture

We start with geometric parameters, such as a length scale L,
a Euclidean area A, and a Euclidean volume V, embedded in a
Euclidean space with a dimension of d =1, 2, or 3. Euclidean
means space-filling here, while inhomogeneous structures are
described by a fractal dimension Dd, which also depends on the
Euclidean dimension d.

SOC phenomena (like avalanches on a sandpile) can be
triggered by the infall of a single sand grain, and thus the
causal consequence of a tiny input or disturbance can have an
unpredictable magnitude of the outcome or nonlinear response
of an SOC system. Henceforth, the geometric size of an SOC
avalanche can cover a considerable range L1 � L � L2 from
the size L1 of a single sand grain to the finite size L2 of the
SOC system. If only next-neighbor interactions are allowed in
an SOC system, such as in the Bak–Tang–Wiesenfeld (BTW)
model (Bak et al. 1987), a continuous distribution of length
scales L of avalanches is expected when sampled over a long
time. Naturally, small avalanches have a higher probability to
occur than large ones, because they can happen simultaneously
at different places of a sandpile, while a large system-wide
avalanche can occur only once at a time. So, we can ask
the question about the probability distribution function (PDF),
N (L)dL, of avalanches with size L to occur in an SOC system.
In order to solve this problem, we proceed in the same way as
the PDF of random processes is derived.

The simplest statistical distribution is obtained from rolling
dice, by enumerating all possible outcomes. The PDF of
outcomes of rolling one dice, two dice, and three dice is shown
in Figure 1, the classical binomial distribution that approaches
a Gaussian normal distribution (Figure 1) for a large number
of dice, with possible outcomes of n � x � 6n for six-sided
dice, while the PDF N (x)dx is a Gaussian function centered at
x = n(6 + 1)/2.

Going to the statistical probability distributions of avalanches
with size L, we use the same method by enumerating all possible
states with size L that can occur in an SOC system with finite
size L2. The case with a Euclidean space dimension of d = 2
is illustrated in Figure 2, where we use logarithmic bins with
size x = 1, 2, 4, 8, 16. In a system with finite size L2 = 16,
one avalanche of this maximum size L2 is possible in a given
time interval, and thus N (x = 16) = 1. For a bin with
half the size, L = L2/2 = 8 we have four possible areas
with a length scale of x = L2/2, and thus N (x = 8) = 4.
Proceeding to quarter bins, L = L2/4, we have 16 possible
areas with size L = L2/4, and thus N (x = 4) = 16 = 24,
and so forth. Obviously, the probability distribution scales as
N (x)dx = (L2/L)2 for Euclidean dimension d = 2. We
can easily imagine the probabilities for the other Euclidean
dimensions d = 1, which is N (x)dx = (L2/L), and for d = 3,
which is N (x)dx = (L2/L)3. Therefore, we obtain a generalized
probability distribution of length scales L according to

N (L)dL ∝ L−d dL, (1)

which we call the scale-free probability conjecture
(Aschwanden 2012a), being related to packing rules (e.g., sphere
packing, or dense packing) in geometric aggregation problems.

A similar approach of using geometric scaling laws was also
pioneered for earthquakes (Main & Burton 1984). The term
scale-free is generally used to express that no special scale is
present in a statistical distribution, unlike the first moment or
center value of a Gaussian (normal) distribution, or the e-folding
value in an exponential distribution. Our scale-free probability
does not require that all possible avalanches in an SOC system
have to occur simultaneously, or in any particular sequential
order. They just represent the expected distribution of a statis-
tically representative sample, similar to the rolling of dice. For
instance, using n = 1026 dice to mimic the number of atoms
per cm3, there is no way to execute all possible rolls, but we
expect for any statistically representative subset of possible out-
comes a Gaussian distribution. Similarly, we expect a length
distribution N (L) according to Equation (1) for any statistically
representative subset of avalanches occurring in an SOC sys-
tem. We expect that Equation (1) has universal validity in SOC
systems, because it is only based on a statistical argument of
random processes on all scales, without any other constraints
given by specific physical parameters or the dynamic behav-
ior of an SOC system. This scale-free probability conjecture
(Equation (1)) may also occur in other nonlinear systems, such
as in turbulence. We may be able to discriminate between the
two systems by the sparseness of avalanches (in slowly driven
SOC systems) and the space-filling of structures (in turbulent
media).

2.2. Geometric Scaling Laws

In the following, we are going to derive size distributions
of SOC avalanches by using geometric scaling laws, which is a
standard approach that has been applied in a number of previous
works (e.g., Bak et al. 1988; Robinson 1994; Munoz et al. 1999;
Biham et al. 2001).

Besides the length scale L, other geometric parameters are
the Euclidean area A or the Euclidean volume V. The simplest
definition of an area A as a function of a length scale L is the
square-dependence,

A ∝ L2, (2)

which applies also to circular areas, A ∝ πr2, or more
complicated solid areas, differing only by a constant factor
for self-similar geometric shapes. A direct consequence of this
simple geometric scaling law is that the statistical probability
distribution of avalanche areas is directly coupled to the scale-
free probability distribution of length scales (Equation (1)), and
can be computed by substitution of L(A) ∝ A1/2 (Equation (2)),
into the distribution of Equation (1), N (L) = N (L[A]) =
L[A]−d = (A1/2)−d = A−d/2, and with the derivative dL/dA ∝
A−1/2,

N (A)dA ∝ N (L[A])

∣∣∣∣dL

dA

∣∣∣∣ dA ∝ A−(1+d)/2 dA. (3)

Thus, we expect an area distribution N (A) depending on the
dimensionality d = 2, 3 of the SOC system,

N (A)dA ∝ A−αAdA, where

{
αA = 1.5 for d = 2
αA = 2.0 for d = 3,

(4)
which should also have universal validity for SOC systems. In
spatially resolved astrophysical observations, such as of the Sun
or magnetosphere, a length scale L or area A are the only directly
measurable geometric parameters, while a volume V is generally
derived from the observed area of an SOC event.
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Figure 1. Probability distribution P (x) of statistical outcomes x are shown for tossing one (top panel), two (second panel), and three dice (bottom panel). The possible
outcomes cover the ranges of x = x1 = 1, . . . , 6 for one dice, x = (x1 + x2) = 2, . . . , 12 for two dice, and x = (x1 + x2 + x3) = 3, . . . , 18 for three dice. The
probability distributions are also known as binomial distributions and converge to a Gaussian distribution for an infinite number of dice.

(A color version of this figure is available in the online journal.)
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Figure 2. Probability distributions N (x) of statistical outcomes x are shown for braking domino pieces with square-like shape into smaller squares with side lengths
that correspond to powers of two (i.e., x = 1, 2, 4, 8, 16). A histogram with such logarithmic bins shows the number of outcomes, N (x = 1) = 256 = 25,
N (x = 2) = 64 = 24, . . ., N (x = 16) = 1, which form a power law distribution N (x) ∝ x−2 with a slope of α = log (N )/ log (x) = −2.

(A color version of this figure is available in the online journal.)

Similar to the area, we can derive the geometric scaling for
volumes V, which simply scales with the cubic power in three-
dimensional space,

V ∝ L3, (5)

which represents a cube but differs only by a constant factor for
a sphere, i.e., V = (4π/3)r3. Consequently, we can also derive
the probability distribution N (V )dV of volumes V directly
from the scale-free probability conjecture (Equation (1)), where
the definition of Equation (5) demands d = 3. Substituting

L ∝ V 1/3 into N (L[V ]) ∝ L[V ]d ∝ V −d/3 and the derivative
dL/dV = V −2/3, we obtain for d = 3,

N (V )dV ∝ N (L[V ])

∣∣∣∣ dL

dV

∣∣∣∣ dV ∝ V −αV dV ∝ V −5/3 dV.

(6)
Thus, a power law slope of αV = 5/3 is predicted in three-
dimensional Euclidean space, which applies also to the Eu-
clidean volume of a time-integrated SOC avalanche in lattice
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simulations. However, since avalanches have a fractal geome-
try, it is the time-integrated fractal volume that is equivalent to
the number of active pixels in a lattice simulation, rather than
the Euclidean volume.

Since all the assumptions made so far are universal, such as
the scale-free probability conjecture (Equation (1)) and the geo-
metric scaling laws A ∝ L2 and V ∝ L3, the resulting predicted
occurrence frequency distributions of N (A) (Equation (3)) and
N (V ) (Equation (6)) are universal too, and power law functions
are predicted from this derivation from first principles, which is
consistent with the property of universality in theoretical SOC
definitions.

2.3. The Fractal Geometry

“Fractals in nature originate from self-organized critical
dynamical processes” (Bak & Chen 1989). Fractal geometries
were pioneered in the context of self-similar structures before
the advent of SOC models (Mandelbrot 1977, 1983, 1985) and
have been applied to spatio-temporal SOC structures extensively
(e.g., Bak et al. 1987, 1988; Bak & Chen 1989; Ito & Matsuzaki
1990; Feder & Feder 1991; Rinaldo et al. 1993; Erzan et al.
1995; Barabasi & Stanley 1995). Since the fractal geometry
is a postulate of SOC processes invoked by the first pioneers
of SOC, it is appropriate to approximate spatial structures of
SOC avalanches by a fractal dimension. The simplest fractal
is the Hausdorff dimension Dd, which is a monofractal and
depends on the Euclidean space dimension d = 1, 2, 3. The
Hausdorff dimension D3 for the three-dimensional Euclidean
space (d = 3) is

D3 = log Vf (t)

log (L)
, (7)

and analogously for the two-dimensional Euclidean space
(d = 2),

D2 = log Af (t)

log (L)
, (8)

with Af (t) and Vf (t) being the fractal area and volume of
an SOC avalanche during an instant of time t. These fractal
dimensions can be determined by a box-counting method, where
the area fractal D2 can readily be obtained from images from the
real world, while the volume fractal D3 is generally not available
unless one obtains three-dimensional data (or by numerical
simulations).

A good approximation for the expected fractal dimension
Dd is the mean value of the smallest possible fractal dimen-
sion Dd,min ≈ 1 and the largest possible fractal dimension
Dd,max = d. The minimum possible fractal dimension is near
the value of 1 because the next-neighbor interactions in SOC
avalanches require some continuity between active nodes in a
lattice simulation of a cellular automaton, while smaller fractal
dimensions Dd < 1 are too sparse to allow an avalanche to
propagate via next-neighbor interactions. Thus, the mean value
of a fractal dimension is expected to be (Aschwanden 2012a)

Dd ≈ Dd,min + Dd,max

2
= (1 + d)

2
. (9)

Thus, we expect fractal dimensions of D3 ≈ (1 + 3)/2 = 2.0 for
the three-dimensional space, and D2 ≈ (1 + 2)/2 = 1.5 for the
two-dimensional space. This conjecture of the mean value of the
fractal dimension Dd has been numerically tested with cellular
automaton simulations for Eucledian dimensions d = 1, 2, 3
and the following mean values were found: D1 = 1.00 ± 0.00

(Aschwanden 2012a); then, D2 = 1.58 ± 0.02 (Charbonneau
et al. 2001), D2 = 1.58 ± 0.03 (McIntosh et al. 2002),
D2 = 1.60 ± 0.17, 1.62 ± 0.18 (Aschwanden 2012a) for
the two-dimensional case, for which D2 = 1.5 is predicted,
and D3 = 1.78 ± 0.01 (Charbonneau et al. 2001; McIntosh
et al. 2002), D3 = 1.94 ± 0.27, 1.97 ± 0.29 (Aschwanden
2012a) for the three-dimensional case, for which D3 = 2.0
is predicted. Thus, the mean value defined in Equation (9) is
a reasonably accurate prediction based on the standard (BTW)
cellular automaton model.

This relationship (Equation (9)) allows also a scaling be-
tween the fractal dimensions of the two-dimensional and three-
dimensional Euclidean space,

D3

D2
≈ (1 + 3)

(1 + 2)
= 4

3
. (10)

An extensive discussion of measuring the fractal geometry
in SOC systems is given in Aschwanden (2011a, Chapter 8)
and McAteer (2013). Fractals are measurable from the spatial
structure of an avalanche at a given instant of time. Therefore,
they enter the statistics of time-evolving SOC parameters, such
as the observed flux per time unit, which is proportional to the
number of instantaneously active nodes in a lattice-based SOC
avalanche simulation.

2.4. The Spatio-temporal Evolution and Transport Process

The next important step is to include time scales, which
together with the geometric scaling laws define the spatio-
temporal evolution of SOC events. We model an SOC event
simply as an instability that is triggered when a local threshold
is exceeded. The universal behavior of any instability is an initial
nonlinear growth phase and a subsequent saturation phase. We
model the saturation phase with a diffusive function, as shown
in Figure 3 (upper panel),

r(t) = κ(t − t0)β/2, (11)

where t0 is the onset time of the instability, κ is the diffusion
coefficient, and β is the spreading exponent. A value of β � 0
corresponds to logistic growth with an upper limit of the spatial
volume (Aschwanden 2011a, 2012b), β ≈ 0.5 corresponds to
subdiffusion, β = 1 to classical diffusion, β ≈ 1.5 to hyper
diffusion or Lévy flight, and β = 2 to linear expansion.

The corresponding velocity v(t) of an expanding SOC
avalanche is shown in Figure 3 (second panel), which mono-
tonically decreases with time and is obtained from the time
derivative of r(t) (Equation (11),

v(t) = dr(t)

dt
= κβ

2
(t − t0)β/2−1. (12)

What spatio-temporal scaling law do we expect from this
macroscopic description of an SOC avalanche? A spatial scale
L could be defined from the maximum size of the avalanche at
the end time T = (t−t0), and thus we expect from Equation (11)
the statistical spatio-temporal scaling law

L ∝ κ T β/2. (13)

Substituting this scaling law L(T ) into the PFD of length scales
(Equation (1)), we expect a power law distribution of time scales,

N (T )dT = N (L[T ])
dL

dT
dT = T −[1+(d−1)β/2] = T −αT , (14)
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Figure 3. Spatio-temporal evolution of the avalanche radius r(t) (top panel),
the expansion velocity v(t) (second panel), the energy dissipation rate or flux
F (t) (third panel), and the dissipated energy E(t) (bottom panel) are shown for
our macroscopic FD-SOC model for diffusive spreading exponents of β = 0.1
(quasi-logistic; solid line style), β = 0.5 (sub-diffusive; dashed line style), and
β = 1 (classical diffusion, solid line style).

with the power law slope of αT = 1 + (d − 1)β/2, which has
a value of αT = 1 + β = 2.0 for three-dimensional Euclidean
space (d = 3) and classical diffusion (β = 1). This power
law slope for avalanche time scales is a prediction of universal
validity, since it is only based on the scale-free probability
conjecture (Equation (1)), N (L) ∝ L−d , and the diffusive nature
(or random-walk statistics) of the saturation phase.

The spatio-temporal scaling law (Equation (13)), based on
random-walk or a diffusion process, is used here as a simple
approximation in an empirical way. Diffusive transport has
been applied to SOC theory and SOC phenomena in a number
of previous studies, e.g., by using the spreading exponents to
determine the critical points of systems with multiple absorbing
states (Grassberger & de la Torre 1979), as a discretized
diffusion process using the Langevin equation (Wiesenfeld
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Figure 4. Schematic diagram that illustrates the concept of fractal-diffusive
avalanche evolution. The Euclidean radius r(t) evolves like a diffusive random
walk, such as r(t) ∝ t1/2 for classical diffusion, while the avalanche area is
fractal (black substructures). The instantaneous fractal area Af (t) ∝ r(t)Dt

consists of the number of active nodes and is proportional to the energy
dissipation rate dE(t)/dt or flux F (t) at a given time t.

et al. 1989; Zhang 1989; Foster et al. 1977; Medina et al.
1989), in terms of classical (Lawrence 1991) and anomalous
diffusion of magnetic flux events (Lawrence & Schrijver 1993),
in deriving spatio-temporal scaling laws with mean-field theory
and branching theory (Vespignani & Zapperi 1998), as a
continuum limit of a fourth-order hyper-diffusive system (Liu
et al. 2001; Charbonneau et al. 2001), or in terms of a diffusion
entropy description (Grigolini et al. 2002).

2.5. Energy and Flux Relationships

In numerical SOC simulations, such as in lattice-based
cellular automaton models of the BTW type (Bak et al. 1987),
energy is dissipated in every node that exceeds a threshold
temporarily, and thus the energy that is dissipated during an
SOC avalanche is proportional to the total number of all active
nodes, summed over space at each instant of time. If we count
these active nodes at a given time interval, we have a quantity
that is proportional to the instantaneous energy dissipation rate,
which has the unit of energy per time. In the real world, we
observe a signal from an SOC avalanche in the form of an
intensity flux f (t) (e.g., seismic waves from earthquakes, hard
X-ray (HXR) flux from solar flares, or the amount of lost dollars
per day in the stockmarket). Let us assume that this intensity flux
is proportional to the volume of active nodes, which corresponds
to the instantaneous fractal volume Vf (t) of an SOC avalanche
in our spatio-temporal SOC model (Figure 4), also called fractal-
diffusive (FD-SOC) model (Aschwanden 2012a),

f (t) ∝ Vf (t) ∝ r(t)Dd , (15)

which is shown in Figure 3 (third panel) for β = 0.1, 0.5, and 1.
The flux time profile f (t) is expected to fluctuate substantially in
real data or in lattice simulations, because the fractal dimension
can vary in the range of Dd,min ≈ 1 and Dmax = d, while we use
only the mean value Dd = (Dmin + Dmax)/2 (Equation (9)) in
our macroscopic model. Occasionally, the instantaneous fractal
dimension may reach its maximum value, i.e., Dd (t) � d, which
defines an expected upper limit fmax(t) of

fmax(t) ∝ V (t) ∝ r(t)d . (16)

Integrating the time-dependent flux f (t) over the time interval
[0, t] yields the total dissipated energy e(t) up to time t (using
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Equation (11)),

e(t) ∝
∫ t

0
Vf (t)dt =

∫ t

0
rDd (t)dt =

∫ t

0
κ

Dd

d (t − t0)Ddβ/2dt

= κDd

Ddβ/2 + 1
(t − t0)Ddβ/2+1, (17)

which is a monotonically increasing quantity with time
(Figure 3, bottom panel).

From this time-dependent evolution of an SOC avalanche, we
can characterize at the end time t a time duration T = (t − t0),
a spatial scale L = r(t = t0 + T ), an expected flux or energy
dissipation rate F = f (t = t0 + T ), an expected peak flux
or peak energy dissipation rate P = fmax(t = t0 + T ), and a
dissipated energy E = e(t = t0+T ), which is proportional to the
avalanche size S in BTW models. Thus, we have the following
scaling relations between the different SOC parameters and the
length scale L (using Equations (15)–(17)),

F ∝ LDd ∝ T Ddβ/2, (18)

P ∝ Ld ∝ T dβ/2, (19)

E ∝ S ∝ LDd +2/β ∝ T Ddβ/2+1. (20)

An alternative notation for the diffusive spreading exponent β
used in literature is DT = 2/β, so that the spatio-temporal
scaling law (Equation (13)) reads as T ∝ LDT and the energy
scaling law (Equation (20)) as E = S ∝ Vf T ∝ LDd +DT , which
can be expressed as S ∝ LDS with the exponent DS = D3 +DT .
Slight variations of this scaling law have been inferred from
observations in different wavelengths, such as DS = DA/2+DT

for magnetic events (Equation (18) in Uritsky et al. 2013),
which seems to be equally consistent with observations as our
generalized (wavelength-independent) FD-SOC model (see EIT
and MDI events from Uritsky et al. 2013 in Table 1).

Finally, we want to quantify the occurrence frequency dis-
tributions of the (smoothed) energy dissipation rate N (F ),
the peak flux N (P ), and the dissipated energy N (E), which
all can readily be obtained by substituting the scaling laws
(Equations (18)–(20)) into the fundamental length scale dis-
tribution (Equation (1)), yielding

N (F )dF = N (L[F ])

∣∣∣∣ dL

dF

∣∣∣∣ dF ∝ F−[1+(d−1)/Dd ] dF, (21)

N (P )dP = N (/[P ])

∣∣∣∣ dL

dP

∣∣∣∣ dP ∝ P −[2−1/d] dP, (22)

N (E)dE = N (L[E])

∣∣∣∣ dL

dE

∣∣∣∣ dE ∝ E−[1+(d−1)/(Dd +2/β)] dE.

(23)
Thus, this derivation from first principles predicts power law
functions for all parameters L, T, F, P, E, and S, which are
the hallmarks of SOC systems. In summary, if we denote the
occurrence frequency distributions N (x) of a parameter x with
a power law distribution with power law index αx ,

N (x)dx ∝ x−αx dx, (24)

we have the following power law coefficients αx for the
parameters x = L, T , F, P,E, and S,

αL = d
αT = 1 + (d − 1)β/2
αF = 1 + (d − 1)/Dd

αP = 1 + (d − 1)/d
αE = αS = 1 + (d − 1)/(Dd + 2/β).

(25)

If we restrict the case to three-dimensional Euclidean space
(d = 3), as is almost always the case for real-world data, the
predicted power law indexes are

αL = 3
αT = 1 + β

αF = 1 + 2/D3

αP = 1 + 2/3
αE = αS = 1 + 1/(D3/2 + 1/β).

(26)

Restricting to classical diffusion (β = 1) and an estimated mean
fractal dimension of D3 ≈ (1 + 3)/2 = 2, we have the following
absolute predictions

αL = 3
αT = 2
αF = 2
αP = 5/3

αE = αS = 3/2.

(27)

2.6. Waiting Time Probabilities in the
Fractal-diffusive SOD Model

The FD-SOC model predicts a power law distribution
N (T ) ∝ T −αT of event durations T with a slope of αT =
[1 + (d − 1)β/2] (Equation (25)) that derives directly from the
scale-free probability conjecture N (L) ∝ L−d (Equation (1))
and the random walk (diffusive) transport (L ∝ T β/2;
Equation (13)). For classical diffusion (β = 1) and space di-
mension d = 3 the predicted power law is αT = 2. From this
time scale distribution, we can also predict the waiting time
distribution with a simple probability argument. If we define a
waiting time Δt as the time interval between the start time of
two subsequent events so that no two events overlap with each
other temporally, the waiting time cannot be shorter than the
time duration of the intervening event, i.e., Δti � (ti+1 − ti). Let
us consider the case of non-intermittent, contiguous flaring, but
with no time overlap between subsequent events. In this case, the
waiting times are identical with the event durations, and there-
fore their waiting time distributions are equal also, reflecting the
same statistical probabilities,

N (Δt)dΔt ∝ N (T )dT ∝ Δt−αΔt dΔt, (28)

with the power law slope,

αΔt = αT = 1 + (d − 1)β/2. (29)

This statistical argument is true regardless what the order of
subsequent event durations is, so it fulfills the Abelian property.
Now we relax the contiguity condition and subdivide the
time series into blocks with contiguous flaring (with intervals
Δt ≈ T ), interrupted by arbitrarily long quiet periods Δt = Δtq

when no events occur (Figure 5). The distribution of quiet
periods Δtq may be drawn from a random process, which has
an exponential distribution

N (Δtq)dΔtq ∝ exp (−Δtq/Δt
q

0 ) dΔtq . (30)

If we define a maximum event duration T2 and assume that this
is also approximately a lower limit for the quiet time intervals,
i.e., Δt

q
min ≈ T2, then we expect a power law distribution with

a slope of αΔt = αT for the range of waiting times that are
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Table 1
Summary of Theoretically Predicted and Observed Power Law Indices of Size Distributions in Astrophysical Systems

Length Area Duration Peak Flux Energy Waiting
αL αA, αth,A αT αP αE Time αΔt

FD-SOC Theory 3.0 2.0 2.0 1.67 1.5 2.0

Lunar craters:
Mare Tranquillitatis(1) 3.0
Meteorites and debris(2) 2.75

Asteroid belt:
Spacewatch Surveys(3) 2.8
Sloan Survey(4) 2.3–4.0
Subaru Survey (5) 2.3

Saturn ring:
Voyager 1(6) 2.74–3.11

Magnetosphere:
EUV auroral events(7) 1.73–1.92 2.08–2.39 1.66–1.82 1.39–1.61
Optical auroral events(8) 1.85–1.98 2.25–2.53 1.71–2.02 1.50–1.74
Outer radiation belt(9) 1.5–2.1

Solar Flares:
HXR, ISEE-3(10) 1.88–2.73 1.75–1.86 1.51–1.62
HXR, HXRBS/SMM(11) 2.17 ± 0.05 1.73 ± 0.01 1.53 ± 0.02 2.0(a)

HXR, BATSE/CGRO(12) 2.20–2.42 1.67–1.69 1.56–1.58 2.14 ± 0.01(b)

HXR, RHESSI (13) 1.8–2.2 1.58–1.77 1.65–1.77 2.0(a)

SXR, Yohkoh(14) 1.96–2.41 1.77–1.94 1.64–1.89 1.4–1.6
SXR, GOES (15) 2.0–5.0 1.86–1.98 1.88 1.8–2.4(c)

EUV, SOHO/EIT(16) 2.3–2.6 1.4–2.0
EUV, TRACE(17) 2.50–2.75 2.4–2.6 1.52–2.35 1.41–2.06
EUV, AIA/SDO(18) 3.2 ± 0.7 2.1 ± 0.3 2.10 ± 0.18 2.0 ± 0.1 1.6 ± 0.2
EUV, EIT/SOHO(19) 3.15 ± 0.18 2.52 ± 0.05 1.79 ± 0.03 1.48 ± 0.03
Magnetic events, MDI/SOHO(19) 2.57 ± 0.13 1.93 ± 0.06 2.02 ± 0.07 1.47 ± 0.03
Radio microwave bursts(20) 1.2–2.5
Radio type III bursts(21) 1.26–1.91
Solar energetic particles(22) 1.10–2.42 1.27–1.32

Stellar Flares:
EUVE flare stars(23) 2.17 ± 0.25
Kepler flare stars(24) 1.88 ± 0.09 2.04 ± 0.13

Astrophysical Objects:
Crab pulsar(25) 3.06–3.50
PSR B1937+21(26) 2.8 ± 0.1
Soft Gamma-Ray repeaters(27) 1.43–1.76
Cygnus X-1 black hole(28) 7.1
Blazar GC 0109+224(29) 1.55
Cosmic rays(30) 2.7–3.3

References. (1) Cross (1966); (2) Sornette (2004); (3) Jedicke & Metcalfe (1998); (4) Ivezić et al. (2001); (5) Yoshida et al. (2003), Yoshida & Nakamura (2007); (6)

Zebker et al. (1985), French & Nicholson (2000); (7) Uritsky et al. (2013); (8) Kozelov et al. (2004); (9) Crosby et al. (2005) (10) Lu et al. (1993), Lee et al. (1993); (11)

Crosby et al. (1993); (12) Aschwanden (2012a, 2011b); (13) Christe et al. (2008), Lin et al. (2001), Aschwanden (2011a, 2011b); (14) Shimizu (1995), Aschwanden &
Parnell (2002); (15) Lee et al. (1995), Feldman et al. (1997), Veronig et al. (2002a, 2002b), Aschwanden & Freeland (2012); (16) Krucker & Benz (1998), McIntosh
& Gurman (2005); (17) Parnell & Jupp (2000), Aschwanden et al. (2000), Benz & Krucker (2002), Aschwanden & Parnell (2002), Georgoulis et al. (2002); (18)

Aschwanden & Shimizu (2013), Aschwanden et al. (2013); (19) Uritsky et al. (2002); (20) Akabane (1956), Kundu (1965), Kakinuma et al. (1969), Das et al. (1997),
Nita et al. (2002); (21) Fitzenreiter et al. (1976), Aschwanden et al. (1995), Das et al. (1997), Nita et al. (2002); (22) Van Hollebeke et al. (1975), Belovsky & Ochelkov
(1979), Cliver et al. (1991), Gabriel & Feynman (1996), Smart & Shea (1997), Mendoza et al. (1997), Miroshnichenko et al. (2001), Gerontidou et al. (2002); Gabriel
& Feynman (1996); (23) Robinson et al. (1999). Audard et al. (2000), Kashyap et al. (2002), Güdel et al. (2003), Arzner & Güdel (2004), Arzner et al. (2007), Stelzer
et al. (2007); (24) Maehara et al. (2012); Shibayama et al. (2013); (25) Argyle & Gower (1972), Lundgren et al. (1995); (26) Cognard et al. (1996); (27) Gogus et al.
(1999, 2000); (28) Negoro et al. (1995), Mineshige & Negoro (1999); (29) Ciprini et al. (2003); (30) e.g., Figure 13.18 (courtesy of Simon Swordy, Univ.Chicago); (a)

Aschwanden & McTiernan (2010); (b) Grigolini et al. (2002); (c) Wheatland (2001, 2003), Boffetta et al. (1999), Lepreti et al. (2000).

shorter than the maximum flare duration Δt � T2, with an
exponential cutoff at Δt � T2. The contributions of waiting
times from the subset of contiguous time blocks will still be
identical, while those time intervals from the intervening quiet
periods add some longer random waiting times. The predicted
power law slope of short waiting times (T1 � Δt � T2) is then
αΔt = 2.0 for classical diffusion β = 1 and space dimension

d = 3. Interestingly, this predicted slope is identical to that of
nonstationary Poisson processes in the limit of intermittency
(Aschwanden & McTiernan 2010). At the same time, this
waiting time model predicts also clustering of events during
active periods, and thus event statistics with memory and
persistence, as it was demonstrated recently for CME events
using Weibull distributions (Telloni et al. 2014).
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Figure 5. Concept of a dual waiting time distribution is illustrated, consisting of active time intervals (Δt � T2) that contribute to a power law distribution (which is
equal to that of time durations, N (T )), and random-like quiet time intervals (Δtq ) that contribute to an exponential cutoff.

2.7. Pulse Pile-up Correction for Waiting Times

We can define a mean waiting time 〈Δt〉 from the total duration
of the observing period Tobs and the number of observed events
nobs,

〈Δt〉 = Tobs

nobs
. (31)

From the distribution of event durations T, we have an inertial
range of time scales [T1, T2], over which we observe a power
law distribution, N (T ) ∝ T −αT , with the corresponding number
of events [N1, N2], so that we can define a nominal power law
slope of αT = log(N2/N1)/ log(T2/T1). If the mean waiting
time of an observed time series becomes shorter than the upper
limit of time scales T2 during very busy periods, we start to see
time-overlapping events, a situation we call “event pile-up” or
“pulse pile-up”. In such a case, we expect that the waiting time
distribution starts to be modified, because the time durations
of the long events are underestimated (by some automated
detection algorithm), so that the nominal power law slope that is
expected with no pulse pile-up, αΔt = log(N2/N1)/ log(T2/T1),
has to be modified by replacing the lower time scale T1 with the
mean waiting time 〈Δt〉,

α
pileup
Δt = αΔt ×

{
1 for 〈Δt〉 > T2
log(T2)/ log 〈Δt〉 for 〈Δt〉 � T2.

(32)

As a consequence, the measurements of event durations must
suffer from the same pile-up effect, and a similar correction is
expected for the time scale distribution N (T ),

α
pileup
T = αT ×

{
1 for 〈Δt〉 > T2
log(T2)/ log 〈Δt〉 for 〈Δt〉 � T2.

(33)

Thus, the predicted waiting time distribution has a slope of
αT = 2 in the slowly driven limit but can be steeper in the
strongly driven limit. For instance, the waiting time distributions
of solar flares correspond to the slowly driven limit during

the minima of the solar 11 yr cycle, while the power law
slopes indeed steepen during the maxima of the solar cycle
(Aschwanden & Freeland 2012), when the flare density becomes
so high that the slowly driven limit, and thus the separation of
time scales, is violated.

2.8. Physical Scaling Laws

Our fractal-diffusive SOC model developed so far has univer-
sal validity because it is entirely derived from statistical prob-
abilities and fractal-diffusive transport. The predicted scaling
laws and occurrence frequency distributions derived above do
not depend on any specific physical parameter of an SOC phe-
nomenon. Using real-world observations, however, some phys-
ical scaling laws are involved between the observables and
the spatio-temporal parameters used so far. For instance, the
strength of an earthquake is measured in magnitudes of the
Gutenberg–Richter scale (Richter 1958), which may be related
to the observed earthquake rupture area by some mechanical
scaling law that determines the statistics (Main & Burton 1984).
For solar flares, the observed fluxes in soft X-rays (SXRs) or
HXRs are related to the physical parameters of electron tem-
peratures, densities, and pressures of heated plasma, as it can
be derived for the equilibrium point between heating and cool-
ing (e.g., Rosner et al. 1978). Other scaling laws used in solar
physics include, for instance, relationships between magnetic
energies and the reduced MHD equations (Longcope & Sudan
1992), or the magnetic reconnection geometry (Craig 2001),
or between the heating rate and the magnetic field strength
(Schrijver et al. 2004). Such physical scaling laws allow us to
derive the power law slope of the frequency distribution of both
the observables and the physical parameters, which is examined
elsewhere (e.g., Aschwanden et al. 2013).

The predicted frequency distributions for energies and fluxes
derived in Section 2.5, are strictly only valid for systems where
the assumption of proportionality between the flux and the
instantaneous fractal volume is fulfilled, i.e., F (t) ∝ Vf (t) ∝
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r(t)Dd (Equation (15)), because the scaling of observables
depends then on geometric parameters only, which can be
derived entirely from statistical probabilities, in terms of the
scale-free probability conjecture (Equation (1)).

Without specializing on a particular physical mechanism of
a given SOC system, we can give some general rules on how
to derive the power law function of physical parameters. The
simplest situation is a two-parameter correlation or scaling law,
where a physical parameter x is related to the geometric length
scale by a power law function with index γ ,

L ∝ xγ . (34)

Inserting this scaling law into the fundamental length scale
distribution N (L) ∝ L−d (Equation (1)) and using the derivative
dL/dx = xγ−1 then directly yields the occurrence frequency
distribution N (x),

N (x)dx = N (L[x])
dL

dx
dx = x−[1+(d−1)γ ]dx. (35)

Also common is a three-parameter correlation or scaling law,
such as in terms of two physical parameters x and y and the
length scale L, i.e.,

L ∝ xγ yδ, (36)

in terms of power law functions with exponents γ and δ. The
probability distribution for one of the physical parameters, say
y, can then be written as

N (y)dy =
∫

N (L, x[L, y])dL dy

=
∫

N (L)N (x[L, y])dL dy ∝ yaxδ/γ dy, (37)

after the integration over the variable L is carried out. Thus, the
resulting distribution N (y)dy ∝ y−αy dy has a power law slope
of αy = αxδ/γ . The power law solution is strictly valid only for
complete sampling of the parameters, which in reality is often
not possible due to limited statistics, instrumental sensitivity
limits, and data noise. This leads to truncation effects and
finite-size effects, which can be simulated with Monte Carlo
simulations or analytically calculated (see the Appendix in
Aschwanden et al. 2013, for examples).

2.9. Instrument-dependent Size Distributions

Besides physical scaling laws that are specific to a partic-
ular physical mechanism of an SOC system, there are also
instrument-dependent scaling laws that are not universal and de-
pend on the specific instrument used in an observation of SOC
phenomena. If there is a nonlinear scaling between the observ-
able and the geometric volume of an SOC avalanche, we cannot
expect to measure the same power law slope of an observable
with different instruments. In order to make observed frequency
distributions obtained with different instruments compatible, it
is often advisable to reduce the observable parameters to phys-
ical parameters using a well-established instrument calibration.
For astrophysical observations in SXRs and extreme ultraviolet
(EUV), for instance, an instrument-independent physical quan-
tity is the differential emission measure distribution, which can
be inverted from observed fluxes in different wavelengths (e.g.,
Aschwanden et al. 2013).

3. RELATIONSHIP TO THEORETICAL
MICROSCOPIC SOC MODELS

After we have described a general macroscopic model of an
SOC system that predicts the occurrence frequency distribu-
tions of spatial, temporal, and volume-related observables, such
as the flux and energy, we turn now to theoretical and numer-
ical SOC models and discuss whether our macroscopic model
meets the basic definitions of an SOC system. A comprehensive
review of theoretical and numerical SOC models is given in
the textbook by Pruessner (2012). While a strict definition of
SOC systems is still not well-established, here we will use the
working definition given in the Introduction: SOC is a critical
state of a nonlinear energy dissipation system that is slowly and
continuously driven toward a critical value of a system-wide in-
stability threshold, producing scale-free, fractal-diffusive, and
intermittent avalanches with power law–like size distributions.
The property of self-tuning to criticality is warranted by system-
inherent physical conditions that define a system-wide insta-
bility threshold. This system-inherent physical condition is
often given by the equilibrium solution between two compet-
ing forces. For instance, the angle of repose in a sandpile is
self-tuning to a system-wide critical value, corresponding to an
equilibrium point between the gravity force and the static fric-
tion force. In the Ising model (Ising 1925), a phase transition
occurs at a critical point between an ordered and a disordered
magnetic spin state, but the tuning to the critical point is not self-
organized. In the following, we discuss how the macroscopic
SOC model (Section 2) relates to the microscopic (mathemati-
cal and numerical) SOC models, regarding power law–scaling
(Section 3.1), spatio-temporal correlations (Section 3.2), sep-
aration of time scales and intermittency (Section 3.3), and
self-tuning and critical threshold (Section 3.4).

3.1. Power Law Scaling

The original BTW model revealed the generic scale invari-
ance of simulated or observed SOC parameters, which ideally
exhibits power law functions for the occurrence frequency dis-
tributions, possibly related to the 1/f noise of power spectra
(Bak et al. 1987). The property of a power law shape became
the hallmark of SOC phenomena, but it was recognized that
this is a necessary but not a satisfactory condition, since other
phenomena (such as turbulence or percolation) produce power
laws also.

Our fractal-diffusive SOC model (FD-SOC) derives the PFD
based on a statistical probability argument, which leads to
a power law function of spatial and geometric scales. The
additional assumption of fractal-diffusive transport leads to a
power law function of temporal scales. Further, we define the
size of an avalanche from the time-integrated fractal volume that
participates in an avalanche, and consequently, we obtain also
power law distributions for the size or total dissipated energy
of avalanches. Since all these assumptions are of a statistical
nature and do not depend on any physical parameters of an SOC
system, the predictions of the PDFs of spatial, temporal, and
energy SOC parameters have universal applicability, regardless
of the physical process that is involved in the nonlinear energy
dissipation process. The prediction of a pure power law function
for the size distributions at all scales is also called universality in
theoretical SOC models (e.g., Sethna et al. 2001) and is fulfilled
in the macroscopic description of our FD-SOC model by design
(as a consequence of the scale-free probability conjecture;
Equation (1)). However, we should be aware that this simple

10



The Astrophysical Journal, 782:54 (20pp), 2014 February 10 Aschwanden

SANDPILE NEAR CRITICALITYz

x
 

Slope |dz/dx|

x

Coherent structure
(spatial correlation)

 
NON-POTENTIAL MAGNETIC FIELD
IN SOLAR FLARING REGIONS

y

x

By(x)

 

Gradient |dBy/dx|

x

Coherent structure
(Spatial correlation)

Figure 6. Left: a sandpile in a state in the vicinity of criticality is shown with a vertical cross-section z(x), with the gradient of the slope (or repose angle) |dz/dx|
(bottom), exhibiting short-range fluctuations due to noise and long-range correlation lengths due to locally extended deviations from the mean critical slope. Right:
the solar analogy of a flaring region is visualized in terms of a loop arcade over a neutral line in the x-direction, consisting of loops with various shear angles that are
proportional to the gradient of the field direction Bx/By , showing also some locally extended (non-potential) deviations from the potential field (bottom).

FD-SOC model provides only a first-order prediction, while
additional effects (such as truncation, incomplete sampling, or
finite-size effects) may modify the observed size distributions
into broken power laws, double power laws, or other power
law–like distribution functions. However, similar effects occur
also in cellular automaton simulations.

3.2. Spatio-temporal Correlations

SOC systems are expected to exhibit the spatio-temporal
correlations (Jensen 1998) of an SOC state variable B(r, t),

C(r, t) = 〈B(r0, t0)B(r0 + r, t0 + t)〉 − 〈B(r0, t0)〉2. (38)

Such correlations are absent in systems with random noise.
In our FD-SOC model, however, the random structure of the
background in a state near criticality is episodically disturbed
by an avalanche event, which carves out a “hole” with a size
L during a time scale T, which represents a major disturbance
in the form of a spatially and temporally coherent structure,
which can be restored to the critical state only gradually, for
slowly driven SOC systems. Naturally, large avalanches leave
their footprints behind and produce spatio-temporal correlations
during the local restoration time. The correlation is best for large
avalanches with similar shapes. The time profiles of avalanches
in our FD-SOC system are self-similar to some extent, since
they are characterized by a common fractal dimension Dd
(Equation (15)), diffusion constant κ , and diffusive spreading
exponent β (Equation (11)). We visualize the spatial correlations
with a cartoon in Figure 6, which shows coherent disturbances
as deviations from the critical state in large avalanches occurring
in sandpiles and in solar flares.

In our two-component model of waiting times (Section 2.6),
an observed time series consist of quiet intervals Δtq > T2

with no avalanching (which have a random distribution), and
active intervals with contiguous flaring (which have a power
law distribution like the event durations N (Δt) = N (T )).
This dual behavior is also called intermittency and has the
consequence that the combined waiting time distribution has
both a power law range (T1 � Δt � T2) and an exponential
cutoff (Δt � T2). Consequently, we expect spatio-temporal
correlations (Equation (38)) during the intermittently active
periods only, while they are expected to be absent during the
quiet time intervals. Avalanching during active periods is also
expected to exhibit persistence and memory, while no memory
is expected during quiet time intervals. This property seems to
be more consistent with observations (e.g., Telloni et al. 2014),
but is different from the pure random (Poisson) statistics of
the original BTW model. However, it reconciles related debates
about the functional shape of the waiting time distributions (e.g.,
Boffetta et al. 1999; Lepreti et al. 2000).

3.3. Separation of Time Scales and Intermittency

Classical SOC systems operate in the limit of slow driv-
ing, which implies a separation between the duration of an
avalanche and the waiting time interval between two subse-
quent avalanches. Numerically, the separation of time scales is
simply realized by allowing only one single disturbance of an
SOC system at a time, which triggers an avalanche (with dura-
tion T) or not, while the next disturbance is not initiated after a
waiting time Δt > T , in the case of an avalanche.

In our FD-SOC model, the energy dissipation rate (de/dt)
grows monotonically after a triggering disturbance, which
exceeds the system-wide threshold value (de/dt)crit until the
spatial diffusion stops after time T, due to a lack of unstable
nodes among the next-neighbors of an instantaneous avalanche

11



The Astrophysical Journal, 782:54 (20pp), 2014 February 10 Aschwanden

area or volume. Therefore, the energy dissipation rate during an
avalanche exceeds the threshold value during the entire duration
of an avalanche. Energy conservation between the slowly driven
energy input rate and the intermittent avalanching output rate can
therefore only be obtained with sufficiently long waiting times
Δt during which the energy loss of an avalanche is restored. This
requires a balance of the long-term averages of the energy input
and output rates, i.e.,

〈(de/dt)in〉〈Δt〉 ≈ 〈(de/dt)out〉〈T 〉. (39)

Since 〈(de/dt)in〉 � (de/dt)crit � 〈(de/dt)out〉, it follows that
〈Δt〉 � 〈T 〉, which warrants a separation of the time scales, i.e.,
the waiting time Δt and the avalanche duration T.

The resulting time profile of the energy dissipation rate
(de/dt) of an SOC system is then necessarily highly intermittent
due to the long waiting times in between subsequent avalanches.
In addition, the time profile is strongly fluctuating during an
avalanche, according to f (t) ∝ r(t)Dd (Equation (15)), since the
fractal dimension Dd (t) can fluctuate in the entire range between
the minimum and maximum value as a function of time, i.e.,
1 � Dd (t) � d. However, for the scaling laws in the FD-SOC
model (Equations (18)–(20)), we can replace the fluctuating
value of Dd (t) with a constant mean value 〈Dd (t)〉 = (1 + d)/2
and obtain the same size distributions.

3.4. Self-organization and Criticality

How does our fractal-diffusive SOC model reinforce self-
organized criticality? In classical SOC models, criticality is
obtained by a slowly driven input of energy which restores
the energy losses of avalanches until the system-wide critical
threshold is reached (more or less) and new avalanches can
be triggered by a local excess of the critical threshold. In
our FD-SOC model, the time evolution of an avalanche has a
generic shape that is given by fractal-diffusive transport, while
the energy balance between energy input (disturbances) and
output (avalanches) is not explicitly reinforced, unlike cellular
automaton models which iterate a mathematical redistribution
rule to drive the dynamics of an SOC system and are designed
to conserve energy. Instead, self-organization of the FD-SOC
model is constrained by statistical probability only, which does
not need to be self-tuning to produce a particular functional
form of a size distribution, because there is only one statistical
distribution with maximum likelihood, which is a power law
distribution function of spatial scales (according to our scale-
free probability conjecture). So, we can say that the FD-SOC
model gravitates around the statistically most likely state, like
entropy in self-contained statistical systems without external
influence. This may be a more general definition of SOC then
originally proposed by Per Bak and coworkers but explains the
concept of self-organization by the most general principle of
maximum statistical likelihood. This should not surprise us,
since the entire evolution of our universe followed maximum
statistical likelihood, from the initial big bang expansion all the
way to the bio-chemical evolution of life, forming complexity
out of simple structures based on processes that are driven by
statistical likelihood (e.g., Mendel’s law in genetics).

4. ASTROPHYSICAL APPLICATIONS

In this section, we examine frequency distributions observed
in various realms of astrophysics and discuss the application
of the fractal-diffusive SOC model in a few selected datasets
with large statistics. Some preliminary discussion of such

astrophysical objects can also be found in Aschwanden (2011a,
Chapters 7 and 8) and in Aschwanden (2013, chapter 13). An
overview of astrophysical phenomena with observed power law
indices of size distributions is given in Table 1.

4.1. Lunar Craters

If we mount a large container with a gel-like surface below
a circular plate that holds Per Bak’s sandpile, we would record
impact craters from each sandpile avalanche in the viscous gel
and could infer the avalanche sizes from the diameters of the
impact craters (see experimental setup of sandpile experiment
conducted by Held et al. 1990). Similarly, the Moon was targeted
by many impacting meteors and meteorites, especially during an
intense bombardment in the final sweep-up of debris at the end
of the formation of the solar system between 4.6 and 4.0 billion
years ago (e.g., Neukum et al. 2001). The sizes of lunar craters
were measured with the first lunar spacecraft (Ranger 7, 8, 9) in
the early 1960’s, and a cumulative power law distribution with
sizes in the range of L ≈ 100–104.5 cm was found, with a power
law slope of αcum

L ≈ 2.0 for the cumulative distribution (Cross
1966), which corresponds to a value of αL = αcum

L + 1 = 3.0
for the differential size distribution. This quite accurate result
(for a size distribution covering a range of over four orders of
magnitude) corresponds exactly to our prediction of the scale-
free probability conjecture, N (L) ∝ L−3 (Equation (1)). A
similar value of αL = 2.75 was found for the size distribution
of meteorites and space debris from man-made rockets and
satellites (Figure 3.11 in Sornette 2004). The formation of the
sizes of meteors and meteorites may have been controlled by
a nonlinear process that includes a combination of self-gravity,
gravitational disturbances, collisions, depletions, fragmentation,
and captures of incoming new bodies in the solar system (e.g.,
Ivanov 2001). The Moon acts as a target that records the sizes
of impacting meteorites that were produced by an SOC process,
similar to the gel-filled plate under Bak’s sandpile.

4.2. Asteroid Belt

The origin of the asteroid main belt is believed to be associated
with a time period of intense collisional evolution shortly after
the formation of the planets (e.g., Botke et al. 2005). The
asteroids are a leftover of the planetesimals that were either
too small to form a planet by self-gravitation, or they orbited
in an unstable region of the solar system that constantly got
disturbed by the largest planets Jupiter and Saturn.

In Table 1, we compile some values of measured size
distributions of asteroids, given as power law slopes αL of the
differential size distributions (related to the slope αcum

L of the
cumulative size distribution by αL = αcum

L + 1, which includes
values in the range of αL ≈ 2.3–4.0, obtained from the Palomar
Leiden Survey (Van Houten et al. 1970), the Spacewatch Surveys
(Jedicke & Metcalfe 1998), the Sloan Digital Sky Survey (Ivezić
et al. 2001), and the Subaru Main-Belt Asteroid Survey (Yoshida
et al. 2003; Yoshida & Nakamura 2007). These values of the
power law slopes agree within ≈25% with our theoretical
prediction of αL = 3.0, but the statistical range of sizes covers
less than two decades, and thus incomplete sampling of small
sizes is likely to limit the accuracy.

4.3. Saturn Ring

The Saturn ring extends over a range of 7000–80,000 km
above Saturn’s equator and has a mass of 3×1019 kg, consisting
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of a myriad of small particles with sizes in the range from 1 mm
to 20 m (Zebker et al. 1985; French & Nicholson 2000). The
particle size distribution was measured in eight different ring
regions with Voyager I radio occultation measurements (Zebker
et al. 1985). These size distributions were found to have slightly
different power law slopes in each ring zone, with values of
αL = 2.74–3.03 for ring A, αL = 2.79 for the Cassini division,
and αL = 3.05–3.22 for ring C (Zebker et al. 1985). Averaging
the values from all eight zones, we find αL = 2.89 ± 0.16,
which is remarkably close to the prediction αL = 3.0 of
the scale-free probability conjecture (Equation (1)). Thus, the
fragmentation of Saturn ring particles is consistent with the
statistics of SOC avalanches, and the process of collisional
fragmentation driven by celestial mechanics can be considered
as a self-organizing system that is constantly driven toward
the collisional instability threshold. An instability occurs by a
collision of particles. If the system has a too low density, no
collisions occur and the system is subcritical, while a too high
density of particles would result into an excessive collision rate
that would destroy the structure of the Saturn ring. Hence, the
long-lived Saturn ring can be considered as an SOC system
that self-tunes to a critical collisional limit that maintains its
shape and conserves its (kinetic) energy, similar to Bak’s SOC
sandpile that maintains its slope and conserves the potential
energy.

4.4. Magnetosphere

The Earth’s magnetosphere displays a number of phenomena
that have been associated with SOC models (Table 1), such as
active and quiet substorms and auroral events (Lui et al. 2000;
Uritsky et al. 2001, 2002, 2006; Kozelov et al. 2004; Klimas
et al. 2010), substorm flow bursts (Angelopoulos et al. 1999),
auroral electron (AE-index) bursts (Takalo 1993; Takalo et al.
1999), upper auroral (AU-index) bursts (Freeman et al. 2000;
Chapman & Watkins 2001), or outer radiation belt electron
events (Crosby et al. 2005). The power law indexes of observed
size distributions of these phenomena are listed in Table 1.

Accurate measurements, using the same definition of time-
integrated avalanche sizes as in the BTW model (Bak et al. 1987;
Charbonneau et al. 2001) and in this paper, were carried out for
auroral events in UV by Uritsky et al. (2002), and in visible light
by Kozelov et al. (2004), yielding size distribution with power
law slopes of αA ≈ 1.7–2.0, αT ≈ 2.0–2.5, αP ≈ 1.66–2.0,
and αE = 1.4–1.7, which agree well with the predictions of the
FD-SOC model (αA = 2.0, αT = 2.0, αP ≈ 1.67, αE = 1.5)
(Table 1). The earlier reported lower values for the power law
slopes of auroral fluences (Lui et al. 2000) are incompatible
with recent observational results as well as with the FD-SOC
model, because the auroral sizes were measured from snapshots
taken in regular time intervals, rather than measured individually
for each avalanche event (Uritsky et al. 2002). This case with
contradicting statistical results measured from the same data is
an example of a validation test using the FD-SOC model.

The number of electrons in the outer radiation belt (at 4–8 L-
shell distances) is modulated by the solar wind, exhibiting size
distributions of electron peak fluxes with power law slopes of
αP ≈ 1.5–2.1 (Crosby et al. 2005). The variation of the power
law slope is mostly attributed to variations of the orbits of the
microsatellites (STRV-1a and 1b) that record the electron bursts
at different intersections of the radiation belt with the orbits.
Nevertheless, the mean value averaged over different years and
L-shell distances, αP = 1.7 ± 0.2, is quite consistent with the
theoretical prediction αP = 1.67 of the FD-SOC model. The

radiation belt can be considered as an SOC system, where the
input is driven by solar wind electrons, which become trapped
in the outer radiation belt, while magnetic variations modulate
the untrapping of electrons by a self-organizing loss-cone angle,
producing avalanches of electrons bursts.

4.5. Solar Flares

Solar flares have been interpreted as an SOC phenomenon
since 1991 (Lu & Hamilton 1991) and numerous studies have
been performed to establish the size distributions of various
solar flare parameters measured in HXRs, SXRs, EUV, and
radio wavelengths. A representative selection of power law
slopes from size distributions of solar flare length scales (αL),
flare areas (αA), time durations (αT ), peak fluxes (αP ), and
fluences or energies (αE) is given in Table 1 (see references
in footnote of Table 1). We note that most of the power law
slopes measured in HXR, SXR, and EUV agree well with the
theoretical predictions of our FD-SOC model, i.e., αL = 3.0,
αA = 2.0, αT = 2.0, αP = 1.67, and αE = 1.50, say
typically within 5% to 10%. The remaining differences can be
attributed to the different instrumental bias and the different
analysis methods (threshold definition, preflare background
subtraction, temperature bias) of the observations. Also the peak
fluxes observed in radio wavelengths are commensurable with
the predictions for incoherent emission mechanisms, such as
gyrosynchrotron emission in microwave bursts. Only the solar
energetic particles (SEPs) appear to have a flatter distribution
than predicted, which has been interpreted in terms of a selection
bias for large events (Cliver et al. 2012), or alternatively in terms
of the geometric dimensionality of the SOC system (Kahler
2013). In summary, except for the SEP events, solar flares
observed in almost all wavelengths are in agreement with the
FD-SOC model and provide the strongest support for SOC
models among all astrophysical phenomena.

What are the physical mechanisms in an SOC system that
produce solar flares. The solar corona is considered to be a multi-
component SOC system, where each active region or quiet Sun
region represents a different SOC sandpile, with its own spatial
(finite-size) boundary, lifetime, and flaring rate. Interestingly,
the statistics of a single SOC system (one active region) seems
not to be significantly different from the statistics of an ensemble
of SOC systems (in the entire corona), except for a different
largest-event cutoff (Kucera et al. 1997). The energy input comes
ultimately from build-up of non-potential magnetic fields (with
electric currents) that is driven by subphotospheric magneto-
convection and magnetic flux emergence. The coronal SOC
system is slowly driven by continuous emergence of magnetic
flux, braiding, and stressing of the magnetic field. Once a
local threshold for instability is exceeded (kink instability,
torus instability, tearing mode instability, etc.), an avalanche of
magnetic energy dissipation is triggered that ends in a fractal-
diffusive phase. The dissipated energy can be converted into
thermal energy of heated plasma (visible in SXRs and EUV),
and into kinetic energy of accelerated particles (detectable in
HXRs and in gyrosynchrotron emission in radio wavelengths).
The fact that we measure similar power law slopes in all
wavelengths (HXR, SXR, EUV, radio) implies that all converted
energies are approximately proportional to the emitting volume,
i.e., E ∝ Vf T . Only SEP events and coherent emission in
radio wavelengths show a much flatter power law slope, which
indicates a nonlinear scaling law E ∝ (Vf T )γ or a selection
bias for large events.
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4.6. Stellar Flares

Stellar flares have been observed in small numbers during a
few hours with the Hubble Space Telescope (Robinson et al.
1999), the Extreme Ultraviolet Explorer (EUVE; Audard et al.
2000; Kashyap et al. 2002; Güdel et al. 2003; Arzner & Güdel
2004; Arzner et al. 2007), and the XMM-Newton (Stelzer et al.
2007), which produced size distributions of flare energies (time-
integrated EUV fluxes) with power law slopes in a range of
αE = 2.17 ± 0.25 (Table 1). These values are significantly
steeper than derived for solar flare energies (αE ≈ 1.5–1.6) but
are expected for small samples near the exponential fall-off at
the upper end of the size distribution (Aschwanden 2011a). In
addition, since plasma cooling extends the SXR and EUV flux
beyond the time interval of energy release, the fluence of the
largest flares may be over estimated for the largest solar and
most stellar flare events.

Much larger statistics of stellar flares became available re-
cently from the Kepler mission: 373 flaring stars were identi-
fied in a search for white-light flares on ≈ 23,000 cool dwarfs
in the Kepler Quarter 1 long cadence data (Walkowicz et al.
2011; Maehara et al. 2012); a total of 1547 superflares (sev-
eral orders of magnitude larger than solar flares) were detected
on 279 G-type (solar-like) stars (Notsu et al. 2013; Shibayama
et al. 2013). The flare energies were estimated from the time-
integrated bolometric luminosity in visible light. Similar energy
size distributions were found as in earlier smaller samples (with
EUVE), with power law slopes of αE = 2.0 ± 0.2 for flares on
all G-type stars, and αE = 2.3 ± 0.3 for flares on slowly rotat-
ing G-type stars (Maehara et al. 2012; Shibayama et al. 2013).
We show the size distribution for the total sample of 1538 stel-
lar flares in Figure 7 (middle panel), which has a power law
slope of αE = 2.04 ± 0.13. From Kretzschmar (2011, Table 1
therein), we derive a scaling law between the bolometric fluence
(total solar irradiance; which is equivalent to the bolometric en-
ergy Eb) and the GOES 1–8 Å peak flux Px (Figure 7, top
panel),

Eb ∝ P (0.78±0.13)
x . (40)

Using this scaling law we can derive the distribution of GOES
peak fluxes of the stellar flares,

N (Px)dPx ∝ N (Eb[Px])
dEb

dPx

dPx ∝ P −1.81±0.12
x dPx, (41)

which is consistent with the size distribution of GOES fluxes
directly obtained by applying the scaling law of Kretzschmar
(2011) given in Equation (40), with a power law slope of αP =
1.88 ± 0.09 (Figure 7, bottom). Interestingly, the so obtained
peak flux αP ≈ 1.88 agrees better with the theoretical prediction
αP = 1.67 of our FD-SOC model, than the bolometric fluence.
This may indicate that the bolometric fluence is not an accurate
proxy of the flare energy or flare volume, possibly due to a
nonlinear scaling of the bolometric fluence with flare energies.

4.7. Pulsars

Pulsars exhibit intermittent irregular radio pulses, besides
the regular periodic pulses that are synchronized with their
rotation period. The irregular pulses indicate some glitches in
the positive spin-ups of the neutron star, possibly caused by
sporadic unpinning of vortices that transfer momentum to the
crust (Warzawski & Melatos 2008), which was interpreted as
an SOC system (Young & Kenny 1996). A size distribution
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Figure 7. Scaling law of the total solar irradiance (TSI) and the GOES 1–8 Å
peak flux based on a linear regression fit (solid line) to data from Kretzschmar
(2011) is shown, i.e., Eb ∝ P 0.78±0.13

x (top panel). A linear relationship is
indicated with a dotted line. The bolometric flare energy of 1538 stellar flares
observed with Kepler is histogrammed, yielding a size distribution with a power
law slope of αE = 2.04 ± 0.13 (middle panel), and the inferred size distribution
of GOES fluxes using the scaling law of Kretzschmar (2011), yielding a power
law slope of αP = 1.88 ± 0.09 (bottom panel).

of the radio fluxes from the Crab pulsar exhibited a power
law distribution with slopes in the range of αP = 3.06–3.50
(Argyle & Gower 1972; Lundgren et al. 1995). A similar value
of αP = 2.8 ± 0.1 was found for PSR B1937+21 (Cognard
et al. 1996). Statistical measurements of the size distribution of
pulsar glitches obtained from about a dozen other pulsars yielded
a large scatter of values in the range of αP = −0.13, . . . , 2.4
(Melatos et al. 2008). The reasons for these inconsistent values
may be rooted in the small-number statistics (N = 6, . . . , 30)
and methodology (rank-order plots). If the more reliable values
from the crab pulsar hold up (αP ≈ 3.0), which are typical for
size distribution of length scales (αL = 3.0), physical models
that predict a proportionality between peak fluxes P and length
scales L should be considered.
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4.8. Soft Gamma-ray Repeaters

Soft gamma-ray repeaters, detected at energies of >25 keV
with the Compton Gamma Ray Observatory (CGRO) and the
Rossi X-ray Timing Explorer, exhibited size distributions with
fluences in the range of αE = 1.43–1.76 (Gogus et al. 1999,
2000), which is quite consistent with the values measured
from solar flares at the same energies and predicted by our
FD-SOC model (αE = 1.5). However, the physical mechanisms
of soft gamma-ray repeaters are entirely different from solar
flares, believed to originate from slowly rotating, extremely
magnetized neutron stars that are located in supernova remnants
(Kouveliotou et al. 1998, 1999), where neutron star crust
fractures occur, driven by the stress of an evolving, ultrastrong
magnetic field in the order of B � 1014 G (Thompson &
Duncan 1996). The fact that solar flares and soft gamma-ray
repeaters exhibit the same energy size distribution, although the
underlying physical processes are entirely different, supports
the universal applicability of our FD-SOC model.

4.9. Black Hole Objects

Cygnus X-1, the first galactic X-ray source that has been iden-
tified as a black-hole candidate, emits HXRs pulses with a time
variability down to 1 ms, which is attributed to bremsstrahlung
X-ray pulses from mass infalling toward the black hole and the
resulting turbulence in the accretion disk. Observations with
Ginga and Chandra exhibit complex 1/f noise spectra and size
distributions of peak fluxes with very steep power law slopes
of αP ≈ 7.1 (Negoro et al. 1995; Mineshige & Negoro 1999),
which have been interpreted in terms of SOC models applied
to accretion disks (Takeuchi et al. 1995; Mineshige & Negoro
1999). Such steep values of the power law slope of peak fluxes
are difficult to understand in terms of our standard FD-SOC
model, which predicts αP = 1.67. They exclude a linear scaling
between the peak flux P and the emitting volume V covered
by an X-ray pulse. Such a steep slope can only be produced
by an extremely weak dependence of the X-ray peak flux P on
the avalanche volume V, requiring a quenching mechanism that
limits every fluctuation to almost the same level. The cellular
automaton model of Mineshige & Negoro (1999), which can
produce power law size distributions with such steep slopes of
αP ≈ 7, indeed prescribes a non-random distribution of time
scales for large pulses (shots), where the occurrence of large
pulses is suppressed for a certain period after each large pulse.

4.10. Blazars

Blazars (BL Lacertae objects) are high-polarization quasars
and optically violent variable stars, which exhibit a high degree
of fluctuation in radio and X-ray emission due to their particular
orientation with the jet axis almost coaligned with our line
of sight. Light curves from GX 0109+224 were analyzed
and found to exhibit a 1/f noise spectrum, i.e., P (ν) ∝
ν−p with p = 1.57–2.05, and a size distribution of peak
fluxes with a power law slope of αP = 1.55, and have been
interpreted in terms of an SOC model (Ciprini et al. 2003). This
value is quite consistent with the prediction of our standard
FD-SOC model (αP = 1.67), which suggests that the peak flux
P emitted (in optical and radio wavelengths) is proportional to
the emitting volume V. The agreement between observations and
the theoretical prediction supports the universal applicability of
the FD-SOC model.

4.11. Cosmic Rays

Cosmic rays are high-energetic particles that propagate
through a large part of our universe and are accelerated by galac-
tic and extragalactic magnetic fields. Cosmic-ray energy spectra
span over a huge range of E = 109–1021 eV, where the lower
limit of ≈ 1 GeV corresponds to the largest energies that can
be accelerated in solar flares and coronal mass ejections. This
cosmic-ray energy spectrum exhibits an approximate power law
function with a mean slope of αE ≈ 3.0 (Figure 8, bottom right).
A more detailed inspection reveals actually a broken power law
with a slope of αE1 ≈ 2.7 below the knee at Eknee ≈ 1016 eV,
and a slope of αE2 ≈ 3.3 above the knee. The two energy
regimes are associated with the particle origin in galactic space
(E � Eknee) and extragalactic space (E � Eknee).

If we interpret a cosmic-ray energy spectrum as a size
distribution of particle energies, we can apply our universal
SOC model. The driver of the SOC system is a generation
mechanism of seed populations of charged particles, which are
mostly bound to astrophysical objects in a collisional plasma.
A critical threshold is given by transitions of the particles from
collisional to collisionless plasma (such as in the “run-away
regime”), where a particle can freely be accelerated, either by
Fermi first-order or diffusive shock acceleration. The subsequent
particle transport combined with numerous acceleration steps
during every passage of suitable electric fields or shock fronts
represents the build-up of an avalanche, until the particle hits
Earth’s upper atmosphere where it is detected by a shower of
secondary particles. If we could observe all end products of an
avalanche, we would expect an energy spectrum of αE = 1.5.
In reality, the energy spectrum of cosmic rays is αE ≈ 3.0,
assuming that the detected energies are proportional to the
avalanche volume. How can we explain this discrepancy? A
power law index of this value is expected for the size distribution
of length scales, N (L) ∝ L−3 (Equation (1)). Therefore, a
similar energy spectrum of N (E) ∝ E−3 can only be produced
if the energy E is proportional to the length scale L, requiring
that the fractal volume Vf (t) ∝ r(t)D3 has a fractal dimension
of D3 = 1.0. Such a scaling can be arranged if only a linear
subvolume of an entire three-dimensional avalanche is observed,
which is indeed the case for in situ detection at Earth, since the
origin of the cosmic-ray avalanche is located far away. The
situation is visualized in Figure 8. In solar flares, on the other
hand, almost all energetic particles accelerated during a flare lose
their energy in the chromosphere, and thus, we can detect the
entire energy content of an avalanche event by remote-sensing.
This is not possible in cosmic rays, because we cannot detect
in situ all energy losses of cosmic-ray particles that originated
isotropically from the same avalanche, in a remote place such
as in a supernova or black hole. Another aspect that our
FD-SOC model predicts is the random walk diffusion during
its propagation, which is consistent with the current thinking of
cosmic-ray particle transport.

Adopting the resulting scaling law between the energy E
of a cosmic-ray particle and the Euclidian length scale L that
a cosmic-ray particle has traveled at the time of detection,
E ∝ L, which is expected for direct electric field acceleration
in a voltage drop, as well as for any other particle acceleration
mechanism with a fixed amount of energy extraction per distance
increase, dE/dL ≈ const, we can even determine the distance to
the origination site of the cosmic-ray particle. The cosmic-ray
spectrum shown in Figure 8 has a knee at Efree ≈ 0.5×1016 eV,
which marks the distance of the Earth to the center of our
galaxy (Lgal ≈ 50 lt-yr or Lgal ≈ 5 × 1022 cm). The Euclidean
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Figure 8. Energy of solar flares is proportional to the avalanche volume, which is probed in its entire three-dimensional volume by remote sensing via soft or hard
X-rays (top left), while the energy of cosmic rays detected in situ is inferred from a linear sub-volume of the entire three-dimensional avalanche only (top right). The
predicted energy size distributions are therefore different, with N (E) ∝ E−1.5 based on the three-dimensional Euclidean volume for solar flares, (bottom left; Crosby
et al. 1993), and N (E) ∝ E−3.0 based on a one-dimensional sub-volume for cosmic rays (bottom right; credit: Simon Swordy, University of Chicago).

(A color version of this figure is available in the online journal.)
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Table 2
Physical Mechanisms Operating in Self-organized Criticality Systems

Phenomenon Energy Input Instability threshold Energy output
(Steady Driver) (Criticality) (Intermittent Avalanches)

SOC-related Systems
Sandpile Gravity (dripping sand) Angle of repose Sand avalanches
Superconductor Magnetic field change Phase transition Vortex avalanches
Ising model Temperature increase Phase transition Atomic spin-flip
Tea kettle Temperature increase Boiling point Vapor bubbles
Earthquakes Tectonic stressing Dynamical friction Rupture area
Forest fire Tree growth Fire ignition point Burned area
BTW cellular automaton Input at random nodes Critical threshold Next-neighbor redistribution

ASTROPHYSICS:
Lunar craters Meteorite production Lunar collision Lunar impact craters
Asteroid belt Planetesimals Critical mass density Asteroids
Saturn ring Gravitational disturbances Collision rate Saturn ring particles
Magnetospheric substorm Solar wind Magnetic reconnection Auroral bursts
Radiation belt Solar wind Magnetic trapping/untrapping Electron bursts
Solar flares Magnetic stressing Magnetic reconnection Nonthermal particles
Stellar flares Magnetic stressing Magnetic reconnection Nonthermal particles
Pulsar glitches Neutron star spin-up Vortex unpinning Neutron starquakes
Soft gamma-ray repeaters Magnetic stressing Star crust fracture Neutron starquakes
Black-hole objects Gravity Accretion and inflow X-ray bremsstrahlung pulses
Blazars Quasar jets Jet direction jitter Optical radiation pulses
Cosmic rays Galactic magnetic fields (run-away) Acceleration threshold High-energy particles

distance where a cosmic-ray particle with a maximum energy
of Emax ≈ 5 × 1020 erg originated is then,

Lmax ≈ Lgal

(
Emax

Eknee

)
, (42)

which yields Lmax ≈ 5 × 1027 cm, which corresponds to about
10% of the size of our universe (Runi ≈ 4 × 1028 cm). Since
the intergalactic and extragalactic magnetic fields have different
field strengths, the diffusion coefficient of cosmic-ray particles
is also expected to be different in these two regimes, which may
explain the slightly different power law slopes below and above
the galactic boundary Lgal and the related energy Eknee.

The lowest energies of the cosmic-ray spectrum are at
Emin ≈ 109 eV. Using the same linear scaling of energy with
length scale,

Lmin ≈ Lgal

(
Emin

Eknee

)
, (43)

we estimate a distance of Lmin ≈ 1016 cm or 200 AU, which
is located somewhat outside of the termination shock of our
heliosphere.

5. DISCUSSION

In this paper, we developed a macroscopic description of
SOC systems that is designed to reproduce the same statistical
distributions of observables as from SOC processes occurring
on a microscopic level and observed in nature. The microscopic
processes cannot be treated analytically due to the large number
of degrees of freedom and the nonlinear nature of the dynamic
SOC systems. The complexity of the microscopic fine structure
during SOC avalanches is captured here in a approximative
form by three simple parameters: the fractal dimension Dd, the
Euclidean dimension d, and the diffusive spreading exponent β.
What is common to all SOC processes is a system-wide critical
threshold level that determines whether “avalanching” occurs
or not. For an overview, we list the physical mechanisms that
operate in SOC systems in Table 2, containing a few classical

SOC systems, as well as astrophysical applications that we
described in this paper. We are aware that we use the term
“SOC” in a more general sense than originally envisioned, in
the spirit of the definition given in the introduction: SOC is
a critical state of a nonlinear energy dissipation system that
is slowly and continuously driven toward a critical value of a
system-wide instability threshold, producing scale-free, fractal-
diffusive, and intermittent avalanches with power law–like size
distributions.

Let us discuss the meaning of self-organizing criticality in
astrophysical applications in some more detail. Essentially, we
have three aspects of an SOC system: (1) the energy input of
the slow and steady driver, (2) the self-organizing criticality
condition or instability threshold, and (3) the energy output in
form of intermittent avalanches (Table 2). The driver is neces-
sary to keep an SOC process going, because the SOC process
would stop otherwise as soon as the system becomes subcrit-
ical. The instability threshold zcrit represents a bifurcation of
two possible dynamic outcomes: either nothing happens when
the state in every node of an SOC system is below this criti-
cal threshold (z < zcrit), while an avalanche or nonlinear en-
ergy dissipation event is triggered when a threshold exceeds
at some location (z � zcrit). In classical SOC or SOC-related
systems, the self-organizing threshold can be a critical slope or
angle of repose (sandpile), a phase transition point (supercon-
ductor, Ising model, tea kettle), a fire ignition threshold (forest
fires), or dynamic friction (earthquakes). In astrophysical sys-
tems, the instability thresholds or critical values are equally
diverse, such as thresholds for magnetic instability with subse-
quent magnetic reconnection (magnetospheric substorms, solar
flares, stellar flares), magnetic stressing (neutron star quakes, ac-
cretion disk flares), particle acceleration thresholds, such as the
“run-away regime” (SEPs, cosmic rays), vortex unpinning (neu-
tron stars), critical mass density for accretion (planetesimals, as-
teroids, accretion disk flares, black-hole objects), gravitational
disturbances and unstable orbits that trigger collisions (Saturn
ring particles, lunar craters), etc. All these instability thresholds
have system-wide critical values, so that nothing happens below
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those values, while avalanching happens above their value. Since
these instability thresholds or critical values occur system-wide,
set by physical conditions of the internal microscopic processes,
the system is self-organizing or self-tuning in the sense that it
maintains the same critical values throughout the system. This
follows the basic philosophy of Bak’s sandpile, where a crit-
ical slope is maintained system-wide, internally given by the
critical value where the gravitational and the dynamic friction
forces are matching. For magnetic reconnection processes, for
instance, critical values are given by the kink-instability cri-
terion or by the torus instability criterion. For the formation
of planetesimals (as well as for the formation of planets and
stars), a critical mass density is required where accretion by
self-gravity overcomes diffusion. Thus, all these astrophysical
processes fulfill the basic requirement of our SOC definition,
i.e., these nonlinear systems are slowly driven toward a criti-
cal value of a system-wide instability threshold. All of these
astrophysical processes exhibit scale-free, fractal-diffuse, and
intermittent avalanches, with power law–like size distributions.

6. CONCLUSIONS

We can summarize the conclusions of this study as follows.

1. We propose the following general definition of an SOC sys-
tem: SOC is a critical state of a nonlinear energy dissipation
system that is slowly and continuously driven toward a crit-
ical value of a system-wide instability threshold, produc-
ing scale-free, fractal-diffusive, and intermittent avalanches
with power law–like size distributions. This generalized
definition expands the original meaning of self-tuning “crit-
icality” to a wider class of critical points and instability
thresholds that have a similar (nonlinear) dynamical be-
havior and produce similar (power law–like) statistical size
distributions.

2. A macroscopic description of SOC systems has been de-
rived from first principles that predicts power law functions
for the size distributions of SOC parameters, as well as
universal values of the power law slopes, for geometric
and temporal parameters, and some observables (flux and
energy if they are proportional to the emitting fractal vol-
ume). This macroscopic SOC model exhibits power law
scaling, universality, spatio-temporal correlations, separa-
tion of time scales, fractality, and intermittency. The pre-
dicted power law slopes depend only on three parameters:
on the Euclidean dimension d of the system, the fractal di-
mension Dd, and the diffusive spreading exponent β. Note
that the spreading exponent is an adjustable parameter in
the FD-SOC model and can accommodate classical diffu-
sion, sub-diffusive, or hyper-diffusive transport, and thus
represents in some sense an ordering parameter, while it
cannot be adjusted in a branching process or in a BTW
model with a given redistribution rule.

3. The FD-SOC model makes the following predictions: For
the case of three-dimensional space (d = 3) and classical
diffusion (β = 1), the predicted values for the average
fractal dimension is Dd ≈ (1 + d)/3 = 2, the power
law slopes are αL = 3 for length scales, αT = 2 for
time scales, αF = 2 for fluxes or energy dissipation rates,
αP = 5/3 for peak fluxes or peak energy dissipation rates,
and αE = 3/2 for fluences (i.e., time-integrated fluxes)
or (total) avalanche energies, assuming proportionality
between the time-integrated fractal avalanche volume and
the observed fluence.

4. Among the astrophysical applications, we find agreement
between the predicted and observed size distributions for
the following phenomena: lunar craters, asteroid belts,
Saturn ring particles, auroral events during magnetospheric
substorms, outer radiation belt electron bursts, solar flares,
soft gamma-ray repeaters, and blazars. This agreement
between theory and observations supports the universal
applicability of the fractal-diffusive SOC model.

5. Discrepancies between the predicted and observed size dis-
tributions are found for stellar flares, pulsar glitches, black
holes, and cosmic rays, but some can be reconciled with
modified SOC models. The disagreement for SEP events is
believed to be due to a selection bias for large events. For
stellar flares, we conclude that the bolometric fluence is not
proportional to the dissipated energy and volume. Pulsar
glitches are subject to small-number statistics. Black hole
pulses have extremely steep size distributions that could
be explained by a suppression of large pulses for a certain
period after a large pulse. For cosmic rays, the energy size
distribution implies a fractal dimension of D3 = 1 and a
proportionality between energy and length scales (E ∝ L)
according to our FD-SOC model, which can be explained
by the nature of in situ detections that capture only a small
fraction of the avalanche volume.

Whatever the correct interpretations are for those phenomena
with unexpected size distributions, the application of our stan-
dard FD-SOC model can reveal alternative scaling laws that can
be tested in future measurements. A major achievement of our
standard FD-SOC model is the fact that it can predict and ex-
plain, in a universal way, the power law indices of different SOC
parameters (lengths, durations, fluxes, energies, waiting times)
in most of the considered astrophysical applications, which do
not depend on the details of the underlying physical mecha-
nisms. We have also to appreciate that the macroscopic approach
of SOC statistics does not depend on the microscopic fine struc-
ture of each SOC process, unlike the mathematical/numerical
SOC models, which produce different power law slopes depend-
ing on the assumed redistribution rule, and partially do not fulfill
universality. Our macroscopic fractal-diffusive SOC model may
also be suitable to correctly describe the statistics of other, SOC-
related, nonlinear processes, such as percolation or turbulence,
an aspect that needs to be investigated in future.
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