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ABSTRACT

Dark-matter-dominated cluster-scale halos act as an important cosmological probe and provide a key testing ground
for structure formation theory. Focusing on their mass profiles, we have carried out (gravity-only) simulations
of the concordance ΛCDM cosmology, covering a mass range of 2 × 1012 to 2 × 1015 h−1 M� and a redshift
range of z = 0–2, while satisfying the associated requirements of resolution and statistical control. When fitting
to the Navarro–Frenk–White profile, our concentration–mass (c–M) relation differs in normalization and shape
in comparison to previous studies that have limited statistics in the upper end of the mass range. We show that
the flattening of the c–M relation with redshift is naturally expressed if c is viewed as a function of the peak
height parameter, ν. Unlike the c–M relation, the slope of the c–ν relation is effectively constant over the redshift
range z = 0–2, while the amplitude varies by ∼30% for massive clusters. This relation is, however, not universal:
using a simulation suite covering the allowed wCDM parameter space, we show that the c–ν relation varies by
about ±20% as cosmological parameters are varied. At fixed mass, the c(M) distribution is well fit by a Gaussian
with σc/〈c〉 � 1/3, independent of the radius at which the concentration is defined, the halo dynamical state,
and the underlying cosmology. We compare the ΛCDM predictions with observations of halo concentrations from
strong lensing, weak lensing, galaxy kinematics, and X-ray data, finding good agreement for massive clusters
(Mvir > 4 × 1014 h−1 M�), but with some disagreements at lower masses. Because of uncertainty in observational
systematics and modeling of baryonic physics, the significance of these discrepancies remains unclear.
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1. INTRODUCTION

According to the current cosmological model, structure forms
in the universe primarily by the amplification of primordial
fluctuations driven by the gravitational Jeans instability. The
process of nonlinear structure formation is hierarchical and
complex, the initial perturbations evolving eventually into a
“cosmic web” network consisting of voids, filaments, and
clumps. The clumps, called halos in cosmological parlance, are
dark-matter-dominated localized mass overdensities with their
own complex substructure. Observed baryonic systems such
as galaxies and hot gas reside in these halos. Although the dark
matter within halos cannot be observed directly, its presence can
be inferred by dynamical arguments, and, much more directly,
through gravitational lensing of background sources.

The notion of the dark-matter-dominated halo is one of the
fundamental building blocks in studies of the formation of
individual galaxies, galaxy groups, and galaxy clusters (for
an overview, see Mo et al. 2010). The structure of halos
has been extensively studied using N-body simulations over
a wide range of halo masses. Even though individual halos
can be and are dynamically and morphologically complex, it
was shown by Navarro–Frenk–White (NFW; Navarro et al.
1996, 1997) that the spherically averaged density profiles of
“relaxed” halos formed in cold dark matter (CDM) simulations
can be described by a roughly universal functional form—the
NFW profile—independent of their mass, the spectrum of initial
fluctuations, and cosmological parameters. The NFW profile
has a fixed shape, albeit with two scale parameters; as applied to
individual halos it has been remarkably successful and is often
applied to all halos, regardless of their dynamical state. (When

applied to stacked or average halos, this profile is somewhat less
successful, as discussed later below.)

The two parameters of the NFW profile are a mass and a
scale radius. The scale radius, rs, specifies the point where the
logarithmic slope of the profile equals −2 (at small radii, the
profile ∼1/r , while at large radii, it asymptotes to ∼1/r3).
Instead of rs, one often uses the concentration, which is the radial
scale set by the halo mass divided by rs. In cluster cosmology,
the usual key observable is the halo mass rather than the profile
per se. The cluster mass function (cluster abundance, more
generally) is a sensitive probe of dark energy, since clusters
form very late during the epoch of dark energy dominance.
However, measuring the concentration parameter, the simplest
first measurement of a profile can also be very useful.

First, as shown originally by NFW, the concentration of
a halo, c, has a strong correlation to its mass, M; therefore
measuring the c–M relation observationally is a direct test of the
CDM paradigm. In fact, combining cluster c–M predictions and
measurements and the measured gas mass fraction, one can aim
to constrain Ωm and σ8 (Ettori et al. 2011). As another example,
lensing shear peak counts, a proposed weak lensing survey
cosmological probe, is very sensitive to the form of the c–M
relation (King & Mead 2011). Finally, future measurements
of the weak lensing power spectrum will probe small enough
spatial scales that results will be sensitive to baryonic effects
on the halo profile, i.e., modifications to the gravity-only c–M
relation (White 2004; Zhan & Knox 2004). We will return to
these points in more detail below.

The correlation of halo concentration with mass is based on
the idea—as first explicated by NFW—that the concentration
is determined by the mean density of the universe when the
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halo is assembled, with higher concentrations corresponding to
higher densities. Thus cluster mass halos, which are assembling
today, should have a lower concentration than halos of lower
mass that were built up at an earlier epoch, where the mean
density was higher. Furthermore, one may expect this trend to
flatten out (sufficiently) beyond the nonlinear mass scale M∗,
and therefore, since M∗ falls rapidly with redshift, flatten out
over an extended range in mass as redshift increases. Although
the general arguments are plausible and are broadly consistent
with simulation results, a predictive theory for the mean of
the c–M relation and its scatter does not exist. Several simple
heuristic models tuned to simulations have been suggested
(NFW; Bullock et al. 2001; Eke et al. 2001; Zhao et al. 2009),
but their predictive status cannot be considered satisfactory,
especially at the higher end of halo masses (see, e.g., Gao
et al. 2008; Hayashi & White 2008; Macciò et al. 2008; Zhao
et al. 2009). Indeed there is sufficient uncertainty even when
comparing simulation results from different groups that the
general problem is still open. However, as the mass resolution in
large-volume simulations continues to improve, we may expect
this situation to be merely temporary.

On the observational front, cluster (and group) halo profiles
can be studied using both strong and weak gravitational lensing,
individually and in combination (see, e.g., Comerford & Natara-
jan 2007; Broadhurst et al. 2008; Mandelbaum et al. 2008; Ok-
abe et al. 2010; Oguri et al. 2012; Zitrin et al. 2011; Coe et al.
2012; Newman et al. 2012), projected gas density and tempera-
ture profiles from X-ray observations (see, e.g., Vikhlinin et al.
2006; Buote et al. 2007; Schmidt & Allen 2007; Gastaldello
et al. 2007; Vikhlinin et al. 2009; Sun et al. 2009; Ettori et al.
2011), and galaxy kinematics (Diaferio et al. 2005; Rines &
Diaferio 2006; Wojtak & Lokas 2010 and references therein).
Results from these observations have generally shown quali-
tative agreement with the c–M relation obtained from simula-
tions, although there have been difficulties with matching the
shape and normalization. Additionally, there are discrepancies
between different sets of observations, presumably because the
underlying systematics are not fully understood and modeled.

The purpose of this paper is to present a set of predictions
for the NFW mass profile targeted primarily toward massive
clusters. To do so, however, a fairly large mass range must be
considered in order to obtain a sufficiently well-defined c–M
relation. Our simulations cover three orders of magnitude in
mass (∼1012 to ∼ 1015 h−1 M�) with very good control of
statistics over the entire range. The high dynamic range and
excellent statistics enable us to derive a new set of results for
the mass profile, including profile evolution and probability
distribution functions (PDFs) for the concentration as a function
of mass. We compare our results with previous simulations and
with a set of recent observations of the cluster mass profile.

This paper is organized as follows. In Section 2, we discuss
general features of the c–M relation in the simulation context
focusing on the role of differing definitions and analyses. In
Section 3, we describe the main features of the simulation runs.
We present our results for the c–M relation and its redshift evo-
lution in Section 4. This is followed (Section 5) by a presentation
of results from a suite of wCDM cosmologies in order to further
study how the concentration depends on cosmology. Next, in
Section 6, we provide a detailed comparison with recent obser-
vations, noting areas of agreement and disagreement. Finally,
Section 7 is devoted to a summary of the results and further
discussion. The Appendix discusses various systematic issues
that need to be considered when deriving concentrations from

simulation results. A number of tests are used to illustrate these
points and to verify the robustness of the numerical procedures
carried out in this paper.

2. HALOS AND CONCENTRATIONS

Dark-matter-dominated halos are dynamically complicated
and rendering them as simplified “few parameter” objects
involves a fair degree of approximation, opening the possibility
of biases in the sense that different procedures will inevitably
yield different results—what these different results may imply
for observations is yet another question. In this paper we adopt
a minimal approach to describing halos; we consider the first
approximate description of a halo to be a spherically averaged
profile with a single power law and one overall parameter (e.g.,
singular isothermal sphere), and the NFW profile as essentially
taking the next step with a broken power law and two parameters
(the mass and the concentration). In three dimensions, halos are
known to be triaxial with a major axis roughly twice as long as
the two minor axes (roughly equal; Jing & Suto 2002). Spherical
averaging of this profile yields the NFW broken power law.

In reality, halos have complicated substructures and complex
infall regions, all of which may make interpreting the concentra-
tion somewhat nontrivial, as well as introduce projection-related
biases in observations (e.g., White et al. 2010). Nevertheless, as
shown by Evrard et al. (2008), cluster-scale systems with masses
greater than 1014 h−1M� are dominated by large, primary
halos—satellite halos carrying only ∼10% of the mass—and
possess a well-defined and regular virial relation. Therefore, it
appears reasonable to proceed in the manner outlined above.

The lack of smoothness in the individual radial density
profiles of halos—even at high mass resolution—means that
the simple NFW description will have varying levels of success
(see, e.g., Tormen et al. 1997; Lukić et al. 2009; Reed et al.
2011) on a halo-by-halo basis. Average or stacked profiles
are of course much smoother; it turns out that such profiles
systematically deviate from the NFW form and another scale
parameter is often introduced to improve the fit, leading to the
so-called Einasto profile (see, e.g., Gao et al. 2008). While this
improves the stacked fit primarily at smaller radii, it has little
effect on measurements of the concentration for individual halos
(Gao et al. 2008; Reed et al. 2011). Since our primary objective
is to carry out comparisons primarily against observations of
individual objects rather than against correlation functions or
stacked observations, we do not use the Einasto profile.

An important piece of missing physics in our simulations
is the lack of non-gravitational baryonic effects. This is a
very difficult problem to deal with for galaxy and group-scale
objects, but less so for clusters. In clusters, the dominant form
of atomic matter is not stars but hot gas. Gas cooling does
not have a major effect on the profiles except close to the
inner regions of the cluster, roughly r < 0.1 Rvir (Kazantzidis
et al. 2004; Duffy et al. 2010; Cui et al. 2012). Beyond this
radius the gas distribution is determined by the self-consistent
gravitational potential. Duffy et al. (2010) have carried out an
extensive study of possible baryonic effects (cooling, feedback)
on cluster profiles and concluded that the baryonic effects are
likely to alter the concentration at most at the 10% level. This is
roughly the level of systematic control over the current gravity-
only measurements of halo concentrations, therefore we do not
concern ourselves with estimating baryonic effects or trying
to correct for them, beyond not fitting for the concentration at
radii, r < 0.1 Rvir. The fact that we have good agreement with
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observations for massive clusters (Section 6) may be viewed
as added support to the argument that baryonic effects do
not influence cluster profiles outside the inner regions; direct
observational evidence for this can be found in Coe et al. (2012)
and Newman et al. (2012; see also Mandelbaum et al. 2008).

A large number of numerical studies have been carried
out investigating halo profiles and paying close attention to
the behavior of the density cusp on the very smallest scales.
We are, however, not concerned with these scales, but more
with scales of the order of ∼(0.1–1)Rvir, since our target
halos have relatively modest concentrations. Previous numerical
simulations have found that in the region of interest to us the
concentration is a slowly varying function of mass, typically
described by power laws with index α � −0.1 at z = 0. These
simulations have varied widely in dynamic range, box size, and
mass resolution. Partly as a result of this, there have been some
disagreement in the value of the slope and the normalization of
the c–M relation, and also some lack of clarity regarding the
reasons underlying the differences.

Among the more recent studies are those involving the
Millennium simulation (MS; Springel et al. 2005) with 21603

particles and a box of side 500 h−1 Mpc assuming a WMAP1
cosmology (Neto et al. 2007; Gao et al. 2008; Hayashi & White
2008). Halo profiles were investigated over a mass range of
1012–1015 h−1 M� and it was found that α � −0.1. These
results were mostly in agreement with a simulation campaign
conducted by Macciò et al. (2007, 2008) who covered a mass
range 109–1013 h−1 M�, although with a slight discrepancy
(∼10%) in the normalization. Duffy et al. (2008) carried out
another set of simulations with three different box sizes (25,
100, and 400 h−1 Mpc), each with 5123 particles covering a
mass range of 1011–1015 h−1 M� using the best-fit WMAP5
cosmology. They concluded that the median c–M relation is
lower by about 23% at the low-mass end and 16% at the
high-mass end compared to the MS results in the mass range
of 1011–1014 h−1 M�. From yet another set of simulations,
Klypin et al. (2011) and Prada et al. (2012) have claimed that
the concentration, instead of flattening out at high mass, in
fact rises.

Given this context, our primary purpose is to improve the
statistical power in determining the c–M relation and its scatter
at high masses, while retaining good mass resolution, and
second, to study the behavior as a function of redshift and
cosmology. Finally, we note that the improved statistical power
is important in comparing with observations of massive clusters
as the numbers of well-observed clusters is expected to rise
significantly in the near future (in the past, simulations may
have contained only one cluster at the upper mass end, where
we have hundreds).

3. SIMULATION SUITE

Throughout this paper, we use the following ΛCDM cosmol-
ogy as a reference: ωm = 0.1296 (Ωm = 0.25), ωb = 0.0224
(Ωb = 0.043), ns = 0.97, σ8 = 0.8, and h = 0.72, where
ω = Ωh2 and Ωm represents the total (dark + baryon) matter
density. We assume spatial flatness. This model is in excellent
agreement with the latest best-fit cosmological model provided
by WMAP7 measurements (Komatsu et al. 2011). In order to
cover a wide range of masses, we analyze three simulations with
different volumes and number of particles. A summary of the
runs is given in Table 1. The mass resolution in the large-box run
is sufficient for measuring the concentrations for halo masses
>1014 h−1 M�, with a minimum of 2000 particles per halo. At

Table 1
Description of the Simulation Suite

Code Box Softening Particles mp

(h−1 Mpc) (h−1 kpc) (h−1 M�)

HACC (HACC) 2000 7 20483 6.5 × 1010

HACC (HS) 512 7 20483 1.1 × 109

GADGET-2 (G) 936 36 10243 5.3 × 1010

GADGET-2 (GS) 128 10 5123 1.1 × 109

Note. Runs are referred to in the paper by the names in parentheses. HS was run
up to z = 2.

z = 0, we have more than 100,000 such halos, therefore our
statistical control may be considered to be more than satisfac-
tory. In the MS and Duffy et al. (2008) simulations, the largest
boxes used are of size 500 h−1 Mpc and 400 h−1 Mpc, respec-
tively, with limited statistics for cluster size halos in the mass
range 1014–1015 h−1 M�. We provide a large sample of cluster
size halos, with roughly 64 times more volume than in the MS
run and 125 times more than in the simulations by Duffy et al.
(2008).

The largest simulation (both with respect to volume and par-
ticle number) is carried out using our new Hardware/Hybrid
Accelerated Cosmology Code (HACC) framework described
in Habib et al. (2009) and Pope et al. (2010). This simula-
tion covers a volume of (2 h−1G pc)3 and evolves 20483 parti-
cles and was run on the hybrid supercomputer Cerrillos at Los
Alamos National Laboratory. (Another 20483 particle run with
a 512 h−1 Mpc box was used to test the results obtained at
z = 2 from the GADGET-2 run described below.) The HACC
framework has been designed with flexibility as a prime require-
ment; it is meant to be easily portable between high-performance
computing platforms based on different architectures. The first
version of the code has been optimized to run on the Cell-hybrid
architecture shared by Roadrunner (the first computer to break
the Petaflop barrier) and Cerrillos. An extension of this version
of the code has been developed for hybrid CPU/GPU systems,
written in OpenCL.

HACC’s code structure is split into two components: a long-
range force solver and a short-range module. The long-range
force solver uses a parallel Particle-Mesh (PM) algorithm with
spectral filtering and super-Lanczos differentiation (Hamming
1998). In this part of the code, the long-range force is calculated
by depositing tracer particles onto a regular grid and using
Fourier transform methods to solve the Poisson equation (with
in effect a modified Green function) and then interpolating
the force from the grid back onto the particles. The spectral
component of the code is implemented in C++/MPI and
can run on any standard parallel machine. The current two-
dimensional domain-decomposed implementation of the fast
Fourier transform allows it scale to millions of MPI ranks. The
implementation of the particle deposition and force interpolation
routines depends on the machine architecture. On Roadrunner
and Cerrillos, these routines were implemented on the Cell
processor.

The short-range module adds the high-resolution force be-
tween particles and can be implemented in different ways and
on different platforms. On Cell and GPU-based systems, an
N2-algorithm is used to evaluate the short-range forces (in
chaining mesh patches), leading to a P3M implementation. This
works well on hardware-accelerated machines since it is com-
putationally intensive and uses a simple data structure. The
P3M version of HACC has been extensively tested against
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the code comparison suite results of Heitmann et al. (2005).
On non-heterogeneous systems, such as the IBM BG/Q, the
N2 algorithm is replaced by a recursive coordinate bisection
(RCB) tree method to guarantee good performance (Habib et al.
2012).

In addition to the main code base, a parallel analysis frame-
work for HACC has been developed. This framework runs on
conventional supercomputing hardware (or on the “top” layer
of a heterogeneous system). Among other utilities, it contains
a halo and subhalo finder. The halo finder was part of a re-
cent comparison project (Knebe et al. 2011) and is used for the
analysis results presented in this paper. Major parts of the HACC
analysis framework have been implemented into ParaView and
publicly released (Woodring et al. 2011).

The smaller simulations are carried out with GADGET-2, a
publicly available TreePM code (Springel 2005). Of these, the
larger simulation—(936 h−1 Mpc)3 volume, 10243 particles –
is part of the Coyote universe simulation suite (Heitmann et al.
2010, 2009; Lawrence et al. 2010) which spans 38 wCDM
cosmologies. This simulation was also used to derive a high-
precision ΛCDM mass function prediction (Bhattacharya et al.
2011). (The HACC mass function in the large-volume run
presented here is in excellent agreement with these results.)
The smallest of the three simulations—(128 h−1 Mpc)3 volume,
5123 particles—serves three purposes: (1) it allows us to probe
halos at small masses, (2) it provides large overlap with previous
work and therefore connects our new results to a mass range that
has been extensively studied in the past, and (3) because it is
run with a completely different code, it provides an excellent
check on possible code-related systematics (for which we find
no evidence; more details are in the Appendix).

The initial conditions for all three simulations are generated
using transfer functions from the Code for Anisotropies in the
Microwave Background (CAMB6; Lewis et al. 2000) and the
Zel’dovich approximation at a high starting redshift, zi � 200.
Further discussions regarding simulation accuracy issues can be
found in the Appendix.

4. ΛCDM RESULTS

4.1. c–M Relation

In our simulations, we identify halos using a fast parallel
friends-of-friends (FOF) finder (Woodring et al. 2011) with
linking length b = 0.2. (The Appendix contains a discussion
of how this choice can affect results.) The effects of major
substructures, relevant for roughly a quarter of the halos (e.g.,
Lukić et al. 2009), are checked by using morphological cuts
mentioned below. Since we are concerned only with the mass
profiles and not the dynamical state of the halo, we do not
use any velocity information (for instance, whether or not to
unbind particles). Once a halo is found, we define its center
via a density maximum criteria—the location of the particle
with the maximum number of neighbors. This definition of the
halo center is very close to that given by the potential minima.
Given a halo center, we grow spheres around it and compute
the mass in radial bins. Note that even though an FOF finder is
used, the actual halo mass is defined by a spherical overdensity
method, consistent with the approach followed in observations.
(For discussions on halo mass, see White 2001; Lukić et al.
2009; More et al. 2011.) Although the mass could be measured
independently of the concentration we fit both together to the
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halo profile, as this is potentially less sensitive to fitting bias.
(In practice, it makes little difference.)

We write the NFW profile as

ρ(r) = δρcrit

(r/rs)(1 + r/rs)2
, (1)

where δ is a characteristic dimensionless density and rs is the
scale radius of the NFW profile. The concentration of a halo is
defined as cΔ = rΔ/rs , where Δ is the overdensity with respect
to the critical density of the universe, ρcrit = 3H 2/8πG, and
rΔ is the radius at which the enclosed mass, MΔ, equals the
volume of the sphere times the density Δρcrit. We compute
concentrations at two radii corresponding to Δ = 200 and Δ =
Δvir, corresponding in turn to c200 = R200/rs and cvir = Rvir/rs .
The value of Δvir is given by the spherical top-hat collapse model;
it changes with redshift and cosmology and, for ΛCDM, can be
approximated by a fitting formula Δvir = 18π2+82x−39x2 with
x = Ωm(z) − 1, Ωm(z) = Ωm(1 + z)3/(Ωm(1 + z)3 + ΩΛ) (Bryan
& Norman 1998). For our reference cosmology, Δvir varies from
∼95 to 170 over the range z = 0–2. We also provide a fit for the
overdensity of 200 times the mean density, ρb, of the universe at
a particular redshift, z. Written in terms of the critical density,
this corresponds to Δ = 200Ωm(z) which varies from 50 to 180,
over the range z = 0–2 for our reference cosmology.

The mass enclosed within a radius r for an NFW halo profile
is given by

M(<r) = m(cΔr/rΔ)

m(cΔ)
MΔ, (2)

where m(y) = ln(1 + y) − y/(1 + y). The mass in a radial bin is
then

Mi = M(< ri) − M(<ri−1). (3)

We fit Equation (3) to the mass contained in the radial bins of
each halo, by minimizing the associated value of χ2 as

χ2 =
∑

i

(
Msim

i − Mi

)2(
Msim

i

)2
/ni

, (4)

where the sum is over the radial bins, ni is the number of particles
in a radial bin, Msim

i is the mass in bin i calculated from the
simulations, and Mi is the mass calculated assuming the NFW
profile; 20 bins were used in the individual profile fits. The
advantage of fitting mass in radial bins rather than the density
is that the bin center does not have to be specified. Note that we
explicitly account for the finite number of particles in a bin. This
leads to a slightly larger error in the profile fitting but minimizes
any possible bias due to the finite number of particles, especially
near the halo center. More details about the fitting procedure are
provided in the Appendix.

We fit for two parameters—the normalization of the profile
and the concentration. Halo profiles are fitted in the radial range
of approximately (0.1–1)Rvir. This choice is motivated partly
by the observations of concentrations that typically exclude the
central region of clusters (e.g., observations by Oguri et al.
2012 to which we compare our results in Section 6). More
significantly, however, this excludes the central core which is
sensitive to the effects of baryonic physics and numerical errors
arising from limitations in both mass and force resolution,
as discussed in the Appendix. As already mentioned, Duffy
et al. (2010) have shown that, at r < 0.1 Rvir, halo profiles
are sensitive to the impact of baryons with the profiles being
affected at r = 0.05 Rvir by as much as a factor of two.

4

http://camb.info


The Astrophysical Journal, 766:32 (16pp), 2013 March 20 Bhattacharya et al.

Figure 1. c–M relations at radii r = R200 and r = Rvir for z = 0 (black), 1 (red), and 2 (blue) for the full (left panels) and relaxed samples (right panels), combining
results of multiple simulations. The black solid lines at z = 0 are power-law fits, α = −0.08 for the full sample, and α = −0.084 for the relaxed halos. The solid
red and blue curves are from the global fit (across all redshifts) discussed in Section 4.2 and shown in Figure 2. The error bars represent the error in determining the
mean of the concentration in each mass bin (the difference between the mean and the median is insignificant). At a given mass, the distribution of concentrations is
Gaussian with standard deviation σc/c ∼ 1/3 (cf. Section 4.3)—the shaded region shows the 1σ boundary for z = 0. The dotted curves are fitting formulae for the
median concentration as given by Duffy et al. (2008).

(A color version of this figure is available in the online journal.)

In the Appendix we discuss the robustness of the obtained c–M
relation as the fitting range is varied; we find that different fitting
ranges—chosen with a fair degree of latitude—agree with each
other to better than 10% accuracy (Figure 11).

The c–M relation is calculated by weighing the individual
concentrations by the halo mass,

c(M) =
∑

i ciMi∑
i Mi

, (5)

where the sum is over the number, Ni, of the halos in a mass bin.
The mass of the bin is given by

M =
∑

i

Mi/Ni. (6)

The error on c(M) is the mass-weighted error on the individual
fits plus the Poisson error due to the finite number of halos in
an individual bin added in quadrature,

Δc(M) =
√(∑

i ΔciMi∑
i Mi

)2

+
c2(M)

Ni

, (7)

where Δci is the individual concentration error for each halo.
The first term dominates toward the lower mass end where
the individual halos have smaller number of particles and the

second term dominates toward the higher mass end, where there
are fewer halos to average over.

Figure 1 shows the mean c–M relation obtained from our
simulation runs weighted by the mass (Equation (5)). We show
the c–M relation both for relaxed halos and for the full (relaxed +
non-relaxed) sample.

To select the relaxed sample we use criteria similar to those
of Neto et al. (2007) and Duffy et al. (2008), defining relaxed
halos as those in which the difference between the location
of the center of mass and the center density maximum is
<0.07 Rvir (see also Thomas et al. 2001). Neto et al. (2007)
have used two additional criteria to select their relaxed sample
but found that the difference in the center of halos method
already selected most of the relaxed sample. We do not impose
their additional criteria as it would lead to insignificant changes
in our sample selection. At z = 0, the relaxed fraction varies
from 0.73 to 0.6 for M200 = 1012–7.5 × 1014 h−1 M�, and the
results for this fraction are consistent with those found by Neto
et al. (2007). As the redshift increases, one would expect this
ratio to decrease as a function of mass. For the bins centered at
M200 = 2.47 × 1012 h−1 M�, and M200 = 1.39 × 1013 h−1 M�,
the values are 0.77, 0.69, 0.67, and 0.74, 0.63, 0.63, at z = 0,
1, 2, respectively. At M200 = 1.39 × 1014 h−1 M�, the values
are 0.63, 0.48, at z = 0, 1 (insufficient statistics at z = 2).

From Figure 1 it is clear that the c–M relation becomes
considerably flatter at z > 0, with the full sample relation
flattening more at higher redshift compared to that for the
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Figure 2. c–ν relations at radii r = R200 and r = Rvir for z = 0, 1, and 2, for the relaxed and full samples where ν = δc/σ (MΔ) with δ ∼ 1.676, varying only mildly
with redshift. The lines are global fits to the data points using a simple assumption for redshift evolution.

(A color version of this figure is available in the online journal.)

relaxed sample. The c–M relation for the relaxed sample has
on an average a 10% higher amplitude compared to that for the
full sample. The c–M relation at the radius corresponding to
Δ = Δvir has about a 30% higher amplitude compared to that at
Δ = 200.

Because the cosmologies considered are essentially the same,
we can directly compare our results with those of Duffy et al.
(2008), although their statistics become somewhat limited near
the upper end of halo masses. We find that at z = 0, at cluster
mass scales, their c–M amplitude is about 15% lower compared
to our results. At z = 2, the results from Duffy et al. (2008) are
about 15% higher, but with significant scatter. In general, their
redshift evolution appears to be slightly compressed, more so
in the case of relaxed halos. But given the statistical limitations
already mentioned (cf. Figure 2 of Duffy et al. 2008), we may
consider the comparison to be quite reasonable. Another reason
for not expecting an exact match is that the fitting range we use
and the one in Duffy et al. (2008) are different, being 0.1 Rvir
and 0.05 Rvir, respectively. As seen in Figure 11, a larger value
of the minimum fit radius tends to increase the concentration.

At z = 0, our results can be fitted very accurately by a power
law with the exponent, α = −0.08 and −0.084 for the full
and the relaxed sample. The logarithmic slope corresponding
to the full sample is precisely that found by Hayashi & White
(2008) using the halo-density cross-correlation applied to data
from the MS. The normalization, however, is not expected to
be the same because of the high value of σ8 = 0.9 chosen
for the MS. Note that three different analyses of the MS (and
an associated smaller volume, higher mass resolution run) have
produced slightly discrepant results, differing from each other at

the 10%–20% level (Neto et al. 2007; Gao et al. 2008; Hayashi
& White 2008). This is probably a useful empirical measure of
the systematic issues inherent to halo selection and fitting. In
general, the MS results are consistently higher at all redshifts
by about 15% at z = 0 to about 30% at z = 2 largely because
of the higher value of σ8.

4.2. The c–ν Relation

We find that the c–M relation becomes almost flat at higher
redshift, with c200 ∼ 3 in a way similar to the findings of Gao
et al. (2008; although for a higher σ8 in their case). Gao et al.
(2008) use the Einasto profile for stacked halos—alternatively,
we ask if it is possible to explain the flattening of the c–M
relation with redshift using only the NFW profile. To do this,
we follow the strategy adopted in parameterizing halo mass
functions and investigate the concentration measurements as a
function of the rms density fluctuation σ (M, z) rather than M
(for each of the three halo mass definitions). As the central
variable, we use the peak height parameter, ν = δc(z)/σ (M, z),
where δc(z) is the linear collapse threshold. (δc = 1.673 for the
reference cosmology and varies only mildly with cosmology
and redshift.) σ (M, z) specifies the variance of the matter
fluctuations over the scale ∝ M1/3 at a redshift z. As shown in
Figure 2, the shape of the c–ν relation is approximately constant
over the redshift range z = 0–2, in contrast to the shape of the
c–M relation.

Overall, the evolution of c200(ν) proceeds as ∼D(z)0.5 where
D(z) is the linear growth factor at redshift z, or by about 30%
from z = 0 to 2. The overall z-evolution in our work is roughly
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Table 2
c(ν)–ν Fitting Formulae

Δ = 200 Δ = Δvir Δ = 200ρb

Full D(z)0.545.9ν−0.35 D(z)0.97.7ν−0.29 D(z)1.159.0ν−0.29

Relaxed D(z)0.536.6ν−0.41 D(z)1.018.9ν−0.34 D(z)1.210.1ν−0.34

Std. Dev. σc = 0.33cΔ

ν–M ν(M, z) ≈ 1
D(z)

[
1.12

(
M

5×1013 h−1 M�

)0.3
+ 0.53

]

consistent with the z-evolution seen in the MS result of Gao et al.
(2008). The evolution of cvir(ν) possesses a somewhat larger
dynamic range and the evolution goes as ∼D(z). The slope of
the c–ν relation is slightly larger for Δ = 200 compared to that
for Δ = Δvir. The amplitude of the c–ν relation is only a little
larger for the relaxed sample compared to the full sample (by
about ∼10%).

Fitting formulae for c(ν) as derived from the simulations
for the reference ΛCDM cosmology are given in Table 2. We
also provide an approximate fitting formula relating ν and M
valid for all overdensities, redshift, and cosmology, which can
then be used to convert the relations for c–ν to those for c–M .
Table 2 also provides the c–ν relation for Δ = 200Ωm(z)
corresponding to an overdensity of 200ρb. At z = 0, for the
reference cosmology used here, 200ρb is about half of the
virial overdensity. Consequently, the c–ν amplitude is about
30% higher compared to the amplitude at the virial density. At
z = 1 and 2, the mean density and the virial density become
comparable. Thus, the c–ν relation for Δ = 200Ωm(z) has more
z-evolution when compared to that for the virial density.

4.3. The Distribution of Concentrations

The mean c–M relation needs to be augmented with a
good quantitative understanding of the concentration scatter
around the mean, especially at cluster-scale masses, where
simulations have historically suffered from lack of volume
coverage. Predictions for the distribution of the concentration
are particularly valuable since they can be used to check for
selection biases in observations. As an example, if there is
a concern that lensing-based searches are likely to be biased
toward high-concentration halos, then, at a given mass bin, one
can test for this bias by comparing to the predicted theoretical
distribution. For this method to work, there should be enough
objects at a given mass, a target that will be attained in the near
future.

We have computed the concentration distribution for a large
set of cosmologies, a subset of which we discuss here. Previous
studies (Jing 2000; Shaw et al. 2006; Neto et al. 2007; Duffy
et al. 2008) have fitted the concentration distribution to a log-
normal distribution. However, this distribution is also very well
described by a Gaussian as noted by Lukić et al. (2009) and Reed
et al. (2011), consistent with the idea that the (mass-binned)
concentration ensembles respect the central limit theorem. We
have found that a Gaussian distribution provides a very good
fit to our data, with relatively small non-Gaussian tails. As
a representative example, we show the distribution of c200
(full halo sample at z = 0) for the mass bin centered at
1.5 × 1014 h−1 M� in Figure 3.

Assuming a Gaussian distribution, the standard deviation in
the c–M relation can be calculated as

σc(M) =
√∑

i c
2
i Mi∑

i Mi

− c(M)2 (8)
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Figure 3. c–M distribution at a mass bin centered at 1.5 × 1014 h−1 M�
using results from the HACC simulation at z = 0. The lines show a Gaussian
distribution with standard deviation σc/c ∼ 0.33.

(A color version of this figure is available in the online journal.)

Figure 4. c200–M200 distribution for the relaxed and full halo samples charac-
terized by the ratio of the standard deviation to the mean value of c200. All three
redshifts are plotted. Note that σc/c shows no redshift evolution. The case of
Δ = Δvir shows identical behavior.

(A color version of this figure is available in the online journal.)

and the associated error in determining the scatter is the Poisson
error in each bin as

Δ
∑

c

(M) =
∑

c

(M)/
√

Ni, (9)

where Ni is the number of halos in the mass bin with mass
M. As illustrated in Figure 3 for the case of halos in the mass
bin at 1.5 × 1014 h−1 M�, at z = 0, the standard deviation of
the Gaussian distribution is roughly σc � 0.33c, over our mass
and redshift range, with mild dependence on the mass at the
very high mass end, such that for M200 > 8 × 1014 h−1 M�,
σc � 0.28c (Figure 4). These results are in very good agreement
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Figure 5. Mean c–M relation at z = 0 (full sample) when wCDM parameters are varied. The solid curve in all three panels is the fit to the reference ΛCDM cosmology
as specified in Table 2.

(A color version of this figure is available in the online journal.)

with Reed et al. (2011), who find σc � 0.28c for an analysis of
halos extracted from the MS.

If instead, for comparison purposes, we fit our concentra-
tion distribution using the log-normal function, we find that
σ (log10(c200)) = 0.16 for the full sample, and 0.12 for the re-
laxed sample (this equivalent distribution is mildly skewed with
respect to the data). These results may be compared to those
of Duffy et al. (2008), who obtain 0.15 and 0.11, respectively,
and to Neto et al. (2007) who find 0.14 and 0.1. Our scatter is
therefore about 5%–10% higher than the results of Duffy et al.
(2008) and Neto et al. (2007). As shown by Neto et al. (2007),
the variance is at a minimum for the radial range (0.05–1)Rvir.
As noted earlier, our fit to the halo profile is over the range
(0.1–1)Rvir which may account for the ∼7% larger value of the
standard deviation. This choice trades off a slight increase in
scatter for robustness against systematic effects, as also previ-
ously discussed.

Figure 4 shows that the relation σc � 0.33c is more or less
independent of mass, redshift, or the dynamical state of the
halo; it also remains invariant when the cosmology is varied
(Figure 6). This implies that the concentration scatter depends
on cosmology, redshift, or the dynamical state, in essentially
the same way as the mean concentration, confirming the initial
finding of Dolag et al. (2004) from a small sample of simulated
halos, but spanning multiple dark energy cosmologies. A more
quantitative study of the distribution of concentrations will be
presented elsewhere.

5. c–M RELATION FOR wCDM COSMOLOGIES

In this section we study how the halo profiles, and hence
the concentration, vary with cosmology. We use 18 different
runs, each with a volume of (1.3 Gpc)3 and 10243 particles.
The runs are carried out using GADGET-2 and each run has
a different set of wCDM parameters. These simulations are a
subset of the Coyote universe suite (see Heitmann et al. 2009
and Heitmann et al. 2010 for details). The simulation suite
consists of 38 runs covering the 2σ range of wCDM parameter
space as constrained by Wilkinson Microwave Anisotropy Probe
(WMAP) five-year results (Komatsu et al. 2009). We choose
18 runs (plus the reference cosmology run) out of the 38 to show
the cosmology dependence and retain the model numbering
from the original Coyote runs. The runs have a coarser force

resolution than the GS and HACC simulations. The effect of this
is considered in the Appendix, where it is shown that the G run
has a systematically lower concentration compared to the HACC
run over the same mass scale by about 5%–10% (Figure 11, left
panel). To compensate for this minor underestimate, we rescale
concentrations obtained from the wCDM runs by a factor of
1.05, checking for correctness by comparing against the fit
obtained for the reference cosmology.

Figure 5 shows the variation of the c–ν relation with respect
to the best-fit WMAP5 cosmology. The mean c–ν relation varies
by about ±20% over the currently allowed wCDM cosmological
parameter range. Note that ν already accounts for some of the
cosmology dependence of the c–M relation, so a part of the
variation is actually hidden. Since we have already found that
expressing c as a function of ν explains the redshift evolution
of NFW halo profiles, we illustrate the cosmology dependence
using the c–ν relation in place of the c–M relation.

Table 3 shows the approximate difference between the
(corrected) mean c–M relation seen in each of the wCDM runs
compared to the mean c–M relation obtained for the reference
ΛCDM cosmology. Note that although most of the variation
in the c–M relation is in the overall amplitude, the slope also
changes for some of the models (e.g., M003, M012). Inter-
estingly, we find that some of the models show no variation
compared to the reference, although these models differ across
the range of cosmological parameters. For example, M014 and
M017 both have lower σ8 compared to the reference model,
but show essentially no variation—parameters other than σ8 are
clearly also active. The standard deviation of the concentration
distribution, on the other hand, changes in the same way as
the mean, leaving the ratio σc/c almost universal (Dolag et al.
2004). Figure 6 shows that the σc/c varies by <5% over the
range of wCDM cosmologies.

Semianalytical “toy models” based on Press–Schechter argu-
ments (Press & Schechter 1974) have attempted to model the
cosmology and redshift dependence of halo concentrations via
the underlying dependence on the matter power spectrum and
the evolution history of the universe (Navarro et al. 1997; Eke
et al. 2001; Bullock et al. 2001). The model of Navarro et al.
(1997) has two free parameters. It defines the halo formation
redshift by requiring that half of the final halo mass be in pro-
genitors with masses of some fraction of the final mass. The
characteristic density scale of the NFW profile is then set by
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Table 3
Parameters for the 18 Cosmological Models Used to Study the c–M Relation

No. ωm ωb ns −w σ8 h M Variation
(1014 M�) (%)

1 0.1539 0.0231 0.9468 0.816 0.8161 0.5977 13.3 0
3 0.1324 0.0235 0.9984 0.874 0.8484 0.6763 9.96 +15
4 0.1381 0.0227 0.9339 1.087 0.7000 0.7204 4.42 −18
5 0.1358 0.0216 0.9726 1.242 0.8226 0.7669 7.20 −20
7 0.1268 0.0223 0.9210 0.700 0.7474 0.6189 7.30 +15
8 0.1448 0.0223 0.9855 1.203 0.8090 0.7218 8.04 −15
9 0.1392 0.0234 0.9790 0.739 0.6692 0.6127 4.98 +10
12 0.1223 0.0225 1.0048 0.971 0.6271 0.7396 2.26 +14
13 0.1482 0.0221 0.9597 0.855 0.6508 0.6107 4.78 +5
14 0.1471 0.0233 1.0306 1.010 0.7075 0.6688 5.42 0
15 0.1415 0.0230 1.0177 1.281 0.7692 0.7737 5.47 −15
16 0.1245 0.0218 0.9403 1.145 0.7437 0.7929 4.22 −10
17 0.1426 0.0215 0.9274 0.893 0.6865 0.6305 5.50 0
18 0.1313 0.0216 0.8887 1.029 0.6440 0.7136 3.05 −10
19 0.1279 0.0232 0.8629 1.184 0.6159 0.8120 1.88 −15
20 0.1290 0.0220 1.0242 0.797 0.7972 0.6442 8.24 +20
30 0.1234 0.0230 0.8758 0.777 0.6739 0.6626 4.09 +10
37 0.1495 0.0228 1.0233 1.294 0.9000 0.7313 11.7 −15

Notes. The second column from the right shows the mass corresponding to ν = 3
for each cosmology at z = 0. The rightmost column shows the approximate
variation of the mean c–M relation with respect to the reference run.

assuming it to be some multiple of the cosmic density at the
redshift of halo formation. The mass fraction and the density
multipliers are given by fitting to simulations. Bullock et al.
(2001) modified this prescription by redefining the formation
redshift as the redshift where the nonlinear mass scale M∗ is
some fraction of the final halo mass. They predicted the concen-
tration as a multiple of the ratio of scale factors at the formation
and collapse redshifts. Again, the fraction and multiplier are
floating parameters, determined by fitting. Finally, Eke et al.
(2001) used a single parameter (calibrated using simulations) to
connect the collapse redshift with the effective amplitude of the
power spectrum at cluster scales.

Even though the models reproduce the expected behavior of
the c–M relation discussed in the Introduction, quantitatively
their success has been decidedly mixed—results have been sat-
isfactory over limited dynamic ranges when fitted to simulations,
but tended to break down as the range is extended or cosmo-
logical parameters are varied. Particularly significant for us is
the breakdown at large halo masses, characteristic of massive
clusters at z = 0 (Neto et al. 2007; Gao et al. 2008; Duffy
et al. 2008; Zhao et al. 2009), with a corresponding breakdown
at lower masses, but at higher redshifts. Additionally, the red-
shift evolution of the c–M relation in the models is significantly
stronger than is actually seen in simulations.

Figure 6. c200–M200 distribution at z = 0 (full sample) when wCDM parameters
are varied, following the characterization of Figure 4. The scatter is larger at
high masses due to lower numbers of halos in high-mass bins.

(A color version of this figure is available in the online journal.)

Although we have not attempted to optimize model parame-
ters, the Eke et al. (2001) prescription agrees with our simulation
results at 10%–20% accuracy for c200 for the ΛCDM cosmol-
ogy (see Table 2 for the fit). We find that the prescriptions of
Dolag et al. (2004; using a growth factor ratio multiplier) do not
explain the cosmology variation in concentrations that we ob-
serve. For instance, in our case, the growth factor only varies by
<5% over the range of simulations used, whereas the variations
of concentrations seen is ∼ ±20%.

Regarding the modeling of the scatter in the concentration, it
is natural to examine this in the context of different assembly
histories for halos with the same mass (Wechsler et al. 2002;
Zhao et al. 2003; see also Cohn & White 2005). However, in
their MS analysis, Neto et al. (2007) find that the concentration
scatter cannot be accounted for by differences in the time of
formation alone. Additional consequences of environmental
effects (Wechsler et al. 2006) appear to be important primarily
for low-mass halos. Therefore, one is driven to the general
conclusion that there is still no replacement for large-scale
simulations if reliable predictions for halo concentrations and
the distribution of concentrations are required.

6. COMPARISON WITH OBSERVATIONS

In this section, we compare our simulation results with some
of the recent observations of the concentration–mass relation for
clusters. The observational results span a variety of techniques,

Table 4
Observation Data Used in This Paper

Observation Method Rel./All No. of Clusters Redshift Range

Oguri et al. Strong+Weak lensing All 28 0.28 < z < 0.64
Okabe et al. Weak lensing All 30 0.15 < z < 0.3
Wojtak & Lokas Kinematics Rel. 41 z <0.1
Vikhlinin et al X-ray Rel. 19 z <0.2
Schmidt & Allen X-ray Rel. 34 0.06 < z < 0.7
Buote et al. X-ray Rel. 26 z < 0.23
Ettori et al. X-ray All 44 0.1 < z < 0.3

Note. We use only objects with mass >5 × 1013 h−1 M� from Buote et al.
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Figure 7. Ratio of observed concentration to theoretical predictions for relaxed cluster observations. The first two sets of data are taken from Schmidt & Allen (2007)
and Buote et al. (2007; left panel, for details see the text). The shaded area represents the 1σ boundary for the theoretical predictions. The right panel shows the
comparison against observations of the Chandra Cluster Cosmology Project (Vikhlinin et al. 2009). This data set includes updates to the results of Vikhlinin et al.
(2006) and adds six new clusters (Table 5). Note that each data point actually represents observations of multiple clusters.

(A color version of this figure is available in the online journal.)

including strong and weak lensing (e.g., Comerford & Natarajan
2007; Broadhurst et al. 2008; Mandelbaum et al. 2008; Okabe
et al. 2010; Oguri et al. 2012), X-ray observations of relaxed
clusters (e.g., Buote et al. 2007; Vikhlinin et al. 2006; Schmidt
& Allen 2007; Vikhlinin et al. 2009) and relaxed and unrelaxed
clusters (Ettori et al. 2011), and cluster kinematics (e.g., Rines
& Diaferio 2006; Wojtak & Lokas 2010). The datasets used are
summarized in Table 4. Our aim is to provide a set of figures
that enables the reader to judge by eye the current status of
how well the theoretical predictions match against observations.
Because there are significant observational systematics that
are unclear and the observational statistics are still limited,
we do not believe that a more complete statistical analysis is
necessary, or even particularly useful. The strategy we follow
is to take the ratio of each measured concentration to the
theoretically predicted concentration at the object’s observed
mass and redshift. We then bin in mass to show a relatively
limited number of comparison points in each figure. Thus each
point in the observation plots represents an average over ∼5 data
points. (The corresponding Poisson error bars use the improved
formula σ± = √

Nh + 1/4 ± 1/2 as given by Heinrich 2003,
which asymptotes to

√
Nh at large Nh.)

We begin our comparison using results from X-ray obser-
vations of relaxed clusters as shown in Figure 7. Schmidt &
Allen (2007) have measured the concentration of 34 dynami-
cally relaxed clusters (0.06 < z < 0.69) from Chandra ob-
servations (left panel). The theoretical predictions are in good
agreement for masses Mvir > 4×1014 h−1 M�, with minor ten-
sion at lower masses. The data presented by Buote et al. (2007)
are a compilation of analyses of relaxed systems from Chan-
dra and XMM-Newton; we show only the higher mass range,
represented by results taken from Pointecouteau et al. (2005),
Vikhlinin et al. (2006), Zappacosta et al. (2006), and Gastaldello
et al. (2007), spanning a redshift range of 0.016 < z < 0.23.
All of these results are in very good agreement with the pre-
dictions, lying within the 1σ boundary. The right panel shows
results from 19 clusters that were part of the Chandra Cluster
Cosmology Project (Vikhlinin et al. 2009; 0.016 < z < 0.25),

Table 5
Updated Masses and Concentrations from the Chandra

Cluster Cosmology Project

Cluster M500 δM c500 +δc −δc z

(M�) (M�)

a133 3.166 × 1014 3.776 × 1013 3.15 0.29 0.28 0.0569
a262 8.310 × 1013 7.272 × 1012 3.48 0.30 0.30 0.0162
a383 3.049 × 1014 3.100 × 1013 4.31 0.42 0.40 0.1883
a478 7.668 × 1014 1.010 × 1014 3.57 0.27 0.26 0.0881
a907 4.623 × 1014 3.790 × 1013 3.46 0.42 0.42 0.1603
a1413 7.569 × 1014 7.550 × 1013 2.93 0.18 0.17 0.1429
a1795 6.009 × 1014 5.134 × 1013 3.21 0.18 0.18 0.0622
a1991 1.235 × 1014 1.654 × 1013 4.31 0.34 0.34 0.0592
a2029 8.147 × 1014 7.674 × 1013 4.04 0.21 0.21 0.0779
a2390 1.077 × 1014 1.092 × 1014 1.66 0.13 0.13 0.2302
cl1159 1.056 × 1014 2.578 × 1013 1.77 0.38 0.24 0.0810
MKW4 7.734 × 1013 1.032 × 1013 2.54 0.16 0.14 0.0199
a2717 1.478 × 1014 2.134 × 1013 2.69 0.19 0.19 0.0498
a3112 3.448 × 1014 3.097 × 1013 4.47 0.28 0.27 0.0761
a1835 1.245 × 1015 1.342 × 1014 2.81 0.17 0.17 0.2520
a1650 4.683 × 1014 1.736 × 1013 3.74 0.19 0.19 0.0846
a2107 2.361 × 1014 3.928 × 1013 3.38 0.28 0.25 0.0418
a4059 3.496 × 1014 2.691 × 1013 2.95 0.09 0.09 0.0491
rxj1504 1.068 × 1015 1.768 × 1014 3.16 0.38 0.38 0.2169

Notes. δM is the estimated error in the mass, and +δc and −δc are the upper and
lower error bounds for the concentrations. The masses are for h = 0.72.

the data set represented in Table 5, for which the concentration
measurements were not previously reported. Once again, the
agreement is excellent. Overall, we conclude that comparisons
with X-ray measurements of relaxed clusters are in good accord
with (concordance) ΛCDM predictions.

Next we turn to the results of Ettori et al. (2011) who
measured the concentrations of 44 X-ray luminous clusters
(0.09 < z < 0.31) using XMM-Newton (Figure 8). Their
sample contains both relaxed and unrelaxed clusters. As with
the Schmidt & Allen (2007) comparison, we find that the
simulation results are in good agreement with these observations
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Figure 8. Ratio of observed concentration to theoretical predictions for the
XMM-Newton cluster observations of Ettori et al. (2011). The shaded area
represents the 1σ boundary for the theoretical predictions. Each data point
actually represents observations of multiple clusters.

(A color version of this figure is available in the online journal.)

for M200 > 4×1014 h−1 M�. As the authors note, a slope cannot
be fitted to their data because of the narrow mass range of the
observations relative to their errors. Thus, we regard the current
level of agreement as being quite satisfactory.

We now consider lensing measurements of cluster profiles us-
ing weak and strong lensing and combinations thereof. Figure 9
shows the comparison of the theoretical predictions against the
results of LoCuSS, a weak lensing study of 30 clusters with
Subaru/Suprime-Cam imaging data (Okabe et al. 2010) and a
combined strong and weak lensing analysis of 28 clusters from
the Sloan Giant Arcs Survey (Oguri et al. 2012). The left panel
of Figure 9 shows the weak lensing results displayed in the

same manner as for the X-ray data sets. The results from Okabe
et al. (2010) are in excellent agreement with our predictions,
completely consistent with the corresponding measurements
from relaxed clusters. The results of Oguri et al. (2012) are
consistent with our predictions for Mvir > 4 × 1014 h−1 M�,
but at lower masses there appears to be a significant discrepancy
with a much steeper c–M dependence. Although baryon cool-
ing may play a role at smaller masses, there is no convincing
reason for such a large effect—for which there is no signal in
the X-ray data (or in the simulations of Duffy et al. 2010). Note
that the target selection in the two surveys is quite different,
that of Okabe et al. (2010) being essentially volume-limited,
while any strong-lensing selected sample such as that of Oguri
et al. (2012) must have a significant amount of selection and
projection bias (Rozo et al. 2008; Meneghetti et al. 2010). Note
also that an analysis based on mock weak lensing observations
in the MS (Bahé et al. 2012) has shown that there is bias in
weak lensing measurements of concentration as well, tending
to depress the measured concentration by a small amount from
the predicted value.

The right panel of Figure 9 shows the combined strong plus
weak lensing analysis including a model for lensing bias (Oguri
et al. 2012). Processing the results through the lensing bias
model (by enhancing the theoretical prediction) brings down
the discrepancy significantly but there is still evident tension for
masses Mvir < 4 × 1014 h−1 M�. Nevertheless, we note that
there is a clear trend of lensing concentrations reducing over time
and becoming more consistent with the theoretical predictions.
Other data which our results appear to be in agreement with
can be found in Comerford & Natarajan (2007; strong lensing)
and Coe et al. (2012; strong and weak lensing). A cautionary
note regarding weak lensing concentration measurements of
clusters is provided in Figure 6 of Comerford & Natarajan
(2007) regarding A1689 and in the results given in Israel et al.
(2011) as part of the 400d weak lensing survey.

Instead of using individual objects, a stacked statistical
analysis can be applied to clusters, as carried out using Sloan
Digital Sky Survey (SDSS) data by Mandelbaum et al. (2008),

Figure 9. Theoretical vs. observed c–M relation for weak and strong lensing. The left panel shows weak lensing data from Okabe et al. (2010) and Oguri et al. (2012).
The Okabe et al. (2010) results are in very good agreement with the predictions, while the Oguri et al. (2012) results are strongly discrepant at the low-mass end.
The right panel shows the combined strong and weak lensing results from Oguri et al. (2012) including their bias model-corrected prediction (blue). The correction
reduces the discrepancy significantly but some tension remains below ∼4 × 1014 h−1 M�.

(A color version of this figure is available in the online journal.)
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Figure 10. Ratio of measured to predicted concentrations; the data are taken
from the results of a projected phase space analysis by Wojtak & Lokas (2010).

(A color version of this figure is available in the online journal.)

reaching cluster masses of ∼6 × 1014 h−1 M�. This analysis
finds no evidence for a major boost in concentration at lower
masses and the final result—c200b ∼ 4.6 ± 0.7 at 〈z〉 = 0.22
at a mass of M200b ∼ 1014 h−1 M� is 20%–40% less than our
prediction of c200b ∼ 6.5 at the corresponding mass. The mild
c–M dependence they observe is, however, in good agreement
with our predictions—∼0.09 compared to the observed slope of
0.13 ± 0.07.

Finally, we consider the estimates of the concentration using
galaxy kinematics in clusters. Rines & Diaferio (2006) matched
X-ray cluster catalogs with SDSS and used infall patterns
to compute cluster mass profiles. The c200 concentration has
significant scatter—values ranging from 5 to 17—but their best-
fit average profile, with fits restricted to r � R200, yields
c200 = 5.2 which, at an average mass of M200 � 1014 h−1 M�,
is in agreement with our predictions. More recently, Wojtak &
Lokas (2010) have published an analysis of 41 relaxed galaxy
clusters (0.013 < z < 0.095); we compare our predictions
with their results in Figure 10. Although their data have
considerable scatter, these are in quite reasonable agreement
with the predictions from simulations. Thus, despite possible
systematic difficulties with such methods (see, e.g., White
et al. 2010), the current results are in reasonable accord with
theoretical expectations.

7. SUMMARY AND DISCUSSION

We presented results for the concentrations of dark matter
halos using a set of large-volume simulations. With a total
volume roughly 1–2 orders of magnitude larger compared to
previous simulations, we focused on studying the c–M relation
for massive clusters. As shown in the past, at the high-mass end,
the c–M relation becomes flatter at z = 0 and the flattening
becomes more significant at higher z. The mean concentration
of the sample when expressed in terms of the peak height
parameter, ν(M, z) = δc/σ (M, z), shows a roughly uniform
slope at all redshifts. Indeed, the slope of the c–ν relation does
not change with redshift. The amplitude of the c–ν relation
evolves by about 30% at the high-mass end from z = 0 to 2.
The z-evolution is consistent with the results of Gao et al.

(2008), although the overall amplitude of the concentration
differs because of the different choices of σ8. We do not observe
a rise in concentration at higher masses as reported by Klypin
et al. (2011) and Prada et al. (2012; the Appendix includes
further discussion).

Our large halo sample allows us to study the distribution of
the concentration in individual mass bins; we find that the dis-
tribution of concentrations is well described by a Gaussian PDF
(Lukić et al. 2009; Reed et al. 2011). Thus the halo profile shape
can be described by two parameters—the mean concentration
and its standard deviation. By comparing results across a num-
ber of wCDM cosmologies, we find that the standard deviation
is roughly universal, σc � c/3, and more or less independent of
redshift, halo dynamical state, or cosmological parameters.

We investigated how the concentration changes as the cosmo-
logical parameters are varied by using a set of 18 runs spanning
the wCDM cosmology parameter space. The parameter range
covers the 2σ variation around the best-fit WMAP5 cosmology.
We find that over this range, the c–M relation varies by approx-
imately ±20%, but the standard deviation σc still follows the
relation σc = 0.33c. As suggested by our work on the wCDM
models and also previous studies of redshift evolution, the halo
formation epoch, and hence the concentration, depends on the
matter fluctuations, slope of the power spectrum, and the growth
factor. Thus calibrating the c–M relation as a function of cos-
mology is important for a wide variety of problems, ranging
from galaxy formation, the weak lensing shear power spectrum,
to the case of assembly bias in clusters. We will address the
cosmology dependence of the c–M relation in detail using more
simulations and analytical models elsewhere.

The simulation predictions are in good agreement with ob-
servations from strong lensing, weak lensing, galaxy kinemat-
ics, and X-ray data for massive clusters with masses Mvir >
4 × 1014 h−1 M�. At lower masses, different observations suf-
fer from different sources of systematic error. For example, the
lensing data need to account for bias due to the triaxiality of
halos while the X-ray data typically ignore the non-thermal
pressure component in galaxy clusters which can lead to a sys-
tematic underestimate of the cluster mass (Lau et al. 2009).
The simulations, on the other hand, also need to account for
baryonic effects which play a bigger role as the halo mass de-
creases. As a result, due to cooling, gravity-only simulations
may predict 20%–30% lower concentration for clusters with
masses Mvir < 4 × 1014 h−1 M�. The fact that most recent
observations are in agreement with the simulation results (and
amongst themselves) to better than 20% for massive clusters
(Mvir > 4 × 1014 h−1 M�) indicates that baryonic effects in-
fluencing the cluster mass profile are indeed small and that the
individual observational systematics are under some level of
control.
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APPENDIX

SYSTEMATICS AND ROBUSTNESS CHECKS

In this Appendix, we investigate various sources of possible
systematic errors in determining halo concentrations. We note
that the simulations were carried out keeping in mind error
control requirements on force-resolution, time-stepping errors,
and mass resolution that have been spelled out in the literature
(Tormen et al. 1997; Power et al. 2003; Heitmann et al. 2008;
Lukić et al. 2007).

We locate halo centers by using a very fast FOF method. In
principle, there is a very mild selection effect induced by the
choice of linking length—if the FOF finder links two halos,
then only the higher density center of one halo will be used
and the other halo will be statistically lost (see, e.g., Figure 12
in Lukić et al. 2009). A smaller linking length would in effect
free up the other halo as well, although it would slow down
the center-finding algorithm. In practice, however, this is not
an issue given the fact that individual concentrations need to
be extracted with small errors. To do so we use a minimum
number of ∼2000 particles per halo; tests have shown that with
more than 500 particles per halo, there is excellent agreement
between our method of halo finding and conventional spherical
overdensity halo finders (Knebe et al. 2011).

Another problem with halo center finding is miscentering,
which in general will tend to reduce the concentration. To
produce a quantitative estimate for this effect, we consider
an extreme example by offsetting the center of every halo by
30 h−1 kpc (a value of the same order as the force resolution)
and recomputing the profile of every halo in the G run. As
shown in Figure 11, left panel, randomly offsetting the center
by this amount reduces the c–M relation by about 10% at
M200 = 5 × 1013 h−1 M� with the difference vanishing toward
the high-mass end. (This sort of misestimation is more relevant
to analyses with stacked halos.)

The halo mass profiles were fitted using 20 bins, linear in
mass (cf. Equation (3)). We rechecked some of the profiles
using logarithmic binning at two extremes of halo masses
(5 × 1012 h−1 M� and 5 × 1014 h−1 M�) finding a small,
more or less random difference at the 3%–6% level for the best-
fit concentration, which may be compared to the actual error
spread of 15%–25% for the individual halos.

For profile tests across the different runs, we begin by
comparing the GS and HACC runs (left panel of Figure 11). Note
that although these runs have been carried out with completely
different codes, the data for c200 go over smoothly from one
mass range to another. (GADGET-2 and HACC were run with
roughly similar force resolution.) The G runs were originally
carried out for a different purpose, hence their force resolution
is somewhat lower. As expected, this has the consequence of
mildly reducing the concentration (Tormen et al. 1997; Power
et al. 2003) by about 5%.

We have tested our profile-fitting procedure by generating
Monte Carlo NFW profile samples using different numbers of

particles; with the particle numbers used to sample halos kept
larger than 2000, the method was accurate to a few percent
(worst case) and superior to simpler methods based on radius
ratios and variants thereof. To investigate how other parameters
could affect concentration values, we went back to using the
halos from the simulations. The right panel of Figure 11 shows
the effect of varying the range of the halo profile used to fit to the
NFW form. Changing the starting radius from r = 0.1 Rvir to
r = 0, with the outer limit fixed at r = Rvir reduces the overall
c–M relation by about 5% (resolution/particle undersampling
limitations). Fixing the starting radius at 0.1 Rvir but changing
the stopping radius to 2 Rvir changes the relation only by a
negligible amount as compared to the fiducial range (0.1–1)Rvir.
Reducing the stopping radius to 0.5 Rvir steepens the c–M
relation by about 10%.

Because our primary interest is in halos that have mass
significantly in excess of M∗, it is important to ask what possible
systematic effects could arise from fitting such objects without
paying attention to their infall structure (substructure in the outer
part of the halo). The average radial velocity of a halo fluctuates
around zero out to an infall radius, rinf , beyond which it goes
negative, this transition roughly defining the boundary of the
infall region. Purely as an informal nomenclature, we refer to
the region internal to the infall radius as the virialized region.
We find all halos that have (the formal) Rvir > rinf and exclude
them from the analysis, thus focusing attention on halos that
have much less infall contamination. The result is shown by
the solid line in the right panel of Figure 11. Not unexpectedly,
cluster size halos with masses ∼1014 h−1M� and greater are
much more sensitive to this cut and display an enhancement
of the c–M relation by about 10% when only the “virialized”
subsample is used.

As mentioned in Section 2, the halo concentration can be
measured in different ways, even if one sticks to the NFW defi-
nition(s) of concentration. Therefore, it is important to investi-
gate what sources of uncertainty can arise from using different
definitions that may be mathematically equivalent, but not oper-
ationally the same. Here we study two alternative independent
techniques for measuring concentrations—the radius ratio and
the maximum circular velocity. The radius ratio method is very
simple: We measure the radius at Δ = 300 and 200 for each
halo in our sample. Then, assuming the halos are described by
an NFW profile, the radius ratio is given by

300R3
300

200R3
200

= m(c200R300/R200)

m(c200)
, (A1)

where m(x) = ln(1 + x) − x/(1 + x). Given a measurement
of R300/R200, one solves the nonlinear equation (A1) for c200.
The mean c–M relation is then obtained in the same way
as for profile fitting. The left panel of Figure 12 shows the
concentration measured using the profile fit and by the radius
ratios. For this test we focused on the relaxed sample, although
the full sample gave identical results. The diagonal line in the
figure denotes the ideal exact agreement of the concentration
measures from the profile fit and from the radius ratio. As
the results in the figure show, the two methods agree quite
well within the specified errors. The error in the concentration
measurement using the radius ratio arises from the error in
determining the radii—the Poisson error from the total number
of particles inside R300 and R200. As expected, the radii are
determined quite accurately as there are large number of
particles inside these radii, but because of the logarithmic nature
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Figure 11. Tests to identify possible sources of systematic error. The left panel shows the three runs used in this paper and how the force resolution affects concentration
measurements. There is excellent agreement between the GS and HACC runs, even though they were run using two completely different codes with different settings.
The lower-resolution G run (resolution = 35 h−1 kpc) is systematically lower by about 5% compared to the HACC run (resolution = 7 h−1 kpc). We also study
the possible effect of a misestimate of the halo center for the G run which can lead to a further reduction of concentration values. The right panel studies two other
systematics issues: (1) the profile range used for fitting and (2) effect on concentration measurements when halos with large radial infall velocity are removed from
the sample (solid curve). See the text for further discussion.

(A color version of this figure is available in the online journal.)

Figure 12. Comparison (left and right panels) between c200 measured for relaxed clusters using profile fitting and that obtained from the radius ratio (left panel)
and vmax/v200 (right panel). The diagonal line represents the ideal case when the measured concentrations agree exactly. The middle panel shows the ratio of the
maximum circular velocity to that at radius R200 for z = 0 for the relaxed sample as a function of mass. Note the smooth crossover between the GS and HACC runs at
M200 ∼ 1014 h−1M� at redshifts z = 0, 1 (cf. Figure 1).

(A color version of this figure is available in the online journal.)
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Figure 13. c–M distribution at three mass bins—M200 = 5 × 1012 h−1 M� (left from the GS run), 1.5 × 1014 h−1 M� (middle, HACC), and 8 × 1014 h−1 M� (right,
HACC)—from the halos drawn from the full sample at z = 0. Lines show the Gaussian distribution with standard deviation σc/c ∼ 0.33 in the left and center panels,
and σc/c ∼ 0.28 in the rightmost panel.

(A color version of this figure is available in the online journal.)
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of Equation (A1), the Δc200 become non-negligible. The error
on the mean concentration also includes the Poisson error due
to the finite number of halos in the individual mass bins.

The second method we investigate relies on using a proxy for
the maximum circular velocity of a halo (Klypin et al. 2011;
Prada et al. 2012). The circular velocity is given by

v2 = GM(< r)/r. (A2)

For each halo in the sample we determine the maximum value of
v2

max = max[GM/r] indirectly by using the halo’s mass profile
to determine the right-hand side of Equation (A2), and then
divide by v2

200 = GM200/R200. Assuming an NFW form, one
can relate v2

max/v
2
200 to the concentration, c200,

v2
max

v2
200

= 0.2162c200

m(c200)
(A3)

and solve for c200. The middle panel of Figure 12 shows the ratio
vmax/v200 as a function of M200 for three redshifts for the relaxed
cluster sample. The right panel compares the concentrations
obtained from the maximum velocity method and profile fitting.
Again, the methods agree quite well within the error estimates,
the velocity method being noisier. The middle panel of Figure 12
shows the ratio vmax/v200 as a function of mass. Note that we
cross over very smoothly from the GS run to the HACC run
at M200 = 1014 h−1 M�, more evidence for an excellent match
between the results from these two simulations. One problem
with this method is that because rmax ∼ 2.2rs (where rmax is
the radius where v reaches vmax), at low concentrations, rmax
becomes very close to rΔ, and is therefore very sensitive to
any noise in the data, which will (1) result in biasing the
concentration to a higher value (as seen in the flattening of
the data at c ∼ 3 in Figure 12, right panel) and (2) make the
result very sensitive to the shape of the measured profile at
r ∼ rΔ, increasing the possibility of systematic errors. Finally,
Klypin et al. (2011) and Prada et al. (2012) have both found that
the maximum velocity method (along with their halo selection)
leads to an upturn in the c–M relation at the high-mass end
at higher redshifts. We are unable to confirm this effect in our
measurements, where we can investigate it (z = 1, 2), but will
return to it in forthcoming work.

We provide more information regarding the distribution of
the concentrations, c200, for the full halo sample at z = 0
by considering three representative mass bins, M200 = 5 ×
1012 h−1 M�, 1.5 × 1014 h−1 M�, and 8 × 1014 h−1 M�, as
shown in Figure 13. Previous studies (Jing 2000; Shaw et al.
2006; Neto et al. 2007; Duffy et al. 2008) fitted the concentration
distribution to a log-normal form. However, this distribution is
also very well described by a Gaussian as noted by Lukić et al.
(2009) and Reed et al. (2011). Figure 13 shows that a Gaussian
distribution provides a very good fit to our data (which has very
little skewness), with negligible non-Gaussian tails.

We conclude that while statistical errors on the concentration–
mass relation may have achieved ∼5% accuracy in recent
simulation studies, systematic uncertainties of the order of 10%
are apparently difficult to avoid.
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519, A90
Mo, H. J., van den Bosch, F. C., & White, S. D. M. 2010, Galaxy Formation

and Evolution (Cambridge: Cambridge Univ. Press)
More, S., Kravtsov, A. V., Dalal, N., & Gottlöber, S. 2011, ApJS, 195, 4
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