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ABSTRACT

A very simple physical model of galaxies is one in which the formation of stars is instantaneously regulated by the
mass of gas in a reservoir with mass loss scaling with the star-formation rate (SFR). This model links together three
different aspects of the evolving galaxy population: (1) the cosmic time evolution of the specific star-formation
rate (sSFR) relative to the growth of halos, (2) the gas-phase metallicities across the galaxy population and over
cosmic time, and (3) the ratio of the stellar to dark matter mass of halos. The gas regulator is defined by the gas
consumption timescale (ε−1) and the mass loading λ of the wind outflow λ·SFR. The simplest regulator, in which ε
and λ are constant, sets the sSFR equal to exactly the specific accretion rate of the galaxy; more realistic situations
lead to an sSFR that is perturbed from this precise relation. Because the gas consumption timescale is shorter than
the timescale on which the system evolves, the metallicity Z is set primarily by the instantaneous operation of the
regulator system rather than by the past history of the system. The metallicity of the gas reservoir depends on ε, λ,
and sSFR, and the regulator system therefore naturally produces a Z(mstar, SFR) relation if ε and λ depend on the
stellar mass mstar. Furthermore, this relation will be the same at all epochs unless the parameters ε and λ themselves
change with time. A so-called fundamental metallicity relation is naturally produced by these conditions. The
overall mass–metallicity relation Z(mstar) directly provides the fraction fstar(mstar) of incoming baryons that are
being transformed into stars. The observed Z(mstar) relation of Sloan Digital Sky Survey (SDSS) galaxies implies
a strong dependence of stellar mass on halo mass that reconciles the different faint-end slopes of the stellar and
halo mass functions in standard ΛCDM models. The observed relation also boosts the sSFR relative to the specific
accretion rate and produces a different dependence on mass, both of which are observed. The derived Z(mstar, SFR)
relation for the regulator system is fit to published Z(mstar, SFR) data for the SDSS galaxy population, yielding ε
and λ as functions of mstar. The fitted ε is consistent with observed molecular gas-depletion timescales in galaxies
(allowing for the extra atomic gas), while the fitted λ is also reasonable. The gas-regulator model also successfully
reproduces the Z(mstar) metallicities of star-forming galaxies at z ∼ 2. One consequence of this analysis is that
it suggests that the mstar–mhalo relation is established by baryonic processes operating within galaxies, and that a
significant fraction (40%) of baryons coming into the halos are being processed through the galaxies. This fraction
may be more or less constant. The success of the gas-regulator model in simultaneously explaining many diverse
observed relations over the 0 < z < 2 interval suggests that the evolution of galaxies is governed by simple physics
that form the basis for this model.
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1. INTRODUCTION

The goal of this paper is to explore and develop links between
three different aspects of the evolving galaxy population. These
are:

1. The evolution with cosmic time of the rate at which stars
are forming in galaxies, as characterized by the specific star
formation rate (sSFR) of main-sequence galaxies. We also
explore the relation of this evolution to the growth of dark
matter structures.

2. The dependence of the gas-phase chemical abundance of
galaxies on their stellar mass, mstar, and star formation rate,
SFR, and the evolution of this Z(mstar, SFR) relation with
cosmic epoch.

3. The strong dependence of stellar mass on dark matter halo
mass that is required to reconcile the faint-end slopes of the

observed galaxy mass function and the halo mass function
expected from the standard ΛCDM cosmology.

We will show that these three aspects of galaxy evolution are
closely linked through the action of a single simple physical
model for star formation in galaxies. In this model, the star
formation rate is instantaneously regulated by the mass of gas
in the galaxy.

We stress at the outset that our goal is not to construct an
accurate and therefore complex physical model of galaxies,
or to determine precise values of physical quantities from
observations, or to try to rule out alternative models. Rather,
our approach is to take an extremely simple model and explore
the consequences analytically so as to better understand how
the different aspects of galaxy evolution listed above are linked
together in a single coherent view. As a result, the construction
of the model will involve a number of simple assumptions, any of
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which may be challenged in detail. We adopt these assumptions
on a heuristic basis.

1.1 The sSFR of Star-forming Galaxies
and its Evolution with Time

Out to z ∼ 2, there is now good evidence for a “main
sequence” of star-forming galaxies in which the SFR is closely
correlated with the existing stellar mass mstar of the galaxy. The
scatter is only about 0.3 dex4 around the mean relation. The
main sequence has a characteristic sSFR that declines weakly
with stellar mass as sSFR ∝ m

β
star with β ∼ –0.1 (see, e.g.,

Noeske et al. 2007; Daddi et al. 2007; Elbaz et al. 2007; Peng
et al. 2010). About 1%–2% of star-forming galaxies lie above
the main sequence with significantly elevated star formation
rates. These may be the result of a major merger or other event
but, over the 0 < z < 2 range, these starbursts only contribute of
order 10% of the total star formation (Sanders & Mirabel 1996;
Sanders et al. 1988; Rodighiero et al. 2011; Sargent et al. 2012).
There is also a substantial population of “quenched” passive
galaxies whose sSFRs are substantially lower than those of
main-sequence galaxies. These passive galaxies dominate the
galaxy population at high stellar masses but their star formation
can be neglected for most purposes. Most stars therefore form
in the main-sequence galaxies that are the subject of this paper.

It is clear that the characteristic sSFR of the main-sequence
population evolves strongly with redshift, increasing by a factor
of 20 back to z ∼ 2, i.e., proceeding roughly as sSFR ∝
t−2.2,where t is the cosmic epoch (Elbaz et al. 2007; Daddi
et al. 2007; Pannella et al. 2009), or as sSFR ∝ (1 + z)3. The
behavior at higher redshifts is less clear; initial evidence that the
sSFR levels off dramatically at z > 2 (Gonzalez et al. 2010) has
been challenged (Schaerer et al. 2013; Stark et al. 2013). The
evolution above z ∼ 2 does appear to flatten and may be more
like (1 + z)1.5. In fact, the existence of a tight main sequence is
not well established at these earlier epochs.

A small complication in considering the sSFR is that some
fraction R of the mass that is converted into stars, as measured by
the SFR, is promptly (we will assume instantaneously) returned
to the interstellar medium. The remaining fraction (1−R) stays
in the form of long-lived stars. The buildup of the long-lived
stellar population therefore has a characteristic timescale that
is given by the inverse of a reduced specific star formation rate
(rsSFR), which is smaller than the sSFR by a factor (1−R).
Assuming an instantaneous mass return of R,

rsSFR = (1 − R) · sSFR. (1)

It should be noted that there are different conventions in the
literature for the calculation of stellar masses from spectropho-
tometric data combined with population synthesis models and
for the computation of sSFR. Often (e.g., as in Pannella et al.
2009) the stellar mass is the “actual” stellar mass of surviving
long-lived stars (plus stellar remnants) derived from a stellar
population model. An sSFR computed in this way requires a
correction to yield the rsSFR. Alternatively, the stellar mass
may be computed from the integral of the SFR of a particu-
lar stellar population model (e.g., as in Ilbert et al. 2010). An
sSFR computed from these values would already be equiva-
lent to the rsSFR defined in Equation (1). We will adopt in
this paper the convention that the sSFR is the SFR divided by

4 Throughout this paper, we will use dex to refer to the anti-logarithm; i.e.,
0.3 dex corresponds to a factor of two.

Figure 1. Comparison of the observed rsSFR of galaxies (red points taken from
the compilation of Stark et al. 2013; see references in the text), summarized
by Equation (2) (red (dashed in the print journal) lines in both panels), and
the specific mass increase rate of dark matter halos (sMIRDM) in numerical
simulations (black (solid in the print journal) lines in both panels) from
Equation (3). In the left panel, the rsSFR is plotted for a 1010 M� galaxy and for
a 1011.5 M� halo at different epochs. The sSFR is systematically about a factor
of two higher than the sMIRDM, but the evolution with redshift of these two
quantities is very similar. In the right panel, the rsSFR and sMIRDM are shown
as a function of mass at z ∼ 2 and z ∼ 0 (lower and upper axes, respectively).
The rsSFR has logarithmic slope β ∼ –0.1, whereas the sMIR has β ∼ + 0.1.

(A color version of this figure is available in the online journal.)

the actual stellar mass and will use the reduced rsSFR when
needed to describe the e-folding time of the long-lived stellar
population.

We utilize the instantaneous return assumption and take
R = 0.4 from stellar population models (e.g., Bruzual & Charlot
2003). Based on the data from Noeske et al. (2007), Elbaz et al.
(2007), Daddi et al. (2007), Pannella et al. (2009), and Stark
et al. (2013) we adopt an sSFR(mstar,z) relation of the form (see
Figure 1)

rsSFR(mstar, t) = 0.07

(
mstar

1010.5M�

)−0.1

(1 + z)3 Gyr−1(at z < 2)

= 0.3

(
mstar

1010.5M�

)−0.1

(1 + z)5/3 Gyr−1(at z > 2). (2)

The average specific accretion rate, or specific “mass increase
rate,” of dark matter halos, which we denote by sMIRDM (see
Equation (17)), is given by Neistein & Dekel (2008) as

sMIRDM = 0.027

(
mhalo

1012M�

)0.15

(1 + z + 0.1(1 + z)−1.25)2.5

∼ 0.036

(
mhalo

1012M�

)0.15

(1 + z)2.35 . (3)

The similarities between the average observed rsSFR and the
average sMIRDM on galactic mass scales from Equations (2)
and (3) are shown in Figure 1, where we plot the cosmological
evolution of both quantities with epoch for mhalo = 1011.5 M�
and mstar = 1010 M� in the left panel. In the right panel, we
show the variation with mass at two particular epochs, z = 0 and
z = 2. As has been noted before, the evolution of both quantities
is very similar.

There are also, however, significant differences between these
two quantities, as seen in Figure 1. The sSFR appears to be
consistently higher than the sMIRDM over a wide range of
redshifts, implying a shorter e-folding time for the build up
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of stars compared with that of the dark matter halos. Also, the
slope of the (weak) mass dependence of the sSFR and sMIRDM
is reversed, with a logarithmic slope βDM ∼ + 0.15 compared
with βsSFR ∼ –0.1. Given the overall similarities, the origin of
these differences is something of a puzzle (e.g., Bouché et al.
2010; Weinmann et al. 2011).

1.2. Gas-phase Metallicities within the Galaxy Population

It has been known for many years that there is a significant
range of metallicities within the galaxy population. In this paper,
we are primarily concerned with the gas-phase metallicities, Z,
that are derived for star-forming galaxies from line ratios in H ii
regions. These reflect the metallicity of the gas out of which
stars are being formed.

There are uncertainties in the estimation of gas-phase metal-
licities from emission line spectra (see, e.g., the discussion in
Kewley & Dopita 2002; Kewley & Ellison 2008; Andrews &
Martini 2013; Yates et al. 2012) and different analyses produce
significantly different metallicities, even from the same input
data. There is, however, no dispute that there is a strong overall
trend with the stellar mass of the galaxy (Lequeux et al. 1979),
well illustrated by the Sloan Digital Sky Survey (SDSS) Z(mstar)
mass–metallicity relation presented by Tremonti et al. (2004,
hereafter T + 04). There is also good evidence for an evolution
in the mass–metallicity relation with redshift (e.g., Savaglio et al.
2005; Maier et al. 2006; Erb et al. 2006; Maiolino et al. 2008),
although the available emission line data at high redshifts are
much more limited. Furthermore, the extensive Erb et al. data
were based on the somewhat problematic N ii/Hα ratios. Expla-
nations for the existence of the mass–metallicity relation are still
debated, but have included differing star formation efficiencies
within galaxies (e.g., Brooks et al. 2007; Mouhcine et al. 2007;
Calura et al. 2009), supernova-driven winds (e.g., Larson 1974;
T + 04; Dalcanton 2007; Finlator & Davé 2008), and variations
in the initial mass function of stars (Köppen et al 2007).

Based on the extensive SDSS data, it has also been claimed
that Z correlates with other galactic parameters. Most notably,
there is a claimed anti-correlation with the SFR of galaxies
(Ellison et al. 2008; Mannucci et al. 2010, hereafter M + 10;
Lara-Lopez et al. 2010; Andrews & Martini 2013), especially
at low galactic masses (mstar � 1010 M�). In particular, M + 10
presented a Z(mstar, SFR) relation (reproduced below in Figure 5)
and furthermore claimed that high-redshift galaxies follow
exactly the same relation, coining the phrase “fundamental
metallicity relation” (FMR). Other studies of the stability of
the FMR across cosmic time have been undertaken by Richard
et al. (2011), Nakajima et al. (2012), Cresci et al. (2012), and
Dessauges-Zavadsky et al. (2011), among others.

While the existence and sign of the effect is quite well
established at low masses (and low redshifts), the amplitude of
the variation with SFR is quite uncertain. Reported values vary
between 0.2 and 0.6 dex, with even larger values reported for low
stellar masses (Andrews & Martini 2013). At high masses, the
effect is much smaller and may vanish or even reverse (Yates
et al. 2012). Explanations for why there might be a second
SFR parameter in the mass–metallicity relation have hitherto
generally involved ad hoc descriptions of adding pristine gas to
boost star formation (e.g., M + 10; Dayal et al. 2013).

1.3. The Stellar Mass versus Halo Mass Relation

The theory of structure formation in ΛCDM cosmology
has proved very successful. A lingering issue has, however,

concerned the faint-end slope of the galaxy (stellar) mass
function, as described by the Schechter parameter α, compared
with the predicted slope of the dark matter halo mass function.
These are significantly different, over several decades of stellar
mass. This implies a strong dependence of the stellar mass on
the halo mass (Vale & Ostriker 2004), extending all the way
up to galaxy masses around M∗, the characteristic knee in the
Schechter function. At this point, the relation turns over and
mstar/mhalo decreases. This latter effect is due to the quenching
of star formation in massive galaxies, which is not considered
in this paper.

In the power-law regime at relatively low masses, the inferred
halo mass dependence is sensitive to the measured faint-
end slope α of the galaxy mass function (see Equation (8)).
Parameterizing mstar ∝ mhalo

γ , values of γ as high as ∼ 3
have been inferred (Guo et al. 2010). The Schechter faint-end
slope α for star-forming galaxies (α = –1.45±0.05; Peng et al.
2010; Baldry et al. 2012) requires mstar ∝ mhalo

1.85 ± 0.2 for
αDM ∼ –1.83. Although less extreme, this result still implies a
rather dramatic breaking of the coupling between halo mass and
stellar mass that is inconsistent with the impression of the close
coupling implied by the comparison of the galactic sSFR and
the halo sMIRDM outlined in Section 1.1.

The strong dependence of stellar mass on halo mass at low
masses has been thought to reflect either the action of winds
leading to baryonic mass loss (Larson 1974; White & Rees
1978) or a variation in the efficiency with which galaxies convert
gas into stars. The link with metallicity has previously been
explored by several authors (e.g., Finlator & Davé 2008; Peeples
& Shankar 2011).

1.4. The Gas-regulated Model of Galaxies

The physical model of this paper is built around the close
coupling of baryons to dark matter that is indicated by the
similarity of Equations (2) and (3) illustrated in Figure 1.
Our goal is to develop a very simple physical model that is
motivated by this observation plus the application of reasonable
physical assumptions. We investigate how far we can go in
linking together the different issues that we have outlined in
the previous three sections. In developing this analysis, we
will make a number of heuristically motivated simplifying
assumptions whose individual detailed validity can obviously
be questioned. We again stress that the goal is not to construct a
physically detailed model that can be quantitatively compared
to accurate data to determine physical parameters, but rather to
provide a framework for considering the general problems in
galaxy evolution.

The analysis will be built around a model for individual
galaxies in which a given galaxy is continuously fed from the
outside by new gas, as in the model of Bouché et al. (2010).
The SFR in the galaxy is set by the instantaneous mass of gas
within the galaxy; i.e., the gas content of a galaxy regulates its
SFR. If the mass loss in winds in a given system is proportional
to the SFR, then the regulator keeps the SFR as a constant,
or slowly evolving, fraction fstar of the baryons flowing into
the galaxy “system.” The “system” considered in this paper
consists of the stellar component of the galaxy plus the gas
in the reservoir within the galaxy. The gas within this internal
reservoir takes part in the chemical mixing of the galaxy and
it is this reservoir of gas that sets and regulates the SFR of the
galaxy. The system is however open: gas may flow in from the
surroundings (i.e., from further out in the halo) and out again
in a star-formation-driven wind. However, it is assumed that the
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reservoir is isolated from the surrounding gas in the halo except
via these well-defined flows in and out of the system. We will
also not consider chemical mixing between the outflowing and
inflowing material.

This very simple model of a galaxy has the interesting effect
of setting the rsSFR close to the specific infall rate of gas into
the system. The regulator is an entirely baryonic system. The
baryonic specific infall rate, which we designate as the sMIRB,
is the rate of inflow of gas divided by the integral of that rate
over all previous time (see Equation (16) later in the paper).
The integral may not be the actual baryonic mass of the system,
because some of the previously accreted baryonic material may
have been lost through winds. The sMIRB of a galaxy is not
therefore an observable quantity, but is expected to be closely
linked to the sMIRDM of its parent halo. In fact, the two will be
identical if a constant fraction of the baryons entering the halo
penetrate down to enter the galaxy system considered above
(assuming that a cosmic baryon to dark matter fraction enters
the halo).

The smooth sMIRDM given by Equation (3) represents an
average across the population. In practice, the accretion of dark
matter and baryons onto a given halo may proceed in a more
irregular way as lumps of material are brought in. However,
the subsequent accretion of gas onto the central galaxy will be
smoothed out, at least on the halo dynamical timescale of order
0.1tH, and possibly longer. A key part of our model is that, at any
epoch, the spread in the sSFR on the main sequence reflects the
range of smoothly varying accretion rates of gas onto galaxies.

1.5. Layout of the Paper

The layout of the paper is as follows. In Section 2, we
develop the basic features of the simple gas-regulated model,
emphasizing its action in terms of the resulting sSFR and the
ratio μ of gas to stars in the system. We also look at the different
timescales in the system and the ability of the regulator to
smoothly control the SFR in a galaxy. We then derive in Section 3
the key expression(s) for the instantaneous gas metallicity of
the gas in the reservoir and also consider how this quantity
may change with time. We will find that the action of the gas
regulator naturally produces a Z(mstar, SFR) relation that will
be the same at all epochs unless the parameters describing the
internal action of the regulator change. We also show that the
metallicity of the system is very simply related to the fraction
of baryons, fstar, that enter the system and are transformed into
long-lived stars. In Section 4, we show that the mass–metallicity
relation of SDSS galaxies implies an fstar(mstar) that increases
with mass and that this naturally accounts for the different faint-
end slopes of the galaxy and halo mass functions. Also, since a
given galaxy will increase its fstar as it grows in mass, this will
produce an rsSFR that will be systematically higher than the
sMIRB, and thus also likely higher than the sMIRDM. It will also
produce a different mass dependence of rsSFR(mstar) compared
with sMIRDM(mhalo). Finally, in Section 5, we compare the
Z(mstar,SFR) metallicity relation from our regulator model with
the Z(mstar,SFR) data for the SDSS population, which has been
presented by M + 10, and also with the Tremonti et al. (2004,
T + 04) Z(mstar) relation. By fitting these data, we derive the
mass dependencies of the star formation efficiency and wind
mass loading that are required to reproduce the metallicity data
across the galaxy population. These quantities are found to be
broadly reasonable. Taking them at face value, we then look at
the division of incoming baryons between stars, the reservoir,
and the outflows at z = 2 and z = 0. We make a prediction for the

form of the Z(mstar) relation at z = 2 that is largely consistent
with observations. Section 6 then summarizes the key points
from the earlier sections.

Finally, it should be noted that the stellar masses and star
formation rates taken from the literature are for a concordance
cosmology with H0 ∼ 70 km s−1 Mpc−1. We will assume when
necessary that baryons and dark matter are well-mixed flowing
into halos, with a cosmic baryon fraction ΩB/ΩM = 0.15.

2. THE IDEAL GAS-REGULATED MODEL

2.1. The Ideal Operation of the Gas Regulator

The most important features of the gas-regulated model
of galaxies that we develop in this paper are very simple.
The model assumes that gas, mixed with dark matter, flows
from the surroundings into a halo. Some fraction fgal of the
incoming baryons penetrate down to enter the galaxy system
as baryonic gas. There the gas adds to a reservoir within the
galaxy. The instantaneous SFR in the galaxy is determined by
the instantaneous mass of gas in this internal reservoir. Metals
are returned to this internal reservoir. Finally, some gas may be
expelled from the reservoir back out to the halo, or even beyond,
in a galactic wind.

We first define the star formation efficiency ε of a particular
galaxy system in terms of the instantaneous SFR and the mass
of gas present in the reservoir within the system, mgas, as

SFR = εmgas. (4)

The gas consumption timescale τ gas is then simply given by the
inverse of ε, i.e.,

τgas = ε−1. (5)

It should be noted that in this analysis, mgas is the total mass
of gas within the gas reservoir of the galaxy and not just the
molecular gas out of which stars are actually being formed.
Correspondingly, τ gas will be longer than the τ gas derived from
the molecular gas alone.

In a very simple regulator model, the star formation efficiency
ε would be a constant. However, for realistic galaxies, ε will
likely be a function of the overall mass of the galaxy, or possibly
of other galactic parameters such as the dynamical timescale. In
what follows, ε will be taken to be a general ε(mstar, t) function,
but we will assume that it varies on a timescale that is longer
than τ gas.

Defining the mass ratio of gas to stars in the system to be μ,

μ = mgas

mstar
, (6)

then Equation (4) can be re-written in terms of the sSFR and ε:

μ = ε−1 · sSFR. (7)

Note that in a more general case where the SFR varies
as some power κ of the gas mass, SFR = ε · mgas

κ as
in a Kennicutt–Schmidt-type relation (Kennicutt 1998), then
Equation (7) takes the form

μ = (ε−1 · sSFR)1/κ · m
−( κ−1

κ )
star . (7a)

It should be noted that the regulation of the star formation rate
by the gas reservoir will occur for any positive value of κ; i.e.,
we simply need the SFR to increase if the mass of gas present
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Figure 2. Illustration of the gas-regulated model, in which the SFR is regulated by the mass of gas in a reservoir within the galaxy. Gas flows in to the halo, some
fraction fgal of which also flows into the galaxy system at a rate Φ and adds to the gas reservoir. Stars continuously form out of the reservoir at a rate that is assumed
to be proportional to the mass of gas, characterized by a star formation efficiency ε or gas consumption timescale τ gas. A fraction of the stellar mass is immediately
returned to the reservoir, along with newly produced metals. Finally, some gas may be expelled from the system, and possibly from the halo, by a wind Ψ that is
assumed to be proportional to the SFR. The mass of gas in the reservoir is free to vary and this regulates the star formation. The picture on the right shows, in schematic
form, the net flows through the system. The division of the incoming flow Φ into three streams is determined by ε, λ, and the sSFR, which are assumed to vary on
timescales that are longer than the time the gas spends in the system. The duration that the gas is in the system is given by the gas consumption timescale τ gas.

increases. Adopting κ = 1 is a simple case that we adopt for
heuristic purposes.

We define the mass loss Ψ from the system, which we assume
increases (in a given system) linearly with the SFR, in terms of
a mass-loading factor λ, so that

Ψ = λ · SFR. (8)

Again, λ may well vary with the mass of the galaxy (and/or
epoch) due to the depth of the potential well, or other factors.
Note that the gas-to-stars ratio μ in the steady-state regulator
system depends only on the sSFR and on the star formation
efficiency ε, through Equation (7), and not on the level of mass
loss from the system. Again, the linearity of Ψ with respect
to the SFR in a particular galaxy is a simplifying, heuristic,
assumption. We will see that the outflow acts as a kind of
inefficiency in the system, and its exact form will not alter the
qualitative features of the model.

The simplest possible case would be one in which the ε and λ
of a given regulator system are both constant. We will refer to this
as an “ideal” regulator. In practice, we expect that ε and λ will
both depend on galactic mass, and possibly on epoch, and that
these parameters will change for a given galaxy as it increases
in mass, even if at fixed mass these parameters are constant
with epoch. However, provided that changes to the operation
of the regulator are slow compared with the gas consumption
timescale τ gas, the ideal case is a good basis for considering
these more realistic situations the outcome is perturbed (see
Sections 4 and 5).

The action of the basic (Equation (4)) is to regulate the SFR
in a galaxy via the amount of gas present. Variations in the infall
rate, over time or from galaxy to galaxy (or, equally well, varia-
tions in the star formation efficiency or wind mass-loading) will
quickly lead to changes in the gas reservoir, consequent adjust-
ment of the SFR, and thus regulation of the star formation rate.

Two simple diagrammatic representations of the gas-
regulated model are shown in Figure 2. The one on the left

is more pictorially realistic, while the one on the right shows a
more schematic representation of the flows through the system.
Gas flows into this reservoir from the outside, at a rate given by
Φ. In a given interval of time, some of the gas in the reservoir
forms stars, and a fraction (1−R) steadily builds up a population
of long-lived stars. Star formation may drive a wind Ψ out of
the galaxy, either back into the halo, or beyond (we will not be
concerned with this distinction). The mass of gas in the reservoir
of the system, mgas, is free to increase or decrease with time and
it is this change which gives the regulator its ability to regulate
the SFR of the galaxy. Changes in mgas must be associated with
a net flow into or out of the reservoir. We will not consider the
gas in the wider halo except to define the instantaneous inflow
Φ of gas into the galaxy to be some fraction fgal of the instan-
taneous inflow of baryons into the halo. The gas flowing into
the galaxy system from the surrounding halo may have some
prior chemical abundance Z0, and the gas flowing back out is
assumed to have a composition representative of the reservoir.
No attempt will be made to follow possible mixing of these two
flows in the surrounding halo environment.

Strict mass conservation, plus our definition of Φ in terms of
the increase in halo mass and fgal, enables us to write

Φ = (1 − R + λ) · SFR +
dmgas

dt
. (9)

In Davé et al.’s (2012) recent treatment, the dmgas/dt term in
Equation (9) is set to zero, since these authors assumed that the
gas reservoir has a fixed mass. Changes in mgas are a fundamental
part of the self-regulation of the galaxy in our model. Our gas-
regulator model will have a stable (or slowly evolving) gas ratio
μ if the sSFR is more or less constant. We will see below that
the gas reservoir can actually be the dominant endpoint for
incoming baryons at z ∼ 2 in galaxies of intermediate masses.
More importantly, we shall also see that it is the inclusion of this
variable reservoir term that leads to the implicit dependence of
gas metallicity on the SFR, which is otherwise not present.
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The change in gas mass can be expressed in terms of the SFR
and the change in μ as follows:

dμ

dt
= −mgas

m2
star

(1 − R)SFR +
1

mstar

dmgas

dt
,

so
dmgas

dt
= μ(1 − R)SFR + mstar

dμ

dt
.

Since mstar = μ−1mgas and mgas = ε−1 · SFR, this equation
becomes

dmgas

dt
=

(
μ (1 − R) + ε−1 dlnμ

dt

)
· SFR. (10)

The last term in the brackets in Equation (10) is the ratio
between the gas consumption timescale τ gas and the timescale on
which μ (the ε−1 · sSFR product from Equation (7)) is changing.
A condition for the regulator to achieve a quasi-steady state is
that this ratio should be small. In the simplest “ideal” regulator,
in which ε and the input sMIRB are both constant, this term
will of course be precisely zero. We will return to consider this
quantity in more realistic situations in Section 5.

Substituting Equation (10) into Equation (9) then yields an
expression linking the inflow rate Φ and the SFR

Φ =
(

(1 − R) (1 + μ) + λ + ε−1 dlnμ

dt

)
· SFR. (11)

With our heuristic assumptions of SFR ∝ mgas and Ψ ∝ SFR,
all of the flows in the system scale with the SFR (and Φ) and
a constant fraction fstar of baryons are transformed into stars.
The fractional splitting of the incoming baryons is given by the
relative values of ε, λ and the sSFR and may be represented by
fstar, fout, and fres, respectively (see Figure 2). These fractions are
given as exact solutions from Equation (11) as

fstar = (1 − R) · SFR

Φ

= 1

1 + (1 − R)−1 λ + μ + (1 − R)−1 ε−1 dlnμ

dt

= 1

1 + (1 − R)−1 λ + ε−1
(

sSFR + (1 − R)−1 dlnμ

dt

) (12)

fout = λ · SFR

Φ

= (1 − R)−1 λ

1 + (1 − R)−1λ + μ + (1 − R)−1ε−1 dlnμ

dt

= (1 − R)−1 λ

1 + (1 − R)−1λ + ε−1
(

sSFR + (1 − R)−1 dlnμ

dt

) (13)

fres =
(
μ(1 − R) + ε−1 dlnμ

dt

)
· SFR

Φ

= μ + (1 − R)−1ε−1 dlnμ

dt

1 + (1 − R)−1 λ + μ + (1 − R)−1ε−1 dlnμ

dt

= ε−1sSFR + (1 − R)−1ε−1 dlnμ

dt

1 + (1 − R)−1 λ + ε−1
(

sSFR + (1 − R)−1 dlnμ

dt

) , (14)

which simplify to the following if we neglect the slow time
dependence of μ, as in the case of the “ideal” regulator (but see
Section 5 below for more realistic situations):

fstar = (1 − R) · SFR

Φ

= 1

1 + (1 − R)−1λ + μ

= 1

1 + (1 − R)−1λ + ε−1 · sSFR
, (12a)

fout = λ · SFR

Φ

= (1 − R)−1λ

1 + (1 − R)−1 λ + μ

= (1 − R)−1λ

1 + (1 − R)−1 λ + ε−1 · sSFR
, (13a)

fres = μ(1 − R) · SFR

Φ
= μ

1 + (1 − R)−1λ + μ

= ε−1sSFR

1 + (1 − R)−1 λ + ε−1 · sSFR
. (14a)

Clearly, fstar + fout + fres = 1 in both sets of equations, as
required from mass conservation. It should be noted that the
reservoir can be a significant or even dominant destination of
baryons, especially if the gas ratio μ is high as it will be at
high redshift because of the high sSFR. Finally, it is trivial to
compute the gas fraction of the system νgas directly from the gas
ratio μ given in Equation (7),

νgas = mgas

mgas + mstar
= μ

1 + μ
= 1

1 + ε · sSFR−1 . (15)

The net effect of these flows of gas through the regulator sys-
tem is shown schematically on the right-hand side of Figure 2.
Provided that the gas consumption timescale τ gas of the galaxy
is short compared with the timescale on which the outside condi-
tions and the parameters of the regulator are varying (as will be
discussed further below), the gas can be viewed as continuously
flowing through the system in a quasi-steady state. The flow of
incoming gas Φ divides into three parts: a flow into long-lived
stars, one (which can flow in either direction) that changes the
mass of gas within the reservoir, and one that takes gas out of the
system. The three-way dividing action of the regulator system is
set by just three parameters: the star formation efficiency ε, the
mass-loading factor λ, and the sSFR (which is set by the input
sMIRB), which gives the required μ, as in Equation (7).

2.2. Action of the Ideal Regulator in Terms
of the Specific Inflow Rate

The ideal regulator is a system with constant ε and λ, in which
the input specific accretion rate varies on a timescale that is long
compared with the gas consumption timescale. As introduced
earlier, the specific inflow rate of the gas, sMIRB, is defined to
be the ratio of the instantaneous gaseous inflow rate Φ to the
past integral of Φ over all time, i.e.,

sMIRB = Φ (t)

∫t
0 Φ(t ′)dt ′

. (16)
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It should be noted that the denominator may not be the
existing baryonic mass of the galaxy if mass has been lost
from the system, and the sMIRB is therefore not a directly
observable quantity. However, if we assume that the ratio of
gaseous baryons to dark matter entering a halo is fixed (e.g., at
the cosmic ratio), and if the fraction fgal of baryons that enter the
halo and penetrate all the way down to enter the galaxy regulator
system is also constant, then the sMIRB will be exactly equal to
the specific mass increase rate of the dark matter halo, defined
as

sMIRDM = 1

mhalo

dmhalo

dt
. (17)

The sMIRDM is observable at least in the sense of being mea-
surable in numerical simulations. The sMIRDM from simulations
was plotted in Figure 1.

As noted above, the four flows that are shown in the right-
hand part of Figure 2 will all scale linearly with the SFR, and
thus with the inflow Φ. The three branches, into which the flow
of incoming baryons splits, depend on the values of ε, λ, and the
sSFR. In the ideal case, all of these will be constant. In a more
realistic situation, they may change on a timescale that is long
compared with the time τ gas that a given packet of gas stays in
the system.

If ε, λ, and the rsSFR are indeed constant, then it follows
from Equation (12) that fstar will be constant as well. Thus, the
ideal regulator transforms a constant fraction of the inflowing
baryons into stars. As long as this occurs, then the sSFR will
quickly converge to the sMIRB as soon as the buildup of stars has
proceeded far enough that the initial conditions are forgotten.
This can be seen as follows:

SFR = fstarΦ

mstar (t) = mstar (t0) + fstar

t∫
t0

Φdt.

Once the initial mass of stars mstar(t0) is negligible compared
with the new mass produced with the constant fstar, dividing the
first equation by the second gives

sSFR ≈ sMIRB. (18)

This exact convergence of the sSFR and the sMIRB requires
that the parameters describing the action of the regulator,
specifically the star formation efficiency ε and the mass-loading
λ, are constant (our “ideal” case). If these parameters change
with time, e.g., either directly or via a mass dependence as the
galaxy grows, then the division of the incoming baryons, and
thus fstar, will no longer be exactly constant. This will perturb
the ideal equality between the sSFR and sMIRB. We explore
this in Sections 4 and 5.

Why do we focus on the sSFR and specific accretion rates
rather than the straightforward SFR and inflow rate Φ? As
described above, the ideal regulator works by setting the SFR to
some (constant) fraction fstar of Φ, but Φ is, at least in practical
terms, not an observable quantity. In contrast, the sSFR and
sMIRDM are both readily observable (the latter in numerical
simulations). Furthermore, while the mass-loss λ and the star
formation efficiency ε will change fstar (from Equation (12)),
these quantities will have no effect on the equality of the sSFR
and sMIRB produced by the regulator. We noted in Section 1.1
the strong empirical similarities between the observed sSFR of

Figure 3. Heuristic examples of the behavior of the gas regulator under different
illustrative circumstances. The upper two panels compare the input sMIRB
(shown in black; heavy solid line in print journal) and the resulting sSFR (in
red; thin lines in print journal) in four different situations—sudden increase
in sMIRB, sudden decrease in sMIRB (left panels) and accelerating increase
and decrease (right panels). In each case, five different values of τ gas = ε−1

are considered, varying logarithmically from 0.1 to 10 Gyr, i.e., from τ gas =
10 sMIRB

−1 (dotted) to τ gas = 0.1 sMIRB
−1 (dashed). The timescale for the

response to sudden changes is the shorter of the τ gas and sSFR−1 timescales.
The sSFR can track the accelerating increasing sMIRB with ease, but cannot
track the decreasing case when τ gas becomes longer than the timescale on which
the sMIRB is changing. The lower two panels show the mgas/mstar ratio, μ, that
results from the same four histories of the sMIRB and the same five values of
τ gas. See the text for further discussion.

(A color version of this figure is available in the online journal.)

main-sequence galaxies and the specific mass increase rate of
dark matter halos in numerical dark matter simulations. The
action of the ideal regulator in forcing the sSFR to the sMIRB
(and to the sMIRDM if fgal is constant) is therefore a strong
argument in favor of exploring this simple gas-regulator system
as a good working model for galaxy evolution.

2.3. Conditions for the Operation of the Regulator

The operation of the ideal regulator defined by Equation (4)
is shown in Figure 3 using a simple numerical model under
different conditions. The parameter ε is taken to be constant.
Gas is fed into the system at a rate that is given by the sMIRB.
Stars are then formed according to Equation (4) with a certain
ε (or, equivalently, τ gas). The response of the ideal regulator
system is shown in terms of the resulting sSFR (upper two
panels) and the gas ratio μ (lower two panels). We neglect here
mass loss from the system since it will not affect either of these
two quantities, as argued above, and we set R = 0 for simplicity.
Four different scenarios have been chosen to illustrate features
of the ideal regulator; these scenarios are not intended to be
relevant to actual galaxies.

In the two left panels of Figure 3, we show a situation in
which the input sMIRB is held constant at 1 Gyr−1, except for
an abrupt period during which it is raised by a factor of 10.
In each case, we have plotted the outcomes with five different
values of τ gas (= ε−1), spaced logarithmically from 0.1 to 10 Gyr
(the longest τ gas is indicated by the dashed lines, and the shortest
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by dotted ones). We span the case where τ gas >> sMIRB
−1 to

τ gas << sMIRB
−1. The figure shows how the system responds

to sharp changes in sMIRB and quickly adjusts the sSFR to its
new value. Interestingly, the convergence timescale is set by the
shorter of the τ gas and sSFR−1 timescales. It can be seen that
the system has no trouble maintaining sSFR = sMIRB as long
as the sMIRB is constant, even for the case where τ gas is very
much longer than the sMIRB

−1 and sSFR−1 timescales (e.g., the
scenario shown by the dotted line). The bottom left panel shows
the gas ratio μ that is produced for these same two scenarios.
Clearly, the equilibrium value of μ does depend strongly on ε
and the sSFR, as expected from Equation (7).

Two additional scenarios are shown in the right panels to
explore the effect of gradually changing the sMIRB. The sMIRB
is initially set to 1 Gyr−1 (as in the left panels, so the curves are
continuous across the divide), but it then accelerates away from
this value, either to higher or lower values. In the former case, the
ideal regulator is able to maintain sSFR = sMIRB for all τ gas. If,
however, the sMIRB drops, as in the lower set of curves, then the
regulator can only maintain sSFR = sMIRB for as long as τ gas
is shorter than the timescale on which the sMIRB is changing. If
the sMIRB decreases too quickly, the system cannot respond fast
enough and the sSFR breaks away from the sMIRB and declines
with the τ gas timescale. The asymmetry in behavior between an
increasing and a decreasing sMIRB arises because, in this simple
model, the SFR can increase instantaneously (in principle).
This abrupt increase is possible because the gas content of the
galaxy can increase instantaneously, but can only decline on the
timescale that the gas content declines. The decline of the gas
content is set by the gas consumption timescale τ gas (provided
that there are no other mechanisms for removing gas).

The timescale condition for the ideal regulator may be written
in terms of the timescale τ sMIRB on which the input sMIRB is
changing

τgas <

[
1

sMIRB

d(sMIRB)

dt

]−1

= τsMIRB
. (19)

If the sMIR is rising, then the sMIR (or sSFR) may be
substituted for τ gas in Equation (19).

However, we commented above that in more realistic (i.e.,
“non-ideal”) systems, the internal parameters of the regulator ε
and λ may well depend on stellar mass and therefore with time
as a galaxy grows in mass. Furthermore, the SFR efficiency ε
may change with cosmic epoch, even at fixed stellar mass, since
τ gas (at least for molecular gas) is observed to be shorter at high
redshifts (Daddi et al. 2010; Genzel et al. 2010; Tacconi et al.
2013). This may reflect a change in the dynamical times within
galaxies. If ε and λ are indeed changing within the regulator
system, then we will have an additional timescale constraint: the
timescale on which ε and λ are changing must also be longer
than the gas consumption timescale. Since the former is likely
to be the timescale on which the stellar mass is increasing, i.e.,
rsSFR−1, the regulator system may be unable to follow these
changes if τ gas > rsSFR−1.

2.4. Timescales for Galaxy Evolution

Since the star formation efficiency ε (or τ gas
−1) presumably

reflects the physics of star formation and is not directly related
to the growth of structure in the universe, Equation (19) is
not trivially satisfied. We show in Figure 4 a number of
timescales that are relevant for typical massive galaxies (mstar ∼
1010 M�) over cosmic time. Specifically, we plot the halo growth

Figure 4. Different timescales relevant for the evolution of galaxies with masses
around 1010 M�. These are the gas consumption timescale τ gas from molecular
observations (blue solid line (lower heavy solid line in print journal), uncorrected
for additional atomic gas), the rsSFR−1 stellar mass increase timescale from
observations (red solid line (upper heavy solid line in print journal), with
different possible behaviors at z > 2), the sMIRDM

−1 dark matter mass increase
timescale from simulations (black solid line; top lighter solid line in print
journal), the timescales on which rsSFR−1 and sMIRDM

−1 are themselves
changing τ rsSFR and τ sMIRDM (red and black dashed lines, respectively), and
finally the Hubble timescale τH (solid magenta line; upper dotted line in print
journal) and the dynamical timescale of dark matter halos τ dyn ∼ 0.1τH (lower
dotted line in print journal). The gas-regulation functions for as long as the
gas consumption timescale τ gas is (a) short compared with the timescale on
which the inflow is changing, τ sMIRDM, which is satisfied at all z, and (b) short
compared with the timescale on which the internal parameters of the regulator,
ε and λ, are changing, which will be rsSFR−1 if ε and λ depend on stellar mass.
Note how τ gas is comparable to rsSFR−1 at z ∼ 2; this may account for the
change in the rsSFR(z) behavior at higher redshifts as well as other changes in
galaxy properties at earlier epochs.

(A color version of this figure is available in the online journal.)

timescale sMIRDM
−1 for 1011.5 M� halos from cosmological

simulations (Equation (3)), the stellar mass growth timescale
rsSFR−1 at 1010 M� from observations (Equation (2)), the
observed molecular gas depletion timescale τ gas (from Daddi
et al. 2008; Genzel et al. 2008, and references therein), the
Hubble timescale τH, i.e., the local age of the universe, and
finally, the timescales on which the sMIRDM and rsSFR are
themselves changing following the definition in Equation (19),
which we denote as τ sMIR and τ rsSFR, respectively. We also
show the dynamical timescale τ dyn of dark matter halos, which
is τ dyn ∼ 0.1 τH. The dynamical timescales within galaxies will
be an order of magnitude smaller. Other timescales may also
be relevant, including the time to produce metals within the
stellar population, to spread and mix the returned metals across
the galaxy, for the gas to cool and form stars, and for the new
metals to be observable in emission lines. A detailed treatment
of this cycle is beyond the scope of this heuristic exploration
of the gas-regulated model. We are instead concerned with the
quasi-steady state of a system in which we assume instantaneous
recycling of the material.

It can be seen that τ gas is comfortably shorter than the τ sMIR
for all epochs, and so the condition given by Equation (19)
should be satisfied over essentially all of cosmic time if the
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gas supply follows the global evolution of the sMIRDM (we do
not consider here cataclysmic events like mergers). However,
we note that if τ gas increases for lower masses, then low-mass
galaxies may no longer satisfy this condition. In particular, if
τ gas scales as mstar

0.3 (see Section 5), then dwarf galaxies with
mstar ∼ 108 M� may not be effectively regulated.

While the timescale on which the external feeding of the
regulator changes (for massive galaxies and ignoring mergers)
should always be comfortably longer than τ gas, Figure 4 also
shows that the timescale on which the internal parameters of
the regulator may be changing (if they are mass-dependent),
i.e., the inverse of the specific star formation rate, rsSFR−1,
may be comparable to the τ gas at z > 2 (we neglect here
non-molecular gas). Furthermore, at this point, the dynamical
time τ dyn of the halo will also be comparable. It is not clear
what the consequences of this convergence of timescales will
be: if fstar is increasing with stellar mass, as is likely (see
below), then the SFR should be able to instantaneously adjust
upward, as discussed above. Situations in which fstar is quickly
decreasing would be more problematic as the SFR cannot
adjust downward faster than the τ gas timescale. Nonetheless,
the empirical convergence of the ε−1 (i.e., τ gas), rsSFR−1 and
τ dyn timescales at z ∼ 2 may represent a natural transition point
in the evolution of massive galaxies. It may well explain the
possible change of behavior at z ∼ 2 in the rsSFR(z) evolution
that was discussed in Section 1. This behavior is also apparent
in Figure 4 and may be linked to the evidence of large-scale
disk instabilities at z > 2 (Genzel et al 2008). In this regard,
establishing the existence of a main sequence, determining its
characteristic rsSFR, and empirically determining the τ gas at z >
2 and establishing the mass-metallicity relation at these redshifts
will all be of great interest since these are all signatures of the
gas regulation of galaxies.

3. METALLICITY IN THE GAS-REGULATED MODEL

We now determine the metallicity of the gas reservoir that
sustains the regulator. This is a standard analysis and the
derived relation is a special case of more general derivations
(Recchi et al. 2008; Spitoni et al. 2010; Dayal et al. 2013).
We reproduce the analysis here for the particularly simple and
distinctive regulator model that we are considering, as this
imposes important linkages between infall, star formation, mass
loss, and the level of the gas reservoir.

3.1. Metallicity within the Regulator System

If the infalling gas has metallicity Z0, then the change in the
mass mZ of metals in the gas reservoir will be given in terms of
the yield. We define the yield y as the mass of metals returned
to the interstellar medium per unit mass that is locked up into
long-lived stars, i.e., (1−R) times the mass of stars formed. We
can then write

dmZ

dt
= y(1 − R) · SFR − Z (1 − R + λ) · SFR + ΦZ0. (20)

Eliminating Φ using Equation (11), we obtain

dmZ

dt
= (y(1 − R) − (Z − Z0) (1 − R + λ)) · SFR + Z0

dmgas

dt
.

(21)
The change in metallicity Z of the gas in the system is then just

dZ

dt
= 1

mgas

[
dmZ

dt
− Z

dmgas

dt

]
,

so that

dZ

dt
= 1

mgas

[
(y(1 − R) − (Z − Z0)(1 − R + λ))

· SFR − (Z − Z0)
dmgas

dt

]
, (22)

or

dZ

dt
= (y(1 − R) − (Z − Z0)(1 − R + λ))ε

− (Z − Z0)
1

mgas

dmgas

dt
. (23)

Inserting Equation (10) into Equation (23) and rearranging,
we get

ε−1 dZ

dt
= y(1 − R) − (Z − Z0)

(
1 − R + λ + ε−1

· rsSFR + ε−1 dlnμ

dt

)
. (24)

As before, the final term will be small if the timescale for
changes to μ (i.e., to the ε−1 · sSFR product, from Equation (7))
is longer than the τ gas = ε−1 gas consumption timescale.

The action of Equation (24) is therefore to rapidly drive the
metallicity of the gas to an equilibrium value, Zeq, that is given
by setting dZ/dt in Equation (24) equal to zero, i.e.,

Zeq = Z0 +
y(1 − R)

(1 − R) + λ + ε−1 ·
(

rsSFR + dlnμ

dt

) (25)

or

Zeq = Z0 +
y

1 + λ(1 − R)−1 + ε−1 ·
(

sSFR + (1 − R)−1 dlnμ

dt

) .

(26)
As shown in the Appendix, the timescale for driving Z toward

Zeq is of order τ gas, which is shorter than the timescale on
which the equilibrium conditions, set by the sMIRB, are varying.
This is the justification for considering the gas metallicity to be
instantaneously set by the parameters of the system as gas flows
through it. The only knowledge of the history of the system is
in the dlnμ/dt term, which reflects changes to the (ε−1 · sSFR)
product (from Equation (7)). As noted above, for the simplest
“ideal” regulator this term will be zero. We will consider the
value of this term in more realistic situations in Section 5. Here
we note that, if the inflow is stopped, for example as part of
a quenching process, then both the SFR and μ will decline
exponentially toward zero with a timescale of (1−R) · μgas
(see, e.g., Figure 4). The first term in brackets in Equation (26)
will become negligible and the second term will become −1.
The metallicity will rapidly increase, as in a closed box model,
while preserving the (anti-) correlation with the SFR. We will
not consider such quenching situations further in this paper.

Using Equation (7), Equation (26) can also be re-written in
terms of the gas fraction μ, as

Zeq = Z0 +
y

1 + λ(1 − R)−1 + μ + (1 − R)−1 ε−1 dlnμ

dt

(27)
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to recover a form that is similar to Equations (10) and (27) of
Peeples & Shankar (2011). Using the definition of sSFR in terms
of the SFR, this can be re-written explicitly in terms of the SFR

Zeq = Z0

+
y

1 + λ(1 − R)−1 + ε−1
(
m−1

star · SFR + (1 − R)−1 dlnμ

dt

) . (28)

Finally, Zeq can be written in terms of the ratio of fstar, which
is the ratio of the reduced SFR to the infall rate Φ:

Zeq = Z0 + y
(1 − R)SFR

Φ
= Z0 + fstary. (29)

Not surprisingly, the metallicity Z0 of the incoming gas just
acts as an additive term in Equations (26)–(29). Note that if
the change in gas fraction μ can be neglected, as in the “ideal”
regulator, then the dlnμ/dt term in Equations (26)–(28) may be
set to zero yielding

Zeq = Z0 +
y

1 + λ(1 − R)−1 + ε−1 · sSFR
, (26a)

Zeq = Z0 +
y

1 + λ(1 − R)−1 + μ
, (27a)

Zeq = Z0 +
y

1 + λ(1 − R)−1 + ε−1m−1
star · SFR

. (28a)

Equation (29), which is the solution for a steady-state
gas-regulated reservoir, is a special case of the more general
Equation (8) of Recchi et al. (2008) and Equation (4) of Dayal
et al. (2013). As noted above, Davé et al. (2012) recently con-
sidered a model that more closely follows our own approach,
and Equations (25)–(28) are similar to their Equation (9) except
for the important difference that the term representing the flows
into, or out of, the gas reservoir in the denominator (i.e., the
last term in the denominator given by ε−1 times the bracketed
expression in Equations (25)–(28)) is absent. This is because
the mass in the gas reservoir does not change with time in their
model. In our picture, in which the star formation rate is regu-
lated by the gas reservoir, it is the gas fraction μ that determines
the sSFR, as seen from Equation (7). As discussed below, the
presence of this term is therefore important as it produces an im-
plicit dependence of the metallicity on the SFR of the system.
The three terms in the denominator on the right-hand side of
Equations (21)–(24) reflect the three “destinations” of metals as
the incoming flow divides; i.e., long-lived stars, removal from
the system in an outflow, and the buildup of the gas reservoir.

The metallicity is established instantaneously in the gas-
regulated model, because the gas stays only a short time in
the system. The above equations should therefore be valid at
any epoch, even if ε and λ are (slowly) varying functions of
time, either directly or indirectly through the increasing mass of
the system. In the case of ε, there is some empirical evidence
(Daddi et al. 2010; Genzel et al. 2010) that it is about three times
higher at z ∼ 2 than locally, i.e., that it scales as (1 + z)−1. In the
absence of empirical evidence to the contrary, we will assume
in what follows that the mass-loading factor λ is independent of
epoch.

An attractive aspect of the regulator is thus that the metallicity
at any point in time is set by the current state of the system
and not by the past history of it, provided that the dln μ/dt
term is small (see also Köppen & Edmunds 1999). In other

words, the chemical “evolution” of the reservoir is more the
changing (and reversible) operation of the regulator than a
monotonically-increasing temporal development of metallicity
due to the buildup of metals. We will henceforth drop the
equilibrium suffix on Zeq.

Finally, we note that while we would not expect the
nucleosynthetic yield to vary with the mass of the galaxy, the
effective yield may depend on mass if the outflowing winds are
preferentially enriched relative to the gas reservoir and if this
varies with mass. In the spirit of our heuristic analysis, we will
not consider this potential complication.

3.2. Metallicity Relations within the Galaxy Population

The analysis in the previous subsection was based on an
individual galaxy whose SFR is straightforwardly regulated, via
the gas content, to be a constant (or slowly varying) fraction of
the infalling material. The operation of the regulator is governed
by the internal processes parameterized by the SFR efficiency
ε and the mass loading λ of the mass loss in winds, and
the outcome is set by these two parameters plus the external
conditions represented by the infall rate onto the system.

If ε and λ are the same for all galaxies of a given stellar mass,
and if the variation in the sSFR among main-sequence galaxies
(at a given mstar) reflects long-term smooth variations in their
specific infall rates (and not short-term stochastic variations),
then Equations (22)–(25) should apply also to the population
of galaxies as a whole. This assumption allows us to use
the observed metallicity variations within the population (with
stellar mass, time, and other parameters) to infer the parameters
and operation of the regulator system.

Specifically, Equation (26) or (26a) then establishes a clear
linkage between the cosmic evolution of the characteristic sSFR
of the universe as a whole and the cosmic evolution of the
metallicity of the stars that are being made (averaged over all
systems). Metallicities in star-forming galaxies at earlier epochs
will be lower because the sSFRs in stellar systems are generally
higher.

Likewise, the explicit appearance of the SFR in Equation (28)
or (28a) allows the possibility of a natural explanation of the
claimed Z(mstar, SFR) relation within the galaxy population at
a given epoch, and provides a prediction of how this relation
will appear at different epochs. Furthermore, since the Z(mstar,
SFR) relation will only change with redshift to the extent
that ε(mstar) and/or λ(mstar) themselves change with redshift,
Equation (28) or Equation (28a) offers a route to understand the
claimed existence of a “fundamental” Z(mstar, SFR) relation that
is independent of epoch (M + 10) if these internal parameters of
the regulator are indeed more or less constant. A truly epoch-
independent FMR is therefore naturally produced by this model
if ε(mstar) and λ(mstar), which both reflect baryonic processes
within galaxies, are independent of epoch, since the metallicity
of any star-forming galaxy at any epoch would be given by the
single equation of our model. This single equation is given
in its different forms as Equations (25)–(28) with constant
parameters. This equation provides the physical basis of the
observed stability of the FMR with cosmic time (even though
we suspect that some small evolution in ε is likely, as discussed
above in Section 3.1, leading to a perturbation from a strictly
constant FMR).

Finally, Equation (29) establishes a direct link between the
observed mass–metallicity relation of galaxies and the mass
dependence of the fraction of baryons that are being converted
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into stars. We will examine all these different linkages in
Sections 4 and 5.

4. THE DARK SIDE OF THE REGULATOR: LINKS
WITH THE DARK MATTER HALOS

Under the assumption that Section 3.2 holds, i.e., that the
relations derived for an individual gas-regulated galaxy can be
used for the overall population, then Equation (29) directly
links the mass–metallicity relation of galaxies to the mass
dependence of fstar, without requiring direct knowledge of the
ε, λ, or rsSFR parameters that are responsible for setting fstar
in Equations (12) and (12a). In this section, we show that,
via fstar, there is therefore a direct connection between the
slope of the mean mass–metallicity relation of galaxies and the
relationships between the stellar and dark masses of halos. To
avoid confusion, it should be noted that this ratio of stellar to dark
mass is sometimes called, in the cosmological literature, the star
formation efficiency of the halo. In this paper, we have however
used this term for a quite different quantity (see Equation (4)).

In this section, we focus on the power-law behavior of the
mass metallicity relation at low masses. The mass–metallicity
relation of T + 04 has a logarithmic slope at low masses (mstar ∼
109 M�) of η ∼ 0.35. The recent stacking analysis of Andrews
& Martini (2013) suggests that this slope may be steeper (η
∼ 0.5) at mstar ∼ 108 M�. Taking a slice through the M + 10
Z(mstar,SFR) plane along the locus of the main sequence also
yields a steeper dependence, with η ∼ 0.55 below 1010 M� (see
Figure 9).

Provided that the metallicity of inflowing gas Z0 is negligible
and that the yield y is independent of the galaxy stellar mass,
then Equation (29) can be used to derive the dependence of fstar
on mstar. In the mass range where the mass–metallicity relation
is a power law,

fstar ∝ m
η
star. (30)

In the next two sections, we explore the implications of this
relation between fstar and mstar.

4.1. The Stellar Mass Content of Dark Matter Halos

In considering the stellar mass formed within a given dark
matter halo, we need to consider the product of fstar and the
fraction of baryons that both enter the halo and penetrate down to
enter the galaxy regulator system. We have denoted this fraction
as fgal. It is the (fstar fgal) product that gives the incremental
buildup of stellar mass in the galaxy relative to the dark matter
mass of the halo (always assuming that the matter coming into
the halo has the characteristic cosmic baryon fraction). The final
mstar/mhalo ratio of a given galaxy will be a weighted average
of the (fstarfgal) product that was operating as the galaxy built
up its stellar and dark matter components through to the time
in question. It is convenient to introduce a further fractional
quantity F that represents the integrated stellar to dark mass
ratio:

F = ∫t
0 fstarfgal

dmhalo
dt

dt ′

∫t
0

dmhalo
dt

dt ′
= mstar

mhalo
. (31)

We will assume, in the power-law regime, a fixed exponent for
the (fstarfgal) product, so that the mass dependence of F will be the
same as the mass dependence of (fstarfgal), i.e., they will have the
same logarithmic slope η set by the slope of the mass–metallicity
relation as in Equation (30).

As discussed in Section 1, the different faint-end slopes of
the two mass functions of galaxies and halos require a strongly

varying fraction of baryons in a given halo to be converted into
stars,

mstar ∝ m
γ

halo (32)

with the required γ depending on the difference between the
faint-end slopes of the Schechter functions of stellar and dark
mass, respectively, as given by

γ ∼ 1 + αhalo

1 + αstars
, (33)

where we adopt the convention that αhalo and αstars are negative.
The relevant αstars is that for star-forming galaxies, α =
–1.45±0.05 (Peng et al. 2010; Baldry et al. 2012), which yields
γ ∼ 1.9 ± 0.2 for αhalo ∼ –1.85 (Guo et al 2010). Rearranging
Equation (32) then gives a requirement on the mass dependence
of F (and the fstarfgal product)

η = γ − 1

γ
= 0.46 ± 0.1. (34)

As noted above, the mass–metallicity relation implies a
logarithmic slope η of fstar with mass in the range 0.3 < η < 0.5
in the mass range 108–1010 M� (from Equations (25) and (30)).
We therefore conclude that the simple gas-regulator model
naturally accounts for the variation of the ratio of stellar mass
to dark matter mass that is required (Equation (34)) to reconcile
the faint-end slopes of the galaxy and halo mass functions, with
a more or less constant fgal. In other words, the large variation in
stellar to halo mass that is required for the cosmology can arise
from baryonic processes operating within the galaxy system and
not by any significant variation in the fraction fgal of baryons
that enter the galaxy system (cf. the discussion in Bouché et al.
2010). However, the solution is obviously not unique. If the
effective yield y decreased at low galactic masses because of
preferentially enriched winds, fstar(mstar) could be shallower,
which would then require a mass dependence in fgal. Our goal is
not to rule out more complicated scenarios, but rather to explore
what is possible with the simplest possible model.

4.2. Understanding the Offset between the
Observed sSFR and the sMIRDM

As stated in Section 2, if the fraction fstar of incoming baryons
that are converted into long-lived stars is more or less constant,
then the rsSFR will quickly equilibrate to the sMIRB. The
corollary is that if fstar is not constant, because of changes to the
parameters controlling the regulator, then the equality between
the rsSFR and the sMIRB will be perturbed. In particular, if
fstar for a given evolving galaxy system is increasing with time,
for example because fstar is larger at higher masses because
of increased ε (and/or decreased λ), then the rsSFR will be
systematically greater than the sMIRB. These statements can be
extended to the sMIRDM if we consider the (fstarfgal) product in
place of the simple fstar.

It is again convenient to consider the fractional quantity F
introduced in Equation (31). We then have

mstar = F

∫ t

0

dmhalo

dt ′
dt ′

dmstar

dt
= F

dmhalo

dt
+

dF

dt
mhalo.
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Dividing by mstar, we can re-write this in terms of spe-
cific quantities, using mstar = F mhalo from the definition in
Equation (31),

rsSFR = sMIRDM +
1

F

dF

dt
. (35)

The second term on the right is the boost to the rsSFR that
comes from the change in F as the galaxy grows. This could
be set to zero in the discussion of the “ideal” regulator in
Section 2.1, but in the more general case that we are considering,
it will have two components: the change in F with stellar mass
as the stellar mass of the galaxy increases, plus any temporal
change of F at fixed mass

rsSFR = sMIRDM +
1

F

∂F

∂mstar

∂mstar

∂t
+

1

F

∂F

∂t
. (36)

If F and fstar have the same mass dependence (as in the
previous subsection), then the middle term is simply the product
η·rsSFR, where η is the logarithmic slope of the fstar(mstar)
relation in Equation (30). We will neglect the last term for the
time being, since it should be small (we return to this issue in
Section 5). We then obtain by simple rearrangement

rsSFR ∼ 1

1 − η
sMIRDM. (37)

With our observed value of 0.35 < η < 0.55 below mstar ∼
1010 M� from the mass–metallicity relation, we would expect
that the observed rsSFR would be boosted by a factor of roughly
0.2–0.35 dex relative to the sMIRDM. This is about right to
explain the comparison between the observed rsSFR and the
sMIRDM in Figure 1, especially at low redshifts (z < 1) where
the offset is about 0.3 dex. The offset is apparently larger at
higher redshifts, possibly being as high as 0.6 dex at z ∼ 2.

Furthermore, if the logarithmic slope η flattens with increas-
ing mass, as indicated by the curvature of the mass–metallicity
relation, then this boost factor would be lower at high masses. As
a result, the logarithmic slope of the rsSFR(m) and sMIRDM(m)
relations will change, offering a qualitative explanation of the
opposite signs of the β of galaxies and halos. We will return to
this question in a more quantitative way in Section 5.

This explanation of the observed rsSFR > sMIRDM is distinct
from the explanation offered by Bouché et al. (2010) in terms
of large variations in fgal. As in the previous section, our own
analysis indicates that the variation in fstar with mass inside the
galaxy system is a sufficient explanation and that fgal can instead
be more or less constant with mass. Again, our goal is not to
rule out the Bouché et al. threshold scheme, but rather to suggest
that it may not be required.

5. FITTING THE OBSERVED Z(mstar, SFR)
AND Z(mstar) RELATIONS

As noted in Section 1, Ellison et al. (2008), Mannucci et al.
(2010, M + 10), Lara-Lopez et al. (2010), and most recently
Andrews & Martini (2013) have all drawn attention to evidence
that the SFR of galaxies may act as a second parameter in the
mass–metallicity relation. M + 10 moreover suggested that the
Z(mstar, SFR) relation is invariant with epoch out to redshifts z
> 2, coining the phrase “fundamental metallicity relation,” or
FMR.

In light of a number of difficulties in determining gas-phase
metallicities (see, e.g., Yates et al. 2012; Andrews & Martini

2013 for discussion), there is an ongoing debate about the form
of the Z(mstar,SFR) relation and whether it is truly independent
of epoch. Different metallicity estimators are often combined,
some of which are known to have saturation issues at high
metallicities (e.g., Kewley & Ellison 2008). The use of the Hα
line in both metallicity and SFR measurements may introduce
coupling of errors, and potential correlations between SFR and
ionization parameters may also be present. Also, in samples
spanning a significant redshift range, SFR, and epoch may be
coupled due to the cosmic evolution of the sSFR. As a result of
these and other issues, the validity and form of the Z(mstar, SFR,
z) relation are still being debated.

With this caveat in mind, it is nevertheless interesting that,
from Equation (28), a simple Z(mstar, SFR) relation linking
metallicity to stellar mass and SFR is a natural outcome of the
simple operation of the regulator model. We would also expect
that the SFR dependence of the mass–metallicity relation would
be stronger at lower masses if the star formation efficiency
was lower at lower galactic masses. Furthermore, the Z(mstar,
SFR) relation would also be epoch-invariant in our model, if
ε(mstar) and λ(mstar) did not change with redshift. As discussed
in Section 3.1, we would in fact expect some change in ε(mstar)
from observations of the gas depletion timescales, but this
change is much smaller (by a factor of three to z ∼ 2) than
the change in SFR at fixed mass, which is a factor of 20 to the
same redshift.

5.1. Fitting the M + 10 Z(mstar, SFR) SDSS data

We therefore compare our Equation (28) to the tabulated
Z(mstar, SFR) data for SDSS galaxies that have been presented
by M + 10 in their Table 1. Since we expect both ε and λ to vary
with stellar mass, this comparison amounts to fitting the data
with Equation (28) with ε(mstar) and λ(mstar) as free functions.
In our fits, we will assume that both ε and λ may be represented
by power laws in the stellar mass of the galaxy, i.e.,

λ = λ10m
a
10

ε = ε10m
b
10 (38)

with m10 being the stellar mass in units of 1010 M�. We will
make the heuristic assumption that y and Z0 are not functions of
galactic mass.

We now return to evaluate the dlnμ/dt term discussed in
Sections 2 and 3. Since ε scales (with our assumed time
dependence) as mstar

bt−1 and the sSFR as mstar
β t−2.2 it is easy to

see, given μ = ε−1 · sSFR, that

dlnμ

dt
= −1.2

t
+ (β − b) rsSFR. (39)

When multiplied by ε−1, this has a numerical value around
−0.25, i.e., “small” compared with the other terms of order
unity, but not negligible. With this, Equation (28) may be written
as

Zeq = Z0

+ y

1+λ(1−R)−1+ε−1((1+β−b)m−1
star·SFR−(1−R)−1 1.2

t ) . (40)

The addition of the two components of the dlnμ/dt term
acts to introduce an additional constant term in the denominator
(since ε is expected to scale roughly as t) and to weaken the
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Table 1
Fits of Equation (40) to Observational Dataa

Z0
/y log yb λ10 a ε10

−1 (Gyr) b

Fits to the Mannucci et al. (2010) SDSS Z(mstar, SFR) data

[0.00] 9.02 0.25 ± 0.02 −0.81 ± 0.03 2.4 ± 0.2 0.28 ± 0.03
[0.03] 9.00 0.29 ± 0.03 −0.79 ± 0.03 2.8 ± 0.2 0.32 ± 0.03
[0.10] 8.98 0.40 ± 0.04 −0.77 ± 0.03 3.8 ± 0.3 0.41 ± 0.04

Fits to the Tremonti et al. (2004) SDSS Z(mstar) Relationc

[0.00] 9.19 0.57 ± 0.03 −0.48 ± 0.02 [2.7] [0.3]
[0.03] 9.16 0.55 ± 0.04 −0.52 ± 0.02 [2.7] [0.3]
[0.10] 9.10 0.51 ± 0.03 −0.62 ± 0.02 [2.7] [0.3]

Notes.
a Uncertainties on fitted parameters are formal uncertainties for each fit derived
from the χ2 values relative to the best fit. The range of values in the table gives
a better indication of realistic uncertainties. Entries in brackets were imposed
in the fits.
b Expressed in units of 12–log(O/H).
c Assumes a form for ε and the main-sequence SFR–mstar relation from
Equation (1) of Peng et al. (2010).

dependence on the SFR by a factor (1 + β−b). This is the
equation that can now be fit to the SDSS data, setting t ∼
13.8 Gyr, so that the last term in the denominator takes a value
-0.15. Equation (40) can also be used to predict the evolution
of the Z(mstar, SFR) relation. We then have five free parameters,
ε10, λ10, a, b, and y in Equation (28), or six if the infall metallicity
Z0 is allowed to vary.

The fits are done using a χ2 statistic, using the dispersion
of Z in a given (mstar, SFR) bin divided by the square root of
the number of galaxies (both taken from Table 1 in M + 10)
as the uncertainty at each point. The best-fit parameters are
given in the upper part of Table 1. The quoted uncertainties
in each quantity reflect only the nominal uncertainties in the
parameter estimation that come from the χ2 analysis. A better
idea of realistic systematic uncertainties comes from examining
the range of values in the table. The three fits are with the infall
metallicity Z0 constrained to have three values relative to the
yield y.

Figure 5 shows that Equation (28) is well able to reproduce the
observed M + 10 Z(mstar, SFR) surface. The rms deviations in Z
across the (mstar, SFR)-plane are about 0.015—0.018 dex for the
different fits (see Figure 5), compared with a typical dispersion
in Z within the population at fixed (mstar, SFR) of about 0.07.
It was found that fits that were not weighted by the number of
galaxies in the bin returned almost identical parameter values.

The returned values for ε(mstar) and λ(mstar) are quite rea-
sonable independent of astrophysical considerations. The fitted
ε10 SFR efficiency at 1010 M� corresponds to a gas depletion
timescale τ gas of 2–3 Gyr for 0 < Z0/y < 0.1. This is longer
than measurements of the consumption timescale of molecu-
lar gas at the present epoch (Young & Scoville 1991; Daddi
et al. 2010; Genzel et al. 2010; Saintonge et al. 2011b, and
references therein), which are of order 1–2 Gyr, but additional
atomic gas should be included, since it will take part in the
chemical mixing of the galaxy. This atomic gas is typically
comparable in mass (e.g., Young & Knezek 1989; Saintonge
et al. 2011a) and its inclusion will therefore roughly double
τ gas. As the only term in Equation (28) that includes the SFR,
ε will have been determined by the variation in Z with SFR at
fixed mass in the M + 10 data. However, as discussed above,
its numerical value will have been affected by the value of b,

Figure 5. Upper panel: the Z(mstar, SFR) data for SDSS galaxies from Table 1
of Mannucci et al (2010). Lower panel: residuals from the fit of Equation (40)
to these data.

as in Equation (40), and ε would be higher (and τ gas lower) if
b < 0.3.

Turning to the outflows, the best fit λ10 from the fits to the
M + 10 data is in the range 0.2 < λ < 0.3, which is quite low
compared with estimates of galaxies at moderate (Weiner et al.
2009) and high (Newman et al. 2012) redshifts. Furthermore,
there is a rather strong inverse dependence of λ on stellar
mass, with a ∼ –0.9. Theoretical models generally produce
a somewhat weaker inverse relationship with mass, e.g., the
momentum-driven wind model of Murray et al. (2005) has λ
∝ m−1/3, whereas an energy-driven wind (e.g., Dekel & Silk
1986) has λ ∝ m−2/3. Observationally, the mass dependence
of outflows is not well constrained. Observations of outflowing
entrained Mg ii material both in the “down-the-barrel” spectra of
star-forming galaxies and as seen against background galaxies
at projected distances out to 40 kpc both imply a significant
inverse dependence on mass (see Weiner et al. 2005; Bordoloi
et al. 2011). Newman et al. (2012) have suggested little mass
dependence on λ in star-forming galaxies at z ∼ 2, above a
strong threshold in SFR surface density. The steep dependence
of the wind mass loading λ on stellar mass in the fits can be
traced to the strong curvature of the overall m–Z relation in
M + 10 and in particular to the flattening at high masses, which
requires that winds become negligible at these masses. We also
note that introducing a mass-dependent yield or inflow Z0 would
change the required λ(mstar) dependence.
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Finally, the value of the yield y in Table 1 is quite high,
about + 9.0 in units of 12 + log(O/H), i.e., about y = 0.016
as a mass ratio. This can be compared with, e.g., 0.004 in the
analysis of Dalcanton (2007). This high value is not however
outside of the range of theoretical values for a Salpeter initial
mass function (see the compilation in Table 2 of Henry et al.
2000, correcting for the mass return fraction which is not
included there). Furthermore, the value of y is driven by the
overall normalization of the mass–metallicity relation. This is
empirically uncertain by 0.4 dex (a factor of 2.5), as seen in
Figure 2 of Kewley & Ellison (2008). The metallicities of star-
forming galaxies used here go up to 12 + log(O/H) = 9.1 and
lie at the upper end of the range in the literature.

Overall, the parameters returned from the fits are not unrea-
sonable, and it is therefore interesting that the predicted Z(mstar,
SFR) relation from Equation (28) appears to be able to repro-
duce the M + 10 data. We stress again that the point of this
exercise is not to try to determine observationally the values
of ε, λ, or y. Clearly, even within the framework of the model,
there are large systematic uncertainties driven by our choices of
constant Z0 and y. Furthermore, as discussed earlier, the form
of the empirical Z(mstar, SFR) relation in real galaxies is by no
means settled.

5.2. Fitting the Tremonti et al. (2004) Z(mstar) relation

To explore the effects of systematic uncertainties in metal-
licity measurements, we also fit Equation (40) to the Z(mstar)
mass–metallicity relation of Tremonti et al. (2004, T + 04). This
shows less curvature and a flatter low-mass slope than the M + 10
data. To fit the Z(mstar) relation, we must impose a value of ε and
also apply a mean SFR–mass relation for main-sequence galax-
ies, using for this purpose Equation (1) of Peng et al. 2010. For
ε, we impose the ε(mstar) function from our fits to the M + 10
data from Section 5.1, since we argued above that it is more
or less consistent with observational estimates of τ gas. We set
ε(mstar) as indicated in the second half of Table 1. We recover a
weaker mass dependence for λ when we fit the Tremonti et al.
(2004) mass–metallicity relation, with a ∼ –0.5, as shown in the
second part of Table 1, and a higher level at high masses, with
λ10 ∼ 0.5.

Clearly, the systematic uncertainties in gas-phase metallicities
are a significant limitation at the present time. Furthermore, the
numerical fits depend sensitively on the slope and curvature of
the mass–metallicity relation. It will be important to return to
this kind of analysis when the observational uncertainties have
been substantially reduced. This, coupled with the simplicity of
the model, means that the values of ε(mstar) and λ(mstar) cannot
be considered “measurements.” Nevertheless, we will explore
in the next subsections the implications of both sets of fits that
we obtained from this section, taking the various estimates of
ε(mstar) and λ(mstar) from Table 1 at face value. Finally, we
note that the approach adopted here is quite similar to that
taken by Peeples & Shankar (2011), who used a close analog of
Equation (27), together with observational estimates of the gas
ratio μ, to fit the mass–metallicity relation.

5.3. The Destination of Baryons at High and Low Redshift

We compute the fractions fstar, fres, and fout using
Equations (26)–(28). These are shown in Figure 6 for the fits to
the M + 10 Z(mstar, SFR) data from Section 5.1, and for the con-
strained fits to the T + 04 Z(mstar) data described in Section 5.2.
As discussed earlier, ε is assumed to scale as (1 + z) but λ is
taken to be independent of epoch.

Figure 6. Destination of baryons that enter the galaxy system at z ∼ 2 and
z ∼ 0, derived from the expressions for ε(mstar) and λ(mstar) that are recovered
by fitting the M + 10 Z(mstar, SFR) data and the T + 04 Z(mstar) data. The latter
are fit with constraints. The three destinations for the baryons are shown as fstar
(red; dark gray in print journal), fout (blue; medium gray in print journal), and
fres (green; light gray in print journal), with the shaded regions representing fits
with 0.0 < Z0/y < 0.1. The formation of stars always dominates at very high
masses and the ejection of material always dominates at low masses. At high
z, the filling of the reservoir can dominate at intermediate masses on account
of the high gas fractions in these systems. The greater curvature with mass in
the low-redshift Mannucci et al. data produces a steeper mass dependence on
the mass loading of the outflow. Note that fres is negative at low z, indicating
that the reservoir is depleting. This reversed flow is still small compared with
the continuing infall rate, which has unit strength compared with the fractional
quantities plotted here.

(A color version of this figure is available in the online journal.)

Mass loss from the system dominates at low masses and the
formation of stars dominates at high masses. At high redshifts,
where the gas fractions will be substantially higher because
of the higher value of the (ε−1 · sSFR) product, the flow of
gas into the reservoir is the dominant destination of baryons in
intermediate-mass galaxies. This result highlights the potential
importance of this term (which, as noted above, is omitted in
some previous analyses, e.g., Davé et al. 2012). At low redshifts,
the flow into the reservoir is negative for all galaxies, i.e., the
reservoirs are gradually depleting their gas at the present epoch.
This must be the case (for more or less constant ε) if the SFR in
a given galaxy is declining. However, this net rate of decrease of
the gas in the reservoir is still a small fraction of the continuing
infall Φ (which has unit strength relative to the values of fstar,
fres, and fout shown in Figure 6), i.e., of the gas flow through the
reservoir.

5.4. Prediction for the Mean Mass–Metallicity
Relation at High Redshift

Figure 7 shows the predicted mean Z(mstar) relation for
galaxies on the main sequence at high redshifts using the
parameters for the 0 < Z0/y < 0.1 fits at z ∼ 0 including
an assumed (1 + z) dependence of ε using the cosmic evolution
of the sSFR from Equation (2). The evolution in Z(mstar), it
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Figure 7. Mass–metallicity relations of main-sequence star-forming galaxies at z = 0 (shown in red; dark gray in print journal) and those predicted at higher redshifts z

= 1, 2, 3, 4 (continuous black lines, top to bottom) using the parameters from the fits of Equation (40) to the M + 10 Z(mstar, SFR) data (left panel) and the constrained
fits to the T + 04 Z(mstar) data (right panel). The blue (gray in print journal) points are from the N ii/Hα measurements of Erb et al. (2006) transformed to the T + 04
metallicity scheme using the formula in Kewley & Ellison (2008, blue (gray in print journal) dots, same in both plots). At z = 0 and z = 2, the shaded areas show
the range for fits with 0.0 < Z/y < 0.1 (see Table 1). In deriving the predictions, the mean SFR–mass relations for main-sequence galaxies based on Equation (2) are
used. The outflow mass loading λ is taken to be constant with time, but the star formation efficiency ε is taken to increase as (1 + z), as indicated from observations
(see the text). While the low-redshift curve must fit the data, by construction, the z = 2 curve is a straight prediction of the model, and successfully reproduces, at
least qualitatively, the observed change in metallicity of main-sequence galaxies. The dashed curves show the predicted metallicities at z = 1, 2, 3, 4 (top to bottom),
if ε(mstar) were to be held constant.

(A color version of this figure is available in the online journal.)

should be recalled, comes about entirely through the (small)
observed changes in the star formation efficiency ε, and the
much larger observed increase in the sSFR in Equation (28),
so there are in principle no free parameters in deriving these
predictions. Having said that, the change in sSFR is much better
determined than the change in ε, and it is the product of these,
i.e., μ, that determines the metallicities. To illustrate this, we
also show in Figure 7 the case where ε is held constant, i.e.,
producing an absolutely constant FMR. As would be expected,
this produces larger changes in metallicity. It should be noted
that the evolution in the Z(mstar) relation with evolving ε slows
down at high redshifts as the (1 + z) dependence of ε largely
nullifies the (1 + z)5/3 increase in sSFR.

The z ∼ 2 data of Erb et al. (2006) are overplotted in Figure 7
for comparison with the highlighted z ∼ 2 prediction. These
data, based on N ii/Hα, cannot be directly compared to the
model since the latter is based on the SDSS [O/H] data at low
redshifts. Furthermore, N ii/Hα has serious saturation effects at
high metallicities, relevant for massive mstar > 1010 M� galaxies
at low redshift (see Erb et al. 2006). On both diagrams, we have
converted the N ii-derived metallicities to the T + 04 scheme
applying the conversion equation given by Kewley & Ellison
(2008). This not very satisfactory procedure highlights the im-
portance of obtaining fully consistent metallicity estimates of
galaxies over a wide range of redshifts. Mindful of this caveat,
our simple model clearly reproduces well, at least qualitatively,
the changes with redshift in the overall mass–metallicity rela-
tion, independent of the detailed fits to the low-redshift data.

The success of the gas-regulated model in reproducing the
temporal evolution of the gas metallicities of galaxies and
the mass and SFR dependence at a given epoch suggests that
these may both be viewed as manifestations of the same basic
operation of the gas-regulation process in galaxies, operating at
all epochs. In this view, there is only one equation (in its different
forms given by Equations (26)–(28)) determining the metallicity
of a galaxy, regardless of epoch. This ultimately comes about
because of the short τ gas compared with the timescales on

which the external conditions, and internal parameters of the
regulator, are changing. The consequent rapid flushing of gas
through the system ensures that the metallicity of the gas is an
instantaneous reflection of the “state” of the system, i.e., the
relative importance of the different destinations of the baryons.
In this sense, there is no chemical “evolution” of galaxies per
se, merely the slowly changing instantaneous operation of the
regulator. This is evident in Equation (29) where, neglecting
the Z0 of the infalling material, the gas metallicity is set by the
instantaneous fstar (see also Davé et al. 2012), which in turn is set
(neglecting the small dlnμ/dt term) by the instantaneous values
of ε, λ, and sSFR.

5.5. The Results of Section 4 Revisited

Finally, we can use the fitted values of ε(mstar) and λ(mstar)
given in Table 1 to construct a simple numerical model of
evolving galaxies within their dark matter halos. Specifically,
we use the six fits in Table 1 with 0.0 < Z0/y < 0.1, and include
the observed (1 + z) redshift dependence of the ε parameter.
This numerical model enables us to further explore and validate
the analytic results linking the stellar and dark matter mass that
were derived in Section 4, i.e., the mstar dependence of the ratio
mstar/mhalo and the offset between the rsSFR and the sMIRDM,
outside of the power-law regime that was explored in the analytic
analysis.

We construct the numerical model as follows. A large number
of halos of different initial mass grow according to Equation (3).
Starting at an arbitrarily early point (50 million years after the
big bang), gas is fed in to each galaxy system at a rate Φ that
is set to be a constant multiple of the rate of baryonic mass
increase of the associated halo, assuming a baryonic fraction
of 0.15. Gas in the galaxy is then continuously transformed
into stars, and ejected from the system in winds, according to
the parameters ε(mstar, z) and λ(mstar) listed in Table 1. The
constant multiplicative factor (fgal = 0.4) is chosen so that the
simulation results, at the present epoch, in a galaxy with mstar =
1010.5 M� in a 1012 M� mass halo (e.g., Guo et al 2010).
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Figure 8. Ratio mstar/mhalo as a function of stellar mass obtained from the simple numerical model described in the text, using the values of ε(mstar) and λ(mstar) for
the 0 < Z0/y < 0.1 fits in Table 1. ε(mstar) is assumed to scale as (1 + z), as discussed in the text. The green (dark gray in print journal) curve is from the fits to the
M + 10 Z(mstar, SFR) data, and the cyan (light gray in print journal) curve is from the constrained fits to the Tremonti et al. (2004) Z(mstar) data. The numerical model
has been scaled to yield mstar/mhalo = 0.03 at the present epoch for mstar = 1010.5 M�, which requires a value of fgal = 0.4. The left panel shows the mstar/mhalo ratio
for galaxies with mstar = 1010 M� as a function of epoch, while the right panel shows the dependence on stellar mass at the present epoch. The dependence on stellar
mass reflects the slope of the mass–metallicity relation. The dashed black line shows the mstar dependence (η ∼ 0.45) required to reconcile the faint-end slopes of the
galaxy and halo mass functions (see the text).

(A color version of this figure is available in the online journal.)

Figure 8 shows the ratio mstar/mhalo that is produced by this
numerical model, both as a function of epoch at fixed (observed)
mstar = 1010 M� (left panel) and as a function of mstar at
z = 0 (right panel). The dashed line in the right panel shows
the relation (η ∼ 0.45) that is required to match the faint-end
slopes of the galaxy and halo mass functions, as discussed
in Section 4.1. It can be seen that, as expected from the
earlier analytic discussion, the numerical model reproduces
quite well the required mstar dependence of mstar/mhalo. The
fit to the SDSS M + 10 data does a bit better because it has a
steeper mass–metallicity relation than the T + 04 sample. The
mstar/mhalo ratio at fixed mstar weakly declines with redshift.

Figure 9, which is based on Figure 1 in Section 1, shows the
rsSFR output from the numerical model, again (left panel) as
a function of epoch at an (observed) stellar mass of 1010 M�
(left panel), and as a function of stellar mass at both z = 0 and
z = 2 (right panel). We compare this output with the observed
values (in red) that were summarized in Equation (2) and plotted
in Figure 1. The increase in the rsSFR, relative to the dark
matter sMIRDM, is clearly seen and has a value (more or less
independent of redshift) of about 0.35 dex for the fits to the
M + 10 data (in blue) and 0.25 dex for the fits to the T + 04 data.
These boosts of the rsSFR relative to the SMIRDM are very close
to the numbers expected from the analytic Equation (37).

It can also be seen, in the right panel of Figure 9, that
the mass dependence of the rsSFR is reversed from that of
the sMIRDM of the halos. This is because of the curvature in
the fstar(mstar) relation that can itself be traced to the curvature
in the Z(mstar) mass–metallicity relation. The output from the
numerical model matches well the β ∼ -0.1 slope of the observed
SDSS rsSFR(mstar) relation (Peng et al. 2010).

It should be noted, as remarked earlier in the paper, that
the numerical model, using the ε and λ values from the fits
to the metallicity data, has successfully reproduced the mass
dependence of the rsSFR with an fgal that is independent of
mass. Taken at face value, the feeding of galaxies from the halo
should not be strongly dependent on the mass of the galaxy. The

mass dependence of mstar/mhalo comes from the internal action
of the regulator system, as parameterized by ε and λ and as seen
observationally in the mass–metallicity relation. Linked to this,
the (constant) value of fgal ∼ 0.4 that was required to match
the normalization of the mstar–mhalo relation, i.e., mstar/mhalo ∼
0.03 at mstar ∼ 1010 M�, implies that a significant fraction of
baryons that enter a halo penetrate down to be cycled through
the galaxy system, even though, at low masses, most of them
are subsequently expelled back out of the galaxy system into
the halo (or beyond).

It is apparent from both panels of Figure 9 that the boost of
the rsSFR relative to the sMIRDM is not quite enough at high
redshifts, 1 < z < 3. Our model, especially with the param-
eters derived from the M + 10 data, has closed about half the
gap between the observed rsSFR and the sMIRDM (from sim-
ulations) at z ∼ 2, but a deficit of about 0.3 dex still remains.
This apparent deficit is comparable to systematic uncertainties
in measurements of SFRs, especially when systematic uncer-
tainties like the initial mass function are included. If real, this
shortfall might indicate that fgal has an epoch dependence, pro-
ducing an additional boost through the time-derivative term in
Equation (36).

6. SUMMARY AND CONCLUSIONS

In this paper, we have explored the operation of a simple
gas-regulated model of galaxies in order to gain insight into the
evolution of galaxies. Our main goal has been to establish links
between, on the one hand, the growth of galaxies, specifically
the cosmic evolution of the sSFR and the specific accretion rate
of dark matter halos, and, on the other hand, the metallicity of the
evolving population of galaxies. The model differs from other
similar presentations due to its inclusion of the effects of the
varying gas reservoir, which acts to regulate the SFR of galaxies.
The main points of the paper may be summarized as follows.

1. The simple gas-regulated model explored here assumes,
for a given galaxy, that (a) the SFR is proportional to
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Figure 9. Observed rsSFR at 1010 M� and the dark matter sSMIRDM at 1011.5 M� (in red and black solid lines, respectively); these values are reproduced from
Figure 1. The other curves show the predicted rsSFR that is output from the simple numerical model described in the text using the values of ε(mstar) and λ(mstar) for
the 0 < Z0/y < 0.1 fits in Table 1 (green (dark gray in print journal) for the fits to the M + 10 Z(mstar, SFR) data, cyan (light gray in print journal) for the constrained
fits to the Tremonti et al. (2004) Z(mstar) data). The rsSFR is elevated because of the “catch-up” effect that arises because fstar will increase as a galaxy grows, as shown
in Figure 6. This boost, which is quite sensitive to the slope of the mass–metallicity relation through Equation (37), qualitatively reproduces the observed increase of
the sSFR relative to the sMIRDM. The apparent deficit at z ∼ 2 could be related to the fact that the observed mass–metallicity relation may be steeper at high redshift
than predicted by the simple model (see Figure 7). This would produce a larger η and thus a larger boost; see the text for discussion. The differential boost with stellar
mass arises from the curvature of fs tar(mstar) and qualitatively explains the reversed mass dependence of the rsSFR compared with that of the sMIRDM.

(A color version of this figure is available in the online journal.)

the mass of gas present (SFR = ε−1 · mgas) and (b) that
any wind outflow is proportional to the star formation rate
(Ψ = λ.SFR). These are heuristic assumptions adopted to
make the model analytically simple.

2. In its most ideal (and unrealistic) situation in which the
parameters describing the star formation efficiency ε and
the mass loading λ of the wind are constant, the regulator
has the key feature of setting the rsSFR to be equal to the
specific baryonic infall rate of the galaxy, sMIRB, which
is defined in Equation (16) as the infall rate divided by
the past time integral of the infall rate. Although this is
unobservable itself, it will likely be closely linked to the
specific mass increase rate of the halo (sMIRDM) and will be
identical if a constant fraction fgal of mass entering the halo
penetrates down to enter the galaxy system as gas. More
realistic systems with evolving ε and λ will perturb this
identity but will preserve a close connection between the
sMIRDM and the rsSFR. Aside from its attractive physical
simplicity, the gas-regulated model is therefore motivated
by the broad similarities of the observed rsSFR of galaxies
on the main sequence and the typical sMIRDM “observed”
in cosmological numerical simulations over a wide redshift
range from z ∼ 0 out to at least z ∼ 2.

3. The metallicity of the gas reservoir in a simple gas-regulated
galaxy is set “instantaneously” by the constant or slowly
varying parameters of the regulator, i.e., the SFR efficiency
ε the wind mass loading λ, and the sSFR (or sMIRB). The
metallicity is largely independent of the evolutionary path
that the galaxy has been following hitherto. This is because
gas is continuously flushing through the system, since the
gas consumption timescale τgas is short.

4. If the star formation efficiencies and wind mass-loading
parameters are similar across the galaxy population at a
given stellar mass, and if the observed variation in the sSFR
of main-sequence galaxies (again, at a given stellar mass)
reflects a variation in the (slowly varying) inflow rates onto

galaxies, then the relations derived for an individual system
will also apply to the population of galaxies, both at a given
epoch and also across time.

5. The gas-regulated model naturally produces an implicit de-
pendence of metallicity on the SFR, as given by Equa-
tion (28). This arises because the relative size of the gas
reservoir is linked to the sSFR in the gas-regulated model.
There is also a dependence of metallicity on the mass of
the galaxy, especially if ε and λ vary with mass. The model
therefore naturally produces a Z(mstar, SFR) relation.

6. Furthermore, the z(mstar, SFR) relation will only evolve
with redshift to the extent that the parameters ε and λ of
the regulator themselves change (at fixed stellar mass) with
epoch. An epoch-independent FMR would be expected if ε
and λ which both reflect baryonic processes within galaxies,
are the same at different epochs, and the model gives the
physical basis for why the Z(mstar, SFR) relation should be
stable over cosmic time.

7. There is moreover a direct link between the instantaneous
metallicity and the fraction fstar of baryons that enter the
system and are transformed into long-lived stars, without
requiring knowledge of the particular values of ε, λ, or the
sSFR.

8. The link between metallicity and fstar can therefore be
used to establish the (stellar) mass dependence of fstar from
the observed mass–metallicity relation. The implied steep
dependence fstar on mass reconciles the different faint-end
slopes of the galaxy and halo mass functions and does so
with a more or less constant fgal, the fraction of baryons
entering the halo that penetrate down to enter the galaxy
system.

9. The strong dependence of fstar on galactic mass also implies
that a given galaxy will be increasing its fstar as it grows in
mass. This has the consequence that the rsSFR will be
elevated relative to the sMIRB (and thus the sMIRDM if fgal
is constant). The boost will be bigger at lower masses. This
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effect naturally explains why the observed main-sequence
rsSFR is systematically higher than the sMIRDM derived in
dark matter simulations, and why the mass dependences of
the rsSFR and sMIRDM are reversed.

10. With a cautionary note that there is an open debate on
the validity of SFR as a second parameter in the galaxy
mass–metallicity relation, and on whether there is a univer-
sal epoch-independent Z(mstar, SFR) relation, we can fit the
SDSS Z(mstar, SFR) data of Mannucci et al. (2010) with our
predicted Z(mstar, SFR) relation given in Equation (28). The
fitted ε(mstar) returns a sensible gas depletion timescale con-
sistent with observations. The returned values of the mass
loading of the wind λ are also not unreasonable, although
they have quite a steep mass dependence that may be traced
to the strong curvature of the mean mass–metallicity rela-
tion in the M + 10 data. Fitting the Z(mstar) mass–metallicity
relation of T + 04, which requires us to assume a form for
ε(mstar) and to impose a mean SFR–mstar relation, yields
a higher and less mass-dependent form for λ. Future ob-
servational progress on both the form of the Z(mstar, SFR)
relation and on the mass loading of winds will be helpful.

11. Taking at face value the parameters ε(mstar) and λ(mstar)
at z ∼ 0 from both sets of fits and imposing an
observationally-motivated ε ∝ (1 + z), the model also qual-
itatively reproduces the evolution in the mass–metallicity
relation to z ∼ 2. The small change in ε (which actually
increases the metallicities at high redshift) is more than
compensated by the much larger decrease that is associated
with the much higher sSFR in galaxies at z ∼ 2, since it is
the ε−1 · sSFR product that counts.

12. Finally, a simple numerical model in which gas is fed into
a galaxy at a rate proportional to the increase in mass of the
dark matter halo, and in which star formation and mass loss
are governed by the ε(mstar) and λ(mstar) returned by the fits,
verifies that the run of mstar with halo mass and the boosting
of the rsSFR relative to the sMIRDM are as observed in the
sky. There is a possible exception that the boost at high
redshift (z ∼ 2) may not be quite large enough, however.

This paper therefore establishes a direct link between the
global evolution of the sSFR in the universe and the metallicities
of the stars that are formed throughout that evolution and
between the sSFR of galaxies and the growth of their dark matter
halos. Our work furthermore establishes a direct link between
the ratio of stellar to dark mass in galaxies (required to reconcile
the faint-end slopes of the galaxy and halo mass functions)
and the observed enhancement of the rsSFR relative to the
halo mass increase rates. All of these connections are achieved
through the action of the single, very simple, gas-regulator
system, which acts on the inflow of gas onto galaxies. The
inflow is split it into three branches: baryon storage in long-
lived stars, ejection from the system in a wind, and flow into or
out of the gas reservoir that regulates the star formation.

One of the striking aspects of the analysis is how the linkages
made above with the dark matter halos arise because of baryonic
processes operating within the galaxies. The relations with dark
mass have the correct form only if fgal, which we introduced as
the fraction of baryons that enter the halo and penetrate down
to enter the galaxy system itself, is more or less independent of
mass. Furthermore, it was shown that fgal ∼ 0.4 was required to
yield the correct mstar/mhalo ∼ 0.03 value at mstar ∼ 1010.5 M�.
Taken at face value, this implies that of order 50% of the
baryons entering a halo are cycled through the galaxy system,
even if many of them are ejected again in winds. Baryonic

processes operating within the regulator system, and dependent
on the stellar mass of the galaxy, are largely responsible for the
variation in stellar mass with halo mass, rather than variations
in the fueling of galaxies in different mass halos.

The linking of the specific growth rates of stars and dark mat-
ter that is produced by the regulator, together with Equation (7),
may lead to a number of new perspectives on the evolution
of galaxies. As an example, we can argue that high-redshift
galaxies must be gas-rich because they must have a high sSFR
(because their halos have a high sMIRDM), rather than the other
way around.

One of the novel results of the paper is the natural emer-
gence of SFR (or gas ratio) as a second parameter in the
mass–metallicity relation of galaxies. The fact that the fit of
Equation (28) to the Z(mstar, SFR) data that have been presented
by Mannucci et al (2010) successfully returns a reasonable value
of the gas consumption timescales in galaxies ε−1 (at least when
the infall Z0 is low) suggests that the spread in SFR in the main-
sequence population at fixed mass, which drives the returned
value of ε in the fits, arises from long-term variations in the
infall rate of material onto the galaxies.

Finally, we can look at the role of “feedback” processes in
the gas-regulated model. Feedback has often been discussed in
the context of star formation in galaxies and the wind outflow,
given by λ SFR, is in a sense “feedback” from star formation.
However, as discussed in the paper, this wind has no bearing
at all on the strong link between the sSFR and the sMIRB, nor
on the gas ratio μ within the galaxy, which is set only by ε
and the sSFR. We have also argued that the equations governing
the behavior of individual galaxies are also applicable to the
galaxy population as a whole, as evidenced by the success in
reproducing the mean Z(mstar, SFR) relation and by the modest
scatter of the data around this relation (typically 0.07 dex in Z).
This implies that the parameters ε and λ must be quite uniform
across the main-sequence population (at a given epoch and a
given stellar mass) and that they are not affected by events in
individual galaxies.

We have repeatedly used the term “simple model” in this
paper, to emphasize the simplifying assumptions on which it
has been based. Not least the model assumes homogeneous
mixing of the gas within the system and continuous flushing of
the system with incoming gas. There is a hard boundary with the
outside, and outflowing material is assumed to be lost forever.
The metallicity of infalling material is taken to be constant and
largely negligible. We have assumed a constant yield, i.e., that
the wind outflow is not preferentially enriched as a function
of galactic mass. We have neglected the possible mixing of the
outflowing enriched material with the gas in the halo. With these
significant caveats in mind, the analysis nevertheless represents
a good starting point for considering the chemical evolution of
galaxies over a broad range of cosmic time. The evolution of the
gas metallicity will, of course, be linked to the development of
the metallicities of the stars in a galaxy and this will be explored
in a later paper

The model should not be taken as a precise quantitative
model for galaxies nor can it be used to exclude other more
complex scenarios. Nevertheless, the success of the current
analysis suggests that the underlying gas-regulated model of
galaxy evolution has some considerable validity as a basic
description of the galaxy population over a wide range of epochs
and further suggests that it may be possible to view the chemical
abundances in galaxies as arising instantaneously from the
operation of this basic regulatory system. The model provides
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an excellent starting point for considering the development of
stellar populations and the metal content of galaxies in the
context of their dark matter halos.
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Foundation. We thank Nicolas Bouché for stimulating discus-
sions at several points in the development of this work, Christian
Knobel and the referee for a critical reading of the manuscript,
and Katarina Kovac for helpful discussions and help with the
presentation of the paper.

APPENDIX

Let Z′ be the deviation from the steady state metallicity Zeq
given by Equations (26)–(28), i.e.,

Z′ = Z − Zeq. (A1)

We then substitute Z from Equation (A1) into Equation (24)
with the last term set to zero, and use Equation (7) to express
ε−1rsSFR in terms of,

ε−1 dZ′

dt
= y(1−R)−(Z′ +Zeq −Z0)((1−R)(1+μ)+λ). (A2)

Then, using Equation (25) to eliminate Zeq–Z0 and thus y, we
have

ε−1 dZ′

dt
= −Z′((1 − R)(1 + μ) + λ), (A3)

or
d ln Z′

dt
= −((1 − R)(r + μ) + λ) τ−1

gas . (A4)

The metallicity of the gas reservoir therefore exponentially
approaches the equilibrium value with a timescale of order the
gas consumption timescale. The actual timescale to approach
equilibrium is given by

τgas

((1 − R)(1 + μ) + λ)
= SFR

Φ
τgas � τgas . (A5)
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Davé, R., Finlator, K., & Oppenheimer, B. D. 2012, MNRAS, 421, 98
Dayal, P., Ferrara, A., & Dunlop, J. S. 2013, MNRAS, 430, 289
Dekel, A., & Silk, J. 1986, ApJ, 303, 39
Dessauges-Zavadsky, M., Christensen, L., D’Odorico, S., Schaerer, D., &

Richard, J. 2011, A&A, 535, 15
Elbaz, D., Daddi, E., Le Borgne, D., et al. 2007, A&A, 468, 33
Ellison, S. L., Patton, D. R., Simard, L., & McConnachie, A. W. 2008, ApJL,

672, L107
Erb, D. K., Shapley, A. E., Pettini, M., et al. 2006, ApJ, 644, 813
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