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ABSTRACT

We construct new equations of state for baryons at subnuclear densities for the use in core-collapse simulations
of massive stars. The abundance of various nuclei is obtained together with thermodynamic quantities. A model
free energy is constructed, based on the relativistic mean field theory for nucleons and the mass formula for nuclei
with the proton number up to ∼1000. The formulation is an extension of the previous model, in which we adopted
the liquid drop model to all nuclei under the nuclear statistical equilibrium. We reformulate the new liquid drop
model so that the temperature dependences of bulk energies could be taken into account. Furthermore, we extend
the region in the nuclear chart, in which shell effects are included, by using theoretical mass data in addition to
experimental ones. We also adopt a quantum-theoretical mass evaluation of light nuclei, which incorporates the
Pauli- and self-energy shifts that are not included in the ordinary liquid drop model. The pasta phases for heavy
nuclei are taken into account in the same way as in the previous model. We find that the abundances of heavy nuclei
are modified by the shell effects of nuclei and temperature dependence of bulk energies. These changes may have
an important effect on the rates of electron captures and coherent neutrino scatterings on nuclei in supernova cores.
The abundances of light nuclei are also modified by the new mass evaluation, which may affect the heating and
cooling rates of supernova cores and shocked envelopes.
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1. INTRODUCTION

Core-collapse supernovae occur at the end of the evolution
of massive stars. The mechanism of this event is not clearly
understood yet because of their intricacies (see, e.g., Janka
et al. 2007; Kotake 2013). One of the underlying problems is
the equations of state (EOSs) of hot and dense matter both at
sub- and supranuclear densities. EOS provides information on
compositions of nuclear matter in addition to thermodynamical
quantities such as pressure, entropy, and sound velocities. The
compositions play important roles at both pre- and post-bounce
phases. In collapsing cores, they have an influence on the rate
of electron captures and neutrino coherent scatterings on nuclei,
both of which determine the evolution of the lepton fraction,
one of the most critical ingredients for the core dynamics. After
bounce they affect the rates of heating and cooling through the
neutrino emission and absorption on nucleons and nuclei.

The EOS for the simulations of core-collapse supernovae
must cover a wide range of density (105 � ρB � 1015 g cm−3)
and temperature (0.1 � T � 102 MeV), including both
neutron-rich and proton-rich regimes. One of the difficulties in
constructing the EOS is originated from the fact that depending
on the density, temperature, and proton fraction, the matter
consists of either dilute free nucleons or a mixture of nuclei and
free nucleons or strongly interacting dense nucleons. Another
complication is the existence of the so-called nuclear pasta
phases, in which nuclear shapes change from droplet to rod,
slab, anti-rod, and bubble (anti-droplet) as the density increases
toward the nuclear saturation density, at which uniform nuclear
matter is realized (Ravenhall et al. 1983; Hashimoto et al.
1984; Oyamatsu 1993; Watanabe et al. 2005; Nakazato et al.

2009; Okamoto et al. 2012). At high temperatures (T �
0.4 MeV), chemical equilibrium is achieved for all strong
and electromagnetic reactions, which is referred to as nuclear
statistical equilibrium, or NSE, and the nuclear composition is
determined as a function of density, temperature, and proton
fraction (Timmes & Arnett 1999; Blinnikov et al. 2011). At
lower temperatures, the matter composition is an outcome of
preceding nuclear burnings and cannot be obtained by statistical
mechanics. In this paper, we are concerned with the high-
temperature regime, in which the nuclear composition can be
treated as a part of EOS.

At present, there are only two EOSs in wide use of the
simulations of core-collapse supernovae. Lattimer–Swesty’s
EOS is based on Skyrme-type nuclear interactions and the so-
called compressible liquid drop model for nuclei surrounded
by dripped nucleons (Lattimer & Swesty 1991). The EOS by
Shen et al. employs a relativistic mean field theory (RMF) to
describe nuclear matter and the Thomas–Fermi approximation
for finite nuclei with dripped nucleons (H. Shen et al. 1998a,
1998b, 2011). It should be emphasized here that both EOSs
adopt the so-called single nucleus approximation (SNA), in
which only a single representative nucleus is included. In other
words, the ensemble of nuclei is ignored. Burrows & Lattimer
(1984) demonstrated that SNA is not a bad approximation
for thermodynamical quantities such as pressure. It is not
the case, however, for the weak interaction rates, since the
electron capture rates are sensitive to nuclear shell structures
and the greatest contributor is not the most abundant nuclei
that the single representative nuclei in SNA are supposed to
approximate (Langanke & Martinez-Pinedo 2003; Hix et al.
2003). In addition to the approximative calculation of heavy
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nuclei, only alpha particles are included in both EOSs as a
representative light nucleus. It is predicted that not only alpha
particles but deuterons, tritons, and helions are also abundant
in the cooling and heating regions of cores and envelopes after
bounce (Sumiyoshi & Röpke 2008; Arcones et al. 2008; Hempel
et al. 2012).

In this decade, some EOSs including multi-nuclei have been
formulated by different research groups. Although all models
assumed NSE, models for nuclei are different. Botvina’s EOS
(Botvina & Mishustin 2004, 2010; Buyukcizmeci et al. 2013b)
is a generalization of the statistical model, which is one of the
most successful models used for the theoretical description of
multifragmentation reactions induced by heavy-ion collisions
(Bondorf et al. 1995). The calculation of the nuclear energies in
this model is based on the liquid drop model for the mass number
up to 1000. However, they ignored the shell effects of nuclei,
which are important for reproducing the abundance of nuclei at
low temperatures. Hempel & Schaffner-Bielich (2010) utilized
two mass tables, which are based on experimental data (Audi
et al. 2003) and theoretical estimation for isolated nuclei (Geng
et al. 2005). Due to the limitation of the mass tables, heavy
nuclei with proton number Z � 100 are not included in their
NSE calculations. They also ignored the high-density and high-
temperature effects on nuclear bulk and surface energies, which
are explained in the later section. G. Shen et al. (2011) employed
two different theories, the virial expansion at low densities and
SNA with the Hartree approximation at high densities. The
multi-nuclei description is employed only in the low-density
regime, and some quantities such as the mass fraction of free
protons are discontinuous at the transition between the two
descriptions. Typel (2005) made an EOS, focusing on light
nuclei. They employed a generalized density-dependent RMF,
which is applied not only to protons and neutrons but also to
deuterons, tritons, helions (=3He), and alpha particles.

We constructed an EOS (Furusawa et al. 2011) based on
the NSE description with the mass formula for nuclei up to
the atomic number of 1000 under the influence of surrounding
nucleons and electrons. The mass formula is derived from the
experimental data of nuclear binding energies and enables us to
take into account nuclear shell effects. The liquid drop model
is extended to describe medium effects and, in particular, the
formation of the pasta phases. The free energy thus obtained of
the multi-component system can reproduce the ordinary NSE
results at low densities and make a continuous transition to the
EOS for supranuclear densities. The details of the model and
comparisons with H. Shen’s EOS and Hempel’s EOS are given
in Furusawa et al. (2011).

The purpose of this study is to improve the previous model
incorporating some missing important effects and construct a
more realistic EOS for the core-collapse supernova simulations.
As a matter of fact, our previous EOS shows unphysical
jumps in the isotope distributions between the nuclei with
the experimental mass data and those without them. This is
demonstrated in the paper, in which we compare three different
EOSs with multi-nuclei handling (Buyukcizmeci et al. 2013a).
The main cause for this unphysical behavior is the lack of the
temperature dependence in the bulk energies for the nuclei with
mass data. We hence modified the expression of bulk energies
so that the temperature dependence could be incorporated in
this work. Furthermore, the shell effects are taken into account
only for a limited number of nuclei in our previous EOS, since
we have used only experimental mass data (Audi et al. 2003)
to obtain the shell effects. In this work, on the other hand,

we utilize the theoretical mass data (Koura et al. 2005), which
cover 15,134 nuclei that have no experimental mass data. In our
previous EOS, we adopt the liquid drop model even for light
nuclei such as deuterons, tritons, helions, and alpha particles. It
is known that the liquid drop mass formula poorly reproduces the
experimental mass data of the light nuclei with the mass numbers
about 10 or smaller (Ghahramany et al. 2011). In this paper, we
treat light nuclei as quasi-particles immersed in dense and hot
nucleons following Typel et al. (2010). Other improvements
in this paper are saturation densities of individual nuclei and
the contributions of excited states to partition functions. In the
following, we report on these new ingredients and discuss the
differences from the previous version.

This paper is organized as follows. In Section 2, we overview
the model free energy to be minimized and the details of
new developments from the previous EOS. Note that the basic
formulation of the model free energy and its minimization are
unchanged from the previous version. The results are shown
in Section 3, with an emphasis on the differences from the
previous EOS. The paper is wrapped up with a summary and
some discussions in Section 4.

2. FORMULATION OF THE NEW MODELS

To obtain the multi-component EOSs, we construct a model
free energy and minimize it with respect to the parameters
included. The matter in the supernova core at subnuclear
densities consists of nucleons and nuclei together with electrons
and photons. The latter two are not treated in this paper although
the inclusion of them as ideal Fermi and Bose gases respectively
is quite simple and now a routine. Note that the Coulomb
energies between protons, both inside and outside nuclei, and
electrons are contained in the EOS and we assume that the
electrons are uniformly distributed. Neutrinos are not always in
thermal or chemical equilibrium with the matter and cannot be
included in the free energies of nuclei. Their non-equilibrium
distributions should be computed with the transport equations.

The free energy is constructed as a sum of the contributions
from free nucleons not bound in nuclei, light nuclei defined here
as those nuclei with the proton number Z � 5, and the rest of
heavy nuclei with the proton and neutron numbers Z � 1000
and N � 1000. This classification of heavy or light nuclei is
based on whether LDM is a good approximation in reproducing
the experimental mass data or not. It is known that the difference
between LDM and experimental masses is large for the nuclei
with the mass number A � 10 (Ghahramany et al. 2011). We
hence set the light nuclei as those with Z � 5.

We assume that the free nucleons outside nuclei interact with
themselves only in the volume that is not occupied by other
nuclei; light nuclei are the quasi-particles whose masses are
modified by the surrounding free nucleons; heavy nuclei are
also affected by the free nucleons and electrons, depending
on the temperature and density, and contact with each other
at some density and merge into pastas near the saturation
densities. The free energy of free nucleons is calculated by
the RMF theory with the excluded volume effect being taken
into account. The model free energy of heavy nuclei is based
on the liquid drop mass formula. The free energy of light nuclei
is approximately calculated by quantum many-body theory. In
constructing the mass formula of heavy nuclei, the following
issues are appropriately taken into account: the nuclear masses
at low densities and temperatures should be equal to those of
isolated nuclei in vacuum, and the shell energies of nuclei
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are crucially important to reproduce the ordinary NSE (e.g.,
Timmes & Arnett 1999); one should take into account the effect
that the nuclear bulk, shell, Coulomb, and surface energies are
affected by the free nucleons and electrons at high densities and
temperatures; furthermore, the pasta phases near the saturation
densities should also be accounted for to ensure a continuous
transition to uniform matter. Only the bubble phase is explicitly
considered in the Coulomb and surface energies, and other pasta
phases are just interpolated between the normal droplet and
bubble phases.

In the following subsections, we explain the details of the free
energy density expressed as

f = fp,n +
∑

j

njFj +
∑

i

niFi, (1)

Fj/i = Et
j/i + Mj/i, (2)

where fp,n is the free energy densities of free nucleons, nj/i

and Fj/i are the number density and free energy of individual
nucleus, index j specifying a light nucleus with the proton
number Zj � 5 and index i meaning a heavy nucleus with
the proton number 6 � Zi � 1000, respectively. Et

i/j and
Mi/j are the translational energies and rest masses of heavy and
light nuclei. We begin with the mass evaluation of heavy nuclei
Mi focusing on the modifications from our previous EOS in
Section 2.1. Then we describe the mass estimation of the light
nuclei Mj in Section 2.2. The translational energies of heavy
and light nuclei Et

j/i are explained in Section 2.3. We finally
mention the evaluation of thermodynamical quantities from the
free energy in Section 2.4. Since the free energy density of free
nucleons based on the RMF theory fp,n and the minimization of
the total free energy densities are just the same as in the previous
paper (Furusawa et al. 2011), we briefly describe them below.

The free energy density of free nucleons is calculated by
the RMF theory with the TM1 parameter set, which is the
same as that adopted in H. Shen et al. (1998a, 1998b). We
take into account the excluded-volume effect: free nucleons
cannot move in the volume occupied by other nuclei, VN . Then
the local number densities of free protons and neutrons are
defined as n′

p/n = (Np/n)/(V − VN ) with the total volume, V,
and the numbers of free protons, Np, and free neutrons, Nn.
Then the free energy densities of free nucleons are defined as
fp,n = (V −VN )/V ×f RMF(n′

p, n′
n, T ), where f RMF(n′

p, n′
n, T )

is the free energy density in the unoccupied volume for nucleons,
V − VN , obtained from the RMF theory at n′

p, n′
n, and

temperature T.
The abundances of nuclei as a function of ρB , T , and Yp are

obtained by minimizing the model free energy with respect to the
number densities of nuclei and nucleons under the constraints,

np + nn +
∑

j

Ajnj +
∑

i

Aini = nB = ρB/mB,

np +
∑

j

Zjnj +
∑

i

Zini = ne = YpnB, (3)

where nB and ne are number densities of baryon and electrons
and Aj/i and Zj/i are the mass and proton numbers of nucleus
j/i. The minimization of our free energy density is not the
same as that in the ordinary NSE. In the latter, one has only
to solve the constraints, Equation (3), at a given ρ, T , and
Yp for two variables, i.e., the chemical potentials of nucleons
μp and μn, through Saha equations. In our case, the free energy

Figure 1. Saturation densities of nuclei as a function of temperature for
Zi/Ai = 0.2 (cyan dotted line), 0.3 (blue dash-dotted line), 0.4 (green dashed
line), and 0.5 (red solid line).

(A color version of this figure is available in the online journal.)

density of nuclei depends on the local number densities of proton
and neutron n′

p/n as we will describe later. Thus, the number
densities of nuclei are not determined by μp and μn alone but
they also depend on n′

p and n′
n. We hence have to solve the

equations relating μp/n and n′
p/n as well as the two constraint

equations, Equation (3), to determine the four variables: μp, μn,
n′

p, and n′
n.

2.1. Mass Evaluation of Heavy Nuclei (Z � 6)

The nuclear mass is assumed to be equal to the sum of shell,
bulk, Coulomb, and surface energies: Mi = ESh

i +EB
i +EC

i +ESu
i .

In this study, we treat the shell energies separately from the
bulk energies for the nuclei with mass data unlike in the previ-
ous model, in which the shell effect was included in the bulk
energies. This is because we take into account the tempera-
ture dependence of the bulk energies for the nuclei with mass
data. Furthermore, we incorporate the dependence of the satu-
ration density nsi of each nucleus i on T and ρB . The formu-
lation of Coulomb and surface energies is just identical to the
previous one.

We define the saturation densities of nuclei nsi(T ) as the
baryon number density, at which the free energy per baryon,
F RMF(T , nB, Yp), given by the RMF with Yp = Zi/Ai takes
its minimum value. Thus, nsi(T ) depends on the temperature
T and the proton fraction in each nucleus Zi/Ai . At high
temperatures the free energy, F RMF(T , nB, Zi/Ai), has no
minimum because the entropy contribution, the T S term with S
being entropy, overwhelms the internal energy. In the previous
paper, nsi is set to the saturation density given by the H.
Shen EOS at temperatures higher than the critical temperature
Tci, above which the free energy, F RMF(T , nB, Zi/Ai), has no
minimum. This prescription brought unphysical jumps in the
mass fraction at the critical temperatures in the previous EOS.
In order to remedy this artifact, we assume in the new EOS that
the saturation density nsi(T ) above Tci is equal to the saturation
density at the critical temperature nsi(Tci). Figure 1 shows
the saturation density nsi(T ,Zi/Ai) for the proton fractions
Zi/Ai = 0.2, 0.3, 0.4, and 0.5 in the nB–T plane. We can
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Figure 2. Saturation densities of nuclei with Zi/Ai = 0.3 as a function of
baryon number density for T = 1 MeV (blue dotted line), 5 MeV (green dashed
line), and 10 MeV (red solid line).

(A color version of this figure is available in the online journal.)

see that neutron-rich nuclei have lower saturation densities
and critical temperatures than symmetric nuclei because of the
symmetry energy. When the saturation density nsi is lower than
the baryon number density of the whole system nB, we reset the
saturation density as the baryon number density nsi = nB as
shown in Figure 2. This prescription approximately represents
compressions of nuclei near the saturation densities. These
treatments of the saturation density are important in obtaining
reasonable bulk energies at high temperatures and densities.
They are necessary, since it is impossible at the moment to solve
nuclear structures and abundance in a self-consistent manner
completely. In fact, the density of each nucleus is not a quantity
to be determined by the minimization of the free energy density
but a parameter to be set in our model. We expect, however, that
the density of each nucleus is very close to the saturation density,
that is, the density at which the free energy density of uniform
nuclear matter becomes minimum for the same temperature and
proton fraction except when the saturation density does not exist
at high temperatures or when the transition to uniform nuclear
matter occurs at a density higher than the saturation density. To
these cases we need special cares as described above.

2.1.1. Coulomb and Surface Energies

To calculate the Coulomb and surface energies of nuclei we
set the Wigner–Seitz cell (W–S cell) for each species of nuclei
so that the charge neutrality could be satisfied. Each nucleus
is centered in the W–S cell with the volume, Vi. The cell also
contains free nucleons as a vapor outside the nucleus as well
as electrons, which are assumed to be uniform in the entire
cell. The charge neutrality in the cell gives the cell volume
Vi = (Zi − n′

pV N
i )/(ne − n′

p), where V N
i is the volume of

the nucleus in the cell and can be calculated as V N
i = Ai/nsi.

The vapor volume and nucleus volume fraction in the cell are
given by V B

i = Vi − V N
i and ui = V N

i /Vi , respectively.
In this EOS, we assume that each nucleus enters the nuclear

pasta phase individually when the volume fraction, ui, reaches
0.3 and that the bubble shape is realized when it exceeds
0.7 (Watanabe et al. 2005). The bubbles are explicitly treated

as nuclei of spherical shell shapes with the vapor nucleons
filling the inside. This phase is important to ensure continuous
transitions to uniform matter as noted in Furusawa et al.
(2011). The intermediate states (0.3 < ui < 0.7) are smoothly
interpolated from the normal and bubble states. The criterion
of intermediate states (0.3 < ui < 0.7) is admittedly rather
arbitrary, although we consulted the literature (Watanabe et al.
2005) in adopting these numbers. We have hence tried another
choice, 0.4 < ui < 0.6, and confirmed that the thermodynamic
quantities are hardly affected. On the other hand, the nuclear
composition is rather sensitive to the criterion particularly when
the temperature is low and most of the nuclei form pastas
simultaneously, since the surface and Coulomb energies are
modified. Since the density region that corresponds to the
intermediate states is narrow and the sums of Coulomb and
surface energies for the drop and bubble states are equal to each
other at ui = 0.5, the inclusion of the intermediate phase is
mainly meant to ensure the smooth change in mass fractions of
nuclei around ui = 0.5. The evaluation of the Coulomb energy
in the W–S cell is given by the integration of Coulomb forces
in the cell:

EC
i =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

3

5

(
3

4π

)−1/3
e2

n2
si

(
Zi − n′

pV N
i

Ai

)2

V N
i

5/3
D(ui ) (ui � 0.3),

3

5

(
3

4π

)−1/3
e2

n2
si

(
Zi − n′

pV N
i

Ai

)2

V B
i

5/3
D(1 − ui ) (ui � 0.7),

(4)

with D(ui) = 1− (3/2)u1/3
i +(1/2)ui , where e is the elementary

charge.
The surface energy of nuclei is given by the product of the

nuclear surface area and the surface tension:

ESu
i =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

4πr2
Ni σi

(
1 − n′

p + n′
n

nsi

)2

= 4π

(
3

4π
V N

i

)2/3

σi

(
1 − n′

p + n′
n

nsi

)2

× (ui � 0.3),

4πr2
Bi σi

(
1 − n′

p + n′
n

nsi

)2

= 4π

(
3

4π
V B

i

)2/3

σi

(
1 − n′

p + n′
n

nsi

)2

× (ui � 0.7),

(5)

σi = σ0 − A
2/3
i

4πr2
i

[Ss(1 − 2(Zi/Ai)
2)], (6)

where rNi = (3/4πV N
i )1/3 and rBi = (3/4πV B

i )1/3 are the
radii of nucleus and bubble. σ0 denotes the surface tension for
symmetric nuclei. The surface tension σi includes the surface
symmetry energy, i.e., neutron-rich nuclei have lower surface
tensions than symmetric nuclei. The values of the constants,
σ0 = 1.15 MeV fm−3 and Ss = 45.8 MeV, are adopted from the
paper by Lattimer & Swesty (1991). The appropriate estimation
of surface tensions is important, since they have a critical
influence on the abundance of nuclei and, as a consequence, on
the average mass number of nuclei, as shown in Buyukcizmeci
et al. (2013a). We may choose other values such as those
given in Lee & Mekjian (2010), which include high-order
temperature dependences. We prefer the simpler estimate by
Lattimer & Swesty (1991) in this work, considering insufficient
experimental information on the heavy and/or neutron-rich
nuclei that exist in the supernova matter. The last factor in
Equation (5), (1 − (n′

p + n′
n)/nsi)2, is assumed to take into

account the effect that the surface energy should be reduced
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Figure 3. Regions of experimental mass data from Audi et al. (2003) (black),
theoretical mass data from Koura et al. (2005) (dark gray), and the nuclei
calculated by LDM with no shell effects (light gray). The upper limits of proton
and neutron numbers are 1000.

as the density contrast decreases between the nucleus and the
nucleon vapor. We use cubic polynomials of ui for interpolation
between the droplet and bubble phases. The four coefficients
of the polynomials are determined by the condition that the
Coulomb and surface energies are continuous and smooth as a
function of ui at ui = 0.3 and ui = 0.7.

2.1.2. Bulk and Shell Energies

We derive the bulk energies from the free energy per baryon
of the uniform nuclear matter at the saturation density nsi for the
given temperature T and proton fraction inside the nuclei Zi/Ai

as

EB
i = Ai{mB + F RMF(nsi, T , Zi/Ai)}, (7)

where F RMF(nB, T , Yp) is the free energy per baryon given by
the RMF, which is the same as that for the free energy density of
free nucleons. Note that this bulk energy includes the symmetry
energy of nuclei. In the previous paper, Equation (7) is applied
only to the nuclei with no experimental mass data. For the
nuclei with experimental mass data available, on the other hand,
the bulk energies are calculated as EB+sh

i = Mdata
i − [EC

i +
ESu

i ]vacuum including the nuclear shell energies. Then they have
no temperature dependence. In this paper, we evaluate the bulk
energies of all heavy nuclei by Equation (7) so that the bulk
energies of all nuclei would depend on the temperature.

We include the shell effects separately in the mass formula
of nuclei by using both experimental and theoretical mass data
(Audi et al. 2003; Koura et al. 2005) to better reproduce the
ordinary NSE EOS results in the low-density regime. The
regions, in which the experimental and theoretical mass data
are available, are shown in the nuclear chart in Figure 3. The
shell energies are obtained from the experimental or theoretical
mass data by subtracting our liquid drop mass formula, which
does not include the shell effects (MLDM

i = EB
i +EC

i +ESu
i ) in the

vacuum limit as ESh
i = Mdata

i −[MLDM
i ]vacuum. The vacuum limit

means that the nucleus is cold and isolated: T , n′
p/n, ne = 0. At

high densities, the shell effect of nuclei estimated in vacuum
is considered to be diminished because of the existence of
electrons, free nucleons, and other nuclei. We take this effect

into account phenomenologically as follows:

ESh
i =

⎧⎨
⎩

Mdata
i − [EB

i + EC
i + ESu

i ]vacuum (ρ � 1012 g cm−3),
(Mdata

i − [EB
i + EC

i + ESu
i ]vacuum)

×(ρ0 − ρ)/(ρ0 − 1012 g cm−3) (ρ > 1012 g cm−3),
(8)

where ρ0 is taken to be mB times the saturation density of
symmetric nuclei nsi(T ,Zi/Ai = 0.5) at temperature T. The
last factor (ρ0 − ρ)/(ρ0 − 1012 g cm−3) accounts for the decay
of shell effects at high densities. The choice of the critical
density 1012 g cm−3 is rather arbitrary, since the dependence
of shell energies on the density of ambient matter has not
been thoroughly investigated yet. It is noted, however, that the
structure of nuclei is known to be affected by ambient matter at
these densities. The abundances of nuclei with magic numbers
of protons or neutrons are affected by the shell energy and
hence by the choice of the critical density. We have confirmed,
however, that thermodynamics quantities are hardly changed for
the critical density of 1013 g cm−3. The linear interpolation in
Equation (8) makes the free energy not smooth and the pressure
discontinuous at the boundaries of the interpolation region. In
practice, however, the variation of the shell energy is quite minor
compared with those of Coulomb and translational energies, and
the discontinuities of the pressure are negligible.

We neglect the shell energies of the heavy or neutron-rich
nuclei with no available mass data, since we have no guidance
to estimate the shell energy and such nuclei are abundant only
at very high densities, where the shell effects will be minor
anyway.

We sum up all the contributions to have the masses of heavy
nuclei as Mi = EB

i + ESh
i + EC

i + ESu
i . For the nuclei with mass

data available, this formula can be transformed to

Mi = Mdata
i + ΔEB

i + ΔEC
i + ΔESu

i (ρ � 1012 g cm−3), (9)

where ΔEi means the difference from the vacuum limit: ΔEi =
Ei−[Ei]vacuum. In the limit of low densities and temperatures, Mi
is reduced to the mass data Mdata

i . This feature is important for
reproducing the ordinary NSE results in these limits (Timmes &
Arnett 1999). At the saturation density, on the other hand, only
the bulk energies EB

i survive, since other terms are diminished
as the density approaches the saturation density in our model.

2.2. Mass Evaluation of Light Nuclei (Z � 5)

In this subsection, we explain how to evaluate the masses
of light nuclei (Z � 5). Note that the mass formula employed
for heavy nuclei, which is based on LDM, is inappropriate for
light nuclei as already noted. We assume the descriptions of
d, t, h, and α in dense and hot matter based on quasi-particles
outside heavy nuclei, and no pasta phase is considered for them.
The saturation densities of the four light nuclei are set to the
constant value, 0.15 fm−3, in contrast to those of heavy nuclei,
which depend on temperatures and densities. For the light nuclei
(Z � 5) other than d, t, h, and α such as 7Li, we adopt the mass
data with density and temperature corrections that are based on
the LDM slightly different from that of heavy nuclei (see below
for details).

The masses of d, t, h, and α are given by the following
expression:

Mj = Mdata
j + ΔEPa

j + ΔESE
j + ΔEC

j (j = d, t, h, α), (10)

where ΔEPa
j is the Pauli energy shift by other baryons, ΔESE

j is
the self-energy shift of the nucleons composing the light nuclei,
and ΔEC

j is the Coulomb energy shift.

5
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Table 1
Parameters for the Quantum Approach

Cluster j aj,1 aj,2 aj,3 sj

(MeV5/2 fm3) (MeV)

d 38386.4 22.5204 0.2223 11.147
t 69516.2 7.49232 · · · 24.575
h 58442.5 6.07718 · · · 20.075
α 164371 10.6701 · · · 49.868

For the Pauli energy shifts of the light nuclei, we employ the
empirical formulae provided by Typel et al. (2010), which are
quadratic functions fitted to the result of quantum-statistical
calculations (Röpke 2009). Röpke investigated the binding
energies of light clusters in hot and dense matter (T � 20 MeV
and nB � 0.16 fm−3) by using the quantum-statistical approach.
They regard the light clusters d, t, h, and α as quasi-particles and
solve the in-medium Schördinger equation perturbatively. For
the potential terms in pair interactions, Jastrow and Gaussian
wavefunction approximations are adopted for d and others
(t, h, α), respectively. Note that the fitting formulae of ΔEPa

j

in Röpke (2009) are obtained under the assumption that matter
is composed of only nucleons and light clusters (Z � 2 and
N � 2), which is not completely consistent with the situations
of our interest, in which heavier nuclei are also existent. To
obtain the Pauli energy shifts, we define the local proton and
neutron number densities including light nuclei as

npl = n′
p + η−1

∑
j=d,t,h,α

Zjnj (11)

nnl = n′
n + η−1

∑
j=d,t,h,α

Njnj , (12)

where η stands for the volume fraction (V − VN )/V . Then the
Pauli energy shift ΔEPa

j is given by the following expression:

ΔEPa
j (npl, nnl, T ) = −ñj

[
1 +

ñj

2ñ0
j (T )

]
δBj (T ), (13)

which is quadratic in ñj = 2(Zj npl + Nj nnl)/Aj . The density
scale for the dissolution of each light nucleus is given by
ñ0

j (T ) = B0
j /δBj (T ) with the binding energy in vacuum,

B0
j = ZjMp + NjMn − Mdata

j . The function δBj (T ) represents
the temperature dependence of the Pauli energy shifts and is
originally derived with the Jastrow and Gaussian wavefunction
approximations for d and other light nuclei, respectively, as

δBj (T ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

aj,1/T 3/2
[
1/

√
yj − √

πaj,3 exp
(
a2

j,3yj

)
erfc (aj,3

√
yj )

]
for j = d,

aj,1/(Tyj )3/2

for j = t, h, α,

(14)
with yj = 1 + aj,2/T . The parameters aj/1, aj/2, and aj/3 are
given in Table 1.

The self-energy shifts of light nuclei are the sum of the self-
energy shifts of individual nucleons composing the light nuclei
ESE

n/p and the contribution from their effective masses ΔEeff. mass
j :

ΔESE
j (n′

p, n′
n, T ) = (Aj − Zj )ΔESE

n + Zj ΔESE
p + ΔEeff. mass

j ,

(15)

where ΔESE
n/p = Σ0

n/p(T , n′
p, n′

n)−Σn/p(T , n′
p, n′

n) with Σ0 and Σ
being the vector and scalar potentials of nucleons. The effective
mass contributions are given as ΔEeff. mass

j = (1 − m∗/m) sj

with m∗ = mB − Σn/p(T , n′
p, n′

n). The coefficients sj for
d, t, h, and α are given in Table 1. The potentials Σ0 and Σ
are calculated from the RMF employed for free nucleons in
this paper. Note that the coefficients sj are provided based on a
different RMF theory with density-dependent meson–nucleon
couplings (Typel 2005). However, the inconsistency should have
little influence, since the effective mass term is in general smaller
than the other two potential terms and the light nuclei are not
abundant at high densities, where the effective mass terms could
be large, due to the Pauli energy shifts and pasta formations of
heavy nuclei.

More detailed explanations of the Pauli- and self-energy shifts
are provided in Typel et al. (2010). Note that we neglect the
dependence of the Pauli energy shifts on the momentum of the
light clusters and that of the self-energy shifts on the momentum
of nucleons composing the light clusters for simplicity.

The Coulomb energy shifts are calculated as

ΔEC
j = EC

j (n′
p, uj ) − EC

j (0, 0), (16)

EC
j (n′

p, uj ) = 3

5

(
3

4π

)−1/3
e2

n2
sj

(
Zj − n′

pV N
j

Aj

)2

× V N
j

5/3
D(uj ). (17)

Although the evaluation of the Coulomb energy is identical to
that for heavy nuclei in the droplet phase, the shifts are negligible
compared with other energies. We do not take into account
the nuclear pasta phases and surface energy shifts for the light
nuclei.

The light nuclei (Zj � 5) other than d, t, h, and α are
described by an LDM. Since the masses of light nuclei d, t, h,
and α are almost unchanged at low densities, the Pauli- and
self-energy shifts are negligible at low densities. Therefore, we
assume that the temperature dependence of other light nuclei
is not so strong at low densities either and the temperature
dependence is important only at ρ > 1012 g cm−3, which are
approximated as

ΔMj =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Mdata
j + ΔESu

j + ΔEC
j

(ρ � 1012 g cm−3),
Mdata

j + ΔESu
j + ΔEC

j +
{
AjF

RMF
j (nsj , T , Zj/Aj )

−(
Mdata

j − [
ESu

j + EC
j

]
vacuum

)} × (ρ − 1012 g cm−3)
(ρ0 − 1012 g cm−3)

(ρ > 1012 g cm−3),
(18)

where ΔESu
j is the surface energy shift, which is too small to

make any difference except in the pasta phases. The self-energy
shift is linearly interpolated between the bulk and shell energies
in vacuum limit, which are estimated from the experimental
mass data by subtracting surface and Coulomb energies in
vacuum limit, and the self-energy of uniform matter obtained by
the RMF theory. The Pauli energy shifts are neglected for these
light nuclei, since no fitting formula is available. We assume
that they experience the pasta phases in the same way as heavy
nuclei. The Coulomb and surface energy shifts are calculated
from the same LDM for heavy nuclei. We note that the light
nuclei other than d, t, h, and α are not so important because

6



The Astrophysical Journal, 772:95 (16pp), 2013 August 1 Furusawa et al.

they are never abundant under NSE, since d, t, h, and α are
dominant over the other light nuclei at high temperatures and/or
low densities, whereas heavy nuclei prevail in the opposite
situations.

In our models, d, t, h, and α are treated as independent
particles and they coexist with free nucleons outside heavy
nuclei. At low densities, the masses of the light nuclei approach
the experimentally known values, since the ΔEPa

j , ΔESE
j , and

ΔEC
j vanish in this limit. Near the saturation densities, light

nuclei no longer exist because of the Pauli energy shifts and free
nucleons and heavy nuclei in the pasta phases are abundant.

2.3. Translational Energies of Nuclei

The translational energy of nucleus i in our model free energy
is based on that for the ideal Maxwell–Boltzmann gas and given
by

F t
i = kBT

{
log

(
ni

g0
i nQi

)
− 1

} (
1 − nB

ns

)
, (19)

where kB is the Boltzmann constant, nQi = (Mi/j kBT /

2πh̄2)3/2, and g0
i is the spin degree of freedom of the ground

state. Note that the contribution of the excited states to free
energy is encapsulated in the temperature dependence of the
bulk energy. In the previous paper, we employed a functional
form of gi(T ) for the internal degree of freedom in Equa-
tion (19). The last factor on the right-hand side of Equation (19)
takes account of the excluded-volume effect: each nucleus can
move in the space that is not occupied by other nuclei and
free nucleons. The factor reduces the translational energy at
high densities and is important to ensure the continuous tran-
sition to uniform nuclear matter. The present form of the fac-
tor, (1 − nB/ns) = (V − Vbaryon)/V , gives a linear suppres-
sion in terms of the occupied volume Vbaryon and we always
employ the nuclear saturation density for symmetric nuclei
ns = [nsi(Zi/Ai, T )]Zi/Ai=0.5 for numerical convenience.

2.4. Thermodynamical Quantities

After minimization, we obtain the free energy density to-
gether with the abundances of all nuclei and free nucleons as
a function of ρB , T , and Yp. Other physical quantities are de-
rived by partial differentiations of the free energy density. In
so doing, all the terms concerning the excluded volume ef-
fects and the interpolation factors are properly taken into ac-
count to ensure the thermodynamical consistency as described in
Furusawa et al. (2011) in detail. The baryonic pressure, for ex-
ample, is obtained by the differentiation with respect to the
baryonic density as follows:

pB = nB [∂f/∂nB]T ,Ye − f,

= pRMF
p,n +

∑
i/j �=d,t,h,α

(
pth

i/j + pex
i/j + pmass

i/j

)
, (20)

pmass
i = (

pshell
i + pCoul

i + pSurf
i

)
(heavy nuclei Zi � 6), (21)

pmass
j = (

pPauli
j + pSE

j + pCoul
j

)
(d, t, h, α), (22)

pmass
j = (

pSE
j + pCoul

j + pSurf
j

)
(other light nuclei Zj � 5),

(23)

where pRMF
p,n is the contribution of the nucleons in the vapor; both

pth
i/j and pex

i/j come from the translational energy of nuclei in the

Table 2
Different Models for Comparisons

Model Heavy Nuclei Mass Data Light Nuclei

0a Old LDM Audi 2003 Old LDM
1a LDM Audi 2003 LDM
2a LDM Audi 2003 & KTUY2005 LDM
2b LDM Audi 2003 & KTUY2005 Quantum approach
2c LDM Audi 2003 & KTUY2005 Mass data+ΔECoul

j

Notes. Model 0a is the same EOS as Furusawa et al. (2011). The new model of
heavy nuclei of Models 1a, 2a, 2b, and 2c is explained in Section 2.1. Audi 2003
and KTUY2003 are the experimental and theoretical mass data, respectively.
The quantum approach of light nuclei is described in Section 2.2.

free energy; pshell
i/j , pCoul

i/j , and pSurf
i/j originate from the shell,

Coulomb, and surface energies of nuclei in the free energy,
respectively; pPauli

j and pSE
j are derived from the Pauli- and

self-energy shifts of the light nuclei.
The entropy per baryon is calculated from the following

expression:

s = − [∂f/∂T ]ρB,Ye

nB

,

= ηsRMF
p,n +

∑
i,j

ni,j kB

nB

×
[{

5

2
− log

(
ni,j

g0
i,j nQi

)}
(1 − nB/ns) − ∂Mi,j

∂T

]
. (24)

This form is the same as that of the previous EOS. The
partial derivative of the masses, ∂Mi,j /∂T , is originated from
the temperature dependence of nuclear mass in the current
formulation and given as follows:

∂Mi

∂T
= ∂EB

i

∂T
= −Ais

RMF
i (T , nsi, Zi/Ai) (heavy nuclei),

(25)

∂Mj

∂T
= ∂ΔESE

j

∂T
+

∂ΔEPa
j

∂T
(j = d, t, h, α), (26)

∂Mj

∂T
=

⎧⎪⎪⎨
⎪⎪⎩

0 (ρ � 1012 g cm−3),
Aj s

RMF
j (nsj , T , Zj/Aj )

(ρ0 − 1012)
(ρ − 1012) (ρ > 1012 g cm−3)

(other light nuclei),
(27)

where the entropy per baryon sRMF
i/j is predicted by the RMF.

The contribution of this term is normally negligible except near
the nuclear saturation density.

3. RESULT

In this paper, we construct the EOS modifying the previous
one (Furusawa et al. 2011). First, we focus on the changes for
heavy nuclei, i.e., the employment of the theoretical mass data
and the modification of the temperature dependences of the bulk
energies and the internal degrees of freedom. Then we compare
the results of the different modelings of the light nuclei Z � 5.
We list five calculated models in Table 2.

Model 0a is nothing but the previous EOS except for the
assumption on the saturation densities: in the previous one,
the saturation densities at high temperature are determined by

7
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Figure 4. Mass fractions in log10 of nuclei in the (N, Z)-plane for Model 0a at
ρB = 1012 g cm−3, T = 1 MeV, and Yp = 0.3.

(A color version of this figure is available in the online journal.)

H. Shen EOS, whereas in the new models, they are derived
from the RMF calculation as noted in Section 2.1. In Model
0a, the temperature dependence of the bulk energies of the
nuclei, for which the mass data are available, is neglected and
the bulk energies including the shell energies are derived from
the experimental mass minus the Coulomb and surface energies
in vacuum as

EB+Sh
i =⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Mdata
i −

[
EC

i + ESu
i

]
vacuum

(ρ � 1012 g cm−3),{(
Mdata

i −
[
EC

i + ESu
i

]
vacuum

)
(ρ0 − ρ) +

(
AiF

RMF
i

)
(ρ − 1012 g cm−3)

}
(ρ0 − 1012 g cm−3)

(ρ > 1012 g cm−3).

(28)

To take into account the excited states at high temperatures, the
temperature dependence is introduced in g0

i in Equation (19).
The functional form is adopted from Fai & Randrup (1982) as

gi(T ) = g0
i +

c1

A
5/3
i

∫ ∞

0
dEe−E/T exp(

√
2a(Ai)E), (29)

in which a(Ai) = (Ai/8)(1 − c2A
−1/3
i ) MeV−1, c1 =

0.2 MeV−1, and c2 = 0.8. More details about the bulk and
shell energies EB+Sh

i as well as gi(T ) are found in Furusawa
et al. (2011).

In the new Models 1a, 2a, 2b, and 2c, we employ the
temperature-dependent bulk energies EB

i (T ) in Equation (7)
instead of Equation (29). The difference between the two
treatments is most clearly presented as follows: the num-
ber density ni of heavy nucleus i depends on the inter-
nal degree of freedom gi(T ) and the mass energy Mi(T )
as ni ∝ gi(T ) exp(−Mi(0)/T ) in Model 0a, and ni ∝
gi(0) exp(−Mi(T )/T ) in the other Models 1a, 2a, 2b, and 2c.
This leads us to introduce the effective internal degree of free-
dom g∗

i (T ) = g0
i exp(−(EB

i (T ) − EB
i (0))/T ) to express the

number density as ni ∝ g∗
i (T ) exp(−Mi(0)/T ). This g∗

i (T ) is
in general much larger than gi(T ). In fact the ratio, g∗

i (T )/gi(T ),
for 56Fe is 9.18, 75.9, and 130 at T = 1, 5, and 10 MeV, respec-
tively. For the nuclei with no available experimental mass data
in Model 0a, the bulk energies are calculated from Equation (7)
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Figure 5. Mass fractions in log10 of nuclei in the (N, Z)-plane for Model 2a at
ρB = 1012 g cm−3, T = 1 MeV, and Yp = 0.3.

(A color version of this figure is available in the online journal.)

and, as a result, both the bulk energies EB
i (T ) and the inter-

nal degrees of freedom gi(T ) depend on the temperature. This
double count of the excited states leads to the overestimation of
abundances of this type of nuclei as shown later.

The bulk energies in Model 1a are all derived from the
RMF calculations with the temperature dependence included
as described in Section 2.1. We consider that Model 2a is the
most realistic model for heavy nuclei. We utilize the theoretical
mass data by Koura et al. (2005) in addition to the experimental
mass data in the calculation of the shell energies. Models 0a and
1a include only experimental mass data by Audi et al. (2003),
on the other hand. Note that we neglect the shell energies for
the nuclei with no mass data available and that the maximum of
proton and neutron numbers is set to 1000 in all models.

In Models 0a, 1a, and 2a, the binding energies of light nuclei
are evaluated from the LDM employed for heavy nuclei. Model
2b is modified from Model 2a only in the mass evaluation of
the light nuclei with Z � 5. The LDM for heavy nuclei and
mass data are identical to those in Model 2a. The masses of the
light nuclei in Model 2b are based on the quantum approach, the
details of which are given in Section 2.2. To examine the effect of
the Pauli- and self-energy shifts, we prepare Model 2c, in which
they are set to ΔEPa = ΔESE = 0. This means that the masses
of d, t, h, and α are evaluated as Mj = Mdata

j + ΔEC
j in Model

2c. We consider that Model 2b is the best among all five models.

3.1. Abundances of Heavy Nuclei

The mass fractions of nuclei for Models 0a and 2a are shown
in the (N,Z)-plane for ρB = 1012 g cm−3, T = 1 MeV, and
Yp = 0.3 in Figures 4 and 5. We can clearly see the gap between
the nuclei with the experimental mass data and those without
them in Figure 4. On the other hand, there is no such gap in
Figure 5, since the range of the nuclei, for which the shell
energies are included, is expanded to N ∼ 200 by the use of
theoretical mass data. In Model 2a, the mass fractions of the
nuclei in the vicinities of the magic numbers N = 50 and 82
are enhanced and, as a result, the fractions of other nuclei, in
particular those with N ∼ 20, in 2a are smaller. This effect
can be seen also in the isotope abundance discussed in the next
paragraph.

The isotope abundances of the nuclei with Z = 26 are shown
for two combinations of temperature and baryon density in
Figure 6. The main difference between Model 2a and the others

8
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Figure 6. Isotope abundance of the nuclei with proton number Z = 26
for Models 0a (blue dotted lines), 1a (magenta dash–dotted lines), and 2a
(green dashed lines) at (ρB = 1012 g cm−3, T = 1 MeV, Yp = 0.3) and
(ρB = 1013 g cm−3, T = 5 MeV, Yp = 0.3).

(A color version of this figure is available in the online journal.)

manifests in the range of 74 � A � 99. For the nuclei with
Z = 26, the experimental mass data are available only for
45 � A � 73, whereas the theoretical mass data cover the
range of 44 � A � 99. Note that the theoretical mass data are
not employed in Models 1a and 0a. We can see unphysical jumps
in the abundance at the boundary between A = 73 and 74 for
Models 1a and 0a in Figure 6. The difference between Models
1a and 0a, on the other hand, arises from the different treatments
of the bulk energies for the nuclei with the experimental mass
data as well as of the internal degrees of freedom. Note that the
bulk energies including the temperature dependence given by
Equation (7) tend to be lower at non-vanishing temperatures,
since hot nuclear matter has lower free energies than a cold one
due to excitations of nucleons. In other words, hot nuclei are
more bound than cold ones owing to the increases in the internal
degrees of freedom of the nucleons inside nuclei. The nuclei with
45 � A � 73 in Model 0a, for which the experimental mass data

are available, have larger mass energies than the counterparts in
Model 1a, since the bulk energies of these nuclei in the former
do not include the temperature dependence. As a result, those
nuclei are more abundant in Model 1a. On the other hand, the
mass fractions of the nuclei with no experimental mass data
(A � 74) in Model 0a are larger than in Model 1a due to
the double count of the temperature effect in the bulk energies
EB

i (T ) and internal degrees of freedom gi(T ). The difference
between Models 0a and 1a is clear at higher temperatures,
since the temperature dependences in the bulk energies and
internal degrees of freedom become stronger. We can also find
that Model 2a does not produce the unphysical jumps in the
abundances at both low and high temperatures owing to the
modified treatment of the temperature effects as well as to the
employment of the theoretical mass data.

The average mass number of heavy nuclei (Z � 6) as
a function of density for the temperatures (T = 1, 5, and
10 MeV) and proton fractions (Yp = 0.3 and 0.5) is displayed
in Figure 7 for Models 0a, 1a, and 2a. It is found that for
T = 1 MeV the average mass number grows stepwise for
Model 2a even at high densities, ρB � 1013 g cm−3. On the
other hand, they grow monotonically in Models 0a and 1a at
A � 120. This is due to the lack of shell energies for the latter
models. The nuclei in the vicinity of the neutron magic numbers
(N = 28, 50, 82, 126, 184) are abundant in Model 2a. Note that
the experimental mass data are available at the magic numbers
N = 28, 50, 82 under this condition, whereas the mass data
for the nuclei with N = 126 such as 208Pb exist only near
the stable line as shown in Figure 3. We can see that at the
high temperatures (T = 5, 10 MeV), Model 0a gives larger
mass numbers than the other models. This is because the nuclei,
for which the mass data are available, are not abundant due
to the lack of the temperature dependence in the bulk energies
and the heavier nuclei, for which the temperature dependence
is taken into account but the shell effects are neglected, are
abundant. This feature can be confirmed also in the bottom
panel of Figure 6.

To summarize, the extended mass data and the temperature
dependence remove the unphysical jumps found at the boundary
between the nuclei with available mass data and those without
them, at high temperatures in our previous paper. Even at low
temperatures the wider use of the shell energy affects the nuclear
abundances.

3.2. Abundance of Light Nuclei

In order to compare different models of light nuclei, we
employ the total mass fraction of deuteron, triton, helion, and
alpha particles, Xd + Xt + Xh + Xα , for Models 2a, 2b, and 2c.
The abundances of other light nuclei are not so large and will
not be discussed in the following. Figure 8 shows the results for
the temperatures (T = 1, 5, and 10 MeV) and proton fractions
(Yp = 0.3 and 0.5). For T = 5 and 10 MeV, we can see that
the mass fraction of the light elements reaches the maximum
at the densities ρB � 1012 g cm−3 in Model 2a. This is because
the light nuclei in this model have low bulk energies, since they
are calculated by the same LDM employed for heavy nuclei.
We can also see that the light nuclei are still abundant near the
saturation densities for T = 10 MeV due to the suppression of
the surface energies of the light nuclei in the pasta phases as well
as to the lack of the Pauli energy shifts. Note that we assume
in Models 2b and 2c that the light nuclei are quasi-particles
and do not form pastas. The mass fractions of the light nuclei of
Models 2b and 2c are similar between Models 2b and 2c because

9
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Figure 7. Average mass number of heavy nuclei with Z > 6 for Models 0a (blue dotted lines), 1a (magenta dash–dotted lines), and 2a (green dashed lines) as a
function of density for T = 1, 5, 10 MeV and Yp = 0.3, 0.5.

(A color version of this figure is available in the online journal.)

we do not adopt the LDM, which has a strong temperature
dependence in the bulk energy. The difference between Models
2b and 2c arises from the Pauli- and self-energy shifts. We
can see that the Pauli energy shifts slightly suppress the light
nuclei at T = 5 MeV and Yp = 0.5 in Model 2b, whereas the
self-energy shifts make them more abundant at T = 10 MeV

in Model 2b than in Model 2c. Unlike in Model 2a, the light
nuclei disappear near the saturation densities at T = 10 MeV in
these models, since not only the self-energy shifts but also the
Pauli energy shifts tend to suppress them and free nucleons and
heavy nuclei are dominant, forming pastas. For T = 1 MeV,
the light nuclei dominate around ρB ∼ 109 g cm−3. Since the
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Figure 8. Mass fractions of light nuclei (d, t, h, α) for Models 2a (green dashed lines), 2b (red solid lines), and 2c (black dotted lines) as a function of density for
T = 1, 5, 10 MeV and Yp = 0.3, 0.5.

(A color version of this figure is available in the online journal.)

Pauli- and self-energy shifts and the temperature dependence of
bulk energies are rather minor, the three models give almost the
same abundance.

We show the mass fraction of each light nucleus for Model
2b in Figure 9. For T = 10 MeV, we can see that deuterons
are the most abundant and alpha particles are the least, since

lighter particles have more entropies per baryon. At T = 5 MeV,
deuterons still dominate. The alpha particles are also abundant,
on the other hand, since the binding energy becomes also
important in the minimization of the free energy density. Note
that alpha particles have the largest binding energy per baryon
among the light nuclei. Under the neutron-rich condition of
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Figure 9. Mass fraction of each light nucleus for d (red solid lines), t (magenta dashed lines), h (green dash–dotted lines), and α (blue doted lines) in Model 2b as a
function of density for T = 5, 10 MeV and Yp = 0.3, 0.5.

(A color version of this figure is available in the online journal.)

Yp = 0.3, the fraction of tritons is larger than that of helions,
whereas tritons and helions have almost the same abundance for
the symmetric condition of Yp = 0.5. At the lower temperature
of T = 1 MeV, though not shown in the figure, alpha particles
are dominant among the light nuclei due to the greatest binding
energy per baryon.

We think that the abundance of light nuclei in Model 2a is too
large at high temperatures due to the systematic overestimation
of the binding energies in the LDM. The Pauli- and self-energy
shifts have influences on the light nuclei abundance at high
temperatures (T � 5 MeV). It is important that deuterons,
tritons, and helions can be as abundant as the alpha particles,
which are normally assumed to be the representative light
nucleus and incorporated in the two standard EOSs (Lattimer &
Swesty 1991; H. Shen et al. 1998a, 1998b, 2011).

3.3. Thermodynamical Quantities

We compare the thermodynamics quantities for Models 0a,
2a, and 2b. Model 1a is not presented because it is almost the
same as Model 0a at low temperatures and Model 2a at high
temperatures (T � 5 MeV).

Figure 10 shows the free energies per baryon as a function
of density for the three combinations of temperature and proton

fraction: (T = 1 MeV, Yp = 0.3), (T = 5 MeV, Yp = 0.5),
and (T = 10 MeV, Yp = 0.3). For T = 1 MeV, Model 0a has
the highest free energy due to the lack of theoretical mass data,
which are also evident in Figures 4, 6, and 7. Model 0a neglects
the shell energies of the nuclei, for which no experimental
mass data are available, whereas Models 2a and 2b employ
the theoretical mass data. The free energies per baryon are not
so different at T = 1 MeV between Models 2a and 2b, because
the binding energies of heavy nuclei are dominant at this low
temperature. For T = 5 and 10 MeV, on the other hand, we
find that Model 2a gives lower free energies than Model 2b. The
difference originates from the fact that the light nuclei are more
abundant in Model 2a than in Model 2b, since Model 2a gives
lower bulk energies to light nuclei due to the strong temperature
dependence as shown in Figure 8. Model 0a also gives lower
free energies per baryon than Model 2b because of the double
count of the temperature effects in the bulk energies EB

i (T ) and
internal degrees of freedom gi(T ) of the nuclei, for which no
experimental data exist.

The pressure is shown as a function of density for three com-
binations of temperature and proton fraction, (T = 1 MeV,
Yp = 0.3), (T = 5 MeV, Yp = 0.5), (T = 10 MeV,
Yp = 0.3), in Figure 11. The three models agree with one
another at low densities, ρB � 1012 g cm−3. For T = 1
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Figure 10. Free energy per baryon for Models 0a (blue dotted lines), 2a (green
dashed lines), and 2b (red solid lines) as a function of density for (T = 1 MeV,
Yp = 0.3), (T = 5 MeV, Yp = 0.5), and (T = 10 MeV, Yp = 0.3) from top to
bottom.

(A color version of this figure is available in the online journal.)

and 5 MeV, the baryonic pressure is negative when the Coulomb-
energy contribution, which is negative owing to the attrac-
tive Coulomb interactions between protons inside nuclei and
uniformly distributed electrons (the so-called Coulomb cor-
rections), dominates over the other positive contributions. For

Figure 11. Baryonic pressure for Models 0a (blue dotted lines), 2a (green
dashed lines), and 2b (red solid lines) as a function of density for (T = 1 MeV,
Yp = 0.3), (T = 5 MeV, Yp = 0.5), and (T = 10 MeV, Yp = 0.3) from top to
bottom.

(A color version of this figure is available in the online journal.)

T = 1 MeV, the density, at which the pressure drop occurs in
Model 0a, is higher than in the other models. The average mass
numbers are smaller in Model 0a as shown in Figure 7 due to
the lack of theoretical mass data, and the pressure drop occurs at
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higher densities than the other models. The pressures are almost
the same at T = 1 MeV between Models 2a and 2b, since the
contribution of light nuclei is negligible at low temperatures.
For T = 5 MeV, on the other hand, the density, at which the
pressure drop occurs, is the lowest in Model 0a. This is because
the average mass numbers are larger as shown in Figure 7. The
density, at which the pressure drop occurs, is highest in Model
2b, since the abundance of light nuclei, which contributes pos-
itively to the pressure, is larger in Model 2a than in Models 0a
and 2b as shown in Figure 8. At the even higher temperature
of 10 MeV, the positive thermal pressures of free nucleons and
nuclei are dominant. Model 2a gives a little higher pressure than
Model 2b near the saturation density, since the light nuclei are
most abundant in Model 2a as shown in Figure 8. For Model 2b
the pressure is the highest at ρB ∼ 1013 g cm−3, because free
nucleons are the most abundant among the three models.

The entropy per baryon is displayed as a function of density
for three combinations of temperature and proton fraction, (T =
1 MeV, Yp = 0.3), (T = 5 MeV, Yp = 0.3), (T = 10 MeV,
Yp = 0.5), in Figure 12. For T = 1 MeV, the entropy per baryon
is almost identical among the three models. For T = 5, 10 MeV,
on the other hand, Model 2a has larger values than Models 0a
and 2b at ρB ∼ 1012 g cm−3 owing to the larger population of
light nuclei as shown in Figure 8. For T = 5 MeV, Model 0a
has the highest entropy per baryon near the saturation density
because of the double count of temperature effects for the heavy
nuclei with no mass data.

3.4. Phase Diagram

We finally discuss the phase diagram for Model 2b, which
indicates the region where each of light, heavy, and pasta
nuclei is an abundant boundary for the change of dominant
composition. The boundaries are chosen so that each fraction
of light, heavy, and pasta nuclei would be 10−4 following H.
Shen et al. (1998a, 1998b). The total mass fraction of heavy
nuclei is evaluated as XH = ∑

Zi�6 Xi and that of light nuclei
is XL = ∑

Zj �5 Xj , where X means the mass fraction. The mass
fraction of the pasta nuclei XPasta is also calculated as

XPasta =
∑

ui>0.3

Xi, (30)

where ui is the volume fraction of nucleus i in its Wigner–Seitz
cell. Note that d, t, h, and α are not included in this summation,
since they are assumed not to form the pastas. In our EOS,
the nuclei with ui � 0.3 are assumed to be normal, whereas
those with 0.7 � ui < 1.0 are supposed to be bubbles and
ui = 1.0 corresponds to the uniform matter. The nuclei with
0.3 < ui < 0.7 are interpolated between the droplets and
bubbles, a very crude approximation to the rod, slab anti-rod
phases. We can see in Figure 13 that the density range, in which
heavy nuclei are abundant, becomes narrower as the temperature
rises. This is because the entropy term −TS of free nucleons and
light nuclei become more important than the internal energy
term U of heavy nuclei in the free energy F = U − TS. Near
the saturation densities, however, the pasta phase survives even
at high temperatures, since it has almost the same free energies
per nucleon as uniform matter. The abundance of pasta nuclei
decreases and that of free nucleons increases monotonically
as the temperature gets higher due to the small surface and
Coulomb energies of the pasta phase.

Figure 12. Entropy per baryon for Models 0a (blue dotted lines), 2a (green
dashed lines), and 2b (red solid lines) as a function of density for (T = 1 MeV,
Yp = 0.3), (T = 5 MeV, Yp = 0.3), and (T = 10 MeV, Yp = 0.5) from top to
bottom.

(A color version of this figure is available in the online journal.)

4. SUMMARY AND DISCUSSIONS

We have extended the baryonic EOS at subnuclear densities,
which was developed for the use in core-collapse supernova
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Figure 13. Phase diagram of Model 2b at Yp = 0.3 in the ρB, T -plane. Blue
dotted lines show the boundary where the light nuclei fraction (Z � 5) XL
changes between XL < 10−4 and XL > 10−4. Red solid lines are that of heavy
nuclei (Z � 6). Green dashed lines are that of pasta phase nuclei XPasta = ΣXi

for pasta nuclei (ui > 0.3).

(A color version of this figure is available in the online journal.)

simulations in our previous paper. The EOS provides the
abundance of various nuclei up to the proton number of
1000 in addition to thermodynamical quantities. The major
modifications in the new EOS include the different treatments
of the bulk and shell energies of heavy nuclei and the internal
degrees of freedom, the use of the theoretical mass data wherever
available, and the adoption of the different estimation of the
masses of the light nuclei based on the quantum approach.
The bulk energies of all heavy nuclei (Z � 6) now have the
temperature dependence, which is different from the previous
one. As a matter of fact, the temperature effects are encapsulated
only in the internal degree of freedom of the nuclei, for which
mass data are available, in the previous paper. In this paper, we
employ the theoretical mass data in addition to the experimental
ones to obtain the shell energies. For the light nuclei with Z �
2 and N � 2, the results of quantum calculations are adopted
to better reproduce the binding energies of those nuclei at high
densities and temperatures. For other light nuclei (Z � 5), we
use the mass formula based on the LDM, which is different from
the one for heavy nuclei. The LDM for the light nuclei gives a
temperature dependence of the binding energies similar to that
obtained from the quantum approach for Z � 2 and N � 2.

The basic part of the model free energy density is the
same as that given in Furusawa et al. (2011). This model free
energy density is constructed so that it should reproduce the
ordinary NSE results at low densities and make a continuous
transition to the supranuclear density EOS obtained from the
RMF. For the nuclei with neither experimental nor theoretical
mass data available, we have neglected the shell energies. At
high densities, where the nuclear structure is affected by the
presence of other nuclei, nucleons, and electrons, we have
reduced by hand the shell energy from the value obtained from
the experimental or theoretical data to zero at high densities.
Assuming the charge neutrality in the W–S cell, we have
calculated the Coulomb energy of nuclei. Close to the nuclear

saturation density, the existence of the pasta phase has been
taken into account in calculating the surface and Coulomb
energies. The free energy density of the nucleon vapor outside
nuclei is calculated by the RMF employed for the description of
heavy nuclei.

For some representative combinations of density, tempera-
ture, and proton fraction, we have made a comparison of the
abundances of nuclei as well as thermodynamical quantities ob-
tained in different models. The model without the temperature
dependence in the bulk energies for the nuclei with experimental
mass data available (Model 0a) yields the unphysical jumps in
isotope distributions, especially at high temperatures, because
the bulk energies obtained from the RMF theory are lower than
the experimental values. We have found that the introduction
of the theoretical mass data solves this problem and changes
the mass fractions as well as the average mass numbers. We
have also revealed that the new EOS including the Pauli- and
self-energy shifts gives lower abundances of the light nuclei
than the old EOS based on the LDM. This is because the LDM
overestimates the binding energies of the light nuclei at high
temperatures. The Pauli and self-energy shifts also affect the
light nuclei abundance at high temperatures and densities.

We would like to stress that the new EOS provides more
realistic abundances of light and heavy nuclei than the previous
one. In fact, the new EOS does not have undesirable jumps in
the abundance of heavy nuclei. The mass estimation of light
nuclei is also more sophisticated in the new EOS. We now
briefly mention the comparison of our new EOS (Model 2b)
with others. The detailed comparisons of our previous EOS
(Model 0a) were made with EOSs employing SNA as well as
with other multi-nuclei EOSs in Furusawa et al. (2011) and
Buyukcizmeci et al. (2013a), respectively. It is found that the
EOSs with SNA give mass numbers for the representative nuclei
larger than the average mass numbers given by multi-nuclei
EOSs such as ours. Furthermore, the two standard EOSs by
Lattimer & Swesty (1991) and H. Shen et al. (2011) lack the
shell energies of nuclei and, as a result, show monotonic growths
of the average mass numbers of heavy nuclei, which are in
contrast with our EOS, which gives stepwise growths as shown
in Figure 7. As for light nuclei, we can provide their abundances
in detail, whereas the two standard EOSs with SNA give only the
abundance of alpha particles as the representative light nucleus.
We have observed that at T = 5, 10 MeV the mass fractions of
alpha particles given by H. Shen’s EOS are larger than those in
our EOS and are smaller than the total mass fractions of all light
nuclei obtained in our EOS. This result implies that we cannot
neglect deuterons, tritons, and helions and the replacement of
the ensemble of light nuclei by alpha particles is a rather poor
approximation at high temperatures.

Although we cannot compare our new EOS with other multi-
nuclei EOSs, it is possible to infer that our new model (Model 2b)
will give the mass fractions of heavy nuclei similar to those
obtained in Botvina’s EOS (Botvina & Mishustin 2004, 2010;
Buyukcizmeci et al. 2013b) at high temperatures. This is because
both EOSs take into account the temperature-dependent bulk
energies for all heavy nuclei, as we have described in detail so
far in this paper. There should be, of course, some differences,
which could originate from the different estimations of the
surface energies and inclusions of the shell energies, which
are actually not taken into account in their EOS (Buyukcizmeci
et al. 2013a). At low temperatures, the new EOS may give the
abundances of heavy nuclei similar to those obtained by Hempel
& Schaffner-Bielich (2010). This is because both EOSs include
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the shell effects for the neutron-rich and/or heavy nuclei by
using theoretical estimations of nuclear masses. Note, however,
that the difference between the theoretical mass data provided
by Geng et al. (2005), which are used in Hempel & Schaffner-
Bielich (2010), and those provided by Koura et al. (2005), which
are adopted in this paper, may have some influences on the
abundances of nuclei. As for the light nuclei abundances, we
believe that our EOS has more reliable abundances than others,
since ours takes into account the Pauli- and self-energy shifts,
which could be important in medium. It is also pointed out that in
Hempel’s EOS, gi(T ), the contribution from the internal degree
of freedom to the nuclear partition function, is also applied to
light nuclei with the integration range being somewhat limited
despite the fact that deuterons have no excited states. Hemepl’s
EOS may hence overestimate the light nuclei abundance in some
cases although they found no significant difference from the
results in more involved calculations by Röpke (2009) and Typel
et al. (2010) (Hempel et al. 2011). We infer from Furusawa et al.
(2011) and Buyukcizmeci et al. (2013a) that thermodynamics
quantities are not so different from different EOSs except at
high densities, where the treatments of the pasta phase and
abundances of light nuclei may make some differences.

There is room for improvement in our EOS. The interpolation
of the shell energy and the treatment of the pasta phase are en-
tirely phenomenological and need justification or sophistication
somehow. We may have to improve the EOS of uniform matter,
which is needed to evaluate the free energy density of the free
nucleons and bulk energies of heavy nuclei. In fact, the RMF is
known to have the symmetry energy larger than the canonical
value, which will affect the neutron-richness, Zi/Ai , of heavy
nuclei. In our formulation, however, it is quite simple to change
the EOS of uniform nuclear matter, once it is provided. The com-
bination with another EOS for supranuclear densities is indeed
under progress at present. The update of the surface tensions of
nuclei, especially of neutron-rich nuclei, should be considered
according to the progresses in theories and experiments. The
construction of the table based on Model 2b in this paper and
its application to supernova simulations are also under way.
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Sumiyoshi, K., & Röpke, G. 2008, PhRvC, 77, 055804
Timmes, F. X., & Arnett, D. 1999, ApJS, 125, 277
Typel, S. 2005, PhRvC, 71, 064301
Typel, S., Ropke, G., Klahn, T., Blaschke, D., & Wolter, H. 2010, PhRvC,

81, 015803
Watanabe, G., Maruyama, T., Sato, K., Yasuoka, K., & Ebisuzaki, T. 2005,

PhRvL, 94, 031101

16

http://adsabs.harvard.edu/abs/2008PhRvC..78a5806A
http://adsabs.harvard.edu/abs/2008PhRvC..78a5806A
http://adsabs.harvard.edu/abs/2003NuPhA.729..337A
http://adsabs.harvard.edu/abs/2003NuPhA.729..337A
http://dx.doi.org/10.1051/0004-6361/201117225
http://adsabs.harvard.edu/abs/2011A&A...535A..37B
http://adsabs.harvard.edu/abs/2011A&A...535A..37B
http://adsabs.harvard.edu/abs/1995PhR...257..133B
http://adsabs.harvard.edu/abs/1995PhR...257..133B
http://adsabs.harvard.edu/abs/2004PhLB..584..233B
http://adsabs.harvard.edu/abs/2004PhLB..584..233B
http://adsabs.harvard.edu/abs/2010NuPhA.843...98B
http://adsabs.harvard.edu/abs/2010NuPhA.843...98B
http://dx.doi.org/10.1086/162505
http://adsabs.harvard.edu/abs/1984ApJ...285..294B
http://adsabs.harvard.edu/abs/1984ApJ...285..294B
http://adsabs.harvard.edu/abs/2013NuPhA.907...13B
http://adsabs.harvard.edu/abs/2013NuPhA.907...13B
http://www.arxiv.org/abs/1304.6741
http://adsabs.harvard.edu/abs/1982NuPhA.381..557F
http://adsabs.harvard.edu/abs/1982NuPhA.381..557F
http://dx.doi.org/10.1088/0004-637X/738/2/178
http://adsabs.harvard.edu/abs/2011ApJ...738..178F
http://adsabs.harvard.edu/abs/2011ApJ...738..178F
http://adsabs.harvard.edu/abs/2005PThPh.113..785G
http://adsabs.harvard.edu/abs/2005PThPh.113..785G
http://adsabs.harvard.edu/abs/2011PPNL....8...97G
http://adsabs.harvard.edu/abs/2011PPNL....8...97G
http://adsabs.harvard.edu/abs/1984PThPh..71..320H
http://adsabs.harvard.edu/abs/1984PThPh..71..320H
http://dx.doi.org/10.1088/0004-637X/748/1/70
http://adsabs.harvard.edu/abs/2012ApJ...748...70H
http://adsabs.harvard.edu/abs/2012ApJ...748...70H
http://adsabs.harvard.edu/abs/2010NuPhA.837..210H
http://adsabs.harvard.edu/abs/2010NuPhA.837..210H
http://adsabs.harvard.edu/abs/2011PhRvC..84e5804H
http://adsabs.harvard.edu/abs/2011PhRvC..84e5804H
http://adsabs.harvard.edu/abs/2003PhRvL..91t1102H
http://adsabs.harvard.edu/abs/2003PhRvL..91t1102H
http://adsabs.harvard.edu/abs/2007PhR...442...38J
http://adsabs.harvard.edu/abs/2007PhR...442...38J
http://adsabs.harvard.edu/abs/2013CRPhy..14..318K
http://adsabs.harvard.edu/abs/2013CRPhy..14..318K
http://adsabs.harvard.edu/abs/2005PThPh.113..305K
http://adsabs.harvard.edu/abs/2005PThPh.113..305K
http://adsabs.harvard.edu/abs/2003RvMP...75..819L
http://adsabs.harvard.edu/abs/2003RvMP...75..819L
http://adsabs.harvard.edu/abs/1991NuPhA.535..331L
http://adsabs.harvard.edu/abs/1991NuPhA.535..331L
http://adsabs.harvard.edu/abs/2010PhRvC..82f4319L
http://adsabs.harvard.edu/abs/2010PhRvC..82f4319L
http://adsabs.harvard.edu/abs/2009PhRvL.103m2501N
http://adsabs.harvard.edu/abs/2009PhRvL.103m2501N
http://adsabs.harvard.edu/abs/2012PhLB..713..284O
http://adsabs.harvard.edu/abs/2012PhLB..713..284O
http://adsabs.harvard.edu/abs/1993NuPhA.561..431O
http://adsabs.harvard.edu/abs/1993NuPhA.561..431O
http://adsabs.harvard.edu/abs/1983PhRvL..50.2066R
http://adsabs.harvard.edu/abs/1983PhRvL..50.2066R
http://adsabs.harvard.edu/abs/2011PhRvC..83c5802S
http://adsabs.harvard.edu/abs/2011PhRvC..83c5802S
http://adsabs.harvard.edu/abs/1998NuPhA.637..435S
http://adsabs.harvard.edu/abs/1998NuPhA.637..435S
http://adsabs.harvard.edu/abs/1998PThPh.100.1013S
http://adsabs.harvard.edu/abs/1998PThPh.100.1013S
http://dx.doi.org/10.1088/0067-0049/197/2/20
http://adsabs.harvard.edu/abs/2011ApJS..197...20S
http://adsabs.harvard.edu/abs/2011ApJS..197...20S
http://adsabs.harvard.edu/abs/2008PhRvC..77e5804S
http://adsabs.harvard.edu/abs/2008PhRvC..77e5804S
http://dx.doi.org/10.1086/313271
http://adsabs.harvard.edu/abs/1999ApJS..125..277T
http://adsabs.harvard.edu/abs/1999ApJS..125..277T
http://adsabs.harvard.edu/abs/2005PhRvC..71f4301T
http://adsabs.harvard.edu/abs/2005PhRvC..71f4301T
http://dx.doi.org/10.1103/PhysRevC.81.015803
http://adsabs.harvard.edu/abs/2010PhRvC..81a5803T
http://adsabs.harvard.edu/abs/2010PhRvC..81a5803T
http://adsabs.harvard.edu/abs/2005PhRvL..94c1101W
http://adsabs.harvard.edu/abs/2005PhRvL..94c1101W

	1. INTRODUCTION
	2. FORMULATION OF THE NEW MODELS
	2.1. Mass Evaluation of Heavy Nuclei (Z > 6)
	2.2. Mass Evaluation of Light Nuclei (Z < 5)
	2.3. Translational Energies of Nuclei
	2.4. Thermodynamical Quantities

	3. RESULT
	3.1. Abundances of Heavy Nuclei
	3.2. Abundance of Light Nuclei
	3.3. Thermodynamical Quantities
	3.4. Phase Diagram

	4. SUMMARY AND DISCUSSIONS
	REFERENCES

