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ABSTRACT

The energy and momentum feedback from young stars has a profound impact on the interstellar medium (ISM),
including heating and driving turbulence in the neutral gas that fuels future star formation. Recent theory has
argued that this leads to a quasi-equilibrium self-regulated state, and for outer atomic-dominated disks results in
the surface density of star formation ΣSFR varying approximately linearly with the weight of the ISM (or midplane
turbulent + thermal pressure). We use three-dimensional numerical hydrodynamic simulations to test the theoretical
predictions for thermal, turbulent, and vertical dynamical equilibrium, and the implied functional dependence of
ΣSFR on local disk properties. Our models demonstrate that all equilibria are established rapidly, and that the expected
proportionalities between mean thermal and turbulent pressures and ΣSFR apply. For outer disk regions, this results
in ΣSFR ∝ Σ√

ρsd, where Σ is the total gas surface density and ρsd is the midplane density of the stellar disk (plus
dark matter). This scaling law arises because ρsd sets the vertical dynamical time in our models (and outer disk
regions generally). The coefficient in the star formation law varies inversely with the specific energy and momentum
yield from massive stars. We find proportions of warm and cold atomic gas, turbulent-to-thermal pressure, and
mean velocity dispersions that are consistent with solar-neighborhood and other outer disk observations. This study
confirms the conclusions of a previous set of simulations, which incorporated the same physics treatment but was
restricted to radial-vertical slices through the ISM.
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1. INTRODUCTION

Disk galaxies like the Milky Way are long-lived systems,
evolving (in the absence of interactions) only on timescales
of several orbits. The interstellar medium (ISM) also evolves
slowly overall, such that there are well-defined ISM properties
when averaged over a spatial domain of several disk scale
heights and several tenths of an orbit. On small spatial scales,
however, the ISM is highly structured, and can change rapidly
as both thermal and dynamical timescales are short. These short
timescales suggest that the ISM will be able to evolve to a quasi-
equilibrium state, in which heating balances cooling, and in
which the mean pressure in the diffuse gas at any height balances
the weight of the overlying ISM. The ideas that thermal and
vertical “hydrostatic” equilibrium should approximately apply
are widely held (see, e.g., the reviews of Ferrière 2001; Cox
2005) and have been studied in detail over many decades in
the astrophysical literature. Turbulence has only been studied
more recently with the advent of numerical hydrodynamic
simulations, but it too is expected to reach an equilibrium
between driving and dissipation (cf. Stone et al. 1998; Mac
Low 1999). Although thermal pressure plays a role, turbulent
pressure is believed to be the most important contributor to
vertical force balance in the atomic ISM (Lockman & Gehman
1991).

In models of the atomic ISM, the heating rate per particle,
and therefore the equilibrium thermal pressure, is generally
treated as an independent parameter, set based on empirical

values of ambient UV, X-rays, and cosmic rays, with far-UV
(FUV) from young stars the dominant term (e.g., Wolfire et al.
1995, 2003). Many processes may contribute to turbulent driving
(e.g., Elmegreen & Scalo 2004), but those associated with
feedback from young stars are likely to be the most important
on scales relevant for vertical dynamical equilibrium within
the disk. Similar to the case for thermal pressure, empirical
measures of the supernova (SN) rate have often been used to
obtain predictions for the turbulent pressure in ISM models
(e.g., McKee & Ostriker 1977).

For a self-consistent ISM model, the equilibrium pressure
obtained by balancing various gain and loss terms must be
the same as the equilibrium pressure that offsets the vertical
weight of the gas. Ostriker et al. (2010, hereafter OML10) and
Ostriker & Shetty (2011, hereafter OS11) used this principle,
in combination with relations between turbulent and thermal
driving and the star formation rate (SFR), to obtain predictions
for the equilibrium SFR in disk systems regulated by feedback.
In this model framework, the radiation fields and SN rates that
control thermal and turbulent pressure in the ISM are no longer
considered independent (or empirically determined) parameters,
but must evolve (together with an evolving SFR) to levels
that yield pressures that are consistent with vertical dynamical
equilibrium.

Kim et al. (2011, hereafter Paper I) tested this feedback-
regulated simultaneous equilibrium model via numerical hydro-
dynamic simulations for the outer disk regime in which gas is
primarily atomic (both warm and cold), while Shetty & Ostriker
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(2012, hereafter SO12) tested the equilibrium model with sim-
ulations of the starburst regime in which gas is mainly molec-
ular and cold. Both of these numerical studies demonstrated
that models for a wide range of parameters indeed evolve to
a quasi-steady, turbulent state. Key physical quantities, such as
the SFR surface density (ΣSFR), disk scale height, midplane ther-
mal and turbulent pressures, warm and cold gas fractions, and
mass-weighted velocity dispersions, reach well-defined mean
values within an orbital time. The saturation of these statis-
tical properties enables a comparison with the theory of self-
regulated star formation developed in OML10 and OS11, and
also provides calibrations of certain parameters that enter the
theory.

In this paper, we return to the atomic-dominated outer
disk regime, but extend the simulations of Paper I from two-
dimensional radial-vertical domains to fully three-dimensional
(3D) models. We explore a wide range of total gas surface
density Σ ∼ 2.5–20 M� pc−2 and midplane density of stars
plus dark matter ρsd ∼ 0.003–0.45 M� pc−3. We also include
sheared galactic rotation, focusing on model families in which
the angular speed Ω ∝ Σ so that the Toomre parameter in
the gas is constant (Q ∼ 2 for saturated-state turbulence ve-
locity dispersion ∼7 km s−1). Our feedback prescription in-
cludes both time-dependent heating and turbulent driving de-
pendent on the SFR, as described in Section 2.1. We also vary
the heating efficiency frad ∼ 0.2–5 that connects the heating
rate and the SFR surface density. This allows us to explore
how, e.g., varying dust abundance (which would alter radia-
tion penetration and heating) may affect the saturated state and
evolution.

As we shall describe, our simulations show that realistic
SFRs are obtained when momentum feedback at the levels
expected from the corresponding Type II SN rates are included.
This affirms the conclusions reached in our previous numerical
studies (Paper I; SO12). Although detailed prescriptions differ,
recent work from other groups has reached similar conclusions
regarding the ability of sufficient momentum feedback to self-
regulate star formation at realistic levels (e.g., Dobbs et al.
2011; Hopkins et al. 2011; Agertz et al. 2013). Beyond simply
demonstrating that feedback is effective in self-regulating star
formation, we also show (following Paper I) that SFRs obey a
near-linear scaling with the pressure of the diffuse ISM, and we
relate the coefficient to the inverse of the specific momentum
injected by massive stars. This explains empirical correlations
of molecular gas and star formation with pressure identified by
Blitz & Rosolowsky (2004, 2006) and Leroy et al. (2008). Our
numerical results confirm the conclusion of Paper I that both
warm and cold atomic gas are expected to be present in the ISM
for a wide range of conditions, consistent with observations
of both the solar-neighborhood (Heiles & Troland 2003) and
distant outer disk regions (Dickey et al. 2009; Pineda et al.
2013) of the Milky Way.

The plan of this paper is as follows. In Section 2, we sum-
marize our numerical methods and the parameter sets chosen
for our simulations modeling varying galactic environments.
In Section 3, we present our results, including an overview of
evolution (Section 3.1), statistics of saturated-state properties
for different models (Section 3.2), comparison with the predic-
tions for vertical dynamical, thermal, and turbulent equilibrium
based on these statistics (Section 3.3), and comparison with the
theoretical predictions for equilibrium star formation scalings
and rates (Section 3.4). We summarize and discuss our main
conclusions in Section 4.

2. NUMERICAL METHODS AND MODELS

2.1. Numerical Methods

We consider local “shearing box” models of galactic disks in
three dimensions (e.g., Kim et al. 2002, 2003). The axes in the
local Cartesian frame are x ≡ R − R0 and y ≡ R0(φ − Ωt),
where R0 is the galactocentric radius at the center of the
domain and Ω ≡ Ω(R0) is the angular velocity at R0; z is
the vertical coordinate centered on the galactic midplane. The
background velocity in this local frame relative to the domain
center (at x = y = z = 0) has the form v0 = −qΩxŷ, where
q ≡ −(d ln Ω/d ln R)|R0 is the local shear rate. We assume
a flat rotation curve, such that we set q = 1 and the local
epicyclic frequency is κ = √

2Ω. The shearing box formulation
in the local frame includes tidal gravity and Coriolis force terms
in the horizontal direction. In addition, we include a (fixed)
vertical gravitational potential to model the stellar disk and dark
matter halo, self-gravity of gas, cooling and heating, and thermal
conduction. The resulting set of equations (see, e.g., Piontek &
Ostriker 2007; Paper I) is

∂ρ

∂t
+ ∇ · (ρv) = 0, (1)

∂v
∂t

+ v · ∇v = − 1

ρ
∇P − 2� × v + 2qΩ2xx̂ − ∇Φ + gsd, (2)

∂e

∂t
+ ∇ · (ev) = −P∇ · v − ρL + K∇2T , (3)

∇2Φ = 4πGρ, (4)

where gsd is the external gravity, ρL is the net cooling rate
per unit volume, and K = 4 × 107 erg s−1 cm−1 K−1/[1 +
(0.05 cm−3/n)] is the conductivity adopted such that thermal
instability is resolved on our grid (Koyama & Ostriker 2009a;
Paper I). Other symbols have their usual meanings. We assume
that the gas has cosmic abundance so that the gas pressure is
P = 1.1nkBT , where n = ρ/(1.4mp) is the number density
of hydrogen nuclei. An ideal gas law is assumed with internal
energy density e = (3/2)P .

Since the vertical gradient scales of stellar disks and dark
matter halos are generally much larger than those of gaseous
disks (and vertical domain sizes in our simulations), we adopt the
simple approach of taking external gravity as a linear function
of the vertical coordinate z:

gsd = −4πGρsdzẑ, (5)

where ρsd is the stellar plus dark matter volume density at the
midplane.

The net volumetric cooling function is given by ρL ≡
n[nΛ(T ) − Γ]. For the diffuse ISM, radiative cooling by the
C ii 158 μm fine-structure line and by Lyα line emission is
dominant at low and high temperature, respectively, whereas
grain photoelectric heating by FUV radiation with energy
6 eV < hν < 13.6 eV is dominant in both the cold and warm
phases (Bakes & Tielens 1994). We adopt the fitting formula for
the cooling function from Koyama & Inutsuka (2002):

Λ(T ) = 2 × 10−19 exp

(−1.184 × 105

T + 1000

)

+ 2.8 × 10−28
√

T exp

(−92

T

)
erg cm3 s−1, (6)

with temperature T in degrees Kelvin.
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We adopt the same star formation feedback prescription as
in Paper I. This includes momentum feedback (to represent the
radiative stage of blasts produced by SN explosions) at a rate
proportional to the SFR, together with a time-dependent heating
rate that is also proportional to the SFR (representing radiative
heating from young, massive stars). We scale the heating rate
relative to the fiducial solar-neighborhood value adopted by
Koyama & Inutsuka (2002), Γ0 = 2×10−26 erg s−1 (see below).

The reader is referred to Paper I for a full description of the
feedback prescription. Here we only give a brief summary. Star
formation is taken to occur only when the density of the grid zone
exceeds a threshold5 ncr = 200 cm−3 (Γ/Γ0)0.2. The probability
of massive star formation in a given zone with simulation time
step Δt is

P∗ = Ṁ∗
m∗

Δt, (7)

where Ṁ∗ is the expected SFR for a given grid zone, and
m∗ = 100 M� represents the total mass in stars (averaged
over the initial mass function) per SN (cf., Kroupa 2001). The
expected SFR for a grid zone with density ρ > ρcr is taken as

Ṁ∗ = ρ̇∗ΔV = εff
ρΔV

tff(ρ)
, (8)

where ΔV = ΔxΔyΔz = (2 pc)3 is the volume element of the
grid zone, εff is the star formation efficiency per free-fall time
of dense, self-gravitating gas, and tff(ρ) ≡ [3π/(32Gρ)]1/2 is
the free-fall time of a given grid zone. We take a fiducial value
εff = 0.01, which is consistent with theory and observations of
dense ISM gas (Krumholz & McKee 2005; Krumholz & Tan
2007; Krumholz et al. 2012). We note that based on the study
of SO12, the adopted value of εff can be varied by an order of
magnitude with little effect on the resulting mean SFR, provided
that the threshold density is sufficiently high compared to the
mean value in the diffuse ISM.

When a massive star forms, we immediately apply momentum
feedback in its vicinity, i.e., we neglect time delays (see below
and Paper I). For each feedback event, we first take spatial
averages within a sphere of radius rsh and redistribute mass,
momentum, and thermal energy with their respective averaged
values. We adopt a fixed value rsh = 10 pc as representative
of the shell formation epoch (Cioffi et al. 1988; Koo & Kang
2004). We then add to the local momentum density a quantity
with a form ρv(r) = psh(r/rsh)2r̂, where r is the position
vector measured from the center of the SN feedback region, and
psh = 5p∗/(4πr3

sh) is the momentum density at r = rsh. This
injects a total radial momentum p∗ to the surrounding medium;
physically, p∗ represents the value of the shell momentum in
the radiative stage of a SN remnant. Thornton et al. (1998)
studied the evolution of expanding spherical SN remnants with
realistic radiative cooling and found that the shell momentum is
p∗ ∼ (1–4)×105 M� km s−1 at the time of maximum luminosity
and a factor ∼2.5 larger after shell cooling has declined, with the
highest values corresponding to low metallicity. The simulations
of Cioffi et al. (1988) and Blondin et al. (1998) found similar
values at solar metallicity. In the present work, we adopt

5 The threshold density is calculated based on the thermal equilibrium state
of cold gas, ncr = Γ/Λ(Tcr), where Tcr is the threshold temperature. For our
net cooling function, the Jeans length is λJ ≈ 1.4T

3/4
cr e−46/Tcr (Γ/Γ0)−1/2 pc

(Paper I). By taking λJ = 5 pc, Tcr (and hence ncr) can be found as a function
of Γ/Γ0. Using a power-law fit, we obtain ncr given in the main text,
representing the maximum density for which the Jeans length is well resolved
(cf. Truelove et al. 1997) at our adopted spatial resolution of 2 pc.

p∗ = 3×105 M� km s−1. For uniform-density conditions, there
is only a weak dependence of the radiative-stage momentum on
the ambient density (p∗ ∝ n̄−0.12), because momentum in the
Sedov stage varies as ∼ESN/vshock and the onset of the radiative
stage is the point at which vshock drops enough that post-shock
cooling becomes strong (see, e.g., the physical discussion in
Blondin et al. 1998). For a strongly clumped medium, however,
both the radius at the radiative stage and the net momentum
injection may depart more strongly from our adopted value; this
will be evaluated with future simulations.

For radiative feedback, we count the number of recent massive
star formation events over tbin to calculate the recent SFR:

ΣSFR = N∗m∗
LxLytbin

, (9)

where N∗ stands for the total number of massive stars formed
during the time interval (t − tbin, t). In contrast to Paper I,
our simulation domain is sufficiently large in the azimuthal
direction so that tbin can be set to the realistic lifetime of OB
stars, tFUV = 10 Myr (Parravano et al. 2003).6 We assume a
simple linear relationship between the heating rate Γ, the mean
FUV radiation field JFUV, and the SFR surface density ΣSFR
(see OML10; Paper I) normalized relative to solar-neighborhood
conditions, such that

Γ = Γ0

[
frad

(
ΣSFR

ΣSFR,0

)
+

(
JFUV,meta

JFUV,0

)]
. (10)

In Equation (10), we adopt the solar-neighborhood fiducial
heating rate Γ0 = 2 × 10−26 erg s−1 from Koyama & Inutsuka
(2002), the SFR surface density in the solar neighborhood
ΣSFR,0 = 2.5 × 10−3 M� kpc−2 yr−1 from Fuchs et al. (2009),
and JFUV,meta = 0.0024JFUV,0 to represent the metagalactic
FUV radiation field (Sternberg et al. 2002). As in Paper I,
we introduce a parameter frad to allow for variable heating
efficiency at a given SFR relative to our adopted parameters.
By increasing/decreasing frad, we can also represent greater/
lesser penetration of FUV through the ISM as would occur for
lower/higher dust abundance.

We utilize the Athena code with the van Leer integrator
(Stone & Gardiner 2009), Roe’s Riemann solver, a piecewise
linear spatial reconstruction scheme, and the orbital advection
method for a shearing box (Stone & Gardiner 2010). In addition,
we adopt a fast Fourier transform Poisson solver method with
treatment of shearing horizontal coordinates as introduced by
Gammie (2001) and with vacuum vertical boundary conditions
as introduced by Koyama & Ostriker (2009a). We include
cooling/heating and thermal conduction terms in an operator
split manner. For the net cooling, we use an implicit solution
method based on Simpson’s rule and apply subcycling to limit
the maximum temperature change to <50% of previous value
over all grid zones. If the change of temperature exceeds 50% of
the previous value, we halve the timestep and repeat subcycles
for the specific grid zone until the temperature change for one
hydrodynamic timestep update is smaller than 50%.

Similar to Paper I, we mention several caveats regarding the
current simulations. First, the feedback from SN explosions is

6 For the QA02 model, which has extremely low surface density, we adopt
tbin = 40 Myr to partly compensate for the fact that the domain of influence of
FUV radiation would be approximately four times larger than the horizontal
area of our simulation box. Note that this time is still very short compared to
the orbit time torb and the vertical oscillation period tosc for the QA02 model.
Also, for 3DS and XZ models with smaller azimuthal domain size (see
Section 2.2), we extend tbin to 0.5torb.
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realized solely via expanding SN remnants rather than injecting
thermal energy, which would create a hot ISM (McKee &
Ostriker 1977). More realistically, the hot ISM would occupy
a significant volume even near the midplane (e.g., Hill et al.
2012), together with the cold and warm phases in approximate
pressure equilibrium. Due to its large-scale height, however,
most of the hot gas does not participate in supporting the weight
of the warm/cold diffuse gas, although expansion of highly
overpressured hot SN remnants is crucial in driving turbulence
within the surrounding warm/cold ISM; we model the latter
effect. Based on our conclusion that the SFR is regulated by
midplane total pressure (Section 3.4), we believe that our main
findings are robust, in spite of our simplified treatment of SNe.
We note that using preliminary simulations in which SNe are
modeled with thermal energy input (rather than momentum
input), we recover similar results for SFRs to those reported
here.

A second caveat is that the feedback we apply is instanta-
neous, whereas a more realistic treatment of stellar evolution
would include inputs from stellar winds and expanding H ii re-
gions (e.g., Mac Low & Klessen 2004) prior to SN explosions.
Since SNe are the most powerful driving source of turbulence av-
eraged over the ISM (p∗/m∗ for stellar winds and expanding H ii
regions would be an order of magnitude lower than that of SNe;
see OS11), we believe that the current simplified approach is an
adequate first approximation for modeling SFR self-regulation
in diffuse-dominated regions. Feedback from earlier stages of
massive star evolution would, however, affect the detailed prop-
erties and lifetimes of gravitationally bound clouds (GBCs), so
including these effects will be important in modeling higher-Σ
galactic regions where most of the ISM mass is in GBCs rather
than diffuse structures. For this reason, we confine ourselves
here to the regime Σ � 20 M� pc−2 in which the observed ISM
is predominantly in the diffuse atomic component. When spiral
arms or bars are taken into account, the time delay between
the epochs of star formation and feedback would likely also be
important (e.g., Kim et al. 2010; Seo & Kim 2013).

2.2. Model Parameters

We run the same set of models as in Paper I, which covers
a wide range of outer disk conditions for nearby galaxies.
Our parameters are the gas surface density Σ, the stellar plus
dark matter density at the midplane ρsd, and the galactic
rotational speed Ω. We have five model series: QA, QB, S,
G, and R. For all series, the angular speed of galactic rotation
varies as Ω = 28 km s−1 kpc−1(Σ/10 M� pc−2), such that the
gaseous Toomre stability parameter Qg ≡ κσx/(πGΣ) would
be constant for fixed radial (x̂) gas velocity dispersion σx

(Qg ∼ 2 for σx = 7 km s−1). In the QA and QB series, ρsd ∝ Σ2

such that the stellar Toomre parameter would also be constant
within each series. These two series differ only in the ratio
of self-to-external (i.e., gaseous-to-stellar+dark matter) gravity:
s0 = 0.28 and 0.07 for the QA and QB series, respectively,
where s0 ≡ πGΣ2/(2σ 2

z ρsd) (cf., Kim et al. 2002). The QA
and QB series may thus each be thought of as representing a
sequence of radii in a Qg = const, Q∗ = const galaxy, where
the stellar disk is a factor of four more massive in the QB series
than in the QA series. For the S series we fix ρsd and vary Σ,
whereas for the G series we fix Σ and vary ρsd. For the R series,
we vary frad for the fiducial model QA10, to test the effect of
varying the heating efficiency or dust shielding for FUV. We
list the model parameters in Table 1. In all models, the orbital
period is torb = 2π/Ω = 220 Myr (Ω/28 km s−1 kpc−1)−1 =

Table 1
Model Parameters

Model Σ ρsd torb Lz s0 frad

(M� pc−2) (M� pc−3) (Myr) (pc)

QA02 2.5 0.0031 878 2048 0.28 1.0
QA05 5.0 0.0125 439 1024 0.28 1.0
QA07 7.5 0.0281 293 768 0.28 1.0
QA10 10.0 0.0500 219 512 0.28 1.0
QA15 15.0 0.1125 146 384 0.28 1.0
QA20 20.0 0.2000 110 256 0.28 1.0

QB02 2.5 0.0125 878 1024 0.07 1.0
QB05 5.0 0.0500 439 768 0.07 1.0
QB07 7.5 0.1125 293 512 0.07 1.0
QB10 10.0 0.2000 219 384 0.07 1.0
QB15 15.0 0.4500 146 256 0.07 1.0

S02 2.5 0.0500 878 1024 0.02 1.0
S07 7.5 0.0500 293 768 0.16 1.0
S15 15.0 0.0500 146 512 0.62 1.0
S20 20.0 0.0500 110 512 1.10 1.0

G01 10.0 0.0125 219 1024 1.10 1.0
G02 10.0 0.0250 219 768 0.55 1.0
G10 10.0 0.1000 219 512 0.14 1.0
G40 10.0 0.4000 219 384 0.03 1.0

R02 10.0 0.0500 28 512 0.28 0.2
R05 10.0 0.0500 28 512 0.28 0.5
R25 10.0 0.0500 28 512 0.28 2.5
R50 10.0 0.0500 28 512 0.28 5.0

Notes. Physical input parameters are the same as in Paper I. Full 3D simulations
with Lx = Ly = 512 pc are run only for models QA02, QA05, QA10, QA20,
and R50 (bold face in first column). “Slim” 3D simulations (Lx = 512 pc,
Ly = 32 pc) are run for all parameters.

220 Myr (Σ/10 M� pc−2)−1, which we take as the time unit in
our presentation.

We take Lx = 512 pc and Lz = 4Hw for the horizontal
and vertical domain sizes. Here Hw ≡ cw/(4πGρsd)1/2 is a
nominal Gaussian scale height of warm gas with cw = 7 km s−1,
which varies from model to model. In all models, we vary
the number of grid zones such that the grid resolution7 is
Δx = Δy = Δz = 2 pc. In the azimuthal direction, we consider
two different domain sizes: one set is full 3D simulations using
azimuthal domain size Ly = Lx = 512 pc (hereafter 3DF
models), and the other set uses a slimmer azimuthal domain size
Ly = 32 pc (hereafter 3DS models). Since full 3D simulations
require considerable computational resources, it is impractical to
run 3DF models for all parameter values. Our 3DS models cover
the whole parameter space, while the 3DF models cover just the
QA and R series (see Table 1). In forthcoming sections, we shall
show that 3DF and 3DS models yield essentially the same results
in terms of statistical properties at saturation. We also compare
these properties to the results from the simulations of Paper I,
which followed the evolution of two-dimensional radial-vertical
slices through the disk; these are denoted as “XZ” models. In
the remainder of this paper, we use suffixes 3DF, 3DS, and XZ
to distinguish models with the same parameters but different
azimuthal domain size. The term “3D models” denotes both
3DF and 3DS models.

7 Although the resolution is a factor of two lower than in Paper I, we have
confirmed that the key physical properties are converged even at lower
resolution than we adopt here.
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Figure 1. Snapshots of density in the solar-neighborhood-like model QA10-3DF (logarithmic color scale) at early evolutionary stages, t/torb = 0 (top), 0.1 (middle),
and 0.2 (bottom). The left and right columns display horizontal and vertical slices through the computational domain at z = 0 and y = 0, respectively. The initial
disk rapidly separates into two phases due to thermal instability, with the cold gas settling to the midplane (Kim et al. 2010). Gravity causes the cold gas to collect
into GBCs where star formation occurs, and produces feedback, starting at t/torb = 0.1 (middle row). Energy injected by SNe drives turbulence, expanding the disk
vertically (see evolution from middle right to lower right) and helping to create large-scale clumpy/filamentary structure.

(A color version of this figure is available in the online journal.)

3. SIMULATION RESULTS

3.1. Overview of Time Evolution and Disk Properties

In this subsection, we describe details of time evolution and
properties of our disk models. We begin with our fiducial model,
QA10, which adopts Σ = 10 M� pc−2, ρsd = 0.05 M� pc−3,
and Ω = 28 km s−1 kpc−1, similar to conditions in the solar
neighborhood. Figure 1 shows evolving density slices of the
QA10-3DF model in the horizontal XY-plane (at the disk

midplane z = 0; left) and radial-vertical XZ-plane (y = 0;
right) at t/torb = 0 (top), 0.1 (middle), and 0.2 (bottom).
The initial gas distribution (top row of Figure 1) follows a
Gaussian vertical density profile with scale height of ∼80 pc.
In the initial conditions, we impose a Gaussian random density
perturbation with flat spectrum at wavenumbers smaller than
kLz/2π = 8 and total amplitude of 10%. This choice of initial
conditions allows rapid growth of thermal instability near the
midplane, evolving toward two-phase thermal equilibrium (see
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Figure 2. Time evolution of (a) the density-weighted vertical scale height H,
(b) the SFR surface density ΣSFR, and (c) the gaseous Toomre stability parame-
ter Qg for models QA10-3DF (black), QA10-3DS (red), and QA10-XZ (blue).
These models differ only in their azimuthal domain sizes. The evolution is sim-
ilar for all models. The temporal fluctuations in ΣSFR are smeared out in models
QA10-3DS and QA10-XZ due to the larger binning adopted for ΣSFR (see
text). The temporal fluctuations in Qg are smeared out in model QA10-3DF
due to a much larger averaging volume compared to models QA10-3DS and
QA10-XZ. The mean values of H ∼ 80 pc, ΣSFR ∼ 1.5×10−3 M� kpc−2 yr−1,
and Qg ∼ 1.7 after saturation (t/torb > 1) are essentially the same in all models
(see Table 2).

(A color version of this figure is available in the online journal.)

Kim et al. 2010).8 At the midplane, thermal instability forms
cold cloudlets, and subsequent gravitational accretion leads to
growth of more massive clouds. The first star formation and
SN feedback event is triggered at t ∼ 0.1torb ∼ 20 Myr (see
middle row of Figure 1), and many subsequent events follow.
The feedback events disperse cold cloudlets and swell the gas
disk vertically (see bottom row of Figure 1). Dispersed gas
slows as it climbs vertically in the combined potential of stars
and gas, and then falls back to the midplane. Gravitational
condensation of clouds into larger structures leads to new high-
density regions with subsequent star formation and feedback
events. Driven by these processes, the gas disk undergoes a
quasi-periodic cycle of vertical “breathing” oscillations with
period of tosc ∼ 0.5(π/Gρsd)1/2 (see Figure 2), equal to
∼60 Myr for model QA10. This is half of the free-particle
vertical oscillation period because cloudlets collide at the
midplane.

Figure 2 presents the time histories of (a) the disk scale
height H ≡ [

∫
ρz2dV/

∫
ρdV ]1/2, (b) the SFR surface density

8 Although the specific initial conditions affect the initial model evolution,
evolution at later stages and the resulting saturated-state statistical properties
are similar irrespective of the choice of initial conditions.

Figure 3. Time evolution of (a) thermal and (b) turbulent pressures at the
midplane, together with the mass-weighted (c) thermal and (d) turbulent velocity
dispersions of the diffuse component for models QA10-3DF (black), QA10-3DS
(red), and QA10-XZ (blue). Boxcar averages with a window of Δt = 0.02torb
are taken to reduce noisy spikes and show fluctuations clearly.

(A color version of this figure is available in the online journal.)

ΣSFR, and (c) the gaseous Toomre stability parameter Qg ≡
κσx/πGΣ, with σ 2

x ≡ ∫
(P + ρv2

x)dV/
∫

ρdV , for models
QA10-3DF (black), QA10-3DS (red), and QA10-XZ (blue). All
quantities reach quasi-steady saturated values after one orbit,
implying that statistical measures can be computed starting at
this epoch. All three models, with different azimuthal domains,
are overall in very good agreement with each other, confirming
the reliability of our previous XZ models and the 3DS models
for the purposes of assessing mean values of H and ΣSFR. The
scale height, the SFR surface density, and the Toomre parameter
have mean values 〈H 〉 = 81, 80, and 88 pc, 〈ΣSFR〉 = 1.5,
1.5, and 1.7 × 10−3 M� kpc−2 yr−1, and 〈Qg〉 = 1.7, 1.8,
and 1.8 for QA10-3DF, QA10-3DS, and QA10-XZ models,
respectively. The angle brackets 〈〉 denote a time average over
t/torb = 1–2 (note that in Paper I, time averages are taken for
t/torb = 2–3). Since QA10-3DS and QA10-XZ models adopt
tbin = 0.5torb > tosc for the purpose of computing ΣSFR and
heating rates, the temporal fluctuation in ΣSFR is reduced for
these models. Similarly, the spiky profiles shown in the QA10-
3DS and QA10-XZ models are not seen in the QA10-3DF model
due to the larger spatial averaging volume.

Figure 3 plots the time histories at the midplane of (a) thermal
and (b) turbulent pressure in all QA10 models. As demonstrated
in Paper I, the total pressure at the midplane, Ptot, is crucial
because it must match the vertical weight of the ISM (i.e., dy-
namical equilibrium pressure), and because it is also directly
related to ΣSFR via feedback. Since Ptot consists of both thermal
and turbulent components, which are independently connected
to the SFR (see Section 3.3 and Paper I), it is useful to cal-
culate the thermal and turbulent pressures separately by taking
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Table 2
Disk Properties 1

Model log ΣSFR log Pth/kB log Pturb/kB n0 Hdiff

(1) (2) (3) (4) (5) (6)

QA02-3DF −4.11 ± 0.32 2.23 ± 0.16 2.52 ± 0.35 0.19 ± 0.13 306 ± 111
QA02-3DS −4.04 ± 0.09 2.29 ± 0.23 2.56 ± 0.54 0.14 ± 0.11 337 ± 100
QA02-XZ −4.20 ± 0.23 1.94 ± 0.35 2.61 ± 1.51 0.05 ± 0.08 342 ± 111

QA05-3DF −3.43 ± 0.27 2.70 ± 0.15 3.19 ± 0.35 0.53 ± 0.34 160 ± 53
QA05-3DS −3.43 ± 0.06 2.69 ± 0.19 3.19 ± 0.38 0.35 ± 0.24 170 ± 29
QA05-XZ −3.52 ± 0.12 2.53 ± 0.22 3.03 ± 0.72 0.39 ± 0.30 174 ± 37

QA10-3DF −2.82 ± 0.12 3.23 ± 0.10 3.69 ± 0.15 1.46 ± 0.40 85 ± 13
QA10-3DS −2.84 ± 0.03 3.25 ± 0.11 3.86 ± 0.42 1.47 ± 0.55 84 ± 12
QA10-XZ −2.74 ± 0.11 3.24 ± 0.15 3.85 ± 0.60 1.12 ± 0.58 92 ± 18

QA20-3DF −2.18 ± 0.06 3.79 ± 0.04 4.20 ± 0.09 3.43 ± 0.58 47 ± 4
QA20-3DS −2.20 ± 0.02 3.86 ± 0.06 4.32 ± 0.23 3.83 ± 0.80 47 ± 5
QA20-XZ −2.06 ± 0.10 3.86 ± 0.07 4.19 ± 0.63 2.76 ± 0.70 51 ± 5

R50-3DF −3.02 ± 0.30 3.64 ± 0.19 3.60 ± 0.49 1.31 ± 0.88 99 ± 29
R50-3DS −3.05 ± 0.05 3.72 ± 0.09 3.82 ± 0.53 1.34 ± 0.46 92 ± 13
R50-XZ −2.96 ± 0.22 3.69 ± 0.16 3.31 ± 0.37 1.29 ± 0.58 97 ± 20

Notes. The temporal averages and standard deviations are taken over t/torb = 1–2 for 3D models and t/torb = 2–3
for XZ models. Column 2: logarithm of the SFR surface density (M� kpc−2 yr−1). Columns 3 and 4: logarithm of the
midplane thermal and turbulent pressures over kB (cm−3 K). Column 5: midplane number density of hydrogen (cm−3).
Column 6: scale height of the diffuse component (pc). See Section 3.2 for definitions.

volume-weighted horizontal averages as

Pth =
∫ z=+Δz/2
z=−Δz/2

∫ ∫
P Θ(n<nGBC)dxdydz∫ z=+Δz/2

z=−Δz/2

∫ ∫
Θ(n<nGBC)dxdydz

, (11)

Pturb =
∫ z=+Δz/2
z=−Δz/2

∫ ∫
ρv2

z Θ(n<nGBC)dxdydz∫ z=+Δz/2
z=−Δz/2

∫ ∫
Θ(n<nGBC)dxdydz

. (12)

Here, to average only over diffuse gas, Θ(X) is 1 if the
logical argument “X” is true and 0 otherwise. We choose
nGBC ≡ 50 cm−3 as the minimum density for GBCs that are
compressed by self-gravity to higher thermal pressure than their
surroundings.9 In Figure 3, we have applied a boxcar aver-
age with window size of Δt = 0.02torb to show time evo-
lution clearly. The mean thermal and turbulent pressures at
the midplane are quite similar among all QA10 models (see
also Columns 3 and 4 of Table 2). Turbulent pressures in the
QA10-3DS and QA10-XZ models fluctuate with larger ampli-
tude than in the QA10-3DF model because of their smaller
averaging domains.

Figures 3(c) and (d), respectively, show the mass-weighted
thermal and turbulent vertical velocity dispersions of the diffuse
component, given by

vth,diff ≡
(∫

P Θ(n < nGBC)dxdydz∫
ρΘ(n < nGBC)dxdydz

)1/2

,

vz,diff ≡
(∫

ρv2
z Θ(n < nGBC)dxdydz∫

ρΘ(n < nGBC)dxdydz

)1/2

. (13)

Since the mass-weighted velocity dispersions averaged over the
whole simulation volume relate most closely to quantities that

9 We have checked that the exact choice of nGBC does not significantly affect
our statistical results for diffuse gas provided it is high enough to safely
separate out high-pressure cold gas.

can be directly observed, we use these velocities as observational
proxies in our simulations. The mass-weighted thermal velocity
dispersions are ∼4 km s−1 for all QA10 models, while the
turbulent velocity is higher in model QA10-XZ (〈vz,diff〉 =
7.2 ± 2.3 km s−1) than in models QA10-3DS (〈vz,diff〉 = 5.1 ±
1.0 km s−1) and QA10-3DF (〈vz,diff〉 = 4.7 ± 0.5 km s−1).

Since the midplane values of both thermal and turbulent
pressures are in good agreement among all QA10 models, the
differences of the mass-weighted turbulent velocity dispersions,
which are averaged over the whole simulation domain, must
arise from differences in the vertical profiles. To see this clearly,
we define the mass-weighted, horizontally averaged velocity
dispersions as functions of z:

vth(z) =
[∫

P Θ(n < nGBC)dxdy∫
ρΘ(n < nGBC)dxdy

]1/2

,

vz(z) =
[∫

ρv2
z Θ(n < nGBC)dxdy∫

ρΘ(n < nGBC)dxdy

]1/2

. (14)

Figure 4 plots vertical profiles of (a) 〈vth(z)〉 and (b) 〈vz(z)〉
based on time averages for the QA10-3DF (black), QA10-3DS
(red), and QA10-XZ (blue) models. The vertical profiles of
thermal velocity dispersion 〈vth(z)〉 show similar trends for all
QA10 models, increasing as |z| increases since the warm gas
dominates at high-|z|. However, the vertical profiles of turbulent
velocity dispersion 〈vz(z)〉 in QA10-3D models are nearly flat or
even decrease at high |z|, while 〈vz(z)〉 in the QA10-XZ model
secularly increases with |z|. This is presumably because the total
mass swept up by an expanding shell is larger in 3D models
(spherical volume ∝ r3) than in XZ models (cylindrical volume
∝r2rsh for Ly = 2rsh). Although the feedback is normalized for
the XZ models such that the injected momentum is the same as
for 3D models (see Paper I), the resulting turbulent velocities at
high |z| are smaller in 3D because the larger swept-up mass in
3D reduces the mean velocity at large |z|. Near the midplane,
at |z| � H (i.e., where density is within a factor ∼3 of the
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Figure 4. Temporally and horizontally averaged velocity dispersion pro-
files (solid curves) in z (see Equation (14)) for (a) vertical turbulent and
(b) thermal components. The mean standard deviations of temporal fluctua-
tions are indicated as errorbars in the bottom-right corner. In (a), the dashed
curves and right axis show the corresponding density profiles.

(A color version of this figure is available in the online journal.)

midplane value; see right axis in Figure 4(a)), turbulent velocity
dispersions for XZ models are similar to those for 3D models.

Figure 5 shows slices through the volume for a snapshot
(t/torb = 1.12) of model QA10-3DF after a quasi-steady
state is reached. The structure of the ISM is filamentary, with
high porosity and relatively large-scale structures due to the
combined action of SN events and self-gravity. Some high-
density cloudlets are located near SN shell boundaries, as
shown in Paper I, although cloudlets are also present far from
these shells. In Figure 6, we show (a) the column density of
gas projected onto the horizontal plane and (b) the volume
density averaged along the azimuthal (y) direction, for the
same snapshot. Although Figure 6(a) contains a large-scale
diagonal feature, examination of model animations over several
orbits shows that this kind of sheared structure grows and then
disperses before reaching very large amplitude. This is likely
because continuous kinetic energy input from SN feedback
keeps the turbulent velocity dispersion large enough to maintain
Qg within the range between 1.5 and 2 (see Figure 2(c)) in which
swing amplification is not strong (e.g., Kim & Ostriker 2001,
2007; Kim et al. 2002).

Even without large-scale swing amplification, self-gravity
(together with the gravity of the stellar disk) plays an impor-
tant role in creating ISM structures. Based on inspection of
the evolving structure in our models, cold cloudlets are seen to
be drawn together by gravity to create more massive clouds.
This process is possible only because the ISM is a two-phase
cloud/intercloud medium. The thermal pressure of cold
cloudlets approximately matches that of the surrounding warm
medium at their surfaces, but the density in the cold medium
is two orders of magnitude higher than the warm medium. As
a consequence, cold cloudlets move freely through the warm
medium, falling toward the midplane after reaching a maximum

height. Self-gravity then aids their mutual collection to create
a larger structure. The successive snapshots shown in Figure 7
illustrate the formation of a massive cloud by this process.

Statistical distributions of the density, pressure, and tempera-
ture provide a detailed picture of the thermodynamic state in our
models. Figure 8 displays time-averaged probability distribution
functions (PDFs) of the QA10-3DF model, based on time aver-
ages over t/torb = 1–2. In Figure 8(a), the mass fraction of gas
as a function of number density and thermal pressure is shown
in logarithmic color scale. The majority of gas remains near
the thermal equilibrium curve (solid line) defined by the time-
averaged heating rate 〈Γ〉 = 0.61Γ0. Figures 8(b)–(d) plot (b)
thermal pressure, (c) number density, and (d) temperature PDFs
by mass (solid lines) and volume (dotted lines). The dashed lines
in Figures 8(b) and (c) show the mean midplane thermal pressure
〈Pth/kB〉 = 1.7 × 103 cm−3 K and the mean midplane number
density 〈n0〉 = 2.0 cm−3 for the QA10-3DF model. The thermal
pressure lies mainly between the minimum value for cold gas
in equilibrium, Pmin, and the maximum value for warm gas in
equilibrium, Pmax, with a peak at the mean midplane pressure.
However, a significant amount of gas (∼30%–35% by mass) has
pressure higher and lower than Pmax and Pmin, respectively. The
pressure distribution in our model is in part similar to that of
driven turbulence simulations in thermally bistable flows (e.g.,
Gazol et al. 2005, 2009; Gazol & Kim 2013; Saury et al. 2013).
Unlike those models, however, our models also contain high-
pressure cold gas confined by self-gravity, and low-pressure
warm gas found at high altitude. Shock-heated warm gas at
high pressure is observed in both our models and in the non-
self-gravitating, unstratified simulations of other groups.

The density and temperature PDFs show bimodal distribu-
tions with cold, dense and warm, rarefied phases as expected
in the classical two-phase ISM (e.g., Field et al. 1969; Piontek
& Ostriker 2004). However, unlike the classical picture, the
distribution shows broadened peaks with a substantial fraction
of gas out of equilibrium. These differences are due to sev-
eral factors: strong turbulence that compresses and rarefies the
gas continuously, SN events that produce thermal transitions (in
part induced by expanding strong shocks), and a time-dependent
heating rate such that the thermal equilibrium curve itself fluc-
tuates. Since the level of turbulence in our models is transonic
or slightly subsonic for warm gas, the unimodal PDFs expected
in highly supersonic turbulent flows (Gazol et al. 2005) are not
found here. Although velocity dispersions are ∼20% higher in
the QA10-XZ model than in the 3D models, we find that the
PDFs for all QA10 models are very similar since the differences
in turbulence are small within one scale height (|z| � 80 pc)
where the bulk of mass is found (see Figure 4).

In all our simulations, disk evolution at later times (t > torb)
is similar to that of the fiducial model. All models reach
a quasi-steady state that includes strong turbulence, cyclic
formation and destruction of GBCs, vigorous stirring of the
population of small cloudlets, and quasi-periodic vertical disk
oscillations. The vertical oscillations in our simulations are
correlated over the whole simulation domain. This is likely
because the initial collapse of non-turbulent, out-of-equilibrium
gas to the midplane occurs simultaneously over the whole
region.10 Vertical oscillations would be present in reality, but
they would be correlated only over a smaller horizontal domain,

10 Real galactic disks span ∼10 kpc in radius, and any local vertical
oscillations over scales of a few hundred pc would be difficult to discern. In
addition, the presence of spiral arms, bars, minor mergers, etc. may limit the
development of local oscillations driven by feedback from star formation.
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Figure 5. Density structure in solar-neighborhood model QA10-3DF at t/torb = 1.12, after a fully turbulent state is reached. The colorbar labels log n (cm−3) in five
different planes (x = ±Lx/2, y = ±Ly/2, and z = 0). Cloudy/filamentary structure is evident, as well as dispersal of dense gas above and below the midplane by
feedback-driven turbulence.

(A color version of this figure is available in the online journal.)

Figure 6. (a) Surface density projected on the horizontal plane for the same snapshot shown in Figure 5. The radial direction is along x, and the azimuthal direction is
along y. The colorbar labels log Σ (M� pc−2). (b) Radial-vertical density structure based on azimuthal (i.e., along y) average of the same snapshot shown in Figure 5.
The colorbar labels log(n) (cm−3).

(A color version of this figure is available in the online journal.)
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Figure 7. Example of cloud growth by gravitationally driven accretion. The top and bottom rows show snapshots on the radial-vertical and horizontal planes,
respectively, of the number density averaged over the region −85 pc � y � −35 pc (dotted lines in the bottom row) and −50 pc � z � 50 pc (dotted lines in the top
row) at t/torb = 1.09 (left), 1.12 (center), and 1.15 (right). The mean perturbed gravitational potential ΔΦ ≡ Φ − Φ(z), where Φ denotes the horizontally averaged
potential, in units of (km s−1)2 is overlaid as contours. Cold cloudlets fall to the midplane, accrete surrounding gas, and merge together to grow into a massive cloud
that dominates the gravitational potential.

(A color version of this figure is available in the online journal.)

comparable to the size that is affected by feedback from a
given star-forming region. For all model series, ΣSFR and Ptot
increase as the gas surface density (Σ) and/or the depth of the
gravitational potential well (depending on Σ and on the stellar
density ρsd) increase. The velocity dispersion vz,diff is more or
less constant independent of model parameters. Detailed scaling
relations and statistical properties will be addressed below.

For models with low gas and stellar densities, the star
formation events become rare and stochastic, leading to large
amplitude fluctuations in ΣSFR. In high-frad models, the heating
rate is highly sensitive to ΣSFR, again resulting in large temporal
variation in ISM properties and ΣSFR. The XZ models in Paper I
were unable to fully address the effect of strong temporal
fluctuation of the SFR in low-ΣSFR and high-frad models because
it was necessary to adopt tbin much longer than the realistic
lifetime of massive stars (cf. Figure 2(b)). In the present 3DF
models with large azimuthal domains, we can adopt tbin close to
the FUV luminosity-weighted life time tFUV ∼ 10 Myr. Figure 9
plots the time evolution of ΣSFR for all 3DF models. Relative to
torb, the fluctuation periods of ΣSFR are similar for all the models
shown since the ratio tosc/torb ≈ 0.25Ω/(4Gρsd)1/2 = 0.27 is
constant. The low-density and high-frad models show order-of-
magnitude fluctuations in ΣSFR, while fluctuations are only at a
factor of 2–3 level for models at higher density and frad = 1. In
the high-frad model, the large fluctuations of the SFR are self-
reinforcing because fluctuations of the heating rate follow the
SFR as Γ ∝ fradΣSFR and the resulting fluctuations in cold gas
content lead to varying ΣSFR.

Figure 10 displays (a) the gas mass fraction in the
density–pressure phase plane, and (b) thermal pressure, (c)

number density, and (d) temperature PDFs of the R50-3DF
enhanced-heating model with frad = 5.0. While the ranges
of pressure, density, and temperature are similar to the QA10
frad = 1 model shown in Figure 8, this high-frad model shows
higher mean thermal pressure, a lower fraction of cold, dense
gas, and a broader peak in the pressure PDF. These differences
are a consequence of both the higher heating rate and increased
stochasticity of this model. For the R50-3DF model, the time
evolution of the SFR in Figure 9 shows two distinct levels of
ΣSFR rather than the moderate fluctuations about a mean value
seen for model QA10-3DF. Since the gas is approximately in
instantaneous thermal equilibrium at either the high or low ΣSFR
state, with either a high or low heating rate and the correspond-
ing equilibrium curve, traces of the two states are evident in
the distributions shown in Figure 10(a). As a consequence of
the well-separated high and low states, the time-averaged pres-
sure PDF is quite broad. In spite of the two-state behavior of
the R50-3DF model, the mean values of ΣSFR, Γ, Pth, and n0
are quite similar (see Table 2) to those in the R50-3DS and
R50-XZ models, in which fluctuations are reduced by adopting
tbin = 0.5 torb > tosc for computing the heating rate.

Detailed examination of our low-density models (QA02-3DF
and QA05-3DF) shows that stochasticity similarly leads to
broadened distributions of Pth compared to the fiducial model. In
real galaxies, regions with low gas and stellar densities also tend
to have lower metallicity, such that frad increases, which could
increase fluctuations even more compared to these models with
frad = 1. Even in highly stochastic 3DF models, however, we
find that the mean saturated-state properties are similar to those
found from XZ models, confirming the results of Paper I.
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Figure 8. Probability density distributions of gas properties for the QA10-3DF model. Time averages are taken after saturation, over t/torb = 1–2. (a) Logarithmic
mass fractions of QA10-3DF model in the n–P plane. The solid curve indicates the locus of thermal equilibrium for the mean heating rate 〈Γ〉 = 0.61Γ0. (b)–(d)
Mass-weighted (solid) and volume-weighted (dotted) PDFs for (b) thermal pressure, (c) number density, and (d) temperature. The dashed lines in (b) and (c) denote
the mean midplane thermal pressure 〈Pth/kB〉 = 1.7 × 103 cm−3 K and number density 〈n0〉 = 2.0 cm−3, respectively.

(A color version of this figure is available in the online journal.)

Figure 9. Time evolution of the SFR surface density ΣSFR for all 3DF models.
The amplitude of temporal fluctuations increases as ΣSFR decreases, because
the system is more stochastic.

(A color version of this figure is available in the online journal.)

3.2. Statistical Properties

All our models reach a quasi-steady state after two or three
vertical oscillation times (see Figure 9), which is <torb for our
model parameters. We thus investigate statistical properties of
3D models by averaging over t/torb = 1–2. Tables 2 and 3 list the
mean values and standard deviations of key physical quantities
used in Paper I to test the thermal/dynamical equilibrium model
of OML10 and OS11. In the tables, we present the results for
all 3DF models together with the corresponding 3DS and XZ
counterparts. In Figures 11–17, we also include results from
additional 3DS models without 3DF counterparts. Hereafter, in
reporting properties of the models, we use time averages over
t/torb = 1–2 for 3D models and t/torb = 2–3 for XZ models
(as in Paper I), unless stated otherwise. Angle brackets will be
omitted for convenience.

Column 1 of Tables 2 and 3 gives the name of each model,
consisting of the model name listed in Table 1 together with
suffixes of 3DF, 3DS, and XZ to indicate the simulation domain
size and geometry. In Table 2, Column 2 lists log ΣSFR in units
of M� kpc−2 yr−1. We list in Columns 3 and 4 log(Pth/kB)
and log(Pturb/kB), respectively, in units of cm−3 K. Column 5
gives the midplane hydrogen number density n0 of the diffuse
component in units of cm−3, defined in the same way with
Equation (11) but for number density n rather than thermal
pressure P in the integrand. Similarly, the scale height of
the diffuse gas Hdiff ≡ [

∫
ρz2Θ(n < nGBC)dV/

∫
ρΘ(n <

nGBC)dV ]1/2 is listed in Column 6 in units of pc.
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Figure 10. Same as Figure 8, but for model R50-3DF with high radiation feedback efficiency frad = 5.0. Comparing panel (a) to Figure 8(a), signatures of a “high”
and a “low” state are evident in this time-averaged distribution. For these states, the thermal equilibrium curve lies either above (“high” state) or below (“low” state) the
thermal equilibrium curve at the mean heating rate of 〈Γ〉 = 1.9Γ0 (heavy curve in panel (a)). The mean midplane thermal pressure is 〈Pth/kB〉 = 4.3 × 103 cm−3 K,
and the mean midplane number density is 〈n0〉 = 1.7 cm−3, as indicated in panels (b) and (c).

(A color version of this figure is available in the online journal.)

Table 3
Disk Properties 2

Model vz,diff vth,diff αv αP fdiff f̃w

(1) (2) (3) (4) (5) (6) (7)

QA02-3DF 4.33 ± 1.07 4.07 ± 0.57 2.13 ± 0.64 2.95 ± 1.70 0.99 ± 0.01 0.21 ± 0.17
QA02-3DS 4.73 ± 1.75 4.22 ± 0.62 2.26 ± 1.00 2.86 ± 2.49 0.99 ± 0.02 0.34 ± 0.14
QA02-XZ 6.20 ± 4.57 3.27 ± 0.78 4.59 ± 5.56 5.75 ± 16.94 0.92 ± 0.07 0.23 ± 0.12

QA05-3DF 5.03 ± 1.00 3.85 ± 0.78 2.71 ± 0.97 4.09 ± 2.73 0.95 ± 0.03 0.26 ± 0.16
QA05-3DS 5.11 ± 1.43 3.90 ± 0.26 2.72 ± 0.99 4.09 ± 3.02 0.96 ± 0.03 0.30 ± 0.05
QA05-XZ 6.28 ± 2.95 3.25 ± 0.43 4.74 ± 3.65 4.16 ± 5.46 0.90 ± 0.06 0.25 ± 0.07

QA10-3DF 4.67 ± 0.47 4.11 ± 0.26 2.29 ± 0.31 3.88 ± 1.21 0.88 ± 0.03 0.34 ± 0.06
QA10-3DS 5.11 ± 1.01 3.88 ± 0.23 2.73 ± 0.71 5.08 ± 4.06 0.87 ± 0.05 0.32 ± 0.05
QA10-XZ 7.23 ± 2.28 3.73 ± 0.42 4.75 ± 2.51 5.02 ± 5.73 0.77 ± 0.09 0.32 ± 0.07

QA20-3DF 5.05 ± 0.32 4.47 ± 0.22 2.27 ± 0.20 3.53 ± 0.58 0.72 ± 0.03 0.41 ± 0.05
QA20-3DS 5.71 ± 0.68 4.35 ± 0.18 2.72 ± 0.43 3.86 ± 1.55 0.71 ± 0.04 0.38 ± 0.04
QA20-XZ 6.94 ± 1.67 4.59 ± 0.22 3.29 ± 1.12 3.17 ± 3.16 0.54 ± 0.06 0.46 ± 0.05

R50-3DF 5.51 ± 1.18 5.35 ± 0.93 2.06 ± 0.59 1.92 ± 1.12 0.91 ± 0.07 0.61 ± 0.26
R50-3DS 4.48 ± 1.18 5.77 ± 0.21 1.60 ± 0.32 2.25 ± 1.54 0.91 ± 0.03 0.74 ± 0.06
R50-XZ 4.49 ± 1.85 5.70 ± 0.49 1.62 ± 0.52 1.42 ± 0.39 0.85 ± 0.07 0.73 ± 0.12

Notes. The temporal averages and standard deviations are taken over t/torb = 1–2 for 3D models and t/torb = 2–3 for XZ models. Columns 2
and 3: vertical turbulent and thermal velocity dispersions of the diffuse gas (km s−1). Columns 4 and 5: ratios of total pressure to thermal pressure
calculated from the mass-weighted velocity dispersions (αv) and the midplane pressures (αP ). Columns 6 and 7: mass fraction of the diffuse gas (fdiff ),
and the square of mass-weighted thermal to warm-medium thermal speed (v2

th,diff/c
2
w = f̃w) in the diffuse gas. See Section 3.2 for definitions.

In Table 3, Columns 2 and 3 list, respectively, vz,diff and vth,diff
in units of km s−1. In Columns 4 and 5, we list, respectively,
the ratios of total-to-thermal pressure defined in two different
ways, αv ≡ (v2

th,diff + v2
z,diff)/v

2
th,diff and αP ≡ (Pth + Pturb)/Pth.

Here, αv averages over the whole volume, while αP averages
only at the midplane. Column 6 gives fdiff , the mass fraction
of the diffuse component (n < nGBC), and Column 7 gives
f̃w ≡ v2

th,diff/c
2
w, the ratio of the mass-weighted sound speed
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Figure 11. (a) Vertical turbulent velocity dispersion of the diffuse gas vz,diff ,
(b) total (turbulent+thermal) velocity dispersion of the diffuse gas σz,diff , and
(c) total velocity dispersion of all the gas (diffuse + GBC) σz, as functions of
the SFR surface density ΣSFR. Results for all 3D models except the R series
are shown; the thick large symbols denote the results from 3DF models, while
the thin small symbols denote the results from 3DS models. The points and
errorbars give the mean values and standard deviations over t/torb = 1–2.
Mean values from the 3D models are vz,diff = 5.6 ± 0.6 km s−1, σz,diff =
6.9 ± 0.5 km s−1, and σz = 6.5 ± 0.4 km s−1. The horizontal dotted lines
indicate the mean values (vz,diff = 6.8 ± 0.6 km s−1, σz,diff = 7.7 ± 0.6 km s−1,
and σz = 7.0 ± 0.4 km s−1) from all XZ models (Paper I) except the R series.
Due to geometric effects, velocity dispersions from the XZ models are slightly
larger than those from the 3D models.

(A color version of this figure is available in the online journal.)

to the thermal velocity of warm gas (this is essentially equal to
the warm gas fraction of mass in the diffuse component); these
parameters are used in the OML10 theory.

Figure 11 plots the mean values of (a) vz,diff , (b) σz,diff ≡
(v2

z,diff + v2
th,diff )

1/2, and (c) the velocity dispersion of whole

medium σz ∼ f
1/2
diff σz,diff , as functions of ΣSFR for all 3D

models except the R series. The dotted horizontal line in
each panel denotes the mean value from all XZ models (the
models of Paper I). The mean values of all 3D models give
vz,diff = 5.6 ± 0.6 km s−1, σz,diff = 6.9 ± 0.5 km s−1, and
σz = 6.5 ± 0.4 km s−1. As in Paper I, we find that the velocity
dispersion is more or less constant over two orders of magnitude
in ΣSFR. Due to geometrical effects in the expansion of SN
remnants (see Section 3.1), turbulent velocity dispersions are
slightly smaller (about 18%) in 3D models than in XZ models.

Figure 12 plots the mean values of (a) αv , (b) αP , and (c) f̃w

as functions of ΣSFR for all 3D models except the R series. The
quantities αv and αP indicate whether the velocity dispersion
and pressure in the ISM is thermally (α < 2) or dynamically
(α > 2) dominated. The dotted lines in (a) and (b) indicate the
mean values of αv = 4.4 and αP = 4.5 found from XZ models
in Paper I. In XZ models, αv ∼ αP even though both vth(z)
and vz(z) vary significantly along the vertical direction since
the profiles have similar shape (see blue lines in Figure 4). In
contrast, the vertical profiles of thermal and turbulent velocity
dispersions have different shapes in 3D models (see black and

Figure 12. (a) Ratio of total-to-thermal velocity dispersion for the diffuse gas
αv ≡ 1 + v2

z,diff/v
2
th,diff for the velocity dispersion weighted by mass over the

whole domain; (b) ratio of total-to-thermal pressure for gas at the midplane
αP ≡ 1 + Pturb/Pth, and (c) ratio of mass-weighted thermal-to-warm-medium
thermal speed v2

th,diff/c
2
w = f̃w . Results for all 3D models except the R series

are shown. Symbols have the same meanings as in Figure 11. The dotted lines
in (a) and (b) are the mean values of all XZ models (Paper I), αv = 4.4 and
αP = 4.5. For 3D models, αP is consistent with the value in XZ models, but
αv is smaller (see text). The quantity f̃w (essentially the warm mass fraction)
ranges over 0.2–0.5 as in Paper I.

(A color version of this figure is available in the online journal.)

red lines in Figure 4). This results in differences between αv

and αP . Averaging over all models except the R series yields
αv = 2.9 and αP = 4.2, showing that the turbulent component
of the mass-weighted velocity dispersion underestimates the
midplane value. In the remaining sections, we will use αP as
a representative value, rather than αv . Figure 12(c) shows that
the warm mass fraction f̃w remains in the range 0.2–0.5 for
all models, as previously found in Paper I. The fiducial value
f̃w ∼ 0.5 adopted in OML10 is consistent with the range of our
simulations.

3.3. Comparison with Thermal/Dynamical Equilibrium Model

It is natural to expect that a disk system that reaches a
quasi-steady state satisfies vertical dynamical equilibrium in
an average sense. That is, the diffuse ISM must maintain force
balance between upward pressure forces (thermal and turbulent)
and downward gravitational forces (arising from the diffuse gas
itself as well as stars, dark matter, and GBCs; Piontek & Ostriker
2007; Koyama & Ostriker 2009b; OML10; Paper I). By taking
time and horizontal averages, the vertical momentum equation
in equilibrium can be written (OML10; Paper I) as Ptot = Ptot,DE
for

Ptot,DE ≡ fdiff
πGΣ2

4

{
(2 − fdiff) +

[
(2 − fdiff)

2

+
32σ 2

z,diffρsd

π2GΣ2

]1/2}
, (15)
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Figure 13. Top: total pressure of the diffuse gas measured in the simulations as
a function of Σ√

ρsd. The symbols denote the same meanings as in Figure 11.
The dashed and dotted lines show our best fit for all 3D models and XZ models,
respectively. The good agreement between the two confirms the reliability of
XZ models from Paper I. Bottom: relative differences between the measured
midplane pressure Ptot and the pressure predicted for dynamical equilibrium
Ptot,DE using Equation (15). The mean relative difference is only 12%, showing
that vertical dynamical equilibrium indeed holds in an average sense.

(A color version of this figure is available in the online journal.)

where Ptot,DE represents the weight of the diffuse ISM.11 Note
that in OML10, c2

wf̃wα was used instead of σ 2
z,diff , but here we

use the latter, as the total vertical velocity dispersion σz,diff is
directly measurable in our simulations. Since in Section 3.2 we
explicitly measure fdiff and σz,diff as well as Ptot for given input
parameters (Σ, ρsd), a direct comparison between Ptot,DE and Ptot
is possible.

Figure 13 gives measured total pressure Ptot as a function
of Σ√

ρsd for all 3D models. The relative difference between
measured and predicted (dynamical equilibrium) total pressure,
Ptot/Ptot,DE − 1, is shown in the bottom panel. The mean
relative difference is only 12%, showing that vertical dynamical
equilibrium indeed holds. For the models we consider here, in
which the external gravity exceeds the self-gravity of the diffuse
gas, the last term in the square root of Equation (15) is dominant,
and we expect

Ptot,DE ≈ fdiffσz,diffΣ(2Gρsd)1/2. (16)

If fdiffσz,diff is insensitive to model parameters (as in Paper I)
and Ptot ≈ Ptot,DE, then the midplane total pressure is expected
to correlate with Σ√

ρsd. This correlation is evident in the dashed
line in Figure 13; the best fit coefficient for the 3D model

11 In observational estimates, it is often assumed that all of the gas is in
vertical equilibrium. Equation (15) instead represents the case in which all of
the gas contributes to the vertical gravity, but only the diffuse gas (a fraction
fdiff of the total) is in vertical equilibrium. For outer disks (as studied here)
most gas is diffuse (fdiff ∼ 1), but for inner disks an increasing fraction of the
mass may be in GBCs that are at higher pressure than their surroundings.

results yields:

Ptot = 9.6×103kB cm−3 K

(
Σ

10 M� pc−2

)(
ρsd

0.1 M� pc−3

)1/2

.

(17)

In Figure 13, we overplot as a dotted line the best fit for the XZ
models (Equation (37) in Paper I), which agrees very well with
the dashed line and the 3D model results.

In addition to the force balance between total pressure
and gravity, individual balances between thermal cooling and
heating, and between turbulence driving and dissipation, are
expected for a quasi-steady state. The gas is heated by FUV
radiation from newly formed massive stars, with a heating rate
that varies in proportion to the SFR (see Equation (10)). Owing
to the very short cooling time compared to the dynamical time,
the gas generally resides near thermal equilibrium, although
a non-negligible fraction deviates from thermal equilibrium
due to strong turbulence and temporal heating fluctuations (see
Figures 8 and 10). Near the midplane, where GBCs and stars
form, a cold phase should coexist with the warm phase, such
that the midplane thermal pressure Pth should lie between Pmin
and Pmax. Figures 8 and 10 indeed show that the pressure lies
in the neighborhood defined by Pmin and Pmax for the mean
heating rate.

In OML10, the mean value of Pth at the midplane is
assumed to approach the geometric-mean pressure Ptwo ≡
(PminPmax)1/2. The adopted cooling function and heating rate
given by Equations (6) and (10) yield Ptwo/kB = 3.1 ×
103 cm−3 K(fradΣSFR/ΣSFR,0), assuming that the contribution
from the metagalactic FUV radiation is negligible. Our mea-
surements for the mean value of ΣSFR from the numerical sim-
ulations give the mean values of Ptwo for each model, which
can be directly compared to the values of the measured mean
midplane thermal pressure Pth. Figure 14 plots Pth/Ptwo as a
function of ΣSFR for all 3D models. The errorbars denote the
standard deviations of temporal fluctuation, which amount to
∼0.2–0.3 dex. Our best fit for 3D results,

Pth

Ptwo
= 1.09

(
ΣSFR

10−3 M� kpc−2 yr−1

)−0.14

, (18)

is shown as the dashed line, while the dotted line denotes the best
fit for XZ models from Paper I. We conclude that Pth is indeed
comparable to Ptwo, over two orders of magnitude variation in
ΣSFR. Our results show that Pth ∼ Ptwo within 60%, supporting
the approximation adopted in the analytic theory of OML10.
The mean values of the midplane thermal pressure in 3D models
are slightly higher (∼20%) than that of the XZ models, but the
difference is smaller than the temporal fluctuations. Significant
warm gas in the R50-3DF model (big magenta asterisk) puts it
at lower average pressure than the mean relation; as discussed
in Section 3.1, there are also large fluctuations in this model.

Dynamical energy injection through SN feedback connects
the turbulent pressure and the SFR, similar to the connection
between thermal pressure and the SFR from UV heating. Since
the turbulent velocity dispersion does not evolve secularly (see
Figure 3), the rate of turbulence driving must balance turbulent
dissipation. The rate of turbulent driving per unit area per unit
mass is expected to be ∝ (p∗/m∗)ΣSFR, where p∗ is the mean
radial momentum injected to the ISM by an expanding SN
remnant, and m∗ is the total mass in stars per SN (averaged
over the stellar mass function). For spherical blasts centered on
the midplane, the vertical momentum injection rate per unit area
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Figure 14. Measured midplane thermal pressure of the diffuse gas Pth relative
to the two-phase thermal equilibrium pressure Ptwo as a function of ΣSFR. The
symbols have the same meanings as in Figure 11. The dashed and dotted lines
give the best fits for 3D and XZ models, respectively. The result from our
simulations that Pth ∼ Ptwo ∝ ΣSFR over more than two orders of magnitude
in ΣSFR implies that the radiative heating from star formation is balanced by
cooling within a local (vertical) dynamical time.

(A color version of this figure is available in the online journal.)

to each side of the disk is Pdriv = 0.25(p∗/m∗)ΣSFR (Paper I,
OS11, SO12). The turbulent momentum flux in the vertical
direction through the disk can be expressed as Pturb ≡ fpPdriv,
where fp ∼ 1 if dissipation balances driving within a dynamical
time scale.

Using the adopted value p∗/m∗ = 3000 km s−1, the fiducial
momentum injection rate varies with the SFR as Pdriv/kB =
3.6×103 cm−3 K(ΣSFR/10−3 M� kpc−2 yr−1). We make a direct
comparison between the measured midplane turbulent pressure
Pturb and Pdriv. Figure 15 plots the mean values of fp ≡
Pturb/Pdriv as a function of ΣSFR for all 3D models. The errorbars
denote the standard deviations of temporal fluctuations, which
amount to ∼0.3–0.6 dex. The dashed line is our best fit omitting
the R series,

Pturb

Pdriv
= 1.20

(
ΣSFR

10−3 M� kpc−2 yr−1

)−0.11

, (19)

while the fit for the XZ models (Paper I) is overplotted as a
dotted line with slightly steeper slope of −0.17. The results
from the 3D models are in overall good agreement with our
previous XZ models of Paper I, confirming that fp is order-unity
and approximately constant for a wide range of disk conditions
and SFRs (see also SO12, which shows that fp is similar in the
starburst regime).

Since Pth ∼ Ptwo and Pturb ∼ Pdriv, both thermal and turbulent
pressures at the midplane are nearly linearly proportional to
ΣSFR. Following Paper I, we define

Pth/kB

103 cm−3 K
≡ ηth

ΣSFR

10−3 M� kpc−2 yr−1
, (20)

Figure 15. Measured midplane turbulent pressure of the diffuse gas Pturb relative
to the characteristic vertical momentum flux injected by star formation feedback
Pdriv (see text), as a function of ΣSFR. The symbols have the same meanings as in
Figure 11. The dashed and dotted lines give the best fits for 3D and XZ models,
respectively. The result that Pturb ∼ Pdriv ∝ ΣSFR from our simulations, over
more than two orders of magnitude in ΣSFR, implies that the turbulent energy
driving from star formation is balanced by dissipation within a local (vertical)
dynamical time.

(A color version of this figure is available in the online journal.)

Pturb/kB

103 cm−3 K
≡ ηturb

ΣSFR

10−3 M� kpc−2 yr−1
, (21)

such that the yield coefficients ηth and ηturb measure
the thermal and turbulent efficacies of feedback, respec-
tively. In the analytic model for thermal/dynamical equi-
librium (OML10; OS11), ηth = 1.2frad, where frad =
[0.25 + 0.75Z′

d (Σ/10 M� pc−2)0.4]−1 using the heating/cooling
model of Wolfire et al. (2003), and ηturb = 3.6fp for p∗/m∗ =
3000 km s−1. Our direct measurements fitting the simulation re-
sults (Equations (18) and (19)) give

ηth = 1.3frad

(
ΣSFR

10−3 M� kpc−2 yr−1

)−0.14

, (22)

ηturb = 4.3

(
ΣSFR

10−3 M� kpc−2 yr−1

)−0.11

. (23)

These results for yields are very close to those adopted in the
analytic model, and show quite weak dependence on the SFR.
For solar-neighborhood conditions, the yield coefficients are
ηth = 1.1 and ηturb = 3.9, remarkably close to the adopted
values in the analytic theory. The results from 3D models
are also close to the results from the XZ models in Paper I
(ηth = 0.9 and ηturb = 3.0 at ΣSFR = ΣSFR,0). In Equation (22),
the control parameter for heating efficiency frad enters naturally
into the thermal yield coefficient ηth since higher/lower heating
efficiency (or lower/higher shielding of FUV radiation) converts
more/less radiation energy from star formation feedback into
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Figure 16. Measured SFR surface density ΣSFR as a function of (a) Σ/tff (n0) and (b) Σ/tver for all 3D models. The symbols have the same meanings as in Figure 11.
The dashed lines in both panels are our best fits to all 3D models for an imposed unity slope, which give the coefficients of εff (n0) = 0.006 and εver = 0.002.

(A color version of this figure is available in the online journal.)

thermal energy in the diffuse ISM. Although we have not directly
explored variations in p∗/m∗ in the present simulations (see
SO12 for a study of this kind), the turbulent yield coefficient
ηturb would be expected to vary proportional to the momentum
feedback per stellar mass p∗/m∗, which would introduce an
additional factor (p∗/m∗)/3000 km s−1 to the right-hand side
of Equation (23). In addition to SNe, other potential sources
of momentum injection associated with star formation include
radiation forces and cosmic rays (see OS11 for discussion and
estimates).

The ratio of total-to-thermal pressure α can be obtained from
Equations (22) and (23) as

α = 1 +
ηturb

ηth
= 1 +

3.1

frad

(
ΣSFR

10−3 M� kpc−2 yr−1

)0.03

. (24)

As discussed above, specific feedback momentum different
from our chosen value would introduce an additional fac-
tor (p∗/m∗)/3000 km s−1 in the second term above. For a
fixed heating efficiency frad, α is nearly constant, as seen in
Figure 12(b). In the solar neighborhood (frad = 1), α ≈ 4 is
close to the fiducial value adopted by OML10 (α = 5).

3.4. Star Formation Scaling Relations

A common characterization of the SFR is in terms of a gas
mass consumption efficiency within a relevant dynamical time
scale (e.g., Leroy et al. 2008 and references therein):

ΣSFR = εdyn
Σ

tdyn
. (25)

A natural dynamical time to consider in disk galaxies is the free-
fall time at the mean midplane gas density (OS11), tff(ρ0) =
[3π/(32Gρ0)]1/2, where ρ0 = 1.4mpn0. Using the time and
horizontally averaged values of ρ0 measured in our simulations,

Figure 16(a) plots our measured values of ΣSFR as a function of
Σ/tff(ρ0) for all 3D models. The best fit for an imposed linear
relation (dashed line) gives ΣSFRtff(ρ0)/Σ ≡ εff(n0) = 0.006.
This value is close to typical values εff ∼ 0.01 inferred from
observations of molecular gas (Krumholz & Tan 2007), and
similar to the values for εff measured by SO12 in simulations of
the starburst regime (ΣSFR up to a few ×M� kpc−2 yr−1).

Formation of GBCs from diffuse gas is the first step to
the star formation. As described in Section 3.1, in outer disk
regions where the vertical gravity from stars exceeds the (mean)
vertical gravity from the gas, the initial concentration of diffuse
cold cloudlets to make GBCs is primarily “falling” toward
the midplane of the stellar potential. Under this circumstance,
the vertical dynamical time defined by tver ≡ Hdiff/σz,diff
may be more relevant for gathering diffuse gas to initiate
star formation than the free-fall time.12 Using the time- and
horizontally averaged values of Hdiff and σz,diff defined in
Section 3.2, in Figure 16(b) we plot the measured ΣSFR as a
function of Σ/tver for all 3D models. The dotted line denotes our
best fit for an imposed unity slope, ΣSFRtver/Σ ≡ εver = 0.002.
The free-fall time and the vertical dynamical time prescriptions
give rms fractional differences between measured and estimated
ΣSFR of 24% and 17%, respectively.

In the theory of self-regulated star formation (OML10; OS11;
Paper I), the relationships among ΣSFR, Ptot, and Ptot,DE are key.
Star formation feedback replenishes the thermal and turbulent
pressures, and the total pressure supports the weight of the ISM.
Figure 17(a) shows ΣSFR as a function of Ptot for all 3D models.
The dotted line is obtained from the sum of Equations (20)
and (21) with the yield coefficients from Equations (22) and (23)

12 Using Equation (15), tver ≡ Hdiff/σz,diff = Σdiffσz,diff/(
√

2πPtot) in
dynamical equilibrium. For diffuse-dominated regions, we therefore expect
tver ≈ [(π3/2)1/2GΣ/σz + (4πGρsd)1/2]−1. In the limit that gas or stars
dominates the gravity, this becomes tver ≈ (π2Gρ0)−1/2 or
tver ≈ (4πGρsd)−1/2, respectively.
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Figure 17. Measured SFR surface density ΣSFR as a function of (a) the measured midplane total pressure Ptot and (b) the predicted midplane total pressure from
vertical dynamical equilibrium Ptot,DE. The symbols have the same meanings as in Figure 11. In both panels, the dashed line denotes our best fit (Equation (26) in
(a) and Equation (27) in (b)), and the dotted line plots the predicted thermal and turbulent pressures using Equations (20) and (21) with numerically calibrated yield
coefficients ηth (using frad = 1) and ηturb from Equations (22) and (23). The higher heating efficiency frad in the R series results in lower ΣSFR for the same Ptot by
increasing ηth, and hence η.

(A color version of this figure is available in the online journal.)

for frad = 1, while the dashed line plots our best fit omitting the
R series:

ΣSFR = 2.1 × 10−3 M� kpc−2 yr−1

(
Ptot/kB

104 cm−3 K

)1.18

. (26)

Since both thermal and turbulent pressures separately satisfy
nearly linear relationships with ΣSFR as shown in Section 3.3,
the dotted and dashed lines agree very well with each other. Note
that the proportionality constant in the above relation for ΣSFR
versus Ptot is roughly 4(p∗/m∗)−1, showing that the specific
momentum injected by SNe determines the coefficient of the
ΣSFR–Ptot relation.

From Equations (22) and (23), we obtain the total feedback
yield η ≡ ηth + ηturb, which includes the effect of frad. In regions
of higher heating efficiency (or lower shielding), the thermal
feedback yield (and hence total feedback yield) increases. The
points from the R series in Figure 17 (magenta asterisks) thus
spread vertically with respect to model QA10.

In addition to the near-linear relationship between ΣSFR and
Ptot arising from the balance between energy gains and losses,
the separate relation Ptot = Ptot,DE holds due to vertical dy-
namical equilibrium (Section 3.3). We thus can obtain a similar
relation between ΣSFR and Ptot,DE, as shown in Figure 17(b). Our
best fit analogous to Equation (26) is

ΣSFR = 1.8 × 10−3 M� kpc−2 yr−1

(
Ptot,DE/kB

104 cm−3 K

)1.13

. (27)

This relation provides a prediction for ΣSFR in simultane-
ous thermal and dynamical equilibrium, based only (via
Equation (15) with fdiff ∼ 1) on the total gas surface density
and stellar/dark matter density present at a given location in a
galactic disk.

We remark that the “dynamical time” formulation of the SFR
is in fact related to the thermal/dynamical equilibrium formula-
tion (based on momentum flux matching), but the latter is more
fundamental. Considering the turbulence-dominated case, bal-
ancing momentum flux requires ρ0v

2
z,diff ≈ (1/4)(p∗/m∗)ΣSFR.

Using ρ0v
2
z,diff = vz,diffΣdiff × vz,diff/(

√
2πHdiff), this can

be interpreted physically as the statement that the dissipa-
tion of momentum on a vertical crossing time ∼vz,diffΣdiff ×
(vz,diff/H ) must be balanced by injection of fresh momen-
tum by star formation ∼(p∗/m∗)ΣSFR. The momentum balance
formula may be re-expressed as ΣSFR(Σdiff/tver)−1 ≡ εver =
vz,diff[(1/4)fp

√
2πp∗/m∗]−1. A relationship of the form in

Equation (25) for tdyn = tver then holds provided that vz,diff
is constant. From this point of view, the low rate of “gas con-
sumption” relative to the vertical dynamical time reflects the
“inefficiency” of converting ordered feedback momentum in-
jected on a small scale to a pervasive turbulent velocity disper-
sion on scales comparable to the disk thickness. That is, εver

(or εff) is small because vz,diff[(1/4)
√

2πp∗/m∗]−1 is small.
Alternatively, the kinetic energy injected to the ISM by each
feedback event, ∼p∗vz,diff , is large compared to the kinetic
energy lost from the ISM, ∼v2

z,diffm∗, when gas is locked up
in stars leading up to the feedback event. In contrast, the ef-
ficiency of momentum replenishment per dynamical time is
order-unity.

In conclusion, we find that a nearly linear relationship
between ΣSFR and Ptot,DE is strongly supported by our numerical
simulations. Depending on whether stars or gas dominate the
local vertical potential well, this would lead to either a relation
ΣSFR ∝ Σ√

ρsd (typically outer disks, as modeled here and in
Paper I) or ΣSFR ∝ Σ2 (typically starburst regions, as modeled
by OS11 and SO12). An increase in either the heating efficiency
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or the turbulent driving efficiency would tend to lower ΣSFR for
given values of the gas and stellar disk parameters Σ and ρsd.

4. SUMMARY AND DISCUSSION

In this paper, we have carried out full 3D simulations of
the turbulent, multiphase ISM in galactic disks, including the
physical effects from galactic differential rotation, gaseous self-
gravity, vertical gravity due to stars and dark matter, and cooling
and heating as appropriate for atomic gas. We also incorporate
thermal and kinetic feedback tied to recent star formation, via
a time-dependent heating rate coefficient and turbulent driving
from expanding SN remnants.

We use our simulations to investigate the relationships be-
tween ISM properties and SFRs, and we also compare our
numerical results to the predictions of a recent theory for
thermal/dynamical equilibrium of the ISM and self-regulated
star formation (OML10; OS11). The theory posits that the
rate of star formation adjusts until the total energy (in tur-
bulent driving and thermal heating) supplied to the ISM by
star formation feedback matches the demand imposed by ISM
losses (turbulence dissipation and interstellar cooling). Force
balance must also hold: the momentum flux (thermal and tur-
bulent) provided by feedback must match the vertical weight
of the ISM in the total gravitational field (gas, stellar, and dark
matter gravity). Our simulations provide quantitative evidence
in support of the theory. This confirms our previous results
(Paper I) based on radial-vertical simulations in the same
atomic-dominated regime, together with the simulations of
SO12 for the molecular-dominated starburst regime.

Our main findings are summarized as follows.

1. Vertical support of the disk. Despite large amplitude tem-
poral fluctuations, we find that the mean total (ther-
mal plus turbulent) midplane pressure Ptot matches the
mean vertical weight of the gas (Ptot,DE, as defined in
Equation (15)) within 12%. Vertical dynamical equi-
librium in the highly turbulent, multiphase ISM has
also previously been demonstrated in simulations with
a range of sources of turbulence: expansion of H ii re-
gions (Koyama & Ostriker 2009b), magnetorotational
instability (Piontek & Ostriker 2007), galactic spiral
shocks (Kim et al. 2010), and SN feedback (Paper I;
SO12; Hill et al. 2012). These numerical results support the
assumption of effective “hydrostatic” equilibrium that is of-
ten utilized in observations to obtain an estimate of the mid-
plane pressure (Wong & Blitz 2002; Blitz & Rosolowsky
2004, 2006; Leroy et al. 2008). Equation (15) provides a
general expression for the pressure under vertical dynami-
cal equilibrium. When the vertical gravity is dominated by
stars and dark matter, as in the outer regions of disk galaxies
or dwarf galaxies, Equation (16) gives Ptot,DE ∝ Σ√

ρsd,
while Ptot,DE ∝ Σ2 if gaseous self-gravity dominates—
typically in starbursts (OS11; SO12).

2. Thermal and turbulent energy replenishment from star
formation feedback. Since turbulence decays within a flow
crossing time (Stone et al. 1998; Mac Low et al. 1998;
comparable to the vertical dynamical time tver = H/vz for
the neutral ISM disk) and the cooling time of the atomic
gas is even shorter than this dynamical time, both turbulent
driving and heating are required to maintain the quasi-
steady state over a few orbital times that appears to hold in
normal disk galaxies. Without continuous turbulent driving
and heating, the gas disk would rapidly collapse, leading to

unrealistically high ΣSFR (e.g., Dobbs et al. 2011; Hopkins
et al. 2011). In our simulations, star formation feedback
modeling SN explosions and photoelectric heating by FUV
radiation replenishes the turbulent and thermal energies at
a rate ∝ ΣSFR. For a given gas surface density Σ, the cooling
and turbulent dissipation rates per unit mass increase when
the gas disk’s scale height decreases, because the volume
density ρ increases. However, higher ρ also leads to more
rapid gravitational collapse and an increase in ΣSFR/Σ. The
SFR can therefore adjust to meet the ISM’s demands for
energy inputs.

In the OML10 theory, the demand to maintain thermal
balance in multiphase atomic ISM translates to the require-
ment that the thermal pressure at the midplane Pth should
lie between the maximum pressure of the warm phase Pmax
and the minimum pressure of the cold phase Pmin (Field
et al. 1969; Wolfire et al. 1995, 2003). Here, we have com-
pared the measured Pth to the geometric-mean pressure
Ptwo ≡ (PminPmax)1/2 ∝ ΣSFR, showing that Pth ≈ Ptwo
indeed holds with weak decreasing trend toward increas-
ing ΣSFR. The variation of Pth/Ptwo is only ∼0.4 dex for
two orders of magnitude change in ΣSFR and the measured
Pth. This confirms both the hypothesis of OML10 and our
previous numerical results from Paper I.

In OS11 (see also Paper I and SO12), it is shown that
the demand to offset turbulent dissipation with turbulent
driving from star formation feedback translates to the
requirement that Pturb = ρv2

z ∼ Σvz/tver is comparable
to Pdriv ≡ (1/4)(p∗/m∗)ΣSFR. Here, we have compared
the measured Pturb to Pdriv, showing that Pturb ≈ Pdriv
holds, again with a weak decreasing trend as ΣSFR increases.
Similar to Pth/Ptwo, Pturb/Pdriv varies only over ∼0.3 dex
for two orders of magnitude change in ΣSFR and the
measured Pturb. This confirms the hypothesis of OS11 and
our previous findings from XZ simulations (Paper I), as
well as numerical results of SO12 for the starburst regime,
in which turbulent pressure is completely dominant over
other pressures.

3. Thermal and turbulent energy yields. The equilibrium
pressures depend on a balance between losses and
gains: Pturb/tver ∼ (turbulent energy driving/volume/time)
∼ (vz/H )× (turbulent momentum driving/area/time) so
that Pturb = fp(1/4)(p∗/m∗)ΣSFR in equilibrium; and
Pth/tcool ∼ (thermal heating/volume/time) so that Pth =
ΓkBT/Λ(T ) ∝ fradΣSFR in equilibrium. We quantify the
results in terms of feedback yield parameters ηth and ηturb,
corresponding to the ratio Pth/ΣSFR and Pturb/ΣSFR, respec-
tively, in suitable units (see Equations (20) and (21)). We
find that ηth and ηturb are nearly constant (see Equations (22)
and (23)) in our models with frad = 1. Thus, even though
ΣSFR and the individual thermal and turbulent pressures
vary over two orders of magnitude, the ratio of the total-to-
thermal pressure α = 1 + ηturb/ηth ∼ 4–5 is nearly constant
(see Figure 12). From the above, the ratio Pturb/Pth is ap-
proximately equal to the product of tver/tcool and Ėturb/Ėth.
Although the input rate of turbulent energy Ėturb is small
compared to the input rate of thermal energy Ėth (∼4% for
the solar neighborhood), tver is much larger than tcool (by a
factor ∼100 for the solar neighborhood), so that the result-
ing Pturb exceeds Pth. Since the dependence tver/tcool ∝ Σ
is compensated by Ėturb/Ėth ∝ Σ−1, the ratio Pturb/Pth can
remain roughly the same over a large range of radii in disks.
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The feedback yield increases if either the parameters gov-
erning gains increase or those governing losses decrease.
The heating rate in our models is ∝ fradΣSFR. Because
Γ is expected to be proportional to dust abundance for
photoelectric heating and Λ is expected to be proportional
to metal abundance for C or O cooling, these dependences
would roughly cancel in ηth if dust and metals vary together.
However, the heating rate for a given ΣSFR is expected to in-
crease in low-AV regions of galaxies where FUV radiation
can propagate farther (see OML10); we explore this effect
via varying frad. Our models show that ηth increases with
frad, consistent with expectations. As explicitly explored in
SO12 and expected from our result Pturb/Pdriv ∼ 1, ηturb
depends nearly linearly on p∗/m∗. In the present simula-
tions, the value of p∗/m∗ = 3000 km s−1 we adopt is based
on the value of p∗ for a radiative-stage spherical SN rem-
nant propagating into a uniform medium (Cioffi et al. 1988;
Blondin et al. 1998; Thornton et al. 1998). SNe are expected
to be the dominant source of turbulence in the diffuse ISM
in many cases (see Mac Low & Klessen 2004; OS11), but
p∗ may still vary and it is important to calibrate this param-
eter via high-resolution simulations of a realistic (cloudy)
ISM. Although ηturb exceeds ηth for the parameter sets we
have explored, potentially the reverse situation could hold
in some galactic environments.

4. A link between SFR and disk properties. Given basic disk
properties (the total gas surface density Σ and stellar+dark
matter density ρsd), a theory of large-scale star formation
should be able to provide a prediction for ΣSFR. In the
OML10+OS11 model, this prediction is obtained by re-
quiring that thermal and turbulent balance equations hold,
and also that vertical pressure/gravity balance holds. Si-
multaneous solution of these three balance equations leads
to the result that ΣSFR varies nearly linearly with Ptot,DE (as
defined in Equation (15); fdiff ∼ 1 for the regime studied
here). We verify this result with our simulations, as seen
in Figure 17 and Equation (27). Depending on whether
the gas gravity or the gravity of the stars dominates in
Equation (15), this can lead to ΣSFR ∝ Σ2 for starburst sys-
tems (OS11; SO12), or to ΣSFR ∝ Σ√

ρsd for normal outer
disk regions (OML10; Paper I).

In recent local observations of the ΣSFR versus Σ relation,
the low-Σ regime is characterized by large scatter of
composite data sets (Bigiel et al. 2008) and systematic
differences in power-law indices p in ΣSFR ∝ Σ1+p between
individual galaxies (Wong & Blitz 2002; Leroy et al. 2008).
Our simulations suggest that this may, in part, be due
to “projection” on the ΣSFR versus Σ plane that neglects
variations in the gravity of the stellar disk (which would
lead to ΣSFR ∝ √

ρsd). In fact, Blitz & Rosolowsky (2006)
and Leroy et al. (2008) have demonstrated that molecular
content and the SFR increase with increasing stellar density.
In Paper I (see Figure 13(a) there), we showed that ΣSFR at
a given Σ moves up or down when the ratio of external
(stellar) gravity to gas gravity (controlled by 1/s0) is
varied. Our current simulations show the same effect. In
the particular case where stellar and gaseous Q values are
constant (QA and QB series),

√
ρsd ∝ Σ, which would lead

to a steep relation ΣSFR ∝ Σ2.
We show in Section 3.4 that dynamical time prescriptions

are also good descriptions of our numerical results; we
find ΣSFR = 0.006Σ/tff (ρ0) and ΣSFR = 0.002Σ/tver.
However, we argue that the relation between pressure and

SFR is more fundamental and direct than these dynamical
time prescriptions. The relation ΣSFR ∝ Ptot,DE requires
that p∗/m∗ is approximately constant, whereas ΣSFR ∝
Σ/tver requires that vz(p∗/m∗)−1 is approximately constant,
and ΣSFR ∝ Σ/tff requires that vz(gz/GΣ)1/2(p∗/m∗)−1

is approximately constant. Our simulations (as well as
others; see below) do find approximately constant turbulent
velocity dispersions vz. The family of simulations we
conducted also happens to have gz/GΣ constant because
gz ∼ (Gρsd)1/2vz and we adopted ρsd ∝ Σ2. When gas
dominates the vertical gravity (as in starburst regions),
gz ∼ GΣ, which combined with constant vz results in
ΣSFR ∝ Σ/tff as shown in SO12; however, this need not
be the case for galaxies in general.

The present models focus on the ISM regime in which
diffuse gas dominates—i.e., outer disks at low gas sur-
face density Σ. Moving to smaller radii and regions of
higher surface density, observations (e.g., Bigiel et al. 2008;
Leroy et al. 2008) show that gas in gravitationally bound
molecular clouds exceeds the diffuse atomic gas, and that
ΣSFR ∝ Σ with little dependence on ρsd. One interpre-
tation of the transition from outer disks to these mid-
disk regions is that it represents an increase of tdest/tform
from small to large values, where these timescales rep-
resent formation and destruction timescales for GBCs. If
formation and destruction are in balance, then we ex-
pect fdiff = tform/(tform + tdest). Dynamical equilibrium
between pressure and gravity in the diffuse ISM requires
ηΣSFR ∼ fdiffΣgz ∼ Σgztform/(tform + tdest). If tform ∼ tver,
then gztform ∼ vz. Furthermore, if vz and tdest are roughly
constant (and tform � tdest), this would lead to fdiff � 1
and ΣSFR ∝ Σ. Testing whether this or another interpre-
tation explains mid-disk observations will require detailed
models of cloud destruction, carefully following feedback
processes throughout the lives of massive stars.

5. Velocity dispersion driven by star formation feedback. Bal-
ance between turbulent driving and dissipation leads to
vz,diff = (

√
2π/4)fp(p∗/m∗)ΣSFR(Σ/tver)−1. If star forma-

tion scales as ΣSFR = εverΣ/tver (see Section 3.4), this
yields vz,diff = 0.63fpεver(p∗/m∗) ∼ 3.8–5.6 km s−1 for
εver = 0.2%, fp = 1–1.5, and p∗/m∗ = 3000 km s−1,
insensitive to Σ, ρsd, and ΣSFR. The measured values
of turbulent velocity dispersion in our simulations are
more or less constant over the whole range of parame-
ters (see Figure 11) since fp depends very weakly on ΣSFR
(see Figure 15 and Equation (19)). Many other recent simu-
lations have also found nearly constant velocity dispersions
with respect to the input SFR (e.g., Dib et al. 2006; Shetty
& Ostriker 2008; Agertz et al. 2009; Joung et al. 2009;
Dobbs et al. 2011; SO12). H i velocity dispersions reported
in observations of the Milky Way and nearby face-on galax-
ies (Dickey et al. 1990; van Zee & Bryant 1999; Heiles &
Troland 2003; Petric & Rupen 2007; Kalberla & Kerp 2009)
show comparable values and insensitivity to the ΣSFR. Vari-
ations in the turbulent velocity amplitude driven by feed-
back could arise, however, if p∗/m∗ differs in more extreme
environments.

Although turbulence driven by feedback appears to be
crucial in preventing runaway star formation, other mecha-
nisms can also help to drive ISM turbulence. These mech-
anisms include unsteady galactic spiral shocks (Kim &
Ostriker 2006; Kim et al. 2006, 2010; Dobbs & Bonnell
2006), magnetorotational instability (Kim et al. 2003;
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Piontek & Ostriker 2005, 2007), large-scale gravitational
instabilities (Wada & Norman 2002; Kim & Ostriker
2007; Agertz et al. 2009; Bournaud et al. 2010), and
cosmic inflow (Klessen & Hennebelle 2010). Large-scale
gravitational instabilities may be particularly important
in driving non-circular motions in ultraluminous infrared
galaxies and high-redshift galaxies, where measured veloc-
ity dispersions appear larger than in local disks (see, e.g.,
Figure 14 of Genzel et al. 2011). However, it is important
to keep in mind that force balance in the vertical direction
depends on velocity dispersions at scales below the disk
thickness (much smaller than has been resolved in external
galaxies), whereas gravitational instabilities primarily drive
turbulence at scales larger than the disk thickness. Turbu-
lence driven by any of these mechanisms at scales smaller
than the disk thickness would tend to reduce the SFR, since
it would partially offset the demand for star formation feed-
back to match the required pressure. Magnetic fields also
contribute pressure, but because the magnitude is smaller
than turbulent pressure and the magnetic scale height is
large, the fractional contribution to offsetting the weight of
the neutral ISM is small (OS11; Hill et al. 2012). In future
models, it will be interesting to quantify both how impor-
tant various sources (including diverse feedback processes)
are for driving turbulent velocity dispersions in the ISM,
and the corresponding effects on limiting star formation.
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