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ABSTRACT

We provide new constraints on the connection between galaxies in the local universe, identified by the Sloan
Digital Sky Survey, and dark matter halos and their constituent substructures in the Λ-cold dark matter model using
WMAP7 cosmological parameters. Predictions for the abundance and clustering properties of dark matter halos,
and the relationship between dark matter hosts and substructures, are based on a high-resolution cosmological
simulation, the Bolshoi simulation. We associate galaxies with dark matter halos and subhalos using subhalo
abundance matching, and perform a comprehensive analysis which investigates the underlying assumptions of this
technique including (1) which halo property is most closely associated with galaxy stellar masses and luminosities,
(2) how much scatter is in this relationship, and (3) how much subhalos can be stripped before their galaxies are
destroyed. The models are jointly constrained by new measurements of the projected two-point galaxy clustering
and the observed conditional stellar mass function of galaxies in groups. We find that an abundance matching
model that associates galaxies with the peak circular velocity of their halos is in good agreement with the data,
when scatter of 0.20 ± 0.03 dex in stellar mass at a given peak velocity is included. This confirms the theoretical
expectation that the stellar mass of galaxies is tightly correlated with the potential wells of their dark matter halos
before they are impacted by larger structures. The data put tight constraints on the satellite fraction of galaxies
as a function of galaxy stellar mass and on the scatter between halo and galaxy properties, and rule out several
alternative abundance matching models that have been considered. This will yield important constraints for galaxy
formation models, and also provides encouraging indications that the galaxy–halo connection can be modeled with
sufficient fidelity for future precision studies of the dark universe.
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1. INTRODUCTION

The connection between galaxies and their dark matter
halos is the fundamental link between predictions of a given
cosmological model and models of galaxy formation. Galaxies
form in the gravitational potential wells of dark matter halos,
and our modern understanding of galaxy formation therefore
depends on an understanding of dark matter. Dark matter halos
are virialized structures that began as high-density peaks in
the early universe and grew and collapsed through self-gravity.
Halos grow by accreting additional material from the smooth
density field as well as nearby smaller halos. The galaxies within
them grow in tandem with their respective halos. Accreted halos
(or subhalos) generally also contain galaxies. These subhalos
(and the galaxies they contain) are stripped by the tidal forces
of the (host) halo that have accreted them and are eventually
destroyed. The halo that accreted the subhalo gains this mass,
and the stellar mass of the disrupted galaxy either accretes
onto another galaxy in the host halo or is dispersed into the
intracluster light.

Given this general understanding of the relationship between
galaxies and dark matter, it is possible to predict the spatial
distribution of galaxies from an N-body simulation of dark
matter only. The baryonic matter of the galaxies is a small
fraction of all matter, and its effects on the formation of
dark matter halos are subdominant, with observable impacts

only on small scales (Kravtsov et al. 2004; Springel et al.
2005; Trujillo-Gomez et al. 2011). However, populating a dark
matter simulation with galaxies requires a detailed model to
connect the dark matter with the galaxies. Precise models of
this galaxy–halo connection and its evolution are important
for constraining galaxy formation models. They are also of
increasing importance in the era of precision cosmology. In
particular, the detailed relationship between the dark matter
distribution—directly related to cosmological parameters—and
the galaxies that trace it is likely to be a dominant systematic
in studies of cosmic acceleration with galaxy surveys using a
range of probes (e.g., Cacciato et al. 2009; More et al. 2009;
Tinker et al. 2011; Nuza et al. 2013, and references therein).

The most direct approach to understanding the relationship
between galaxies and halos is to run a full, hydrodynamic sim-
ulation, which may explicitly include the effects of star forma-
tion and feedback (e.g., Bryan & Norman 1998; Springel &
Hernquist 2003; Vogelsberger et al. 2012, and references
therein). Unfortunately, this approach remains computationally
expensive, and therefore cannot currently be applied to large vol-
umes. Additionally, the results are complicated by differences
in numerical techniques and the treatment of important physics
below the resolution limit of the simulation. An alternative is
to use a semi-analytical model of galaxy formation (see, e.g.,
Somerville et al. 2012; Lu et al. 2012; Henriques et al. 2012;
Benson 2012 for recent examples). This has the advantage of
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including many different processes that act on the galaxies in
question, such as relations between star formation and feedback.
However, these models tend to be complex, having many pa-
rameters and requiring careful tuning, complicating efforts to
understand the underlying physics. A simpler option is to use a
halo occupancy distribution (HOD), which is based on know-
ing the number of galaxies of some type that may be assigned
to each halo (e.g., Yang et al. 2008, 2009; Zehavi et al. 2011;
Leauthaud et al. 2012, and references therein). This approach
still has the difficulty of using many parameters, and therefore
requires multiple measurements of the galaxy distribution as
inputs to constrain the model.

An alternative to these is a semi-empirical approach known
as subhalo abundance matching (Kravtsov et al. 2004; Vale
& Ostriker 2004). Rather than input galaxy formation pro-
cesses directly, abundance matching models make the simple
assumption that some halo property is monotonically related
to some galaxy property, typically galaxy luminosity or stellar
mass. That is, each halo (or subhalo) contains one galaxy at
its center, whose luminosity or stellar mass is determined by
some property of its host. This property is often related to the
host halo mass, but there are many different possibilities. Addi-
tional choices must be made to specify the specific model, such
as whether to include nonzero scatter between the given halo
property and the galaxy stellar mass. Nonetheless, abundance
models have the advantage of requiring few (or no) parame-
ters, and using the full predictions of numerical simulations
to model the dark matter distribution into the fully nonlinear
regime.

In general, for a given input luminosity or stellar mass func-
tion (SMF), abundance matching can produce a galaxy popula-
tion that accurately reproduces measured galaxy statistics and
provides insight into galaxy formation (Conroy et al. 2006; Vale
& Ostriker 2006; Moster et al. 2010; Behroozi et al. 2010). Previ-
ous studies have demonstrated that abundance matching models
are generally sufficient to statistically reproduce the observ-
able properties of galaxies, including the two-point clustering,
the galaxy bias, and the Tully–Fisher relation (Vale & Ostriker
2004; Conroy et al. 2006; Trujillo-Gomez et al. 2011). Recent
improvements in numerical dark matter simulations present the
opportunity to test this model on a simulation large enough to
have excellent statistics for L* galaxies while resolving halos
small enough to host galaxies as dim as the Magellanic Clouds.
Bolshoi is one such simulation, which also uses cosmological
parameters consistent with WMAP5 and other measurements
(Klypin et al. 2011). Trujillo-Gomez et al. (2011) showed that
an abundance matching model applied to halos in this simula-
tion could provide a good match to clustering statistics and the
Tully–Fisher relation.

Testing any model requires statistics of the galaxy distribu-
tion. The Sloan Digital Sky Survey (SDSS; Abazajian et al.
2009) has provided a quantitative advance in measuring galaxy
statistics in the local universe, yielding increasingly precise mea-
surements of the clustering of galaxies (e.g., Zehavi et al. 2011)
and large numbers of groups or clusters (e.g., Koester et al.
2007; Yang et al. 2007). Because measurements of cosmological
parameters depend heavily on galaxies as tracers, the system-
atics of such measures may be reduced by an improved under-
standing of how galaxies are associated with dark matter (e.g.,
Rozo et al. 2010; Tinker et al. 2012; More et al. 2012).

Our intent is two-fold: (1) to examine the ability of differ-
ent abundance matching models to simultaneously reproduce
the correlation function and conditional stellar mass function

(CSMF) measured from the SDSS, and (2) to systematically test
the underlying assumptions in the abundance matching ansatz.
To do so, we also make new measurements of the clustering and
conditional stellar mass functions from the SDSS.

We first describe the data used in our study (Section 2).
This is followed by a description of the Bolshoi simulation
and the models considered (Section 3). Section 4 describes our
measurements of the correlation function and the CSMF, and
additional statistics of the galaxies in groups. An evaluation of
how these vary as the model parameters are varied is presented
in Section 5. The principle results of this work are the constraints
on the model parameter space derived from these measurements
(Section 6). We then consider the impact of using different
SMFs and a comparison with another measurement of the CSMF
(Section 7). A summary of our results and conclusions may be
found in Section 8. We find that our best-fit model provides
an excellent fit to the data. We also find that the parameters in
the model are well constrained, and that models that abundance
match to many commonly used halo properties are ruled out by
current data.

Throughout this work, we assume the same cosmology as
the Bolshoi simulation, using Λ-cold dark matter (ΛCDM) with
Ωm = 0.27, ΩΛ = 1 − Ωm, Ωb = 0.042, σ8 = 0.82, and
n = 0.9. Absolute magnitudes and stellar masses are quoted
with h = 1. Except where otherwise specified, stellar masses are
those given by the Kcorrect algorithm of Blanton & Roweis
(2007). We use log for the base-10 logarithm, and ln for the
natural logarithm. Halo masses are given in terms of the virial
mass, here defined as the mass within a radius such that the
average enclosed density is ΔvirρcritΩm for Δvir = 360 at z = 0
as given by Bryan & Norman (1998) unless stated otherwise.

When referring to dark matter halos, the terms “halo” or “host
halo” are used to refer to distinct halos only, which do not lie
within the virial radius of a more massive dark matter halo. In
contrast, “subhalo” is used to refer to dark matter halos whose
centers lie within the virial radius of a more massive halo. A
galaxy group is a set of galaxies that all lie within the virial
radius of the same (distinct) halo, which may range in size from
only one galaxy up to galaxy clusters. A central galaxy (or
“central”) is the galaxy which resides at the center of a halo.
Satellite galaxies (or just “satellites”) are those which reside in
subhalos inside a more massive dark matter halo.

2. SDSS DR7 DATA

Our study uses the New York University Value Added Galaxy
Catalog (NYU-VAGC; Blanton et al. 2005), based on Data
Release 7 of the SDSS (Padmanabhan et al. 2008; Abazajian
et al. 2009). We focus primarily on two measurements: the
projected two-point correlation function and the CSMF. To
measure the clustering, we use a set of volume-limited samples
corresponding to a series of cuts in stellar mass. For the group
statistics such as the CSMF, we focus on one volume-limited
sample, with a cut in absolute r-band luminosity of Mr −
5 log h < −19. The area of the sample we use is 7235 deg2, with
a median redshift of z = 0.05. The Mr − 5 log h < −19 sample
contains a total of 74,987 galaxies with a maximum redshift of
z = 0.064, covering a volume of roughly 4.8 × 106(h−1 Mpc)3.
We focus on the distribution of galaxies in terms of their stellar
mass. Throughout, we quote stellar masses in M� h−2. The cut
of log(M∗) > 9.8 leaves a complete sample of 54,119 galaxies
in the same range in redshift.

The details of the group finder are described in the appendix
of Tinker et al. (2011), which is based on the algorithm of

2



The Astrophysical Journal, 771:30 (32pp), 2013 July 1 Reddick et al.

Yang et al. (2005). Galaxy groups are found by initially doing
“inverse” abundance matching. The highest host halo mass
expected in the observed volume is assigned to the most massive
galaxy. The next most massive galaxy that is not within the
virial radius of the most massive halo is assigned the second
most massive host halo, and so on. This matching is done with
zero scatter, using the mass function of Tinker et al. (2008).
Galaxies within the virial radii of the assigned host halos are
treated as satellites. This initial assignment is used to calculate
an initial group stellar mass for each group. Groups are then
reassigned host halo masses using the total stellar mass within
the virial radius of the initially assigned halos. This procedure
is iterated until group assignments remain unchanged. These
results are distinct from the results of Tinker et al. (2011)
in that we use Δvir = 360, rather than 200, for consistency
with the mock catalogs, and in how the initial halo-to-galaxy
assignment is done. This results in a total of ∼43,000 groups,
of which 17,178 are assigned a host halo mass greater than
1012 M�. We impose this limit because below a mass of
∼1012 M� essentially all “groups” have only one galaxy above
the log(M∗) > 9.8 threshold. Therefore, the group assignment
is not very informative below this mass.

The group finder introduces two major sources of bias. First,
groups with low total stellar mass may consist of only one or two
galaxies. Because host masses are assigned based on total group
stellar mass, the assigned host halo mass relates directly to the
stellar mass of the dominant galaxy. This artificially reduces the
scatter between the central galaxy stellar mass and the host halo
mass for low-mass host halos. Second, the assumption that the
galaxy with the most stellar mass is the central is not always
true (e.g., Skibba et al. 2011) and can bias results based on the
central galaxies. To take these changes into account, we create
a galaxy distribution by populating halos in the simulation, and
this galaxy distribution is passed through the group finder before
making comparisons to the groups found in the volume-limited
catalog. The effects of group finding on our measurements are
discussed in more detail in Section 7.3 and Appendix A.

The NYU-VAGC is based on the SDSS spectroscopic sample.
This allows precision measurements of redshifts, which are
required for measuring the projected two-point correlation
function and to making group assignments. However, the
spectroscopy was obtained by assigning targets to spectroscopic
plates connected to a fiber-fed spectrograph. The size of the
fibers prevents any two targets separated by 55′′ or less from
being observed at the same time on the same plate. Though
overlapping plates partially alleviates this problem, a significant
fraction of galaxies in the sample lack redshifts for this reason.
These galaxies are “fiber collided”; this occurs for ∼5% of the
galaxies in our sample. A detailed explanation of the SDSS
survey and hardware can be found in Stoughton et al. (2002).
The tiling algorithm for the spectroscopic plates is described in
Blanton et al. (2003b).

Our clustering measurements were made on the same volume-
limited sample as the groups. Clustering measurements are
presented in Section 5, with the error estimation discussed in
Section 4.

To use the fiber-collided galaxies, the simplest correction is
to assign the galaxy the redshift of the galaxy with which it
is fiber collided. As demonstrated by Zehavi et al. (2005), this
correction is adequate for the correlation function down to scales
of ∼0.1 Mpc h−1. However, it has a significant impact on the
CSMF, since a fiber-collided galaxy is likely to be assigned to the
same group as the galaxy it is fiber collided with. Our volume-

limited sample has a median redshift of z = 0.05. At this
redshift, the 55′′ angle corresponds to ∼40 kpc h−1 (comoving).

3. SIMULATED GALAXY CATALOGS

3.1. Simulations

The Bolshoi simulation is a recently completed cosmological
dark matter simulation, described in Klypin et al. (2011).
The simulation uses 20483 particles and has a volume of
(250 Mpc h−1)3, roughly three times bigger than the SDSS
Mr < −19 volume-limited sample. The large volume is
combined with the capability to resolve subhalos, dark matter
halos that lie within the virial radius of larger host halos, down
to a circular velocity of ∼55 km s−1. This permits a precise
study of subhalos and the satellite galaxies that inhabit them.

Because our models rely on abundance matching, we require
knowledge of the dark matter halo distribution. Therefore,
halo finding is necessary to locate the potential wells where
galaxies form. There are several different algorithms used for
this purpose, and they may produce different results even when
working on the same test halos (see Knebe et al. 2011; Onions
et al. 2012, and references therein). For our work, we use
the Rockstar halo finder (Behroozi et al. 2013b), which has
the advantage of using velocity as well as position information
to locate substructure. This halo finder produces results that are
comparable to other modern halo finders (e.g., bound density
maxima (BDM) and Amiga’s Halo Finder) on small scales; the
use of phase space information allows it to track subhalos better
in the inner regions of their hosts (Knebe et al. 2011; Onions
et al. 2012; Behroozi et al. 2013b). The halo (and subhalo)
masses and maximum circular velocities (vmax) are calculated
using only bound particles, but including substructures. We also
use the merger trees produced by the algorithm described in
Behroozi et al. (2013c). The merger trees allow us to use the
past history of the halos and subhalos when assigning galaxy
properties. This combination of codes provides better tracking
of subhalos over time (Behroozi et al. 2013c).

3.2. Abundance Matching

Abundance matching is a simple and effective method for
associating dark matter halos with galaxies (see, e.g., Kravtsov
et al. 2004; Vale & Ostriker 2004; Conroy et al. 2006; Behroozi
et al. 2010; Moster et al. 2010). A simple example is that given
halo mass and SMFs, halos are assigned galaxies so that the
most massive halo hosts the most massive galaxy, the second
most massive halo hosts the second most massive galaxy, and so
on. More generally, this approach is complicated by scatter in
the halo-mass–stellar-mass relation (e.g., Tasitsiomi et al. 2004;
Behroozi et al. 2010), and the question of which halo property is
more closely correlated with galaxy stellar mass (Conroy et al.
2006). We consider both the effect of various nonzero values
of scatter and the use of different halo properties on observable
galaxy properties.

The most natural theoretical expectation may be that galaxy
properties are strongly correlated with the depth of their po-
tential wells. If this is the case, the property vmax is likely to
be the most relevant for galaxy properties. Dark matter halos
can be significantly stripped after they are influenced by larger
halos (before or after they enter the virial radius), in a way
that galaxies are not. Because of this, it is reasonable to expect
that galaxy properties should be most strongly correlated with
their mass before this stripping occurs (see, e.g., discussion in
Conroy et al. 2006). At present, there is still a wide range of halo
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properties used in the literature. For completeness, we consider
a range of possible choices for the halo properties, and evaluate
their consistency with data.

1. M0. This is the simplest form of abundance matching, us-
ing only the masses of halos (or subhalos) at the present
time. Note that the mass of a subhalo is not measured
out to the subhalo’s virial radius; the subhalos identified
by Rockstar include all particles that are bound to the
subhalo (see Behroozi et al. 2013b for further details). Be-
cause the subhalos’ dark matter is more readily stripped
than the galaxies hosted at their centers, the M0 approach
generally underestimates satellite stellar masses (or lumi-
nosities) (Behroozi et al. 2013a).

2. Macc: the mass of halos at accretion, or infall. For (distinct)
halos, this is the mass at the present time, the same as M0.
For subhalos, this is the mass of the halo when it crosses the
virial radius of its host, and is generally greater than M0.
This boosts the stellar mass of satellites relative to centrals
of the same M0.

3. Mpeak: the maximum mass that the halo (or subhalo) has
ever had in its merger history. This mass is nearly the same
as M0 for isolated halos, but may be significantly greater
for subhalos than either their present mass or their mass
at infall, as some fraction of halos will be stripped prior
to accretion. Behroozi et al. (2013a) have found that most
subhalos start being stripped at ∼ 3 Rvir, regardless of host
mass.

4. M0,peak. For isolated halos, this is equal to M0; for subhalos,
it is equal to Mpeak.

5. vmax. Similar to M0, vmax is the maximum circular velocity
of a halo (or subhalo) at the present time. This model
generally suffers from the same difficulties as M0, having
too few satellite galaxies with a given stellar mass.

6. vacc. As with to Macc, vacc is the maximum circular velocity
of a halo at the present time (equivalent to vmax for isolated
galaxies), or at the time of infall. As with M0, this boosts
the stellar mass of satellites over that when using vmax,
increasing the satellite fraction at a given stellar mass.

7. vpeak. Similar to Mpeak, vpeak is the highest circular velocity a
halo has had over its entire merger history. This is generally
slightly greater than vmax or vacc for isolated halos and
significantly greater than either vmax or vacc for subhalos.

8. v0,peak. Similar to M0,peak, v0,peak assigns the halos their
present maximum circular velocity, and the subhalos their
peak circular velocity. Because v0,peak has the largest
difference between (distinct) halos and subhalos, this is
the model with the most massive satellite galaxies, and
consequently the highest satellite fractions.

A comparison of how the properties we discuss here change for
a single halo can be seen in Figure 1.

Additionally, there is a significant difference between the
vmax- and M0-based matching. In particular, a direct comparison
between vpeak and Mpeak shows that at fixed Mpeak, subhalos
tend to have slightly higher peak vmax (by as much as ∼7%; see
Figure 2). This may be due to a combination of two factors. One
is that less concentrated subhalos may be more easily disrupted,
and less likely to survive to be included in the sample. An
alternative is halo assembly bias (e.g., Wechsler 2001; Gao
& White 2007; Wechsler et al. 2006). In this case, smaller
halos that formed earlier and in lower-density regions, prior to
accretion, tend to have higher concentrations. This alternative
is plausible, as it has been demonstrated in Guo et al. (2011)
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Figure 1. Top: evolution of various halo properties with scalefactor a, for a
single central galaxy, whose host halo has a mass of 3.7 × 1013 at z = 0.
Note that the distinct halo has no mass loss, so M0 = Macc = Mpeak = M0,peak.
Further, vmax = vacc = v0,peak by definition. Only when vmax drops significantly
following a merger (due to the drop in concentration) does vpeak deviate from
vmax. Bottom: the same plot, but for a galaxy which is a satellite at z = 0,
with a present mass of 1.2 × 1012 in a host of mass 3.1 × 1013. The satellite
is accreted at around a = 0.85. Prior to this time, it is a central halo with
the same general properties as in the top plot. After accretion, however, vacc is
fixed, and v0,peak = vpeak. Because the halo starts being stripped here as well,
M0 is no longer the same as the other mass measures; the rest, however, remain
identical. The jumps at a = 0.95 are associated with a merger event between
this particular subhalo and another subhalo.

(A color version of this figure is available in the online journal.)

and Rodrı́guez-Puebla et al. (2012) that satellite galaxies tend
to have slightly more stellar mass than central galaxies with the
same (sub)halo mass. This difference is most significant in less
massive host halos. A test using a lower-resolution simulation
(the Consuelo simulation discussed in Appendix B) recovers the
same difference in vpeak between halos and subhalos, suggesting
that this difference is not likely due to resolution issues.

The impact of changing the abundance matching parameter is
discussed in Section 5.1. Conroy et al. (2006) considered the use
of vmax and vacc, concluding that vacc was able to reproduce the
two-point correlation function, but vmax was not. Most related
studies have used one of these two properties.

To perform abundance matching, we use the SMF of the rel-
evant galaxy sample as input. Because the conditional mass and
luminosity functions are sensitive to this input, for consistency
with the group catalog, we use the exact SMF of galaxies in the
corresponding volume-limited sample to perform the abundance
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Figure 2. Relationship between vpeak and Mpeak for satellites and central
galaxies. The solid blue line indicates the median vpeak at fixed Mpeak for
distinct halos. The dashed and dotted lines indicate the 68% and 95% bounds,
respectively. The green lines are the corresponding results for subhalos. Note
that subhalos tend to have larger vpeak and a wider dispersion, particularly at
low masses, where the difference in the medians is ∼10%.

(A color version of this figure is available in the online journal.)

matching instead of using the global relations in the literature
(e.g., Li & White 2009; Yang et al. 2009; Baldry et al. 2012).

Scatter is introduced using the deconvolution method de-
scribed in Behroozi et al. (2010). In brief, first abundance match-
ing with zero scatter (σ = 0) is performed using the observed
SMF. A log-normal scatter is added to the stellar masses of the
galaxies. The “intrinsic” SMF, that is, the SMF to which scatter
is added in order to produce the observed SMF, is estimated
based on the difference between the observed and scattered
SMFs. This new “intrinsic” SMF is then used in abundance
matching. This procedure is repeated until the output of the
step where scatter is added is sufficiently close to the observed
SMF. While generally accurate, this approach is incapable of
adding extremely high scatter and maintaining the steepness
of the SMF above the characteristic stellar mass M∗,s (see
Figure 3). This is not a significant problem, as such large scatter
(above ∼0.3 dex at fixed stellar mass) appears to be excluded
by data at least for galaxies more massive than M∗,s . This has
been shown by previous authors (More et al. 2009; Leauthaud
et al. 2012), and is shown to be excluded by our later analy-
sis. An alternative method of introducing scatter, presented in
Trujillo-Gomez et al. (2011), avoids this problem by selecting
stellar masses from a predetermined list, guaranteeing that the
SMF is exactly reproduced. This method does not assume con-
stant log-normal scatter in stellar mass, and therefore yields a
somewhat skewed distribution of galaxy stellar masses in large
dark matter halos compared to a log-normal. It is not yet clear
whether these alternatives can be distinguished by existing data.

In applying this model, we do not include any impact from
statistical errors in the stellar mass measurements. Therefore, the
scatter we measure will be a combination of scatter in observed
stellar masses and in stellar mass at fixed host halo mass.

In addition to the scatter, we consider the possibility that
satellites galaxies are disrupted before their halos are destroyed
in the simulation. To investigate this possibility, we introduce a
cutoff on the mass of subhalos. Once a subhalo falls below some
fraction of its maximum past mass Mpeak, we consider its galaxy
to have been disrupted, similar to the cutoff examined in Wetzel

Figure 3. Stellar mass function (SMF) from the SDSS sample (black), used
as input to the abundance matching, compared against the output results of
abundance matching and observational systematics (colored lines: blue, green,
red, and orange correspond to 0, 0.1, 0.2, and 0.3 dex of scatter). Note that high
values of scatter force the bright end of the stellar mass function high because
this steep region cannot be produced by convolution with a too-broad Gaussian.
Because there is no dependence of the scatter on the matching parameter used
or μcut, there is little change in the SMF between models at fixed scatter. Error
bars are derived from jackknife resampling.

(A color version of this figure is available in the online journal.)

& White (2010). These disrupted subhalos are excluded from
abundance matching. Effectively, we assign disrupted subhalos
galaxies with zero stellar mass. We use the parameter μcut to
define the cutoff fraction of Mpeak, ignoring all (sub)halos for
which M0 < μcutMpeak. We consider a range of μcut from 0 (all
subhalos are assigned a galaxy) to 0.15. For reference, a value
of μcut = 0.1 removes ∼4% of subhalos that would have been
included in the sample with μcut = 0.

Once the abundance matching has been performed, we
convert the Bolshoi snapshot into a lightcone by taking the
origin as the point of observation. This allows us to produce an
octant on the sky, including redshifts, to a depth of z = 0.083.
We use the snapshot at the mean redshift of the data, z = 0.05,
and ignore evolution in the dark matter distribution over this
narrow range. To introduce the same systematics present in the
group catalog, we first add fiber collisions (as described below),
then use the group finder to find galaxy groups and determine
whether galaxies are centrals or satellites.

3.3. Simulated Fiber Collisions

Once the mock catalog has been converted into a lightcone,
it is necessary to consider the effect of fiber collisions. Fiber
collisions must be determined prior to using the group finder.

We use the Bolshoi simulation to provide the volume-limited
sample. The sample of interest extends to a redshift of 0.063.
We use the remaining volume of Bolshoi, to a redshift of 0.083,
to provide a background of galaxies that may be collided.
Following this procedure, we find ∼4% of galaxies are fiber
collided for the volume-limited sample with log(M∗) > 9.8,
compared to ∼5% of galaxies in our sample. The algorithm
that is applied to the SDSS for determining the locations of
spectroscopic fibers is discussed in Blanton et al. (2003b). We
use a related algorithm applied to the mock lightcones. We
initially include galaxies above the stellar mass limit at any given
redshift. Galaxies that have neighbors within 55′′ are then placed
into “collision groups” of nearby galaxies. Of these galaxies, one
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is chosen to be the galaxy for which a true redshift is known.
Some of the other galaxies may also have “measured” redshifts,
partly at random and partly depending on the geometry of the
collision group. The remainder are considered fiber collided
with the nearest galaxy on the sky, and assigned its redshift.

After the mock catalogs are completed, we then apply the
same group finder as used on the SDSS groups to the mock
catalogs. This allows us to select galaxy groups consistently.

4. MEASUREMENTS

We use multiple measurements on both the SDSS DR7 cata-
log and the synthetic galaxy catalogs constructed by populating
simulations with abundance-matched galaxies. In particular, we
focus on the projected two-point correlation function and the
CSMF, and use these in constraining our models. We also con-
sider other measurements, such as the group stellar mass func-
tion (GSMF) and the satellite fraction, to provide additional tests
and to better understand the underlying galaxy distribution.

4.1. Projected Correlation Function

In its most basic form, the two-point correlation function
counts pairs of galaxies at different separations, relative to
the number of such pairs one would expect from a random
distribution (see, e.g., Davis et al. 1985; Zehavi et al. 2005). A
clustered distribution, such as occurs in dark matter halos and
thus, in galaxies, results in a larger value for the correlation
function. Smaller scales (<∼1 Mpc h−1) generally correspond
to clustering in a single host halo, between the central galaxies
and its satellites and between pairs of satellites, while larger
scales relate to clustering between isolated host halos.

We use the projected two-point correlation function, wp(rp)
because it does not suffer from peculiar velocities in the ra-
dial positions of galaxies. We present new measurements of the
stellar mass clustering in DR7 based on our volume-limited cata-
logs, using the Landy–Szalay estimator (Landy & Szalay 1993).
We use thresholds in stellar mass of log(M∗) > [10.6, 10.2, 9.8].
The covariances are drawn from spatial jackknife sampling.

Measurement of wp(rp) in the mock catalogs was done using
the set of abundance matching models described in Section 3.2
applied to Bolshoi, with varying values of scatter and μcut.
Because the simulation volume is similar to the volume of some
of the volume-limited catalogs, it is important to understand
the errors in the theoretical clustering measurements. The
covariance matrices were estimated by finding the correlation
function for each of a set of 300 PM simulations of the same
volume as Bolshoi, but with the dark matter down-sampled
to the same number density as the observed sample. These
covariances were then scaled to the correlations measured on
Bolshoi, according to

CB,ij = Cij

wB,i × wB,j

w̄i × w̄j

, (1)

where CB is the covariance matrix we use, and C that estimated
from the multiple simulations. The wB are the Bolshoi corre-
lations, while w̄ is the mean from the simulations. The indices
[i, j ] denote the bin. We use this procedure for each stellar mass
threshold. We do not include any contributions from stellar mass
errors in our errors on the correlation function.

4.2. Conditional Stellar Mass Function

The CSMF is the expected number of galaxies Φ(M∗|Mh)
in a dark matter halo of mass Mh with a stellar mass of M∗.

An equivalent measure, the conditional luminosity function
(CLF), carries similar information. The CSMF (or CLF) is a
useful measurement for understanding both galaxy properties
and cosmology (Yang et al. 2003, 2009; Cacciato et al. 2009;
Hansen et al. 2009). A group catalog may be used to obtain
the CSMF directly, by determining the mass of each group, then
counting the galaxies in bins of stellar mass for each group mass.
This allows direct counting of the number of galaxies in halos,
independent of the clustering described above.

The CSMF may be split into two parts:

Φ(M∗|Mh) = Φc(M∗|Mh) + Φs(M∗|Mh). (2)

Here, Φc is the CSMF of central galaxies only, which are the
individual galaxies at the center of each dark matter halo. Φc is
a log-normal function. Φs is the CSMF of the satellite galaxies,
and well approximated by a Schechter function. In the CLF,
M∗ may be replaced by L, the luminosity of the galaxies in the
groups.

The same procedure is used on both the DR7 volume-limited
catalog and the Bolshoi-based mock when measuring the CSMF.
Comparisons are made in observational space, including the
impacts of group finding. Errors are estimated in both cases by
using bootstrap resampling of groups, with 100 samples.

4.3. Properties of Satellites and Centrals

We also investigate summary statistics of the CSMF. This
includes the observed scatter in central galaxy stellar masses, as
a function of group stellar mass. We also consider the satellite
fraction in our models. We take this as the fraction of galaxies
in our sample that are found to be satellites by the group finder,
as a function of stellar mass.

4.4. Group Stellar Mass Function

The group stellar mass is the sum of the stellar masses of all
galaxies in a group above some threshold in stellar mass, for
each group. The least massive groups correspond to individual
galaxies near the stellar mass threshold of log(M∗) > 9.8,
while the most massive correspond to clusters. The distribution
of group stellar masses is the GSMF. The group luminosity
function is the equivalent procedure, using luminosity rather
than stellar mass.

5. UNDERSTANDING THE PARAMETERS

Before discussing explicit constraints on the parameters of
the abundance matching models, it is helpful to consider the
effect of varying each of them individually on the several
measurements that we use. In Section 5.1, we consider varying
the halo parameter used for abundance matching (Figure 4). In
Section 5.2, we consider varying the scatter in stellar mass at
a given halo property (Figure 5). In Section 5.3, we consider
varying a the maximum amount halos can be stripped before
galaxies are no longer identified (Figure 6).

5.1. Varying the Abundance Matching Parameter

The impact of varying the abundance matching parameter is
shown in Figure 4. This figure shows the two-point correlation
functions for three cuts in stellar mass and the CSMF in three
bins of total stellar mass, which are later used to directly
constrain the models. The satellite fraction, the scatter in the
stellar mass of the central galaxy identified by the group finder,
and the GSMF are also shown.
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Figure 4. Statistical properties of galaxies as measured from simulated galaxy catalogs and galaxy group catalogs, constructed using different halo properties for
abundance matching. All shown here have zero scatter and μcut = 0. Top: projected two-point correlation function. Labels denote the stellar mass threshold, given in
log(M� h−2). Because increases in scatter or μcut can only decrease the clustering, it follows that any model which falls significantly below the measured clustering
(black) must be excluded. Center: conditional stellar mass function (CSMF). Labels indicate the range in log(Mvir) for each plot, as well as the median total stellar mass
in each bin (M∗,tot). Nonzero scatter broadens this part of the distribution. Bottom left: satellite fraction as a function of stellar mass. As should be expected, models
with higher satellite fraction also have stronger one-halo clustering and more satellites in the CSMF. Bottom center: group stellar mass function and residuals. Bottom
right: standard deviation (scatter) in stellar mass of central as a function of total group stellar mass. The models are most readily distinguished by the small-scale
clustering and changes in the satellite fraction. Error bars on the model points have been omitted for clarity.

(A color version of this figure is available in the online journal.)
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Figure 5. Impact of scatter in galaxy stellar mass at a given vpeak on observed statistics of the galaxy distribution. The models shown abundance match to vpeak with
fixed μcut = 0, with varying values of scatter. Increasing scatter reduces the clustering, but does not strongly affect clustering for thresholds below the characteristic
stellar mass of the volume-limited sample. Individual plots are the same as described in Figure 4.

(A color version of this figure is available in the online journal.)

The impact of changing the abundance matching parameter
on many of the results is best understood in the context of
a halo occupation model. Correlations on small scales, below
∼1 Mpc h−1, are determined by the distribution of galaxies
in the same (host) halo, the one-halo term. Larger scales are

associated with the two-halo term, from the correlation between
galaxies in different halos. For fixed values of scatter and μcut,
the most significant effect of changing the parameter used in the
abundance matching assignment is the change in the one-halo
term. Changing the halo parameter used for abundance matching
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Figure 6. Impact of the μcut parameter, related to galaxy stripping, on observed statistics of the galaxy distribution. The models shown abundance match to vpeak with
zero scatter in stellar mass, with varying values of μcut. Increasing μcut pushes down the clustering on small scales only, and decreases the satellite fraction. Individual
plots are the same as described in Figure 4.

(A color version of this figure is available in the online journal.)

changes the relative circular velocities of halos and subhalos that
are used to assign central and satellite galaxies, respectively. For
example, the difference in the correlation function between vmax
and vacc is due primarily to the fact that subhalos are stripped
after accretion. This difference can be seen in Figure 1 at a = 1:
vacc > vmax for the example subhalo shown, but vacc = vmax
for the distinct halo. Thus, when abundance matching to vacc,
this increases the fraction of galaxies that are satellites (hosted

by subhalos) at a fixed number density (and therefore above a
fixed threshold in stellar mass) relative to the same procedure
applied to vmax. This increase in number of satellites enhances
the one-halo term due to additional satellites in clusters, but has
little effect on the two-halo term.

The same pattern can be seen among all four different
abundance matching methods using vmax. The parameter v0,peak
results in the highest satellite fraction and the most small-scale
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clustering. This is followed by vpeak and vacc; vmax the least
clustered. A similar trend can be seen among the models using
mass, though the differences tend to be smaller due to the smaller
relative differences between mass definitions, as discussed in
Section 3.2 and as can been seen for a pair of example halos in
Figure 1. The mass-based matching is also less clustered than
the equivalent vmax method; for example, vpeak is more clustered
than Mpeak. This is because, as shown in Figure 2, satellites tend
to have higher vpeak than centrals at fixed Mpeak. The results
of all eight models with no scatter and μcut = 0 are shown in
Figure 4.

As is shown in the following two sections, using nonzero
values of either scatter or μcut can only reduce the clustering,
not increase it. Therefore, any model shown here that falls
significantly below the measured projected correlation function
cannot reproduce the clustering by any variation of these values,
and is excluded from further consideration. This leaves only
vpeak and v0,peak as viable models. Because these are the models
with the highest values of the matching property for subhalos
relative to distinct halos, this implies that stripping of the subhalo
begins prior to the time of accretion, but that the stripping of the
satellite galaxy it hosts does not begin until significantly later.

Our exclusion of all matching parameters other than vpeak
and v0,peak is dependent on our particular abundance matching
method. For example, we do not consider including “orphan”
galaxies which may be present despite the disruption of their
subhalos. We cannot rule out such models.

5.2. Varying Scatter

We evaluate the impact of scatter on galaxy statistics in
Figure 5. For a fixed method of abundance matching, and fixed
μcut, the effect of adding scatter is to reduce the clustering
amplitude; this effect is most noticeable for the brightest, and
most strongly biased, samples. This is due to the steepness
of the SMF above the characteristic mass scale, where the
falloff becomes exponential. It is more likely that less massive
galaxies will be scattered to higher stellar mass than the reverse,
decreasing the bias of galaxies above a fixed stellar mass
threshold. However, this effect is reduced significantly for stellar
mass thresholds less massive than this scale, since in this range
the bias is only weakly mass dependent, and the SMF flattens.

Similarly, increasing the scatter directly broadens the central
peak of the CSMF. In general, this scatter should increase the
width of the stellar mass distribution of central galaxies in host
halos of any mass. However, the assumption that the brightest
galaxy is the central galaxy, combined with the use of the group
finder, reduces this scatter dramatically in poorer groups. This
effect is most striking in the smallest halos, where there may be
one or no satellite galaxies, and the stellar mass of the central
galaxy becomes directly related to the host halo mass determined
by the group finder.

The scatter has some impact on the satellite portion of the
CSMFs, tending to slightly reduce the number of satellites in
clusters, and increase the number in small halos. This may
be most easily understood by first considering the satellite
fraction, which also tends to decrease at low stellar masses
with increasing scatter.

More massive galaxies are more likely to be centrals because
the fraction of halos of a given vmax which are subhalos generally
decreases with vmax (or mass) (Kravtsov et al. 2004; Conroy
et al. 2006). As scatter increases, this relationship weakens and
the likelihood that a central galaxy is not the most massive
galaxy—and therefore determined to be a satellite by the group

finder—should increase. That is, there is a significant likelihood
that a satellite is more massive than the central in a particular
host halo. The intrinsic satellite fraction of less massive galaxies
should change only weakly with scatter, since most such low-
mass galaxies are centrals with no satellites of sufficiently high
stellar mass to scatter to a higher mass than the central. On
the other hand, particularly in richer groups, some satellite
galaxies will be scattered to higher stellar mass, possibly more
massive than the true central. This suggests that the satellite
fraction of low-mass galaxies should remain roughly constant
with increasing scatter, and should increase at high stellar mass
with increasing scatter. If this is surprising, consider the case
of infinite scatter, where galaxy stellar mass is completely
unrelated to the (sub)halo mass. In that case, the satellite fraction
will be constant with stellar mass because satellites are as likely
to be the most massive as centrals.

However, in the data, we do not know whether a galaxy is a
central or satellite a priori. As a consequence, when the group
finder assumes that the most massive galaxy is the central, it
artificially reduces the satellite fraction of massive galaxies.
Furthermore, this assignment changes the center of the measured
halo away from the true center, which means that some galaxies
that should be assigned as satellites are now outside the inferred
virial radius. This tends to reduce the satellite fraction of low-
mass galaxies. This same effect reduces the number of galaxies
in massive clusters, as can be seen in the CSMFs.

The opposite effect is seen in the least-massive groups that we
consider, where the number of satellites increases with scatter.
This is due to our method of host mass assignment, where group
stellar mass is used as the host mass proxy. When a small group,
with one or no satellites, gains a new satellite above the stellar
mass threshold due to scatter, the group will be pushed up in
group stellar mass and added to the host mass selection. This
effect is negligible on halos which host many satellites, which
are dominated by the miscentering issue. (For more details, see
Appendix A.)

The impact of scatter on the GSMF is also similar to that of
μcut. That is, it increases the number of low stellar mass groups,
and reduces the number of large clusters, steepening the GSMF.

In sum, increased scatter reduces the overall clustering
amplitude, more strongly for higher stellar mass thresholds. It
also broadens the central part of the observed CSMF in massive
groups, and alters the shape of the observed satellite CSMF in
a way that depends on the size of the group. The clustering
prohibits high scatter, while the CSMF requires some moderate,
nonzero scatter. The two parts of the CSMF provide the strongest
constraint in this regard.

5.3. Varying μcut

Because μcut effectively removes satellites, and therefore
most strongly affects small scales, it cannot be too large. Details
of how μcut acts, however, depend somewhat on other details of
the model in question. Figure 6 demonstrates the impact of μcut
on our measurements.

To summarize the implications of these initial tests:

1. Any model, to reproduce the clustering, must have at least
as many satellite galaxies as a model using vpeak as the
abundance matching property. Of the set of properties we
consider, only vpeak and v0,peak pass this criterion.

2. The μcut parameter most strongly affects small scales and
the number of satellite galaxies, removing those whose
subhalos were most stripped. To have enough satellite
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Table 1
Quality of Fit

Model Type μcut σ χ2 N P (>χ2)
(dex)

vpeak 0.02 0.20 107 116 0.70
v0,peak 0.15 0.24 260 116 <10−4

galaxies to reproduce the clustering and CSMF, μcut cannot
be too large.

3. Increasing scatter reduces the clustering for the high stellar
mass thresholds, widens the central CSMF distribution, and
alters the shape of the satellite CSMF. It also reduces the
satellite fraction. Scatter is most strongly constrained by the
two parts, satellite and central, of the CSMF. Large scatter
is also excluded by the two-point clustering measurements
(zero scatter is only weakly disfavored by the clustering
statistics alone).

6. CONSTRAINTS ON THE LOCAL GALAXY–HALO
CONNECTION

6.1. Parameter Constraints

We now investigate the two candidate models which plausibly
have enough substructure to match the data, abundance match-
ing stellar mass to vpeak and v0,peak. We systematically vary the
parameters in these models to determine which are allowed by
the data. For each model, we consider a large grid of models in
the scatter and μcut parameters described above, and evaluate
which range in these parameters provides an acceptable fit to
the correlation function and the CSMF measured in the SDSS
data.

At every point in parameter space, we measure the CSMF
after passing the mock catalog through the group-finding pro-
cedure and add fiber collisions, as discussed in Section 3. This
ensures that we accurately mimic the systematic effect these
have on the galaxy groups. Additionally, we add a systematic
error to account for shot noise in the galaxy assignment, which is
due to using a finite number of halos. For a fixed set of model pa-
rameters, we produced 25 mock catalogs. Though these have the
same input parameters and SMF, the stochasticity of the algo-
rithm produces a certain amount of variation between individual
implementations. We estimated the point-by-point variation be-
tween these models for all the measures we use to constrain
the fit, and add this estimated variance to the diagonals of the
covariance matrices. Table 1 lists the overall fit results for vpeak
and v0,peak, including this systematic error. (Unless otherwise
noted, error bars shown in plots are statistical only.) Systematic
errors are of roughly the same magnitude as the statistical er-
rors. There is no large change in our conclusions when we do
not include these systematic errors.

To fully accommodate the variation between individual im-
plementations of any given model, we take the mean of each data
point and all of its neighbors in parameter space, and the mean
variances. For instance, for a point at μcut = 0.02 and σ = 0.20,
we take the mean CSMF and two-point clustering of the nine
data points within μcut = 0.02 ± 0.01 and σ = 0.20 ± 0.01.
This is a reasonable procedure as nearby points in parameter
space have relatively small changes in output observables and
it smooths fluctuations in the likelihood due to occasional indi-
vidual outlier points in the CSMF.

We find that only the model based on vpeak can produce an
adequate fit to both the CSMF and the clustering combined.

This model provides an excellent fit to the CSMF and clustering
above log(M∗) ∼ 10. However, in general, even the best-fit
versions have slightly low clustering on small scales for the
log(M∗) > 9.8 samples. Because we cannot cleanly determine
whether this is due to a systematic issue with the simulation
or a problem with the model, we exclude this lowest threshold
from the total χ2 calculated for the combined measures. The
Mh = [12.6, 12.9] host mass bin from the CSMF estimated
χ2, has significant fluctuations in neighboring bins in stellar
mass, which suggest some problematic behavior in the SDSS
measurement in that bin, and we omit this bin from our combined
fits.

Parameter constraints for this model are shown in Figure 7.
Here we show the constraints from clustering alone, from the
central and satellite parts of the CSMF separately, and from
all of these statistics together. Notably, all three data sets
require scatter of <0.25 dex. Marginalizing over scatter to
obtain μcut provides only upper limits: μcut < 0.07 (68%) and
μcut < 0.11 (95%). Marginalizing over μcut and interpolating
between points in parameter space, the resulting constraints on
scatter using the vpeak model are σ = 0.200 ± 0.02 dex (68%)
or σ = 0.200 ± 0.03 dex (95%). The scatter is most strongly
constrained by the two components of the CSMF, while μcut is
determined largely by the clustering.

The measured statistics of the best-fit model are shown in
Figure 8. For the best-fit case, we use scatter of 0.20 dex, and
μcut = 0.03, both well inside the constraints. This is the best-fit
model in the absence of the local averaging procedure described
above for estimating the constraints. We show the clustering and
stellar mass functions used to constrain the model, which are
in excellent agreement except for the dimmest galaxies. We
also compare the total GSMF, the satellite fraction, and the
scatter in central galaxy properties. All statistics are in excellent
agreement with the data for galaxies with stellar masses greater
than log(M∗) ∼ 10; there is slightly less clustering and a smaller
substructure fraction in the lowest bin of stellar mass.

As shown in Figure 7, both the central and satellite parts of
the CSMF constrain the scatter in stellar mass at fixed (sub)halo
mass in our model. To check our assumption that scatter is
constant with respect to (sub)halo vpeak, we can obtain the best
fit in each bin in inferred host halo mass, or total group stellar
mass, which is strongly correlated with vpeak. This result is
shown in Figure 9. Here we are using the CSMF only (and not the
clustering), and use the results from the mass bins independently,
thus the constraints at a given mass are weaker than the full
model constraint. However, it is clear that a scatter of 0.20 dex
is in excellent agreement with the result in each individual mass
bin, within the 68% bounds, after marginalizing over μcut. A
very mild trend in the scatter parameter with mass would still
be consistent with these constraints.

The low clustering for the dimmest sample considered implies
that the model catalogs are missing dim satellites in general; a
deficit of satellites in groups and clusters will reduce the small-
scale clustering. A hint of this is also visible in the satellite
fraction, which is slightly low in the lowest stellar mass bin.
Further hints are seen in the radial profiles of galaxies, which
show a slight deficit in the density of galaxies in the innermost
regions (see Appendix E). It is possible that this is due to a
lack of resolution in the N-body simulation on the smallest
scales, which could artificially destroy subhalos that correspond
to these galaxies. Equivalently, this may imply support for the
inclusion of “orphan” galaxies, which still exist yet whose dark
matter halos have already been significantly disrupted (see,
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Figure 7. Constraints for the scatter and μcut parameters, for abundance matching models which assign galaxies to vpeak of both halos and subhalos. Clustering
constraints use data for galaxies with log(M∗) > 10.2. Levels give P (>χ2), corresponding to 1σ , 2σ , 3σ , and 5σ contours. Upper left: constraint from clustering
only. Upper right: constraint from central part of CSMF only. Lower left: constraint from satellite part of CSMF only. Lower right: parameter constraints using the
total χ2 from all three measurements.

(A color version of this figure is available in the online journal.)

e.g., Guo et al. 2011 and references therein for a discussion
of orphans). Adding a small number of orphan galaxies may
be able to correct the correlation function without significantly
increasing the number of satellites. Alternatively, it is possible
that some form of assembly bias becomes important at low
stellar masses, or that the μcut parameter varies with stellar
mass. A model similar to the last suggestion was considered
by Watson et al. (2012) and found to provide a good match.
However, these possibilities are degenerate and we postpone
a full consideration of these degeneracies to future work. We
note that for the Bolshoi simulation considered here, there
is no indication that orphans, assembly bias, or non-constant
parameters are required for galaxies with log(M∗) > 10.

We find that the v0,peak model is not able to provide an
acceptable fit to the data for any region in parameter space.
With respect to the correlation function alone, v0,peak is capable
of matching or exceeding the correlation function in all bins,
as shown in Figure 4 and with the wp(rp) constraint shown in
Figure 10. In fact, only the v0,peak model can produce a good fit
to all three stellar mass thresholds simultaneously. However, it
is not able to match either the central or satellite portions of the
CSMF. The central portion of the CSMF is offset somewhat low
in stellar mass, due to the increased number of bright satellites.
The high scatter and μcut needed to match the width of the
central CSMF and the high stellar mass wp also reduces the
number of satellites too much for both the central and satellite
parts of the CSMF to be fit simultaneously. Although this model
is ruled out by the data, the values with the best fit for the v0,peak
matching parameter are μcut = ∼0.14 and scatter of ∼0.24 dex.

6.2. Halo Properties for Satellite and Central Galaxies
in the Best-fit Model

The results shown in the previous section were all in observed
space. We now consider the properties of the underlying model
in our best-fit case. For the best-fit case, we use scatter of
0.20 dex, and μcut = 0.03, both well inside the constraints.
This is the best-fit model in the absence of the local averaging
procedure described above for estimating the constraints.

A series of general relationships between halo (or subhalo)
properties and galaxy stellar mass for our best-fit model are
shown in Figure 11. This shows the median values of various
halo properties in bins of stellar mass, split between satellite
and central galaxies. The relationship between vpeak and stellar
mass is nearly the same for both satellites and centrals. This
is as expected, since when abundance matching stellar mass to
halos sorted by vpeak we make no distinction between satellites
and centrals.

On the other hand, the satellite galaxies have significantly
lower vmax at the present time. This is sensible, as (sub)halos
with the same vpeak host galaxies with comparable stellar mass,
but satellite galaxies at that same stellar mass are in subhalos
with lower vmax due to stripping following accretion. As a
result, central galaxies with log(M∗) < 10.5 are in halos with
roughly 25% higher vmax than subhalos hosting satellite galaxies
with the same stellar mass. This difference increases to as
much as ∼35% at higher stellar mass. This result may be in
tension with a recent study of the variation of the Tully–Fisher
relation on environment using SDSS galaxies (Mocz et al. 2012),
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Figure 8. Comparison of observed galaxy statistics between SDSS DR7 and our best-fit model, which uses vpeak, μcut = 0.03 and scatter = 0.20 dex. Note that only
the CSMF and correlation functions with log(M∗) > 10.2 are used for fitting. Plots are the same as described in Figure 4.

(A color version of this figure is available in the online journal.)

which finds no dependence on environment. However, a direct
comparison is complicated by differences in the environment
definition from our designation of central and satellite galaxies,
as well as differences in sample selection, so we leave a precise
comparison to future work.

It is also noteworthy that for (sub)halos hosting lower stellar
mass galaxies, the subhalos have a much larger variation in vmax
than do the distinct halos. This is due to the wide variety in vmax
that may be associated with the same past vpeak, depending on
how much the individual subhalo has been stripped since it was
accreted.

The distribution of galaxies in the host halo mass at a fixed
stellar mass is an interesting complement to the CSMF. As one

might expect, satellite galaxies (and their subhalos) tend to be
hosted by significantly more massive distinct halos than central
galaxies of the same stellar mass. The variation in satellites’
host masses is also much larger at lower stellar mass, since a
relatively small subhalo may reside in a low-mass halo, as well
as a very massive dark matter halo. At higher stellar mass, this
relationship narrows, since only sufficiently massive dark matter
halos can host massive subhalos, and, hence, very massive
satellite galaxies. We refer to this host mass, of the distinct
halo containing a central or both a satellite and its subhalo, as
Mhost.

The variation in vpeak, vmax, or Mhost at fixed central stellar
mass is reduced as stellar mass decreases. This is most likely
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Figure 9. Maximum likelihood (black points) value of the scatter in each bin
in inferred host halo mass, marginalized over μcut, using constraints from the
conditional stellar mass function alone. Gray bands show the 68% bounds. The
scatter value is consistent with our overall best-fit scatter of 0.20 dex in the full
mass range from 1012 to 1014.

(A color version of this figure is available in the online journal.)

due to the fact that at high stellar mass, the SMF, as well as the
halo mass function and the circular velocity function, is much
steeper. Thus, at high stellar masses, a bin of fixed width yields
a wider range of values in the circular velocities or host halo
mass.

6.3. Best-fit Conditional Stellar Mass Function

Following Yang et al. (2009) and Cacciato et al. (2009), we
fit the central galaxies with a log-normal function. We find
that a Schechter function is sufficient for the satellite galaxies
(as has been found previously; see, e.g., Moster et al. 2010).
When we perform fits to the CSMF, we adopt the following
parameterization of these quantities, using in all cases the
differential d log(M∗):

Φc(M∗|Mhost) = 1√
2πσ 2

c

exp

(
− (log M∗ − log M∗,c)2

2σ 2
c

)
(3)

Φs(M∗|Mhost) = φ∗

(
M∗
M∗,s

)α+1

exp

(
− M∗

M∗,s

)
. (4)

Thus, the central galaxies are characterized by two param-
eters: M∗,c, which is the geometric mean of the central stellar
mass, and σc, which is the width of the log-normal distribu-
tion in dex. Both are closely related to the scatter in the model,
as described below. The satellite galaxies are described by the
usual three parameters of a Schechter function. Here, M∗,s is
the cutoff luminosity, α the faint-end slope, and φ∗ the overall
normalization. Unlike in Yang et al. (2008, 2009), we choose not
to fix the relationship between M∗,c and M∗,s explicitly. These
results are compared to others in the literature in Section 7.

The results of fitting to the intrinsic CSMF can be seen in
Figure 12. This is the CSMF in the Bolshoi simulation, using
our best-fit model, and without observational complications
(e.g., group finding). Here, a galaxy is a satellite if its halo
is a subhalo. This is the same model as shown in Figure 8;
the main difference between the two is that the intrinsic CSMF
does not require that the central galaxy has the most stellar

Figure 10. Same as Figure 7, but using v0,peak, and using data for galaxies with
log(M∗) > 10.2. Levels give P (>χ2), corresponding to 1σ , 2σ , 3σ , and 5σ

contours. The only constraint plot shown is that for the two-point correlation
function. The CSMFs have such high χ2 values that they are all completely
excluded over this parameter space at the 5σ level.

(A color version of this figure is available in the online journal.)

mass, a necessary assumption of the group-finding algorithm.
This produces the sharp central peak that can be seen in Figure 8
and the other comparison figures. However, as can be seen in
Figure 12, the underlying distribution is much broader. This is
primarily due to the 0.20 dex scatter in this model, with a small
contribution from the finite size of the mass bin.

A few additional intrinsic measurements are shown in
Figures 13 and 14. For all of these plots, we extrapolate our
SMF down to stellar masses of 108 M� h−2. Figure 13 shows
the intrinsic satellite fraction and scatter, which may be con-
trasted with the mock observed values in Figure 8. Notably, in
the intrinsic case, the satellite fraction flattens below the cutoff
stellar mass of log(M∗h2/M�) = 9.8 in our volume-limited
sample. The scatter in central stellar mass at fixed group total
stellar mass shows the same trend as in the observed case, with
low scatter at low stellar masses due to the fact that the central
contributes nearly all of the stellar mass. However, because no
group finding is involved to artificially reduce the scatter for
groups with many galaxies, it reaches ∼0.2 dex at the massive
end.

We also show the more finely binned trends in the character-
istic group stellar mass, central galaxy stellar mass, and satellite
galaxy stellar mass in Figure 14. At low host masses, there are
few satellite galaxies with even 108 M� h−2 solar masses, and
so the measured M∗,s is not reliable below log Mhost ∼ 11.5.
The central stellar mass and satellite stellar mass M∗,s are only
slowly changing for host halo masses above ∼1013 M� h−1, and
then fall off at lower host halo masses. Note that the ratio be-
tween central galaxy stellar mass and satellite stellar mass M∗,s

is roughly constant over a broad range in host halo mass, which
is in general agreement with results from Yang et al. (2009).
This figure includes some of the results of a fit parameterized
to host halo mass, which works well for Mhost > 1012 M� h−1

and is discussed in the next section.

6.4. Conditional Stellar Mass as a Function of Halo Mass

To more generally describe the CSMF, we take the parameters
from Equations (3) and (4) to be functions of host halo
mass.
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Figure 11. M∗ relationship with vpeak (top left), vmax (top right), host halo mass (bottom left), and peak (sub)halo mass (bottom right) for the best-fit model, with
matching based on vpeak, with 0.20 dex scatter and μcut = 0.03. Blue indicates centrals, green, satellites. Solid black lines are the median of the total (satellites plus
centrals). Solid lines are the median values of vmax or vpeak for bins in M∗. Dashed and dotted lines contain given the 68% and 95% bounds on galaxies in each bin,
centered at the median. Although the central and satellite distributions are similar in vpeak due to how the catalog is constructed, satellites typically have lower vmax
and larger dispersion due to stripping after accretion. (All units are given with h = 1.)

(A color version of this figure is available in the online journal.)

For the central CSMF, the mean stellar mass is defined by

log(M∗,c) = log(M0) + g1 log

(
Mhost

M1

)

+ (g2 − g1) log

(
1 +

Mhost

M1

)
, (5)

where M0 is a characteristic stellar mass, M1 is a characteristic
host halo mass, and g1 and g2 are power-law slopes. Mh is the
host halo mass. The width σc of the log-normal function is
assumed to be constant as a function of host halo mass.

The satellite CSMF is determined by the three Schechter
function parameters, φ∗, α, and M∗,s :

φ∗ =
(

Mhost

Mφ

)a

(6)

log(M∗,s) = log(M∗,0) + b log

(
Mhost

M∗,1

)
− b log

(
1 +

Mhost

M∗,1

)
.

(7)

The slope α is assumed to be constant as a function of halo
mass. Based on Figure 12 and the individual fit results in Table 2,
it is evident that α varies significantly from one fit to another
without a commensurate variation in the shape of the satellite

CSMF. This is due to the fact that when limiting the fit to stellar
masses log(M∗) > 9.8 we lose constraining power on the low-
mass slope, and it becomes degenerate with the other satellite
parameters. When we consider the extrapolation to lower stellar
mass, we find that the slope at all host masses converges to
α ∼ −1. There, we hold α = −1 fixed.

We then fit this functional form to the binned CSMF data. The
parameters for the resulting fit are in Tables 4 and 5 for the DR7
input SMF. The overall result of this fit is shown in Figure 15,
which clearly reproduces the data well. Some comparisons of
the parameters as a function of halo mass are shown in Figure 14
as discussed in the previous section.

6.5. Best-fit Halo Occupancy Distribution

The HOD may be used, for instance, to predict or fit to
galaxy clustering (Zheng et al. 2007; Watson et al. 2011; Zehavi
et al. 2011). The HOD is defined in part by P (N |Mh), the
probability of finding N galaxies of some type in a halo of mass
Mh. The common procedure takes galaxies brighter than some
fixed stellar mass M∗,min as the type of interest. In this case,
the expectation of the HOD may be obtained directly from the
CSMF:

〈N (Mhost)〉 =
∫ ∞

M∗,min

Φ(M∗|Mhost)dM∗. (8)
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Figure 12. CSMF fits for the best model. Black is the overall CSMF; blue, central galaxies only; green, satellite galaxies only. Solid lines are the respective fits. Labels
give the host mass range in log(M� h−1). Equations (3) and (4) describe the fit, while Table 2 lists the parameters. Error bars include estimated systematic errors.

(A color version of this figure is available in the online journal.)

Table 2
Intrinsic CSMF Fit Parameters for Best-fit Model

Mhost log(M∗,c) σc φ∗ α log(M∗,Sch) No. of Hosts
(log(M� h−1)) (log(M� h−2)) (log(M� h−2)) (log(M� h−2)−1) (log(M� h−2))

12.0–12.3 10.232 ± 0.001 0.218 ± 0.001 0.652 ± 0.059 −0.98 ± 0.16 9.92 ± 0.04 27948
12.3–12.6 10.383 ± 0.002 0.212 ± 0.001 1.56 ± 0.08 −0.76 ± 0.10 10.01 ± 0.02 14983
12.6–12.9 10.500 ± 0.002 0.205 ± 0.001 3.40 ± 0.09 −0.41 ± 0.08 10.04 ± 0.02 7814
12.9–13.2 10.591 ± 0.003 0.209 ± 0.002 6.07 ± 0.22 −0.62 ± 0.06 10.17 ± 0.02 4000
13.2–13.8 10.656 ± 0.004 0.206 ± 0.002 13.5 ± 0.5 −0.74 ± 0.04 10.27 ± 0.01 2896
13.8–14.5 10.748 ± 0.009 0.213 ± 0.004 42.5 ± 2.3 −0.95 ± 0.05 10.38 ± 0.02 595

Table 3
Intrinsic HOD Fit Parameters for Best-fit Model

M∗ Threshold (Mr − 5 log(h)) log(Mmin) σm log(M1) log(Mcut) αHOD No. of Galaxies
(log(M� h−1)) (log(M� h−1)) (ln(M� h−1)) (log(M� h−1)) (log(M� h−1))

10.76 −21.5 13.71 ± 0.03 2.30 ± 0.06 14.31 ± 0.13 13.1 ± 0.5 0.97 ± 0.30 4437
10.54 −21.0 12.924 ± 0.006 1.75 ± 0.01 13.74 ± 0.15 12.8 ± 0.3 0.94 ± 0.21 18062
10.31 −20.5 12.318 ± 0.002 1.161 ± 0.002 13.30 ± 0.17 12.6 ± 0.2 0.93 ± 0.17 49715
10.07 −20.0 11.950 ± 0.001 0.9000 ± 0.0007 12.98 ± 0.18 12.4 ± 0.2 0.94 ± 0.15 103904
9.82 −19.5 11.6336 ± 0.0001 0.6248 ± 0.0001 12.76 ± 0.17 12.2 ± 0.2 0.95 ± 0.13 174932
9.54 −19.0 11.4588 ± 0.0002 0.6047 ± 0.0001 12.59 ± 0.16 12.0 ± 0.2 0.96 ± 0.11 261915

Table 4
CSMF Mass-dependent Fit Parameters—Centrals

SMF log(M0) log(M1) g1 g2 σc

(log(M� h−2)) (log(M� h−1)) (log(M� h−2))

VAGC 10.64 ± 0.03 12.59 ± 0.10 0.726 ± 0.055 0.065 ± 0.021 0.212 ± 0.001
Y09 10.96 ± 0.05 12.94 ± 0.12 0.644 ± 0.028 0.155 ± 0.031 0.215 ± 0.001
B12 10.77 ± 0.01 12.40 ± 0.05 0.947 ± 0.061 −0.003 ± 0.003 0.213 ± 0.001
M12 10.56 ± 0.07 12.21 ± 0.20 1.19 ± 0.26 0.224 ± 0.017 0.218 ± 0.002
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Table 5
CSMF Mass-dependent Fit Parameters—Satellites

SMF log(M∗,0) log(M∗,1) b log(Mφ ) a
(log(M� h−2)) (log(M� h−1)) (log(M� h−1))

VAGC 10.401 ± 0.008 12.71 ± 0.08 0.753 ± 0.063 12.30 ± 0.01 0.866 ± 0.010
Y09 10.664 ± 0.008 12.60 ± 0.07 0.948 ± 0.083 12.42 ± 0.01 0.881 ± 0.006
B12 10.538 ± 0.006 12.35 ± 0.09 1.26 ± 0.16 12.43 ± 0.01 0.951 ± 0.007
M12 10.553 ± 0.009 12.65 ± 0.08 0.986 ± 0.092 12.41 ± 0.01 0.875 ± 0.007

Figure 13. Additional measures of the intrinsic distribution of galaxies in our
best-fit model. Top: intrinsic satellite fraction as a function of stellar mass.
Because the input SMF only extends down to log(M∗) = 9.8, stellar masses
below this cutoff are drawn from a power-law extrapolation to the input SMF.
Bottom: scatter in central galaxy stellar mass as a function of total group mass.
Note the difference between the intrinsic scatter shown here and the smaller
“observed” scatter after group finding shown in Figure 8. In both cases, this
scatter becomes poorly defined for groups with no galaxies above the stellar
mass cutoff.

Similar to the CSMF, the HOD may also be split into central
and satellite contributions, with 〈N (M)〉 = 〈Nc〉 + 〈Ns〉. The
central portion may be described by a step function, with a
cutoff of some width. Thus, there is some minimum host mass,
Mmin, below which the halo is too small to host a central galaxy
brighter than M∗,min. Above Mmin, each halo typically hosts
one central galaxy; below Mmin, each typically hosts none. The
satellite galaxies are a different matter, generally well described
by a power law, with some cutoff at or above Mmin. Below this
cutoff there are very few satellite galaxies.

Figure 14. Measures of the intrinsic distribution of galaxies in our best-fit model.
Top: median central mass (M∗,c), median total group stellar mass (M∗,tot) for
two different stellar mass thresholds, and the fitted M∗,s to a Schechter function
in narrow mass bins (triangular points). Solid lines are the fitted values of
M∗,c and M∗,s as discussed in Section 6.4. The x’s with error bars indicate the
M∗,c and M∗,s fitted values in the individual mass bins used for observational
comparisons. Center: ratio of the median central stellar mass to the median
total group stellar mass, as a function of host halo mass. This becomes less
meaningful as the central comes to dominate the group’s stellar mass. Bottom:
ratio of characteristic satellite stellar mass M∗,s to the median central stellar
mass. Note that this is fairly constant at log(M∗,c/M∗,s ) ∼ 0.28. The solid line
indicates the difference in the host mass dependent fits for M∗,c and M∗,s . In all
cases, cuts in stellar mass are given in log(M� h−2).

(A color version of this figure is available in the online journal.)

While the usual approach to determining the HOD is to
perform a fit to the clustering and number density data, we
instead use the information on group association available in
the simulations to measure the HOD directly. This is done by
counting all galaxies above some stellar mass for each (host)
halo of a given mass, then averaging over all halos.
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Figure 15. Comparison of the best-fit model with the DR7 SMF (points) against the full fit using host halo mass dependent parameters (lines). Host halo mass ranges
are given in log(M� h−1). Error bars include estimated systematic errors.

(A color version of this figure is available in the online journal.)

We fit the following functional form to the HODs drawn from
these catalogs:

〈Nc〉 = 1

2

(
1 + erf

(
ln Mhost − ln Mmin

σm

))
(9)

〈Ns〉 =
(

Mhost

M1

)αHOD

exp

(
− Mcut

Mhost

)
. (10)

Mmin is, as described above, the cutoff in the central galax-
ies. The error function provides a smoothed step function that
reproduces the form of the central galaxies, whose width is char-
acterized by the parameter σm. The satellites are characterized
by Mcut, the cutoff below which galaxies of the given type are
not expected to have satellites, the scale M1 at which the galaxies
typically have one satellite, and αHOD, the power-law slope. All
mass scales increase as the stellar mass of the selected sample
increases. These fits are presented in Figure 16.

Our model may be compared against the Zehavi et al. (2011)
HODs fitted from clustering. An exact comparison requires the
use of luminosity rather than stellar mass (see Appendices C
and D for the results using r-band luminosity). Our stellar mass
results show the same general trends, that is, a satellite slope
of αHOD consistent with one for all thresholds, decreases in all
three mass scales with decreasing stellar mass, and decreasing
σm with decreasing stellar mass. However, there are differences
in detail. We find that σm is significantly larger, and necessarily
nonzero, for all thresholds we consider. We also find a higher
value of Mmin at each threshold. This is likely due in part
to the degeneracy between Mmin and σm when estimating the
HOD from clustering. However, it remains possible that these
differences are attributable to the use of stellar mass rather than
luminosity.

7. COMPARISONS WITH OTHER MEASUREMENTS

7.1. Stellar Mass Function

The precise SMF we use has a significant impact on the
results and implications of our model. In other words, abundance
matching is systematically dependent on the SMF used. For
comparison, we consider several different SMFs from the
literature, with the intent of examining how abundance matching
behaves with different input. The set of SMFs we now consider
is shown in Figure 17.

We give significant attention to the previous study of groups
from Yang et al. (2009), of which further related details
are available in Yang et al. (2005, 2007, 2008). While they
use the mass-to-light ratios and g − r colors based on Bell
et al. (2003), the SMF from DR7 in our volume-limited
catalog uses Kcorrect stellar masses from the template method
of Blanton & Roweis (2007). This difference in approach
introduces in effect an offset and scatter between the two
definitions of stellar mass, preventing a straightforward galaxy-
by-galaxy comparison. Additionally, the Bell et al. (2003) stellar
masses effectively assume a Kroupa (2001) initial mass function
(IMF), while we assume Chabrier (2003). The change in IMF
produces an offset in stellar mass (see Figures 17 and 18).

We note that the Yang et al. (2009) results treat fiber-collided
galaxies differently. In general, the Yang et al. (2009) group
catalog results we consider in the next section exclude fiber-
collided galaxies for which redshifts from other surveys are not
available. We do not expect this to produce significant changes,
as only 5% of galaxies are fiber collided in our mocks, and many
of those are collided near their true redshifts.

In addition to the group catalog and associated SMF of Yang
et al. (2009), we consider two additional recent measurements
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Figure 16. HOD fits for the best model. Black is the overall HOD; blue, central galaxies only; green, satellite galaxies only. Solid lines are the respective fits. Cuts in
stellar mass are given in log(M� h−2). Error bars have been omitted from the centrals and satellites for clarity. The HOD fit is presented in Equations (9) and (10),
with parameters listed in Table 3.

(A color version of this figure is available in the online journal.)
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Figure 17. Four stellar mass functions from the SDSS local data. The NYU-
VAGC (black) was used to fit our model parameters and tests its validity; we
repeat our calculations using the others to understand the sensitivity to this
global measurement. The Yang et al. (2009) stellar mass function (green) is
drawn from a sample used in a previous study of the CSMF. For Baldry et al.
(2012), we show both the data (square points) and their fit (line), the latter of
which we use in later model tests. Finally, we also show Moustakas et al. (2013),
a recent result based on SDSS combined with additional multi-wavelength data
and a full Bayesian analysis of SEDs to derive stellar masses.

(A color version of this figure is available in the online journal.)

of the SMF. The first is that of Baldry et al. (2012), which applies
a color-based method of estimating stellar mass which is similar
in form to that of Bell et al. (2003). The data they use are drawn
from the Galaxy and Mass Assembly survey at z < 0.06. The
second is Moustakas et al. (2013), which combines SDSS data

with additional UV and IR photometry. From this data, they
obtain accurate stellar masses using spectral energy distribution
(SED) modeling. Their stellar population synthesis assumes a
Chabrier (2003) IMF.

7.2. Intrinsic Conditional Stellar Mass Function

Two different intrinsic CSMFs can be seen directly compared
in Figure 18, where the difference is the SMF input. Here,
abundance matching was performed using both our VAGC
derived SMF and that of Yang et al. (2009). We use the best-fit
parameters found in Section 5 in both cases. It is clear that the
Yang et al. (2009) CSMF generally has higher stellar mass, as
expected from the change in input SMF seen in Figure 17. To
more precisely quantify this difference, we fit to the intrinsic
CSMF found in each of the mock catalogs produced for all four
input SMFs. The fit is done as a function of host halo mass,
using the parameters from Equations (3) and (4) as described in
Section 6.4.

Using this overall parameterization allows a comparison
between the two different SMF cases, as shown in Tables 4
and 5, by comparing just these 11 parameters for the two cases.
Fits were done using the midpoint host mass value in each bin.
The VAGC fit is demonstrated in Figure 15, and the fits to all
four intrinsic CSMFs are shown in Figure 19. The parameters
in Tables 4 and 5 demonstrate primarily the shift in stellar mass
that is also visible in the figure. Note the increase in the central
mass scale M0 from our VAGC SMF to the Yang et al. (2009)
result. The host halo mass scale, where the central stellar mass
turns over from increasing significantly with host halo mass
to a more shallow increase, is also higher in the Yang et al.
(2009) case. This is most likely indicative of the change in
the SMF relative to the host halo mass function, particularly
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Figure 18. Comparison of the results of our best-fit abundance matching model using the SMF drawn from our volume-limited samples (centrals in blue, satellites
in green) and using the SMF reported in Yang et al. (2009) (centrals in red, satellites in magenta). Ranges in host halo mass are given in log(M� h−1). The primary
difference between the two cases is the stellar mass definition: while we use the stellar masses from Kcorrect as described in Blanton & Roweis (2007), Yang et al.
(2009) use stellar masses from Bell et al. (2003), resulting in an offset.

(A color version of this figure is available in the online journal.)

since only the high host mass slope changes significantly. The
scatter in the centrals remains about the same, as expected from
the fixed input model. The other two SMFs generally produce
intermediate mean central stellar masses, in agreement with the
different SMFs presented in Figure 17.

The VAGC version does have lower M∗,s in general, as
suggested by the slightly lower intercept value. The slightly
steeper change in M∗,s with host halo mass, as indicated by the
b parameter, also pushes the characteristic stellar mass higher
in the Yang et al. (2009) case. Changes in φ∗ are somewhat
more difficult to interpret, though the individual values remain
similar in normalization. This is likely due to the presence of
the same subhalos determining how many satellites are in each
group. Most of the variation in the satellite parameters among
the different SMFs stems from changes in the M∗,s value and
how it changes with Mhost. On the other hand, φ∗ has similar
variation with group host halo mass, regardless of the SMF used.

7.3. Observed Conditional Stellar Mass Function

Direct comparisons made of the fitted CSMF results drawn
from Yang et al. (2009) to our model CSMF using their SMF
are shown in Figure 20. Both versions, with and without
observational systematics, were done using our best-fit model
(vpeak, scatter = 0.20 dex, μcut = 0.03) applied with the SMF of
Yang et al. (2009).

It is important to note the systematic differences imposed
by the slightly different group finding done in these two cases.
The Yang et al. (2009) results use both r-band luminosity and
stellar mass information. They define their groups by requiring
that at least one galaxy in each group to have 0.1Mr < −19.5.

They then use either the group total luminosity or stellar mass
of all galaxies that pass that luminosity limit to assign host halo
masses. They find limited differences between these using total
luminosity or stellar mass. They also use the same assumption
we do that the galaxy with the most stellar mass is the central
galaxy.

However, the fact that their limit is a cut in luminosity rather
than stellar mass significantly alters the shape of the CSMF at
low host halos masses (poor groups). This effect is most clearly
seen in the 12 < log(Mhost) < 12.3 bin of Figure 20, which
compares their results with our model, including the effects of
group finding. In the Yang et al. (2009) result, their overall
cut on galaxies to include is in luminosity, rather than stellar
mass. This means that stellar mass of the central galaxy is not
directly determining the host halo mass at low host masses,
smoothing out the distribution. Aside from this difference in the
low host mass bins, there is generally good agreement between
our “observed” model results and these measurements.

A comparison of the intrinsic model results with these
measurements is also shown in Figure 20. This demonstrates
directly some of the effects of the group finding. Most obvious
is the fact that the group finding reduces the width of the central
distribution, as well as introducing the extra feature in low-
mass host halos described above. There is also some offset in
the centrals between these two cases, most likely due to the fact
that the group finding assumes that the most massive galaxy
in a group must be the central, pushing the observed centrals
to being more massive in general. Additional, the cutoff in the
satellite distribution is much sharper after group finding. This
is also due to the assignment of the most massive galaxy in
the group as the central, since more massive satellites are more
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Figure 19. Comparison of fits to the intrinsic CSMF for our model using four different stellar mass functions, using the prescription discussed in Section 6.4. Blue
lines indicate the central part of the CSMF, and green, the satellites. Solid lines show our main results, using the VAGC CSMF, the same as shown in Figure 15. Dotted
lines show the Yang et al. (2009) SMF. Dashed lines indicate the fit to our model using Baldry et al. (2012). Dot-dashed lines show Moustakas et al. (2013). Ranges
in host halo mass are given in log(M� h−1). Note how the cutoff of the satellite stellar mass and the mean central stellar mass vary with the massive end of the SMFs
shown in Figure 17.

(A color version of this figure is available in the online journal.)

Figure 20. Results of our best-fit model using the SMF of Yang et al. (2009) before (diamonds, centrals in blue, satellites in green) and after (squares, centrals in red,
satellites in magenta) the application of observational effects (group finding and fiber collisions), compared to the measurements of Yang et al. (2009) (solid lines: blue
for centrals and green for satellites). Ranges in host halo mass are given in log(M� h−1). The main difference in these two cases lies in the details of the group-finding
procedure.

(A color version of this figure is available in the online journal.)
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likely to be reassigned as the central. This imposes an extra cut
on the satellite distribution. Therefore, it is likely that the sharp
cutoff imposed on the satellite galaxies in the CSMF fits of Yang
et al. (2009) is not purely physical, but convolved with the group
finding.

7.4. Comparisons to Previous Work

There has been significant work in the literature regarding
the question of the galaxy–halo connection. We consider a few
recent examples in relation to our study.

The work of Wetzel & White (2010), using an abundance
matching model based on Macc, considered in detail the effect of
satellite disruption in a form similar to our μcut on the clustering
and satellite fraction of galaxies. They examine the disruption
of satellites when the fraction finf = Macc/M0 of the subhalo
falls below some threshold, up to finf = 0.1. They find that
values of finf = 0.1–0.3 at z = 0.1 best reproduces observables,
which is reassuringly similar to our preferred values for μcut.
Another study was done in Watson et al. (2012) using a similar
abundance matching method. They specifically addressed the
stellar mass loss of satellite galaxies and the transfer of stellar
mass into the intra-halo light. They considered two separate
models for stellar mass loss after a subhalo was accreted. The
main property of the model was gradual stellar mass loss at
a rate related to the loss of dark matter after the subhalo
was accreted. This is related to our consideration of the μcut
parameter, though our simpler implementation assumes that the
galaxy in the subhalo is rapidly destroyed after the subhalo
mass falls below a threshold. They succeed in reproducing the
clustering measured in Zehavi et al. (2011), including the low-
luminosity thresholds. This difference may be accounted for
by several differences in implementation. They use a slightly
lower scatter (0.15 dex) which increases the overall clustering.
They also use an analytic model for substructure (Zentner et al.
2005) rather than an N-body simulation, which permits them
to track subhalos at far lower circular velocities. Nonetheless,
their successful implementation is supportive of the general
principle of abundance matching. Because their work shows
that the satellite galaxies with the least stellar mass should also
be those that are most stripped of stellar mass relative to their
dark matter stripping, we suspect that the low clustering in our
low stellar mass bin may be due to the loss of a few subhalos in
the simulated clusters.

Another related study was done by Moster et al. (2010).
They assign stellar masses using the peak subhalo mass and
the present halo mass. Their work also relies on the inclusion
of orphan galaxies, which may be more necessary in their work
as they use a dark matter simulation with lower force resolution
than Bolshoi. Rather than performing strict abundance matching
using an input SMF, they assume an analytic form for the
relationship between galaxy stellar mass and halo (or subhalo)
mass. They then require that the model SMF is an adequate fit to
that measured in SDSS (in this case, SDSS DR3). Because they
use a different SMF and cosmological model, the results are
slightly tricky to compare, but we note that overall their central
galaxies are brighter with respect to satellites than both our
model and the model of Yang et al. (2012). They successfully
reproduce the two-point clustering, but do not compare with the
observed CSMF, which we show provides a tighter constraint.
They also note that when they use abundance matching instead
of their stellar-mass–halo-mass relation, that the low halo mass
end (Mhost < 1012 M�) of the relationship is significantly
different from the power law that they assume, and add another

parameter to fit this result. The general Moster et al. (2010) form
may be too restrictive at low stellar masses (see discussion in
Behroozi et al. 2013a), but this halo mass is generally below
what we consider.

The simple assumption in our models that scatter is constant
may be modified by allowing the scatter to vary with galaxy
stellar mass, halo mass, or some other halo property such as vmax.
While the analytical model of Yang et al. (2012) incorporates
these effects, it is likely that not all are necessary modifications.
Another related approach was used by Neistein et al. (2011b),
who use a shuffle test to determine that abundance matching
may require a dependence on the host halo mass, in addition
to Macc, which is explored further in Neistein et al. (2011a).
However, they consider only the SMF and the correlation
function of galaxies in their sample, and they use only the
infall mass (and host halo mass) for their abundance matching.
Our analysis considers only a model with no dependence on
the host halo mass. However, a more direct comparison to the
results of Neistein et al. (2011a) is not immediately possible
due to the difference in matching statistics (Macc as opposed
to our preferred vpeak). Regardless, degeneracies between their
different models would be broken by including a comparison to
the CSMF or similar group statistics.

An alternative abundance matching approach involves di-
viding subhalos and isolated host halos prior to abundance
matching, and applying different matching functions to each.
Rodrı́guez-Puebla et al. (2012) investigate this, decomposing the
overall SMF into central and satellite components, and match-
ing these separately to the halos and subhalos, respectively.
They find that when matching against the mass of subhalos at
accretion or at the present time, the satellites must have more
stellar mass than would be inferred from applying the stellar-
mass–halo-mass relation derived for the central galaxies. This
is in general agreement with our findings as well, since the M0
and Macc direct abundance matching models have a deficit of
satellites. Further, the preferred matching to vpeak naturally gives
the subhalos of satellites higher vpeak than the halos of central
galaxies, and thus, more stellar mass at fixed Mpeak, as shown in
Figure 2.

In contrast with our comparisons to observations, Simha et al.
(2012) make a comparison between abundance matching in a
purely dark matter simulation and in a dark matter simulation
with the addition of gas hydrodynamics and prescriptions for
star formation and feedback. The two simulations use the same
initial conditions. They generally find good agreement between
these cases, but there are indications of incompleteness or
premature galaxy disruption at low stellar masses. However,
the resolution of their dark matter simulations is not as good as
that of the Bolshoi simulation that we use. Based on the results
of a resolution test presented in Appendix B, we find that these
discrepancies are all below the mass at which the simulation
used there is able to track the full population. We thus expect
that these discrepancies are primarily due to limited resolution,
and not to failures of the abundance matching approach. Higher-
resolution hydrodynamical simulations will be required to verify
this.

One set of measurements complementary to our own are
presented in More et al. (2009). Rather than using the total
group stellar mass or luminosity to determine the mass of a
halo, they instead use satellite kinematics to determine the mass
of a halo around a central galaxy. They obtain a relationship
between central galaxy luminosity and host halo mass, with
a scatter of 0.16 ± 0.04 dex at fixed host halo mass. This is
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somewhat low relative to our constraints for the luminosity
model (σ = 0.22+0.01

−0.02, see Appendix C for details), but our
result is still within two standard deviations of theirs.

8. SUMMARY

We have used an analysis of the Bolshoi cosmological simu-
lation to examine the correlation functions and CSMFs of sev-
eral different models for the connection between galaxies and
halos which are variants of the subhalo abundance matching
approach. We have compared these models against data drawn
from SDSS, using new measurements of the two-point corre-
lation function as a function of stellar mass and the CSMF in
groups. All CSMF comparisons between models and data are
done in “observed space,” after applying group finding and fiber
collisions to our models. Our study is the first to combine this set
of measurements in a fully self-consistent way to test a model
which assigns all galaxies to resolved subhalos in a simulation.
From these results, we have reached the following conclusions.

1. An examination of the correlation function shows that most
of the halo mass properties used as proxies for stellar mass
that we considered cannot reproduce the data regardless
of the parameters used. This includes abundance matching
models where the halo property used is M0, Macc, Mpeak,
M0,peak, vmax, and vacc. Each of these models is insufficiently
clustered even in cases with no scatter and μcut = 0. Because
nonzero scatter and μcut only reduce galaxy clustering,
we exclude those models. The only exceptions are vpeak
and v0,peak. This exclusion applies only to this particular
family of models, and cannot be applied to models with
significantly different methodology, such as those which
incorporate orphan galaxies.

2. Our best-fit model uses vpeak, with μcut = 0.03 and scatter
of 0.20 dex. This scatter is effectively the combination
of intrinsic scatter in stellar mass and scatter from the
measurements because we do not distinguish between them.
This model provides a good fit to the combined constraints
of the clustering for galaxies with log(M∗) > 10.2, the
mean and dispersion of the central galaxies in bins of host
mass (in the CSMF), and the satellite distribution in the
CSMF, both for galaxies brighter than log(M∗) > 9.8.

3. The v0,peak model provides significantly poorer fits to the
data overall that vpeak. It can marginally fit the clustering
data alone, but cannot fit the satellite CSMF and is strongly
ruled out by the combined data. The increased stellar mass
of satellites relative to central galaxies forces the mean
stellar mass of the central CSMF slightly low. The high μcut
needed to match the clustering also reduces the satellite
fraction at low stellar masses too much to reproduce the
satellite distribution.

4. The scatter is most strongly constrained by the width
and mean of the distribution of galaxies in groups, both
centrals and satellites. Thus, the central CSMF provides
the sharpest limit. This strongly excludes zero (or very low)
scatter, and scatter above 0.25 dex. We estimate scatter of
σ = 0.20 ± 0.03 dex in stellar mass at fixed vpeak.

5. We explicitly test the mass dependence of the scatter value,
using the CSMF in bins of total stellar mass, and find that
it is consistent with being constant for the galaxies living
in halos from 1012 to 1014 M� h−1. Changes by more than
0.1 dex over this range are ruled out.

6. The value of μcut is only weakly constrained for the
vpeak model. A value of zero is weakly disfavored by the

CSMF; the correlation function disfavors values above 0.08.
Marginalizing over scatter results in a 1σ upper limit of
μcut < 0.07.

7. The projected correlation function using this vpeak model
is low for the log(M∗) > 9.8 threshold at small scales.
This may be due to loss of a few low stellar mass
satellites, suggesting that even the Bolshoi simulation may
be inadequate at tracking subhalos at these masses, and that
properly reproducing the galaxy distribution may require
the inclusion of orphan galaxies. Another possibility is that
our model is too simple; loss of substructures is degenerate
with a mass dependence in the μcut parameter, which could
have similar impact on the satellite fraction. Alternatively,
the discrepancy may be due to inadequately modeling the
observational effects on galaxies at these stellar masses
when calculating the correlation function.

8. The fact that only the vpeak model is capable of reproducing
the data indicates that satellites typically have more stellar
mass than central galaxies for a given (sub)halo mass such
as Mpeak. This is in general agreement with other recent
models, such as those of Guo et al. (2011), Neistein et al.
(2011a), Rodrı́guez-Puebla et al. (2012).

The subhalo abundance matching model presented here is
capable of reproducing all the trends expected from the mea-
surements we consider, particularly the projected correlation
function and the CSMF, when specific assumptions are made
about the parameter on which to abundance match, the value of
the scatter, and the halo stripping required to remove a galaxy
from the sample. This is true even for the simple assumptions
used—fixed scatter in stellar mass, and no dependence on when
vmax is assigned to satellites.

Using this model, the data are only reproduced within the
very small statistical errors for log(M∗) � 10.0. Below this
stellar mass there appears to be slightly fewer satellites in the
model. Possible explanations include observational systematics,
required variation in the mass threshold for destroying satellites,
or the need for inclusion of subhalos below the resolution limit
of the simulation. In the context of the current approach, we
cannot distinguish between these. We intend to revisit this issue
in the future using a combination of data that is complete to
lower stellar masses and higher-resolution simulations.

In this work, we have only tested a single cosmology. The fact
that the CSMF and correlation function can be well reproduced
suggests that our chosen cosmology is very close to the correct
model. This is further supported by the fact that we well
reproduce other measures not directly used to constrain the
model parameters, in particular, the group total SMF, which
depends on the halo mass function (and thus on σ8) for a given
clustering strength.

We also focus primarily on the results using the Rockstar
halo finder. Using the BDM halo finder (Klypin et al. 1999) does
not produce significantly different results. However, there are
slightly fewer galaxies in the model applied to the BDM halos
than in the Rockstar case, most likely because Rockstar finds
more substructure, particularly near the centers of halos.

This same analysis may be applied to samples based on
luminosity, rather than stellar mass. While the framework
remains unchanged, the results may be slightly different, as
a galaxy remaining at fixed stellar mass after being accreted
will dim in luminosity as its stars age. This will reduce the
luminosity of satellites compared to centrals, unlike stellar
mass. At a given number density of objects, this will mean
that the satellite fraction at the specified luminosity should
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Figure 21. Left: effect of group finding on the satellite fraction. The intrinsic satellite fraction in the model (black) is significantly higher than when reassigning the
brightest cluster galaxy as the central (blue) in galaxies with high stellar masses. This is because the nonzero scatter allows a significant number of true satellites to
be scattered up in stellar mass, increasing the satellite fraction of massive galaxies. This effect increases with scatter; in a zero-scatter model, the change is negligible.
This is also the primary difference between the intrinsic satellite fraction and that obtained via the group finder (green). All lines are for the vpeak, μcut = 0, scatter =
0.20 dex model. Right: fraction of central galaxies where at least one satellite in the same halo has higher stellar mass. The result is shown on the mocks for two
different simulation, the Bolshoi simulation (black) and the Consuelo simulation (red) which is lower resolution. These both use a model with stellar mass, vpeak,
μcut = 0.03, and scatter of 0.20 dex. Error bars show statistical jackknife errors. The gray band gives the resulting range in the fBNC fraction given the 1σ range in
scatter for the fitted Bolshoi model. This probability is also shown for two other values of scatter (0.30 dex and zero) in Bolshoi, which are ruled out by the data.

(A color version of this figure is available in the online journal.)

be slightly lower than the satellite fraction at the equivalent
stellar mass. A demonstration of this difference may be seen
in Appendix C. While the scatter estimated by this method is
similar (∼0.20 dex), it produces a significantly higher value of
μcut = 0.13 (versus 0.03 for stellar mass), and a resulting lower
satellite fraction.

In the local universe, further improvements may be possible
by including additional measurements in a self-consistent ap-
proach, including the velocity dispersion of galaxies in groups,
galaxy–galaxy lensing, the Tully–Fisher relation (as was done
by Trujillo-Gomez et al. 2011), and the properties of bright
galaxies (e.g., Hearin et al. 2013). Additional constraints on
the bright sample are also possible using larger volume. Future
work may determine how well this model performs at higher
redshift. At present, the study is only possible at this level of
detail in the local universe, but larger spectroscopic samples
are becoming available at higher redshift. An extension of our
modeling approach to photometric data will be important to
take account of the large amount of information from upcoming
imaging surveys.

The detailed understanding of the galaxy–halo connection
we have presented here has implications for a wide range of
areas in galaxy formation and cosmology. We expect the con-
straints provided on the intrinsic CLF will be very helpful in
constraining semi-analytic galaxy formation models and hydro-
dynamical simulations. These constraints can also be used to
implement CLF- or CSMF-based modeling on larger, lower-
resolution simulations. This will be important for accurately
modeling the distribution of dimmer galaxies and forecasting
how well future imaging surveys, such as the Dark Energy
Survey and the Large Synoptic Survey Telescope, can con-
strain cosmological parameters. Uncertainty in the connection
between galaxies and halos is an important systematic in sev-
eral methods to constrain cosmological parameters. Examples
include the precise determination of galaxy bias required for
clustering and lensing constraints, understanding the galaxy
content of clusters for cluster cosmology (Rozo et al. 2010;
Tinker et al. 2012), and modeling the mass along the line of
sight to strong lensing time delays (Suyu et al. 2010). The pre-

cise constraints we now provide in the nearby universe are a step
toward minimizing these systematics and achieving the preci-
sion required for next generation cosmological measurements.
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Figure 22. Impact of simulation resolution on statistics of resolved subhalos. Figure shows the vpeak model with μcut = 0 and σ = 0.2, applied to the Bolshoi
(blue), Consuelo (green), and Esmeralda (red) simulations, with the measured values from the SDSS DR7 VAGC (black) shown for comparison. The inability of
lower-resolution simulations to resolve all satellite halos results in a deficit of satellites and a drop in the small-scale clustering. Top: correlation functions. Center:
conditional stellar mass functions. Total stellar mass is given in log(M� h−2). Bottom left: satellite fraction for the luminosity model with these parameters. Bottom
center: satellite fraction in the stellar mass model. Bottom right: group total stellar mass function. Based on the results from the satellite fraction, the Bolshoi, Consuelo,
and Esmeralda simulations are roughly complete for satellite galaxies at stellar masses of log(M∗/(M� h−2)) = 10.0, 10.5, and 10.8, respectively, or at luminosities
of Mr − 5 log(h) <−19.5, −20.5, and −21.5.

(A color version of this figure is available in the online journal.)
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Figure 23. Abundance matching results matching galaxy luminosity to different halo properties. All shown here have zero scatter and μcut = 0. Top: projected
two-point correlation function. Labels denote the luminosity thresholds. Changes in model here are generally most noticeable in the one-halo term. Because increases
in scatter or μcut can only decrease the clustering, it follows that any model which falls significantly below the measured clustering (black) must be excluded. Center:
conditional luminosity function (CLF). Labels indicate the range in log(Mvir) for each plot. Nonzero scatter broadens this part of the distribution. Bottom left: satellite
fraction as a function of luminosity. As should be expected, models with higher satellite fraction correlate with stronger one-halo clustering and more satellites in the
CLF. Bottom center: group luminosity function. Bottom right: standard deviation (scatter) in stellar mass of central as a function of total group stellar mass. Error bars
on the models are suppressed for clarity.

(A color version of this figure is available in the online journal.)
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Figure 24. Constraint on the scatter and μcut when using vpeak. Levels give P (>χ2), corresponding to 1σ , 2σ , 3σ , and 5σ contours. Top left: constraint from clustering
only. Top right: constraint from central part of CLF only. Lower left: constraint from satellite part of CLF only. Lower right: constraint from all measures combined.

(A color version of this figure is available in the online journal.)
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APPENDIX A

EFFECTS OF THE GROUP FINDER

The group finder itself has a significant impact on our various
measurements. As discussed in the main text, the two primary
systematic effects of the group finder are the artificial reduction
of scatter in central galaxy stellar mass for low halo masses,
and the assumption that the most massive galaxy in a group
must be the central. A clear demonstration of this may be
seen in Figure 21. Here, we show the difference in the model
satellite fraction between using the intrinsic central galaxies,
and assuming that the most massive galaxy is the central,
both using the intrinsic group assignment. As expected, this
significantly reduces the satellite fraction of massive galaxies,
since in large clusters it is not unlikely for at least one satellite
to be more assigned a higher stellar mass than the central. (This
can be seen in the intrinsic CSMF in Figure 12.) This is the
primary reason for the difference in satellite fraction between
the intrinsic satellite fraction and that obtained from the group
finder. Furthermore, this effect becomes stronger in models with
increased scatter, because non-central galaxies are more likely
to be scattered up in stellar mass than the intrinsic central, and
is almost negligible in models with zero scatter.

Figure 25. Same as Figure 24, but using v0,peak. Constraints on the scatter
and μcut. Levels give P (>χ2), corresponding to 1σ , 2σ , 3σ , and 5σ contours,
though here only the upper right corner with the 5σ contour appears. The central
and satellite CLF, and overall fit are everywhere more than 5σ deviations, and
therefore omitted.

(A color version of this figure is available in the online journal.)

The fraction of central galaxies that do not have the most
stellar mass (or are not the brightest) increases with host halo
mass, as can be seen in the right-hand plot of Figure 21. It also
increases with intrinsic scatter, but is not strongly dependent
on the resolution of the dark matter simulation. The values
we find for moderate scatter are in general agreement with the
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Figure 26. Best-fit model when using vpeak, with μcut = 0.13, scatter = 0.22 dex. Plots are the same as described in Figure 23. The low clustering of the Mr < −21.5
threshold is likely due to the high μcut value, but this does not have a large impact on the fit due to the large errors and correlations between data points.

(A color version of this figure is available in the online journal.)

study of Skibba et al. (2011). The recent weak lensing study of
George et al. (2012) tests multiple different center definitions
for groups with a range in Mhost of 1013–1014 M�. They find that
∼20%–30% of these groups have “ambiguous” centers, where
multiple center definitions are in significant disagreement. This
is also in good agreement with the fractions we measure in
Figure 21.

This effect of group finding can also be seen in a comparison
between the intrinsic CSMF (Figure 12) and that obtained after
the use of the group finder (Figure 8). Note that although the
distribution of galaxies in massive halos is not strongly changed,
the central distribution in the low-mass halos sharpens consid-
erably after group finding, lowering the inferred scatter due to
correlations between central properties and group properties.
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Figure 27. Comparison of the best-fit model (abundance matched to luminosity) with Zehavi et al. (2011) HOD derived from a fit to SDSS clustering measurements.
Solid black lines show the Zehavi et al. (2011) HOD, with dashed lines showing the 1σ bounds based on the parameters they provide for their fit, assuming no
correlation among parameters. Blue error bars are the model results. The green line is the fit to the model results using the Zehavi et al. (2011) parameterization from
Equation (D1), while the red line shows our parameterization from Equations (9) and (10), and modified as described in Appendix C. The primary difference between
the two lies in the location and width of the central host mass cutoff, which are somewhat degenerate when fitting to clustering measurements. While this form provides
a good fit to the overall HOD, it does not well describe the central and satellite parts of the HOD separately.

(A color version of this figure is available in the online journal.)

APPENDIX B

RESOLUTION REQUIREMENTS

The use of a high-resolution simulation such as Bolshoi is
essential to this work. A simulation with more massive particles
or a larger softening length would not be able to resolve as
many subhalos, particularly those near the center of massive
clusters (see Behroozi et al. 2013b and Onions et al. 2012 for
related subhalo information, and Wu et al. 2013 for a more
detailed discussion) which tend to be victims of “overmerging”
or otherwise become prematurely disrupted. Figure 22 shows
the difference between using Bolshoi, and the Consuelo and
Esmeralda simulations from the LasDamas suite (C. McBride
et al. 2009). Consuelo (see also Behroozi et al. 2013b; Leauthaud
et al. 2011) uses 14003 particles in a volume of (420 h−1 Mpc)3

(with a particle mass of 1.9 × 109), while Esmeralda has
12503 particles in (640 h−1 Mpc)3 (with a particle mass of
9.3 × 109). Bolshoi, Consuelo, and Esmeralda have (physical)
force resolution of 1, 8, and 15 kpc h−1, respectively.

The same abundance matching model was applied to all
three simulations. As can be seen in the figure, the model
applied to Consuelo (with the same parameters) has a significant
deficit of satellites with M∗ > 10.5, while the loss of satellites
in Esmeralda is even more severe. Because smaller subhalos
are more easily disrupted, there are fewer of them. Thus, for
a selection at a fixed stellar mass to have the appropriate
number density from abundance matching, a mixture of smaller
halos (and sometimes subhalos) will be given a greater stellar
mass than they would be assigned if the prematurely disrupted

subhalos had not been lost. Most of these halos will be isolated
halos, reducing the satellite fraction. This also reduces the
clustering, particularly at the small scales where satellites
contribute strongly.

Furthermore, this effect is worsened when using a property
other than vmax or M0 for abundance matching. In particular,
when using vpeak as the abundance matching parameter as shown
in the figure, there will be numerous relatively smaller subhalos
at the present time which had a much higher vmax in the past, but
are now lost to the simulation. The additional force resolution
of the Bolshoi simulation does a better job of capturing these
satellites that have experienced significant stripping of their dark
matter mass, allowing them to be tracked substantially longer
than they can be tracked in the lower-resolution Consuelo or
Esmeralda simulations.

APPENDIX C

USING LUMINOSITY

We have repeated the entire study using luminosity in the
SDSS r band. The global luminosity function from the SDSS
(Blanton et al. 2003a), while having more information on
dimmer galaxies, is not precisely the same as the luminosity
function in our sample. Therefore, for consistency with the
group catalog, we use the luminosity function of galaxies in the
corresponding volume-limited sample to perform the abundance
matching, as was done when using stellar mass. For comparisons
of the two-point correlation function, we use the measurements
of Zehavi et al. (2011) defined with luminosity thresholds.
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Figure 28. Projected radial profiles of galaxies in halos, for different cuts in stellar mass or luminosity. Top: radial profiles for stellar masses with log(M∗) > 9.8.
Center: stellar masses with log(M∗) > 10.2. Bottom: luminosity cut at Mr < −19. In all plots, black is SDSS; blue is the best-fit model as it would be observed,
which is vpeak, μcut = 0.03, scatter = 0.20 dex for stellar mass, and μcut = 0.13 and scatter = 0.22 dex for luminosity. Green is the intrinsic projected radial profile
(without group finding). χ2 values indicate the quality of the fit at r/Rvir > 0.1 (nine data points). While the fit in that range is quite good, it tends to fail at smaller
radii, particularly for the more massive groups.

(A color version of this figure is available in the online journal.)

The same general trends apply for luminosity as for stellar
mass, with a few complications. First, while we use the same
volume-limited sample as for the stellar mass-based compari-
son, the luminosity completeness limit is at Mr < −19. We
therefore have more galaxies present in a sample of the same
volume in the luminosity sample. Additionally, here we correct
for changes in inferred absolute magnitude due to changes in
inferred redshift due to fiber collisions, using the k-corrections
to the r band from Blanton & Roweis (2007).

Constraints are calculated including all correlations functions
shown, and the central and satellite parts of the CLF. The best-
fit results are again for vpeak, but this time with μcut = 0.12
and scatter of 0.21 dex. (When not using the local averaging
procedure, the best fit lies at μcut = 0.13 and scatter of 0.22 dex.)
Marginalizing over μcut, we obtain limits of σ = 0.210+0.01

−0.02 dex
(68%) and σ = 0.21+0.02

−0.03 dex (95%). Marginalizing over scatter,
the μcut limits are μcut = 0.12+0.02

−0.01 (68%) and μcut > 0.09 (95%
limit).

While the scatter agrees with our results for stellar mass,
the μcut value is significantly higher. This is favored by the

parts of the CLF, which contribute most of the χ2, but not by
the clustering alone, as can been seen with the low clustering
in the brightest sample. The vpeak model fits the satellite
CLF somewhat well, but the group LF is low for small
groups, and there is some offset in the central part of the
CLF.

It remains true that v0,peak fits badly on all counts, being
overclustered and having too many satellite galaxies. (See
Figure 23 for the comparison of different matching parameters
with luminosity.) Neither vpeak or v0,peak provides a good fit to the
central part of the CLF, due primarily to an offset in the mean.
Even the best-fit vpeak produces centrals that are too dim in low
halo masses, and v0,peak centrals are too dim at low masses and
somewhat too bright at higher halo masses. The constraints are
shown in Figures 24 and 25, with the best-fit results in Figure 26.
The CLF fit parameters are given in Table 6, and the HOD fit
is given in Table 7. Note that the Ccen value is an additional
multiplicative factor applied to the central HOD, to account for
the number of centrals not reaching unity for some luminosity
thresholds.
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Table 6
Intrinsic CLF Luminosity Fit Parameters for Best-fit Model

Mhost log(Lc) σc φ∗ α log(L∗) No. of Hosts
(log(Mvir)) (log(L� h−2)) (log(L� h−2)) (log(L� h−2)−1) (log(L� h−2))

12.0–12.3 10.024 ± 0.001 0.2338 ± 0.0008 1.16 ± 0.06 −0.93 ± 0.08 9.77 ± 0.02 27948
12.3–12.6 10.150 ± 0.002 0.227 ± 0.001 2.34 ± 0.08 −0.684 ± 0.060 9.842 ± 0.018 14983
12.6–12.9 10.238 ± 0.003 0.224 ± 0.001 4.36 ± 0.16 −0.738 ± 0.050 9.923 ± 0.016 7814
12.9–13.2 10.284 ± 0.004 0.228 ± 0.002 7.54 ± 0.31 −0.820 ± 0.046 10.008 ± 0.017 4000
13.2–13.8 10.332 ± 0.004 0.230 ± 0.002 18.0 ± 0.6 −0.893 ± 0.033 10.054 ± 0.013 2896
13.8–14.5 10.381 ± 0.009 0.217 ± 0.004 66.2 ± 3.1 −0.995 ± 0.042 10.091 ± 0.015 595

Table 7
Intrinsic HOD Luminosity Fit Parameters for Best-fit Model

Mr Threshold Mmin σm Ccen M1 Mcut αHOD No. of Galaxies
(log(M� h−1)) (log(M� h−1)) (M� h−1) (M� h−1)

−21.5 12.83 ± 0.03 1.53 ± 0.07 0.239 ± 0.011 14.33 ± 0.02 12.2 ± 0.6 1.06 ± 0.07 4437
−21.0 12.49 ± 0.01 1.26 ± 0.02 0.497 ± 0.007 13.72 ± 0.01 12.51 ± 0.08 0.948 ± 0.023 16062
−20.5 12.217 ± 0.003 1.108 ± 0.008 0.784 ± 0.003 13.27 ± 0.01 12.37 ± 0.04 0.948 ± 0.013 49718
−20.0 11.936 ± 0.002 0.959 ± 0.005 0.936 ± 0.002 12.954 ± 0.007 12.16 ± 0.02 0.949 ± 0.008 103906
−19.5 11.701 ± 0.001 0.812 ± 0.003 0.9854 ± 0.0005 12.736 ± 0.005 11.97 ± 0.02 0.960 ± 0.005 174937
−19.0 11.503 ± 0.001 0.723 ± 0.002 0.9975 ± 0.0002 12.567 ± 0.004 11.81 ± 0.01 0.966 ± 0.004 261921

Table 8
Luminosity HOD Parameters for Zehavi Fit

Mr Threshold log Mmin σlog M log M0 log M ′
1 αHOD No. of Galaxies

(log(M� h−1)) (log(M� h−1)) (log M� h−1) (log M� h−1)

−21.5 13.75 ± 0.03 1.13 ± 0.03 13.75 ± 0.38 14.35 ± 0.12 1.33 ± 0.47 4437
−21.0 12.83 ± 0.01 0.731 ± 0.009 13.26 ± 0.07 13.80 ± 0.03 1.06 ± 0.06 18062
−20.5 12.293 ± 0.003 0.514 ± 0.004 12.73 ± 0.02 13.29 ± 0.01 0.965 ± 0.014 49715
−20.0 11.919 ± 0.002 0.392 ± 0.003 12.31 ± 0.01 12.947 ± 0.005 0.945 ± 0.007 103904
−19.5 11.682 ± 0.001 0.321 ± 0.002 11.682 ± 0.007 12.729 ± 0.004 0.953 ± 0.004 174932
−19.0 11.491 ± 0.001 0.295 ± 0.001 11.491 ± 0.008 12.580 ± 0.003 0.977 ± 0.003 261915

APPENDIX D

LUMINOSITY HOD COMPARISON TO SDSS

To perform a more exact comparison with the HOD of Zehavi
et al. (2011), we use the best-fit luminosity-based abundance
matching model. This model has parameters μcut = 0.13 and
scatter of 0.22 dex, and well reproduces the SDSS clustering
of Zehavi et al. (2011), as shown in Appendix C. We measure
the HOD directly from the model, then perform a fit to the total
HOD using the fitting function of Zehavi et al. (2011):

〈N〉 = 1

2

[
1 + erf

(
log Mh − log Mmin

σlog M

)]

·
[

1 +

(
Mh − M0

M ′
1

)αHOD
]

. (D1)

The final term gives the central and satellite parts, with the
power-law-like satellite part being set to zero when Mh < M0.

The results of this fit, along with comparison to the results
of Zehavi et al. (2011) and our parameterization of the HOD,
are shown in Figure 27. The parameters for the luminosity
model using this fitting function are given in Table 8. Both
this figure and a comparison of the parameters indicate nearly
the same behavior as described for the HODs in the stellar mass
model. Our model implies a higher and broader central mass
cutoff then seen in Zehavi et al. (2011). The fit for the satellite
part is generally consistent between the two cases. However,
due to the high μcut and scatter, the central part of the HOD

never reaches unity for the brightest luminosity thresholds.
While the overall HOD can be well fit with Equation (D1),
the centrals and satellites separately are not, particularly at the
brighter thresholds. This serves as additional motivation for
our explicit separation of the central and satellite parts of the
HOD. For the luminosity case, we multiply Equation (9) by an
additional overall normalization parameter to account for the
reduced maximum number of central galaxies. The closeness
of the fits in general makes it difficult to claim a significant
difference between the Zehavi et al. (2011) results and our
fits. Further, in the highest luminosity thresholds where the
differences are largest, the clustering produced by our model
is also somewhat low. This is in agreement with the shift of the
brightest luminosity HOD to somewhat lower host halo masses,
and thus, lower bias, which also obscures the comparison.

APPENDIX E

RADIAL PROFILES

Projected radial profiles are presented, as a further test of
the input catalog and the group-finding algorithm. These show
the satellites assigned to groups for each host halo mass, and
give their projected number density at distances from the group
center. The group center is determined by the location of the
central, and distances are given as a fraction of the virial radius.
Figure 28 shows the profiles in the stellar mass best-fit case for
two different cuts in stellar mass, and the same result for one
cut in the best-fit luminosity model.
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The larger differences in the profiles in the luminosity case
may help explain why the luminosity model fits more poorly
overall. The higher μcut preferentially removes satellites near
the centers of clusters which have already been significantly
stripped. This impacts the CSMF, but the change in radial profile
shape also impacts the one-halo term in the clustering. Further
discussion of satellite incompleteness and its dependence on
galaxy luminosity and simulation specifications will be given in
Wu et al. (2013).
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