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ABSTRACT

Cosmic rays provide an important source for free electrons in Earth’s atmosphere and also in dense interstellar
regions where they produce a prevailing background ionization. We utilize a Monte Carlo cosmic ray transport
model for particle energies of 106 eV < E < 109 eV, and an analytic cosmic ray transport model for particle
energies of 109 eV < E < 1012 eV in order to investigate the cosmic ray enhancement of free electrons in
substellar atmospheres of free-floating objects. The cosmic ray calculations are applied to Drift-Phoenix model
atmospheres of an example brown dwarf with effective temperature Teff = 1500 K, and two example giant gas
planets (Teff = 1000 K, 1500 K). For the model brown dwarf atmosphere, the electron fraction is enhanced
significantly by cosmic rays when the pressure pgas < 10−2 bar. Our example giant gas planet atmosphere suggests
that the cosmic ray enhancement extends to 10−4–10−2 bar, depending on the effective temperature. For the model
atmosphere of the example giant gas planet considered here (Teff = 1000 K), cosmic rays bring the degree of
ionization to fe � 10−8 when pgas < 10−8 bar, suggesting that this part of the atmosphere may behave as a weakly
ionized plasma. Although cosmic rays enhance the degree of ionization by over three orders of magnitude in the
upper atmosphere, the effect is not likely to be significant enough for sustained coupling of the magnetic field to
the gas.

Key words: astroparticle physics – brown dwarfs – magnetic reconnection – planets and satellites: atmospheres –
stars: atmospheres
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1. INTRODUCTION

M dwarfs of spectral class M7 and hotter have been discovered
to emit quiescent X-rays, and lower mass brown dwarfs emit
X-rays intermittently (Berger et al. 2010). Currently, there is
no satisfactory explanation for this phenomenon, but there are
some promising models that may account for the observed
X-ray emissions. For example, Helling et al. (2011a, 2011b)
propose that charge build-up on grains may lead to atmospheric
ionization to a degree sufficient to couple the magnetic field to
a partially ionized atmospheric gas. The magnetic fields would
follow the convective atmospheric dynamics, and would become
tangled. X-rays would then be the consequence of magnetic
reconnection events. This scenario requires a charge density at
least 106 times greater than predicted by thermal ionization in
current model atmospheres (see Helling et al. 2011b, their Figure
2). Other ionizing mechanisms need therefore to be considered.
In this paper, we provide a first study of how significant cosmic
ray ionization is in the atmospheres of brown dwarfs and giant
gas planets.

If cosmic rays contribute significantly to atmospheric ioniza-
tion in extrasolar planets and brown dwarfs, the effects of this
ionization may provide an opportunity to better constrain the
energy spectrum of galactic cosmic rays in a variety of plane-
tary atmospheres. A large number of cosmic rays are blocked
from Earth by the solar wind (Jokipii 1976), although the
Voyager probe is expected to measures the interstellar cosmic
ray flux (Webber & Higbie 2009). Free-floating planets and stel-
lar objects would not be so protected, and the observable effects
of cosmic ray ionization in the atmospheres of these objects
may provide us an indirect way to determine the spectrum of
extrasolar cosmic rays.

Cosmic rays were first discovered because of their ionizing
effect on Earth’s atmosphere (Hess 1912). Cosmic ray ionization

may affect terrestrial climate conditions by enhancing aerosol
formation (Pudovkin & Veretenenko 1995; Shumilov et al.
1996) and initiating discharge events (Ermakov & Stozhkov
2003; Stozhkov 2003). Grießmeier et al. (2005) investigate the
possible impact of cosmic ray showers on biological organisms
in extrasolar Earth-like planets with weak magnetic fields by
considering the effect of a weaker planetary magnetic field
on cosmic ray propagation through the planetary atmosphere.
The effect of Earth’s electric field on cosmic ray propagation
is also being explored. For example, Muraki et al. (2004)
found measurable enhancement in cosmic ray intensity when a
negative electric field of magnitude >10 kV m−1 is present in the
atmosphere. Bazilevskaya et al. (2008) provide a comprehensive
review of the research into connections between cosmic rays and
the atmosphere. The effect of cosmic rays on the exospheres of
free-floating extrasolar planets and brown dwarfs that form dust
clouds in the low atmosphere has not been explored so far.
The impact of cosmic rays on the exosphere is of particular
interest as it links the underlying atmosphere with the object’s
magnetosphere and may also help to understand coronal effects
in the substellar mass regime.

The cosmic ray opacity of brown dwarf and hot Jupiter
atmospheres has been explored by Helling et al. (2012), where
the cosmic ray flux is considered to decrease exponentially with
the column density of the gas (Umebayashi & Nakano 1981).
The effect of cosmic ray propagation on the rate of ionization of
the gas has been modeled in some detail for diffuse conditions
in the interstellar medium (Padovani et al. 2009; Rimmer
et al. 2012), dense environments (Umebayashi & Nakano 1981)
and the terrestrial atmosphere (Velinov et al. 2009). Rimmer
et al. (2012) and Velinov et al. (2009) both employ Monte
Carlo models for cosmic ray propagation. Velinov et al. (2009)
consider pair-production and particle decay (full Monte Carlo
simulation of an atmospheric cascade), and Rimmer et al. (2012)
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consider the energy loss due to ionizing collisions and the effect
of a weak magnetic field (B < 1 mG) on the cosmic ray
spectrum. The models of Velinov & Mateev (2008) and Velinov
et al. (2009) have been tested against various atmospheric
profiles and model assumptions (Mishev & Velinov 2008, 2010).
Padovani et al. (2009) numerically solve the propagation integral
from Cravens & Dalgarno (1978), and account for energy lost
due to ionization and excitation. Umebayashi & Nakano (1981)
solve a set of Boltzmann transport equations for the cosmic
rays, with a term for energy loss due to pair-production of
electrons.

In this paper, we explore the impact of cosmic ray ionization
on the electron fraction in model atmospheres of an example
brown dwarf and two example giant gas planets. To this end, we
utilize model atmospheres which do not necessarily resample
any known free-floating planets. In order to separate the effect
of cosmic rays from external UV photons, we only consider
free-floating objects not in proximity to a strong UV field. We
utilize one-dimensional (1D) Monte Carlo and analytic cosmic
ray propagation methods over a wide range of densities to allow
a principle investigation of the effect of cosmic rays.

In order to explore cosmic ray ionization in the atmosphere,
propagation of the cosmic rays through both the exosphere and
atmosphere must be treated. A simple density profile for the gas
in the exosphere is calculated in Section 2, using the Boltzmann
transport equation and assuming a Maxwellian distribution for
the gas. This is necessary because the exosphere is very likely
no longer a collisionally dominated gas, hence the continuum
assumption for applying hydrodynamic concepts breaks down
(see, e.g., Chamberlain & Hunten 1987).

We are using Drift-Phoenix model atmosphere structures
which are the result of the solution of the coupled equations
of radiative transfer, convective energy transport (modeled by
mixing length theory), chemical equilibrium (modeled by laws
of mass action), hydrostatic equilibrium, and dust cloud for-
mation (Dehn 2007; Helling et al. 2011b; Witte et al. 2009).
The dust cloud formation model includes a model for seed for-
mation (nucleation), surface growth and evaporation of mixed
materials, and gravitational settling (Helling et al. 2008). The
results of the Drift-Phoenix model atmosphere simulations in-
clude the gas temperature–gas pressure structure (Tgas, pgas),
the local gas-phase composition in thermochemical equilib-
rium, the local electron number densities (ne), and the num-
ber of dust grains (nd) and their sizes (a) dependent on the
height in the atmosphere. These models are determined by
the effective temperature Teff , the surface gravity log(g),
and the initial elemental abundances. The elemental abundances
are set to the solar values throughout this paper.

We consider a model atmosphere of a brown dwarf, with
a surface gravity of log g = 5 and an effective temperature
of Teff = 1500 K, as well as model atmospheres for two
example giant gas planets, both with log g = 3. The effective
temperatures of free-floating exoplanets are not constrained,
allowing us to freely explore this part of the parameter space. We
chose the values of Teff = 1500 K to allow for direct comparison
with earlier work (Helling et al. 2011b) and Teff = 1000 K,
which is the inferred effective temperature of HR 8799 c, a giant
gas planet ∼40 AU from its host star (Marois et al. 2008). The
distance of 40 AU is far enough to possibly allow the planet’s
parameters to be effectively the same as those of a free-floating
giant gas planet.

Section 3 describes our cosmic ray transport calculations
for cosmic rays of energy 106 eV < E < 1012 eV. We

then calculate the steady-state degree of ionization by cosmic
rays. We combine the cosmic ray ionization to the thermal
degree of ionization from Drift-Phoenix. Section 4 contains
the resulting degree of ionization and includes the effect on the
coupling of the magnetic field of the gas.

2. DENSITY PROFILE OF THE EXOSPHERE

For modeling purposes, we divide the gas around the planet or
brown dwarf into three regions (inward → outward): the cloud
layer1 (lowest), the dust-free upper atmosphere (middle) and the
exosphere (highest). The location and extent of the cloud layer is
determined by the dust formation and atmosphere model Drift-
Phoenix (Dehn 2007; Helling et al. 2008; Witte et al. 2009).
The exosphere is considered here to be the regime where the
gas can no longer be accurately modeled as a fluid. This occurs
when the mean free path of the gas particles is of the order of the
atmospheric scale height. The pressure at which this is the case
is the lowest pressure considered in the Drift-Phoenix model
atmospheres, and we place the exobase at that height.

Figure 1 provides gas density and cloud particle number
density profiles of the three example model atmospheres and
exospheres considered here, as well as the mean grain sizes
of cloud particles for the model atmosphere of two example
giant gas planets (log g = 3, Teff = 1000 K, 1500 K) and
a brown dwarf (log g = 5, Teff = 1500 K). This grain size
profile demonstrates the location of the cloud with respect to
the atmospheric temperature and gas density. Figure 2 shows
the (p, T ) profiles for the model atmospheres.

In order to model cosmic ray transport into a planet’s
atmosphere, it is necessary to treat all material between the
atmosphere and the source of the incident (galactic) cosmic
ray spectrum. Since galactic cosmic ray propagation models
(Strong & Moskalenko 1998) and observations of chemical
tracers (Indriolo et al. 2007) currently suggest that cosmic rays
of energies 106 eV � E � 1012 eV are ubiquitous in the diffuse
interstellar medium, we treat the cosmic ray spectrum to be that
of the galactic spectrum at the “upper edge”2 of the exosphere,
and initiate cosmic ray transport at that point.

We calculate the density profile of the exosphere by solving
the steady-state collisionless Boltzmann transport equation with
a gravitational force term:

p
m

· ∇f + mg · ∂f

∂ p
= 0, (1)

where p is the momentum vector, m is the particle mass,
g = GM/r2 r̂ is the gravitational field at radial displacement r
from the center of mass, G = 6.67 × 10−8 cm3 g−1 s−2, and M
is the mass of the giant gas planet or brown dwarf. f (x, p)
(cm−6 g−3 s3) is the distribution function, representing the
number of particles in the volume element d3x d3p at location
(x, p) in the phase space. We treat the exosphere 1D for the sake
of simplicity. Denoting (r, pr ) as the coordinates of interest,

1 The cloud layer is part of the atmosphere, because the cloud particles form
from the atmospheric gas. Figure 1 indicates the location and extent of the
cloud layer.
2 Technically, there is no definitive upper edge to the exosphere. The gas
density decreases monotonically, but there is no definitive transition past the
exobase. The location of an “upper edge” is therefore somewhat arbitrary. We
treat the “upper edge” of the exosphere to be an infinite distance from the
model planet or brown dwarf.
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Figure 1. Total number density of the exospheric and atmospheric gas, ngas
(cm−3; solid black line, left axis) and of the cloud particles, ndust (cm−3; dashed
black line, left axis), and the mean grain radius, 〈a〉 (μm; dashed red line, right
axis), vs. atmospheric height, h (km), for log g = 3, Teff = 1500 K (top),
log g = 3, Teff = 1000 K (middle) and log g = 5, Teff = 1500 K (bottom). The
plots show that the cloud layers extend to considerably lower pressures in giant
gas planets than in brown dwarfs.

(A color version of this figure is available in the online journal.)

g = GM/r2, and Equation (1) becomes:

pr

m

df (r, pr )

dr
− GmM

r2

df (r, pr )

dpr

= 0. (2)

Now f (r, pr ) (cm−4 g−1 s) is a 1D distribution function rep-
resenting the number of particles located within a volume el-
ement d3x at r, with momentum between pr and pr + dpr .
Both Maxwell–Boltzmann and Lorentzian distribution func-
tions have been applied to the exosphere (Pierrard & Lemaire
1996). The Maxwell–Boltzmann distribution has been applied
to interstellar conditions of similar temperature and density to
exosphere conditions, and the calculated deviations from this
distribution in the interstellar environment is generally found
to be on the order of 1% (Spitzer 1978, his Section 2.3). We
therefore choose the Maxwell–Boltzmann distribution function
for our exosphere model. The Maxwell–Boltzmann distribution
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Figure 2. Pressure–temperature profiles for model atmospheres of three example
planets, with the parameters log g = 3, Teff = 1500 K (left, solid), log g = 3,
Teff = 1000 K and log g = 5, Teff = 1500 K (right). The vertical line on
each plot indicates the cloud top. Pressures less than the cloud top pressure are
considered to be within the upper atmosphere.

is:

f (r, pr ) = ngas

(2πmkBT )1/2
e−p2

r /2mkBT , (3)

where T is the temperature of the gas, kB = 1.4 × 10−16 erg
K−1 denotes the Boltzmann constant, and ngas (cm−3) is the gas
density profile. We apply Equation (3) to Equation (2). We note
that f includes ngas = ngas(r) and T = T (r). Employing the
product rule for differentiation, the first term of Equation (2)
can be written as

pr

m

df (r, pr )

dr
= pr

m
f (r, pr )

1

ngas

dngas

dr
− pr

2m
f (r, pr )

1

T

dT

dr

+
p3

r

2m2kB

f (r, pr )
1

T 2

dT

dr
, (4)

and the second term as:

− GmM

r2

df (r, pr )

dpr

= pr

kBT

GM

r2
f (r, pr ). (5)

We now reconstruct the transport equation:

pr

m
f (r, pr )

1

ngas

dngas

dr
− pr

2m
f (r, pr )

1

T

dT

dr

+
p3

r

2m2kB

f (r, pr )
1

T 2

dT

dr
+

pr

kBT

GM

r2
f (r, pr ) = 0.

(6)

We multiply by m/pr and integrate this equation over pr. The
first two terms in Equation (6) become:

∫ ∞

−∞
f (r, pr )

1

ngas

dngas

dr
dpr = dngas

dr
; (7)

∫ ∞

−∞

1

2
f (r, pr )

1

T

dT

dr
dpr = ngas

2

1

T

dT

dr
; (8)
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The third term in Equation (6) becomes:∫ ∞

−∞

p2
r

2mkB

f (r, pr )
1

T 2

dT

dr
dpr

= ngas√
π (2mkBT )3/2

1

T

dT

dr

∫ ∞

−∞
p2

r e−p2
r /2mkBT dpr, (9)

= ngas

2

1

T

dT

dr
, (10)

and the last term becomes:∫ ∞

−∞

1

kBT

GmM

r2
f (r, pr ) dpr = GmM

r2

ngas

kBT
. (11)

Applying Equations (8)–(11) to the integral of Equation (6) over
pr, the Boltzmann transport equation becomes (with explicit r-
dependence):

1

ngas(r)

dngas(r)

dr
= − GmM

kBr2T (r)
. (12)

This equation is equivalent to the equation for the distribution
function for quasi-collisionless exospheres from Chamberlain
& Hunten (1987, their Equation (7.1.16)), with the angular
momentum set to zero and temperature as a function of the
radial distance. In order to solve this equation, the temperature
would have to be determined via radiative transfer. If we were
instead to treat the temperature as a constant in the right-hand
side of Equation (12), the equation would become identical to
the condition for hydrostatic equilibrium, but this condition is
not appropriate for the exosphere. The next simplest functional
form for the temperature is the result of setting the average
thermal energy, (3/2) kBT , equal to the virial of the system,
which assumes that the system as a whole is stable and bounded.
The temperature then becomes:

T (r) = GmM

3kBr
. (13)

Applying Equation (13) to Equation (12), we find:

1

ngas(r)

dngas(r)

dr
= −3

r
, (14)

with the solution:

ngas(r) = nc

(
rc

r

)3

. (15)

The inner boundary condition, at the height of the exobase
(denoted as rc) is that the number density ngas(rc) is the number
density at the exobase, nc.

For a sanity check, we compare our results to the more
detailed models for the Martian exosphere (Galli et al. 2006).
Galli et al. (2006) provide an analytic form of the density
profile for the Martian exosphere, and compare it to observation.
We are not aware of a more recent analytic expression for
exospheric densities that is compared to observational results.
Taking their value for the exobase, rc = 3.62 × 108 cm (220 km
above the surface of Mars), setting our r = h + RM , where
RM = 3.40 × 108 cm is the radius of Mars, and using the
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Figure 3. Total gas number density of the Martian exosphere as a function
of height above the surface, h = r − RMars, where RMars = 3400 km is the
radius of Mars. The solid line represents an analytical fit to the exospheric
model predictions of Galli et al. (2006, their Equation (4)) and the dashed line
represents our analytical calculations for the Martian exosphere density, from
Equation (15). Our ansatz for the exosphere density profile underestimates the
Galli exospheric density profile by about an order of magnitude at h = 1010 cm.

density at the exobase from their Equation (4) for our nc, we can
compare their model results with our own Figure 3. The profile
of Galli et al. (2006, their Equation (4)) is within an order of
magnitude to our profile for r < 1010 cm. Since the two profiles
differ significantly only at great distances, when n 
 nc, the
impact these differences have on the column density is rather
small, namely within a factor of two as r → ∞.

By the use of the virial theorem, we have neglected any
thermal emission from the atmosphere. The correct treatment
requires a radiative transfer simulation of the atmosphere, which
is beyond the scope of this paper. We do not expect these
uncertainties to significantly effect cosmic ray transport on
free-floating planets and brown dwarfs, for reasons detailed in
Section 3. Other relevant uncertainties arise from the neglected
planet’s rotation, the gravitational pull and radiation pressure
from the Sun. Heating from external sources of radiation can
also impact the density profile (Hinteregger et al. 1981; Watson
et al. 1981; Lammer et al. 2003; Vidal-Madjar et al. 2004;
Murray-Clay et al. 2009). Since we are neglecting external
sources of UV radiation throughout this paper, the differences
arising from radiation pressure and heating will not concern us
here. If external UV radiation were to be incorporated (i.e., for
young and/or active stars), the impact on exospheric properties
could be quite significant. Murray-Clay et al. (2009) found the
effect of external photons on the exospheric density profile, not
considered in this study, to be up to two orders of magnitude.

Since we consider the exosphere to start at the outermost point
in the atmosphere for the Drift-Phoenix model atmosphere
under consideration, n0 (Equation (15)) is taken to be the
outermost density from that model. For the sample brown dwarf
atmosphere we consider here (log(g) = 5, Teff = 1500 K,
solar metallicity), the exobase density, nc = 3 × 109 cm−3

which is at ∼100 km above the cloud layer. For the sample
giant gas planet (log(g) = 3, Teff = 1500 K, solar metallicity),
nc = 4 × 107 cm−3, which is at ∼5000 km above the cloud
layer.

To determine the column density of the exosphere, Nexo
(cm−2), through which cosmic rays must travel before reaching
the upper atmosphere, we perform the integral:

Nexo =
∫ ∞

rc

ngas(r) dr, (16)
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and applying Equation (15) to Equation (16), we have Nexo ≈
1
2 ncrc. Assuming the radii of both the log g = 3 and log g = 5
cases to be the radius of Jupiter, RJ = 7.1 × 109 cm, Nexo ≈
5 × 1018 cm−2 for brown dwarfs and ≈7.5 × 1016 cm−2 for a
giant gas planet (e.g., Chabrier et al. 2000; Burrows et al. 2001).
Although our model is 1D and neglects rotation and gravitational
interaction with other bodies, the cosmic ray transport is not very
sensitive to the rather low exospheric column density. Column
densities �5×1019 cm−2 will not significantly affect cosmic ray
transport, according to our model, explained below in Section 3.
Errors in the exospheric gas density profile by up to an order of
magnitude do not significantly effect our results for cosmic ray
transport.

3. COSMIC RAY TRANSPORT IN THE
EXOSPHERE AND ATMOSPHERE

We have now determined the amount of material a cosmic
ray will have to pass through before reaching a certain depth
of an atmosphere. In order to determine the average number
of cosmic rays to reach a given atmospheric pressure, we
must now consider how much energy cosmic rays lose through
ionizing collisions, and how many cosmic rays are lost through
electron–positron production, pion decay, muon decay, and
several other processes. This will allow us to determine both how
far into the atmosphere cosmic rays of a given energy reach, and
their electron production once they are there. Solving the cosmic
ray transport, i.e., the collisional interaction of the individual
cosmic ray particles with the surrounding gas, will allow us
to estimate an ionization rate for cosmic rays as a function of
penetration depth into the atmosphere. The exospheric column
density, Nexo, will be applied to cosmic ray transport along with
the column density between the exobase and a given depth into
the atmosphere, Natm, and Ncol = Nexo + Natm. In this section,
we will determine a cosmic ray ionization rate that depends on
the total column, Ncol.

Cosmic rays of kinetic energy, E (eV), are divided here into
low-energy cosmic rays (LECRs, E < 109 eV) and high-
energy cosmic rays (HECRs, E > 109 eV). LECR transport
was calculated by Rimmer et al. (2012) using a Monte Carlo
transport model that incorporates the magnetic field effects
detailed in Skilling & Strong (1976) and Cesarsky & Volk
(1978), as well as inelastic collision energy loss. Collisional
energy loss is included by first taking the average energy loss
per collision, W (E) (eV), from Dalgarno et al. (1999), and the
“optical” depth for the cosmic ray. This depth is σ (E) ΔN , where
σ (E) is the total cross-section for inelastic collisions between
protons. We use the cross-sections from Rudd et al. (1983) and
Padovani et al. (2009).

We apply a Monte Carlo model to determine LECR transport.
In this model, detailed in Rimmer et al. (2012), we take 10,000
cosmic rays, and assign each of them two numbers. The first
number corresponds to the energy of the individual cosmic ray,
and the energies are distributed among the cosmic rays according
to the initial cosmic ray flux spectrum (see Figure 4). The second
number is a random number of uniform distribution with range
[0, 1]. The cosmic rays are advanced through the atmosphere
over a column, ΔN . If the random number is less than σ (E) ΔN ,
the cosmic ray collides with an atmospheric particle, and loses
an amount of energy W (E). We choose the size ΔN so that
σmax ΔN < 1, where σmax is the maximum cross-section for
an inelastic collision between a proton and a hydrogen atom,
≈5 × 10−16 cm2 (see Padovani et al. 2009, their Equations (5)
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Figure 4. Flux spectrum of cosmic rays, j (E) (cm−2 s−1 sr−1 (GeV
nucleon−1)−1) vs. the cosmic ray energy, E, from Equation (17) (left), and
as it varies with column density, Ncol, according to our Monte Carlo cosmic ray
propagation model (right). The left plot shows the effect of varying the parame-
ter α that describes the power-law component of the spectrum below 2×108 eV.
The solid line is for α = −2.15, the dashed lines bound −3.15 < α < 0.1. The
right plot shows the flux spectrum with α = −2.15 at Ncol = 0 cm−2 (solid),
1.5 × 1021 cm−2 (dashed), 1022 cm−2 (dotted) and 2.5 × 1022 cm−2 (dash-dot).

and (10)). A new spectrum is generated by binning the cosmic
rays according to their energies, and then the cosmic rays are
advanced another segment of the column, and the process is
repeated.

At the very end of the process, we have a series of cosmic ray
spectra, from the initial galactic cosmic ray spectrum at the edge
of the exosphere, to the cosmic ray spectrum at the bottom of the
cloud layer. The strength of Alfvén waves generated by cosmic
rays depends on the difference between the initial cosmic ray
spectrum and a given spectrum within the atmosphere.

Rimmer et al. (2012) consider the bulk of galactic cosmic
rays to be positively charged (protons and alpha particles).
This is the typical assumption, and is currently supported by
observation (Webber 1998). These cosmic rays lose energy
in the exosphere and atmosphere through ionizing collisions,
until they are eventually thermalized. The result is a charge
imbalance, with more positive charges present higher in the
exosphere than in the exobase or upper atmosphere. This charge
imbalance causes electrons to move from the exobase and upper
atmosphere higher into the exosphere in order to neutralize
the positive charge. These electrons will attempt to drag the
magnetic field lines with them, generating Alfvén waves. The
cosmic rays therefore lose energy in proportion to the energy of
the Alfvén waves generated, in addition to the energy lost from
collisions with the ambient gas. This mechanism for energy loss
was first examined by Skilling & Strong (1976), who considered
cosmic ray exclusion in the interstellar medium, where magnetic
fields are on the order of 3 μG. If the magnetic field is much
stronger than this (�1 mG), then the electrons will be more
strongly locked to the magnetic field lines and they will no
longer be able to efficiently generate Alfvén waves (i.e., the
inequality in Equation (4) in Rimmer et al. 2012 will no longer
be satisfied). Since this mechanism accelerates free electrons
within the atmosphere, this may allow a cosmic ray driven
current in atmospheric regions where the local magnetic field
strength is �1 mG.

The question of the effect strong magnetic fields have on
cosmic ray propagation is beyond the scope of this principle
investigation. Large scale magnetic fields for brown dwarfs are
several orders of magnitude greater than our 1 mG limit (Reiners
& Basri 2007), so a study of strong magnetic field effects
on cosmic ray transport is of great importance. Grießmeier
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et al. (2005) investigated cosmic ray propagation in exoplanet
exospheres and atmospheres in the presence of Earth-strength
magnetic fields, and found a correlation between the strength
of the magnetic moment and anisotropy of cosmic rays on the
surface of the planet (Grießmeier et al. 2005, their Figure 5).
This anisotropy effect will increase for brown dwarfs as the
strength of their magnetic field is suggested to be larger.

We take an initial flux density of cosmic rays, j (E) (cm−2 s−1

sr−1 (109 eV nucleon−1)−1) to be the broken power-law spec-
trum from Indriolo et al. (2009), based on the models of Lerche
& Schlickeiser (1982) and Shibata et al. (2006). This spectrum
best fits both the observed light element abundances produced
via scintillation as well as observed abundances of the ion H+

3
in the interstellar medium. The broken power-law spectrum
changes sharply in flux at <2 × 108 eV. This change results
from “leaky-box” models (Lerche & Schlickeiser 1982; Shi-
bata et al. 2006), and is argued to be caused by low-energy
shocks from either supernova remnants or possibly OB stellar
atmospheres interacting with the ambient medium (Bykov &
Fleishman 1992). The initial flux density used in this paper is
given as (based on Indriolo et al. 2009, their Equation (8)):

j (E) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

j (E1)

(
p(E)
p(E1)

)γ

, ifE > E2

j (E1)

(
p(E2)
p(E1)

)γ (
p(E)
p(E2)

)α

, ifEcut < E < E2

0, ifE < Ecut

,

(17)
where p(E) = 1

c

√
E2 + 2EE0 and E0 = 9.38 × 108 eV is

the proton rest energy. E1 = 109 eV and E2 = 2 × 108 eV
are constants, and the flux j (E1) = 0.22 cm−2 s−1 sr−1

(109 eV nucleon−1)−1 is the measured cosmic ray flux at 109 eV.
The fitting parameter γ ≈ −1.35 is also well-constrained
by observation (Mori 1997). The value for the second fitting
exponent α depends on the models of Lerche & Schlickeiser
(1982) and Shibata et al. (2006); we choose the value α = −2.15
because this value best agrees with the cosmic ray ionization
in the interstellar medium inferred by Indriolo et al. (2007).
The flux-spectrum in Equation (17) above E ∼ 106 eV is
expected to be roughly the same throughout the interstellar
medium (Strong & Moskalenko 1998), and therefore seems to
be a sensible initial cosmic ray flux applied at the outer edge of
our exosphere. The parameter α determines the hardness of the
LECR component of the spectrum, and has no observed lower
limit, because LECRs are shielded from us by the solar wind.
Upper limits to α can be determined from Voyager observations
(e.g., Webber 1998). The effect on the spectrum from varying α
can be seen in Figure 4. This figure also includes a plot showing
how the cosmic ray spectrum changes with column density into
our model atmospheres. An application of the results of Rimmer
et al. (2012) to cosmic rays below 106 eV shows that cosmic
rays are unlikely to travel farther than ∼1 pc from their source
of origin, the origin being either a supernova remnant or an
OB association. It is therefore sensible to apply a low-energy
cut-off, Ecut = 106 eV, to the initial cosmic ray spectrum applied
in this paper.

It is important to determine how the ionization rate changes
when traveling into the exosphere and into the atmosphere.
Fewer cosmic rays will be able to reach deeper into the
atmosphere, so cosmic rays will affect the ambient gas less
and less with increasing atmospheric depth. We now determine
the cosmic ray ionization rate as a function of column density.

We apply Equation (17) to the Monte Carlo model from Rimmer
et al. (2012) to determine a column-dependent flux density. This
flux density, j (E), can be used to calculate to the primary cosmic
ray ionization rate for hydrogen, ζp (s−1) by:

ζp = 4π (1 + G10)
∫ ∞

0
[1 + φp(E)]j (E) σp(E) dE. (18)

Here, σp(E) is the ionization cross-section for a proton to
ionize a hydrogen atom (Spitzer & Tomasko 1968; Padovani
et al. 2009) and G10 is a factor representing the ionization by
LECR electrons and by “heavy” LECRs (mostly α-particles),
and is assumed to be G10 = 0.8 (Spitzer & Tomasko 1968).
The ionizing event produces a free electron at super-thermal
energies, which often causes the ionization of additional species.
This is accounted for in the term φp(E) which takes the form
from Glassgold & Langer (1973) and Padovani et al. (2009) of:

φp(E) = 1

σp(E)

∫ ∞

I (H2)
P (E,Ese) σse(Ese) dEse, (19)

where Ese is the energy of the secondary electron, I (H2) =
15.603 eV is the ionization energy of molecular hydrogen, σe

(cm2) is the cross-section for ionization of H2 by an electron
(Mott 1930) and P (E,Ese) is the probability of the secondary
electron having energy Ese given a proton of energy E. We
approximate the Equation (19) as:

φp(E) ≈ σse(W (E) − I (H2))

σp(E)
, (20)

where W (E) is the average amount of energy deposited into the
secondary electron from the cosmic ray proton, from Dalgarno
et al. (1999). If W (E) < I (H2) then φp = 0.

For HECRs, electrons are primarily produced by electron–
positron production, muon decays, and other high-energy ef-
fects, and less so by ionizing collisions for which the cross-
section is very small at high energies. Velinov et al. (2009)
apply the CORSIKA code3 to realistic terrestrial atmospheric
conditions (see Mishev & Velinov 2008, 2010) in order to calcu-
late the rate of electron production from HECRs, and find that it
compares well with their analytical method (see also Velinov &
Mateev 2008). The HECR penetration is significantly affected
by atmospheric composition (Molina-Cuberos et al. 1999). We
therefore adapt the analytical method from Velinov & Mateev
(2008) to our atmosphere by making the following changes.
Whereas Velinov & Mateev (2008) set the ionization energy to
that of nitrogen, I (N2), for the terrestrial atmosphere, we use an
averaged ionization energy for the our atmospheric chemistry,

IAv ≈ I (H2)n(H2) + I (He)n(He) + I (H)n(H)

ngas
. (21)

We apply the same methods to determine an average proton
number, ZAv, and average mass number, AAv, for our atmospheric
models. We also set the Emin = 109 eV from Velinov & Mateev
(2008, their Equations (25) and (27)), because we treat LECR
transport separately. The results of the analytic model of Velinov
& Mateev (2008), in terms of the electron production by HECRs,
QHECR(Ncol) (cm−3 s−1), for giant gas planets and brown dwarf
atmospheres, are shown in Figure 5. The production rate of

3 The CORSIKA code incorporates several models for hadron–hadron
interactions as well as various parameterizations of Earth’s atmosphere.
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Figure 5. Electron production rate from cosmic rays of energies E > 109 eV
(QHECR (cm−3 s−1)) vs. pressure, pgas (bar), for both model giant gas planet
atmospheres, with log g = 3 (Teff = 1500 K (solid line) and Teff = 1000 K
(dashed line)) and brown dwarf atmosphere with log g = 5, Teff = 1500 K
(dashed line). The electron production rate, QHECR, is obtained analytically
from Velinov & Mateev (2008). For the log g = 3 (giant gas planet) cases, the
electron production peaks at 10−2 bar (1000 K) and 0.25 bar (1500 K). Electron
production for the log g = 5, 1500 K (brown dwarf) case does not have a clear
peak over the range of pressures we considered.

electrons depends on the gas column density according to
Velinov & Mateev (2008, their Equation (26) and (28)). The
electron production for our log g = 3 model is within an order
of magnitude of the electron production calculated for Jupiter’s
atmosphere from Whitten et al. (2008, their Figure 3(a)).

We combine the HECR results of Velinov & Mateev (2008)
and Velinov et al. (2009) to the Monte Carlo calculations for
LECRs from Rimmer et al. (2012). This simply amounts to
taking a total cosmic ray ionization rate, Q (cm−3 s−1):

Q(Ncol) = ngasζLECR(Ncol) + QHECR(Ncol). (22)

The column-dependent ionization rate as a function of column
density, Ncol (cm−2), is well fit by the analytical form:

Q(Ncol) = QHECR(Ncol) + ζ0ngas

×

⎧⎪⎨
⎪⎩

480 ifNcol < N1

1 + (N0/Ncol)1.2 ifN1 < Ncol < N2

e−kNcol ifNcol < N2

, (23)

where ζ0 = 10−17 s−1 is the standard ionization rate in the
dense interstellar medium, and the column densities N0 =
7.85×1021 cm−2, N1 = 4.6×1019 cm−2, N2 = 5.0×1023 cm−2,
and k = 1.7 × 10−26 cm2 are fitting parameters. Our calculated
brown dwarf exospheric column density is within a factor of
three of N1, and the giant gas planet exospheric column density
is about two orders of magnitude below N1. In both cases, we
do not expect the exosphere to have much impact on our cosmic
ray transport model for giant gas planets and brown dwarfs.
For atmospheric depths above ≈1.7 g cm−2, Equation (23)
converges to Helling et al. (2012, their Equation (1)).

We calculate the degree of ionization using the same method
as Whitten et al. (2008). We can estimate the steady-state number
density of electrons, n(e−) (cm−3) using the rate equation:

dn(e−)

dt
= Q − αDR[n(e−)]2, (24)

where αDR (cm3 s−1) is the recombination rate coefficient.
This recombination rate coefficient includes both the coefficient
for two-body recombination, α2 (cm3 s−1), and three-body

recombination, α3 (cm6 s−1) such that:

αDR = α2 + ngasα3. (25)

The two-body process is taken to be the recombination rate for
protonated hydrogen (McCall et al. 2004, their Equation (7)),

α2/
(
cm3 s−1

) = 8.22×10−8

(
T

300 K

)−0.48

−1.3×10−8. (26)

This equation agrees with the measured two-body recombina-
tion rate for protonated hydrogen over a temperature range of
10 K < T < 4000 K, and is in agreement with the typical
two-body dissociative recombination rates for the upper atmo-
sphere of Earth, according to Bardsley (1968). The three-body
recombination rate is taken to be (Smith & Church 1977):

α3/
(
cm6 s−1

) = 2 × 10−25

(
T

300 K

)−2.5

. (27)

We calculate the steady-state degree of ionization, fe,CR =
n(e−)/ngas, by setting dn(e−)/dt = 0 in Equation (24), and
find:

fe,CR = 1

ngas

√
Q

αDR
. (28)

We will now combine this degree of ionization with the thermal
degree of ionization and explore the resulting abundance of free
electrons and their possible effect on the magnetic fields of these
example objects.

4. RESULTS AND DISCUSSION

The total degree of ionization in the atmosphere can now
be calculated by summing the degree of ionization, fe,CR from
Equation (28), discussed in Section 3, and the electron fraction
due to thermal ionization included in the Drift-Phoenix model
atmosphere. The initial chemical abundances and the degree of
thermal ionization, fe,thermal = ne,thermal/ngas, is provided by
the Drift-Phoenix model with Teff = 1500 K, log g = 3 (giant
gas planet), and log g = 5 (brown dwarf). The total degree of
ionization, fe, is then:

fe = fe,thermal + fe,CR. (29)

Cosmic rays directly affect the number density of free electrons
(Section 4.1). In Section 4.2 we analyze the effect of the
free electron enhancement on the magnetic field coupling by
evaluating the magnetic Reynolds number.

4.1. Cosmic Ray Impact on the Electron Gas Density

The impact of cosmic rays on the number of free electrons
in the gas phase is the primary focus of our work. These
results are plotted in Figures 6 and 7: for the log g = 3,
Teff = 1500 K giant gas planet the HECR component (109 eV
< E < 1012 eV) dominates, and cosmic rays contribute
substantially to the ionization until pgas ∼ 10−3 bar. For the
log g = 3, Teff = 1000 K giant gas planet, the HECR component
dominates until 10−2 bar. For the log g = 5 case (brown
dwarf), the LECR component (E < 109 eV) dominates until
pgas ∼ 10−4 bar. The HECR component then takes over until
pgas ∼ 10−2 bar. Both the HECR and LECR components are
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Table 1
Effect of Cosmic Ray Ionization on Model Atmospheres by Region (See Figures 1, 6, and 7)

pgas at the pgas at the pgas Where pgas Where pgas Where
g Teff Cloud Top Cloud Base HECRa LECRb fe > 10−8

(cm s−2) (K) (bar) (bar) (bar) (bar) (bar)

3 1500 5 × 10−5 10−2 10−7–10−3 <10−7 <5 × 10−10

3 1000 2 × 10−3 10−1 10−5–5 × 10−2 <10−5 <10−8

5 1500 10−3 ∼1 10−6–3 × 10−2 <10−6 . . .c

Notes.
a The region where cosmic rays of energy 109 eV< E < 1012 eV dominate.
b The region where cosmic rays of energy E < 109 eV dominate.
c fe < 10−8 throughout this model atmosphere.
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Figure 6. Degree of gas ionization, fe = n(e−)/ngas, as a function of local
gas pressure, for Teff = 1500 K, log g = 3 (giant gas planet, left), and
log g = 5 (brown dwarf, right). The solid line denotes both the HECR and
LECR contribution, while the dashed line denotes the HECR contribution only.
The dotted line represents the electron abundance in the absence of cosmic rays,
and demonstrates the extreme insufficiency of thermal ionization processes in
cool objects. The solid red line is the dust number density, ndust (cm−3), and
indicates where the cloud layer is located.

(A color version of this figure is available in the online journal.)

added to the local degree of thermal ionization that results from
the Drift-Phoenix model atmospheres. The regions where
HECR and LECR components dominate for our three model
atmospheres are given in Table 1.

Both the HECR and LECR components reach the cloud top,
and the HECR component produces the bulk of free electrons
within the upper 10% of cloud layer for the log g = 3, Teff =
1500 K (giant gas planet) atmosphere, 50% of cloud layer for the
log g = 3, Teff = 1000 K (giant gas planet) atmosphere and 5%
of the cloud layer for the log g = 5, Teff = 1500 K (brown
dwarf) atmosphere. In regions where the LECR component
dominates, the degree of ionization is enhanced by about a
factor of five over what the HECR component would contribute
alone. For the log g = 3, Teff = 1000 K model atmosphere, the
degree of ionization, fe, exceeds 10−8 when pgas < 10−8 bar.
This approaches fe ∼ 10−7, when the gas begins to act like
a weakly ionized plasma (Diver 2001). The pressures below
which this degree of ionization is reached are also included in
Table 1. The brown dwarf atmosphere never achieves such a
high degree of ionization. It is interesting to note in this context
that clouds in the Earth atmosphere are not directly ionized by
cosmic rays. Instead, the cosmic rays ionize the gas above the
clouds and an ion current develops that leads to the ionization of
the upper cloud layers (Nicoll & Harrison 2010). Considering
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Figure 7. Degree of gas ionization, fe = n(e−)/ngas, as a function of local gas
pressure, for log g = 3, Teff = 1000 K. The solid line denotes both the HECR
and LECR contribution, while the dashed line denotes the HECR contribution
only. The dotted line represents the electron abundance in the absence of cosmic
rays, hence thermal ionization only. The solid red line is the dust number density,
ndust (cm−3), and indicates where the cloud layer is located.

(A color version of this figure is available in the online journal.)

how far cosmic rays penetrate into the cloud layers of our model
atmospheres, it would be useful to explore the charging of grains
by the resulting free electrons.

4.2. Magnetic Field Coupling

It is helpful to recast our results in terms of the degree the
magnetic field couples to the gas. Helling et al. (2011b) quantify
the degree of coupling by the magnetic Reynolds number, RM ,
a dimensionless quantity which is directly proportional to the
atmospheric degree of ionization, fe = pe/pgas = ne/ngas,
where pe and pgas are the electron pressure and gas pressure,
respectively. The gas pressure and electron pressure are provided
by the Drift-Phoenix model atmospheres where the electron
pressure is calculated from the Saha equation for thermal
ionization processes.

The magnetic Reynolds number can be expressed as (Helling
et al. 2011b):

RM = (109 cm2 s−1)
4πq2

mec2

1

〈σv〉en
fe, (30)

where q is the electric charge, me is the electron mass, c is the
speed of light, and 〈σv〉en is the collisional rate, taken to be
≈10−9 cm3 s−1. The coupling of the magnetic field to the gas
is expected if RM > 1, and though cosmic rays enhance RM
in the outer atmosphere by orders of magnitude, the magnetic
Reynolds number does not reach unity anywhere within the
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the electron abundance in the absence of cosmic rays, hence thermal ionization
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where the cloud layer is located.

(A color version of this figure is available in the online journal.)

upper atmosphere (Figures 8 and 9). Since RM varies linearly
with fe, cosmic rays affect the magnetic Reynolds number over
the same pressure range that they affect the degree of ionization
for all model atmospheres. Since none of the model atmospheres
achieves a value of RM > 1, this suggests that mechanisms other
than cosmic rays of E < 1012 eV will be needed if the magnetic
field is to be coupled to the atmospheric gas in giant gas planets
or brown dwarfs.

5. SUMMARY

This paper seeks to answer the question of the significance
of cosmic ray ionization on the number of free electrons in
brown dwarfs and giant gas planets. We further examine the
possible coupling of the magnetic field to the gas because of
the increased degree of ionization. We develop an analytical
model for the exospheric density profile which we combine to an
atmospheric structure. The Drift-Phoenix model atmospheres
provide the inner boundary conditions for the exosphere model,
and they provide the density profile that we utilize below the
exobase. Cosmic ray transport through the exosphere and the

atmosphere is then calculated using these density profiles. A
Monte Carlo cosmic ray transport method from Rimmer et al.
(2012) is applied to cosmic rays of E < 109 eV. An analytic
method for cosmic ray transport from Velinov & Mateev (2008)
is applied to cosmic rays of E > 109 eV. We calculate an
ionization rate for which we provide a parameterized expression
(Equation (23)). We use this expression to estimate the steady-
state degree of ionization (Equation (29)).

Do cosmic rays have a significant impact on the electron
fraction? If the measure of significance is the number of free
electrons in the upper atmosphere, then the answer is “yes.”
Cosmic ray ionization is responsible for almost all the free elec-
trons in our upper model atmospheres and for the giant gas
planet model atmospheres, achieves a degree of ionization ap-
proaching that necessary to qualify the highest regions of these
model atmospheres as weakly interacting plasmas, thereby pro-
viding an environment for plasma processes (Stark et al. 2013).
If, however, the measure of significance is the degree of cou-
pling of the magnetic field to the gas, then the answer is “no.”
The model predicts a cosmic ray enhancement to the steady-
state electron abundance by several orders of magnitude for
atmospheric regions with pgas < 10−3 bar for brown dwarf
conditions and for pgas < 10−2, 10−4 bar for giant gas planet
conditions, with Teff = 1500 K in both cases. This enhancement
is not large enough to allow the magnetic Reynolds number,
RM > 1 above the cloud top, and does not significantly affect
RM for the bulk of the cloud layer. This indicates that the
magnetic field would not couple to the gas because of
the steady-state cosmic ray ionization enhancement. However,
the geometry of the magnetic field (e.g., Donati et al. 2008;
Vidotto et al. 2012; Lang et al. 2012) might lead to a channeling
of the cosmic rays which then would amplify the local degree
of ionization beyond the values determined in this paper, which
would cause heterogeneous distribution of cosmic ray induced
chemical products. The increased abundance of electrons may
contribute to charge build-up on dust at the top of the cloud
layer. This is especially the case for our model brown dwarf
atmosphere, because cosmic rays penetrate more deeply into its
cloud layer.

Cosmic rays were first discovered through their ionization
effects in the Earth’s atmosphere. We predict that ionization
effects have a significant impact on the upper atmospheres of
free-floating extrasolar planets and very low-mass stars. The
effect the cosmic ray induced degree of ionization has on the
chemistry in the upper atmospheres of these objects is a very
interesting question. It has been suggested that cosmic rays may
drive production of small hydrocarbons that may be responsible
for the hazes of, e.g., HD 189733 b (Moses et al. 2011). This is
a question we hope to explore in detail in a future paper.
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