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ABSTRACT

We use local numerical simulations to investigate the strength and nature of magnetohydrodynamic (MHD)
turbulence in the outer regions of protoplanetary disks, where ambipolar diffusion is the dominant non-ideal
MHD effect. The simulations include vertical stratification and assume zero net vertical magnetic flux. We employ
a super time-stepping technique to ameliorate the Courant restriction on the diffusive time step. We find that in
idealized stratified simulations, with a spatially constant ambipolar Elsasser number Am, turbulence driven by the
magnetorotational instability (MRI) behaves in a similar manner as in prior unstratified calculations. Turbulence
dies away for Am � 1, and becomes progressively more vigorous as ambipolar diffusion is decreased. Near-ideal
MHD behavior is recovered for Am � 103. In the intermediate regime (10 � Am � 103) ambipolar diffusion leads
to substantial increases in both the period of the MRI dynamo cycle and the characteristic scales of magnetic field
structures. To quantify the impact of ambipolar physics on disk accretion, we run simulations at 30 AU and 100 AU
that include a vertical Am profile based upon far-ultraviolet (FUV) ionized disk models. These models develop a
vertically layered structure analogous to the Ohmic dead zone that is present at smaller radii. We find that, although
the levels of surface turbulence can be strong (and consistent with constraints on turbulent line widths at these
radii), the inferred accretion rates are at least an order of magnitude smaller than those observed in T Tauri stars.
This discrepancy is very likely due to the assumption of zero vertical magnetic field in our simulations and suggests
that vertical magnetic fields are essential for MRI-driven accretion in the outer regions of protoplanetary disks.
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1. INTRODUCTION

The structure and evolution of protoplanetary disks play a cru-
cial role in the formation of stars and their planetary systems.
Disk gas is observed to accrete onto the central star at rates that
require some form of angular momentum transport substantially
stronger than that provided by molecular viscosity. Turbulence
has long been suggested as the source of enhanced transport
(Shakura & Syunyaev 1973). This turbulence not only allows
for accretion, but can also play an important role in the forma-
tion and subsequent evolution of planets. At early times, turbu-
lence can act to inhibit dust settling and largely determine the
collisional velocities that affect the balance between fragmen-
tation and coagulation of these particles (Ormel & Cuzzi 2007;
Youdin & Lithwick 2007; Birnstiel et al. 2011). Persistent pres-
sure maxima predicted by some turbulence models (Barge &
Sommeria 1995; Johansen et al. 2009; Uribe et al. 2011; Simon
et al. 2012) may act to concentrate particles, enhancing their co-
agulation into larger particles. Once planetesimals have formed,
gravitational coupling to turbulent fluctuations in the disk may
affect their growth (Ida et al. 2008). Finally, the strength and
nature of turbulence determines whether the critical co-orbital
contribution to the Type I migration torque remains unsaturated
(Paardekooper et al. 2011).

At a minimum, turbulence in protoplanetary disks will be
generated in regions where the magnetorotational instability
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(MRI; Balbus & Hawley 1998) operates. Indeed, simulations
of the nonlinear evolution of the MRI under ideal magnetohy-
drodynamic (MHD) conditions yield sustained turbulence that
transports angular momentum outward at rates in general agree-
ment with observations (Hartmann et al. 1998). However, large
regions of protoplanetary disks are expected to have very low
ionization fractions (e.g., Ilgner & Nelson 2006), which in turn
result in three significant non-ideal MHD effects: Ohmic diffu-
sion, ambipolar diffusion, and the Hall effect (see, e.g., Armitage
2011). The relative importance of these effects depends primar-
ily upon the density (as well as magnetic field strength). Ohmic
diffusion is efficient at high densities, and is thus most impor-
tant in the inner regions of the disk (outside a small zone very
close to the star where thermal ionization of alkali metals pro-
vides sufficient ionization throughout the disk column). At low
gas densities, such as in the outer disk, ambipolar diffusion be-
comes dominant, while at intermediate densities, the Hall term
is important (e.g., Kunz & Balbus 2004).

MRI physics and the phenomenological consequences of
the non-ideal terms have been best characterized in the case
of Ohmic diffusion. The evolution in this limit depends upon
the Elsasser number, defined as Λ ≡ v2

A,z/ηΩ, where vA,z is
the Alfvén velocity in the vertical direction, η is the Ohmic
resistivity, and Ω is the angular frequency of Keplerian rotation.
For Λ less than order unity, MRI turbulence is severely quenched
(Jin 1996; Turner et al. 2007), while for larger values the MRI
saturation level will depend on the strength of Ohmic diffusion;
stronger diffusion leads to lower turbulence levels. Combining
these results with chemical models for disks motivates the dead
zone model of disk accretion (Gammie 1996). In this model,
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the disk is well-ionized only in its surface layers due to non-
thermal sources (X-rays, cosmic rays, and far-ultraviolet (FUV)
photons) that penetrate the disk from the exterior down to some
column depth. Closer to the mid-plane, the ionization fraction
is low, resulting in a small Λ and no MRI-driven turbulence
(e.g., Gammie 1996; Fleming & Stone 2003; Turner et al. 2007;
Turner & Sano 2008; Oishi & Low 2009). Thus, MRI-driven
accretion occurs in active layers only, leaving much of the disk
mass near the mid-plane magnetically inactive.

Qualitative changes to the predicted disk structure may
equally result from ambipolar diffusion and the Hall effect,
though for these terms the understanding of the nonlinear
behavior is incomplete. The linear regime of the MRI in the
presence of the Hall term has been explored by Wardle (1999),
Balbus & Terquem (2001), and Wardle & Salmeron (2012). A
primary result from these studies is that the growth rate of the
MRI is strongly affected by the sign of �·B, i.e., how the vertical
magnetic field is aligned with the angular velocity vector. The
only study of the nonlinear, turbulent state of the MRI in the
presence of the Hall term was carried out in Sano & Stone
(2002a, 2002b). Their numerical simulations included both
Ohmic diffusion and the Hall term, with the Ohmic contribution
dominating significantly over the Hall effect. In this regime, the
Hall term does not strongly influence the saturated state of the
MRI. However, the regime in which the Hall term dominates
has yet to be explored through simulations (Wardle & Salmeron
2012).

Ambipolar diffusion arises from the imperfect coupling
between ionized species and neutrals. The linear analyses of
Blaes & Balbus (1994), Kunz & Balbus (2004), and Desch
(2004) showed that the growth of the MRI is damped when the
collision frequency between the neutrals and the ions is smaller
than the orbital frequency. This is intuitive; neutrals need to
communicate with the ions faster than the timescale over which
the MRI acts (i.e., the dynamical one) in order for the neutrals
to feel any MRI-like effect at all.

Initial two- and three-dimensional simulations of nonlinear
MRI turbulence in the presence of ambipolar diffusion were
carried out by Low et al. (1995) and Brandenburg et al. (1995),
respectively. These authors considered the single-fluid, “strong-
coupling” limit, valid when the recombination timescale is
much shorter than the dynamical time. This limit is generally
applicable to protoplanetary disks (Bai & Stone 2011; Bai
2011a). Their results agreed with the expectations of linear
theory (Blaes & Balbus 1994); the MRI only operates if the
collision frequency between neutrals and ions exceeds the
angular frequency. Simulations in the alternate regime, where
the recombination timescale for electrons is assumed to be very
long, were conducted by Hawley & Stone (1998) using a two-
fluid approach in which the ions and neutrals were evolved
separately, only interacting through collisions. The primary
result of this work was that for a collision frequency less than
0.01Ω, the ions and neutrals behave independently, but for a
frequency larger than 100Ω, the gas behaves as though its fully
ionized. When both the collision and orbital frequencies are
comparable, the saturation level of the turbulence is primarily
controlled by the ion density.

The importance of ambipolar diffusion in the outer regions
of protoplanetary disks, the advent of well-resolved mm-wave
observations of these regions, and advances in numerical tech-
niques, all motivate more detailed studies of how ambipolar dif-
fusion affects the saturated state of the MRI. Bai & Stone (2011)
carried out shearing box simulations in the strong-coupling limit

to determine how the MRI saturation level correlates with di-
mensionless number, Am, defined as the frequency for the neu-
trals to collide with the ions divided by the orbital frequency (see
Section 2.1). They found that for simulations with a net toroidal
magnetic flux, but no vertical magnetic flux, the turbulence dies
away for Am � 1, in line with previous studies. For sustained
turbulence runs, the saturated turbulent stresses increase with
increasing Am, eventually asymptoting toward the ideal MHD
level. However, in the presence of a net vertical magnetic flux,
turbulence can always be sustained even for Am < 1, assum-
ing that the background vertical magnetic flux is weak enough.
For low Am values, however, the resulting turbulence levels are
fairly small.

Following these lines of investigation, we study the effect of
ambipolar diffusion on the MRI in the outer region of protoplan-
etary disks by performing numerical simulations using a more
realistic disk structure than attempted previously. We include
vertical stratification (absent in all prior work except for that of
Brandenburg et al. 1995), which has been shown in some previ-
ous MRI calculations to lead to significant qualitative changes in
the nonlinear evolution. For example, Davis et al. (2010) showed
that in the ideal MHD case, the turbulence properties converge
with numerical resolution, while in unstratified simulations (and
for a vertical domain size of one scale height or less; J. M.
Stone 2012, private communication), the stress level decreases
with resolution with no signs of convergence (Fromang &
Papaloizou 2007). Similarly, Simon et al. (2011b) showed that
in the presence of Ohmic resistivity, vertical gravity can lead to
large amplitude fluctuations in the stress levels, a behavior that
is absent without vertical gravity.

We also aim to translate our idealized understanding of the
ambipolar-dominated MRI into predictions for turbulence and
accretion in the outer regions of protoplanetary disks. We run
simulations that mimic realistic conditions in the outer disk
(which reflect the chemistry calculations in Bai 2011a and the
FUV ionization model of Perez-Becker & Chiang 2011). These
simulations will provide a quantitative measure of the turbulent
saturation, structure, and evolution of the outer disk regions.

Our investigation is divided into two sets of studies, using dif-
ferent magnetic configurations. The first, which we pursue here
(Paper I), assumes zero net vertical magnetic flux.7 Although
it is unlikely that there will be exactly zero vertical magnetic
flux penetrating any given region of a disk, this is the most stud-
ied field configuration in the literature (e.g., Stone et al. 1996;
Fleming & Stone 2003), and it allows us to make direct compar-
isons between the ambipolar MRI and the previous simulations
that either include Ohmic resistivity or assume that the gas is
fully ionized. It is also possible (though not particularly likely)
that there will be some regions of protoplanetary disks that have
negligible vertical magnetic fields; our results will apply to such
regions. The second set of studies will include a non-zero verti-
cal net magnetic flux, and we defer that problem to Paper II.

The structure of the paper is as follows. In Section 2, we
describe our equations, the methods used to solve them and the
initial conditions for our simulations. In Section 3.1, we study
the effect of Am (here assumed constant in space and time)
on vertically stratified MRI turbulence. Then, in Section 3.2,
we apply a realistic protoplanetary disk model to allow for a
spatially and temporally varying Am. Section 4 discusses the
implications of our results for real protoplanetary disks, and we
wrap up with conclusions in Section 5.

7 Of course due to the dynamo action of the MRI (Davis et al. 2010; Simon
et al. 2011b), the net radial and toroidal fields are allowed to evolve in time.
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2. METHOD

2.1. Numerical Method

In this study, we use Athena, a second-order accurate Go-
dunov flux-conservative code for solving the equations of MHD.
Athena uses the dimensionally unsplit corner transport upwind
method of Colella (1990) coupled with the third order in space
piecewise parabolic method of Colella & Woodward (1984) and
a constrained transport (CT; Evans & Hawley 1988) algorithm
for preserving the ∇ · B = 0 constraint. We use the HLLD
Riemann solver to calculate the numerical fluxes (Miyoshi &
Kusano 2005; Mignone 2007). A detailed description of the base
Athena algorithm and the results of various test problems are
given in Gardiner & Stone (2005, 2008) and Stone et al. (2008).

Our set up is specialized and necessarily more complex than
the base algorithm. First, our simulations utilize the shearing
box approximation, which is a model for a local, corotating disk
patch whose size is small compared to the radial distance from
the central object, R0. This allows the construction of a local
Cartesian frame (x, y, z) that is defined in terms of the disk’s
cylindrical coordinates (R, φ, z′) via x = (R − R0), y = R0φ,
and z = z′. The local patch corotates with an angular velocity
Ω corresponding to the orbital frequency at R0, the center of the
box; see Hawley et al. (1995). Thus, the equations to solve are

∂ρ

∂t
+ ∇ · (ρv) = 0, (1)

∂ρv

∂t
+ ∇ · (ρvv − B B) + ∇

(
P +

1

2
B2

)

= 2qρΩ2x − ρΩ2 z − 2� × ρv (2)

∂ B
∂t

− ∇ × (v × B) = ∇ ×
[

( J × B) × B
γρiρ

]
, (3)

where ρ is the mass density, ρv is the momentum density, B
is the magnetic field, P is the gas pressure, and q is the shear
parameter, defined as q = −dlnΩ/dlnR. We use q = 3/2,
appropriate for a Keplerian disk. We assume an isothermal
equation of state P = ρc2

s , where cs is the isothermal sound
speed. From left to right, the source terms in Equation (2)
correspond to radial tidal forces (gravity and centrifugal),
vertical gravity, and the Coriolis force. The source term in
Equation (3) is the effect of ambipolar diffusion on the magnetic
field evolution, where ρi is the ion density, and γ is the
coefficient of momentum transfer for ion–neutral collisions.
Note that our system of units has the magnetic permeability
μ = 1, and the current density is

J = ∇ × B. (4)

Adopting this shearing box approximation allows for better
resolution of small scales within the disk, at the expense of
excluding global effects (those of scale ∼R0). These scales could
be physically important (Sorathia et al. 2012; Simon et al. 2012).
However, the trade-off is worthwhile for our purposes, because
we need to study not only models where ambipolar diffusion is
dominant, but also situations where diffusion is only important
on small scales.

The numerical integration of the shearing box equations
require additions to the Athena algorithm, the details of which
can be found in Stone & Gardiner (2010) and the appendix of
Simon et al. (2011b). Briefly, Crank-Nicholson differencing is

used to conserve epicyclic motion exactly and orbital advection
to subtract off the background shear flow (Stone & Gardiner
2010). The y boundary conditions are strictly periodic, whereas
the x boundaries are shearing periodic (Hawley et al. 1995).
The vertical boundaries are the outflow boundary conditions
described in Simon et al. (2011b). The electromotive forces
(EMFs) at the radial boundaries are properly remapped to
guarantee that the net vertical magnetic flux is strictly conserved
to machine precision using CT (Stone & Gardiner 2010). In this
paper, we only consider the case of zero net vertical magnetic
flux; thus, the methods we employ preserve this zero flux
condition to machine accuracy.

The integration of the ambipolar diffusion term also requires
some modifications to the algorithm. Ambipolar diffusion is
implemented in a first-order operator-split manner as in Bai &
Stone (2011); the ambipolar diffusion term is integrated sepa-
rately from the ideal MHD integrator. Furthermore, as is evident
from Equation (3), the ambipolar diffusion term can be written
as an EMF. Thus integrating it is done via the CT method to
preserve ∇ · B = 0. The ambipolar diffusion EMFs are also
remapped at the radial boundaries in the same way as the ideal
MHD EMFs in order to maintain a zero vertical magnetic flux.
In addition, before even remapping these ambipolar diffusion
EMFs at the radial boundaries, we also remap the toroidal cur-
rent densities Jy (located at cell edges) so that the line integral∫

Jydy along the inner and outer radial boundaries are equal. We
find that this procedure is essential to avoid spurious numerical
features at shearing-box boundaries.8

Throughout this paper, the strength of ambipolar diffusion
will be characterized by the ambipolar Elsasser number

Am ≡ γρi

Ω
, (5)

which corresponds to the number of times a neutral molecule
collides with the ions in a dynamical time (Ω−1). Am can be
rewritten as

Am = v2
A

ηAΩ
, (6)

which is a form reminiscent of the Ohmic Elsasser number. As
shown by Equation (5), Am is independent of the Alfvén speed;
this comes about because the ambipolar diffusivity, ηA is defined
as

ηA ≡ v2
A

γρi

. (7)

This diffusivity is responsible for determining the diffusive time
step in a Courant limited calculation; Δtdiff ∝ Δx2/ηA. Since the
diffusivity is proportional to the Alfvén speed squared, it can
become very large in the upper disk regions, making the Courant
limited time step extremely small in some of our calculations.

To circumvent this issue, we have implemented the super
time-stepping (STS) technique of Alexiades et al. (1996) to
accelerate our calculations. The STS technique has already been
successfully implemented and tested for studying ambipolar
diffusion in multi-fluid codes by O’Sullivan & Downes (2006,
2007) and in a single-fluid code by Choi et al. (2009). Our
implementation is similar to theirs, as we describe in detail in
the Appendix.

8 We note that strict magnetic flux conservation (remap of the EMFs) was not
enforced in Bai & Stone (2011), in which case this additional remap of Jy was
not necessary. Nevertheless, the variations in vertical net magnetic flux in
Bai & Stone (2011) simulations were tiny (less than 0.01%), which did not
affect their results.
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2.2. Am Profiles

For most of our simulations, we fix Am to be constant in
order to study the effect of ambipolar diffusion on the nonlinear
saturation of the MRI in the presence of vertical stratification.
This is designed to be the next logical step in extending the
work of Bai & Stone (2011) where vertical stratification was
not included. We have considered Am = 1, 10, 100, 300, 103,
and 104. Although this prescription of a constant Am profile is
highly simplified, it is a necessary, incremental step between the
constant Am models without vertical gravity (Bai & Stone 2011)
and simulations that incorporate a more realistic prescription for
ambipolar diffusion, which we also carry out (see below).

The results of Bai (2011a) show that the physical value of
Am in the outer regions of protoplanetary disks is of order unity
or less. Recently, Perez-Becker & Chiang (2011) pointed out
that the surface layer of protoplanetary disks should be much
better ionized due to FUV photon ionization from the central
star; these photons almost fully ionize the carbon and sulfur to
overcome the effects of recombination onto dust grains. Their
results imply a large ionization fraction (f ∼ 10−5) down to a
small penetration depth of ΣFUV ∼ 0.01–0.1 g cm−2, relatively
independent of disk radius. Such an ionization fraction should
significantly reduce the strength of ambipolar diffusion (i.e.,
increase Am) in the disk surface layers.

Thus, in our second set of simulations, we include the effect
of FUV ionization at the disk surface layers to give Am a more
realistic spatial and temporal dependence. Since we are not
including Ohmic resistivity (Gammie 1996) in our calculations,
these particular models are only appropriate for the outer regions
of protoplanetary disks (e.g., beyond ∼10 AU) where ambipolar
diffusion dominates Ohmic diffusion (Kunz & Balbus 2004;
Armitage 2011). We adopt a minimum-mass solar nebular
disk model with surface density of Σ = 1700R

−3/2
AU g cm−2

(Weidenschilling 1977; Hayashi 1981), where RAU is the disk
radius measured in AU. We can express the value of Am within
the FUV ionized layer as follows (Bai & Stone 2013):

AmFUV ≈ 3.3 × 107

(
f

10−5

)(
ρ

ρ0,mid

)
R

−5/4
AU , (8)

where f is the ionization fraction and ρ0,mid is the mid-plane
density. For simplicity, we fix f = 10−5, ρ0,mid = 1, and
assume a penetration depth of ΣFUV = 0.1 g cm−2 (which is
slightly different from that in Bai & Stone 2013). We conduct
two simulations that correspond to radial locations at R = 30
AU and R = 100 AU. Assuming that the density profile is
Gaussian (see Equation (12)), one finds that the base of the
FUV layer (at which the column density equals ΣFUV) is located
at zb = 1.7H for R = 30 AU and zb = 1.1H for R = 100 AU
(H is the vertical scale height as defined in Equation (13) below).
In our simulations, we set Am = 1 for −zb < z < zb as a proxy
based on the calculations of Bai (2011a), and use Equation (8)
for the ionized surface layers of the disk. In principle, Am < 1
with the inclusion of grains (Bai 2011a). However, as we will
see, for Am = 1 ambipolar diffusion is sufficiently strong to
quench the MRI in this mid-plane region; thus, going to lower
values of Am is unnecessary for the purposes of this study.
Finally, we keep the value of zb fixed throughout the calculation
for simplicity.

From these considerations, the value of Am changes quite
dramatically from Am = 1 to Am ≈ 3 × 104 at the base of the
FUV layer. This very large transition is smoothed over roughly
seven grid zones so as to prevent a discontinuous transition in

Figure 1. Vertical profile for Am at RAU = 30. The profile corresponds to the
initial time of Z30AU, which is orbit 22 from the Am = 105 run with the same
domain size. The value of Am has been averaged horizontally. The units of the
x axis are the vertical scale height, H. The asterisks denote the locations of grid
zones. Am transitions from Am = 1 to Am = AmFUV (as defined in the text),
and this transition is smoothed over roughly seven grid zones using the error
function.

Am. The smoothing functions we apply are based upon the error
function (ERF). Thus, the complete profile of Am for these runs
is given by

Am ≡

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

AmFUV z � zb + Δz

1 + 1
2 AmFUVS+(z) zb − nΔz < z < zb + Δz

1 −zb + nΔz � z � zb − nΔz

1 + 1
2 AmFUVS−(z) −zb − Δz < z < −zb + nΔz

AmFUV z � −zb − Δz,
(9)

where S+(z) and S−(z) are the smoothing functions defined as

S+(z) ≡ 1 + ERF

(
z − 0.9zb

Δz

)
, (10)

S−(z) ≡ 1 − ERF

(
z + 0.9zb

Δz

)
. (11)

Here, n = 8 and Δz = 0.05H . These numbers were chosen to
give a reasonably resolved transition region between Am = 1
and AmFUV. For a visual representation of the rather complex
Equation (9), we plot in Figure 1 the vertical profile of Am
(averaged over x and y) for the run at RAU = 30 at the initial
time, referring here to when the run was restarted from C1e5 (see
below). The asterisks denote the grid cell centers; as previously
mentioned, the transition region is resolved by ∼7 zones.

2.3. Simulations

We have run simulations with several domain sizes and Am
profiles. All of the simulations with Am < 105 or with spatially
and temporally varying Am are initialized from the turbulent
state of a “starter” calculation with the same domain size but
with Am = 105 (i.e., reasonably close to ideal MHD).

These starter simulations are initialized with a density corre-
sponding to isothermal hydrostatic equilibrium.

ρ(x, y, z) = ρ0exp

(
− z2

H 2

)
, (12)
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Table 1
Shearing Box Simulations

Label Ambipolar Diffusion Domain Size α

(Lx × Ly × Lz)H

C1 Am = 1, constant 4 × 8 × 8 decayed
C10 Am = 10, constant 4 × 8 × 8 0.0046
C10L Am = 10, constant 8 × 16 × 8 0.0055
C100S Am = 100, constant 2 × 4 × 8 0.070
C100 Am = 100, constant 4 × 8 × 8 0.0062
C300 Am = 300, constant 4 × 8 × 8 0.024
C1000 Am = 1000, constant 4 × 8 × 8 0.022
C10000 Am = 104, constant 4 × 8 × 8 0.025
C1e5 Am = 105, constant 4 × 8 × 8 0.038
Z30AU Am at R = 30 AU 8 × 16 × 8 0.0016
Z100AU Am at R = 100 AU 8 × 16 × 8 0.0015

where ρ0 = 1 is the mid-plane density, and H is the scale height
in the disk,

H =
√

2cs

Ω
. (13)

The isothermal sound speed, cs = 7.07×10−4, corresponding to
an initial value for the mid-plane gas pressure of P0 = 5×10−7.
With Ω = 0.001, the value for the scale height is H = 1. A
density floor of 10−4 is applied to the physical domain as too
small a density leads to a large Alfvén speed and a very small
time step. Furthermore, numerical errors make it difficult to
evolve regions of very small plasma β (ratio of thermal pressure
to magnetic pressure).

The initial magnetic field is purely toroidal and has a constant
β = 100 throughout the domain (thus, B2

y has a Gaussian shape
like the density). Random perturbations are added to the density
and velocity components to seed the MRI.

The remaining simulations are restarted from orbit 50 (orbit
22 for the simulations with domain size 8H × 16H × 8H 9)
of their corresponding domain size simulation with Am =
105. They are listed in Table 1. The label for each calculation
describes whether the value of Am is constant with height,
labeled C, or varies according to Equation (9), labeled Z.
For the constant Am simulations, the number following the C
is the value of Am. For the spatially varying Am calculations,
the number afterward (along with the AU) describes the radial
location of the shearing box in our protoplanetary disk model
in units of AU. An S (L) following the Am value corresponds
to a domain size of 2H × 4H × 8H (8H × 16H × 8H ), which
is smaller (larger) than the 4H × 8H × 8H size of most of
the constant Am calculations. The “starter” simulation for the
4H ×8H ×8H runs is also included in the table, labeled C1e5.
Finally, all of our calculations are carried out at a resolution of
36 grid zones per H.

3. RESULTS

3.1. Constant Am Calculations

We begin by applying some standard diagnostics to the
set of calculations with constant values of Am. The first
such diagnostic is the density-weighted Maxwell and Reynolds

9 We choose a different restart time for these calculations because we decided
midway through running our simulations that a larger number of cores is
significantly more efficient for the variable Am runs. Thus, we had to redo the
Am = 105 calculations, and orbit 22 was chosen because the density-weighted
stress at this time was roughly equal to orbit 50 of the lower core version of
this calculation.

Figure 2. Density-weighted volume average of the total (Maxwell and Reynolds)
stress, normalized by the square of the sound speed, vs. time for the standard
4H × 8H × 8H simulations. The magenta line corresponds to Am = 1, blue
to Am = 10, red to Am = 100, orange to Am = 300, black to Am = 1000,
and green to Am = 104. The horizontal dashed line corresponds to the time-
averaged (from orbit 25 to 53) stress value for Am = 105 from which the other
runs were initialized. After an initial transient of ∼50 orbits, the simulations
with Am � 10 are sustained. There is a general trend of increasing stress level
with increasing Am. The Am = 1 case has turbulence that decays away rapidly.

(A color version of this figure is available in the online journal.)

stresses (see Equation (37) of Balbus & Hawley 1998), defined
as

WRφ = 〈ρvxδvy − BxBy〉
〈ρ〉 , (14)

where the angled brackets denote a volume average over the
whole domain. Figure 2 shows the time evolution of this total
stress for the 4H × 8H × 8H runs, normalized by the square
of the sound speed. The dashed line indicates the averaged
value (from orbit 25 to 53) of the run with Am = 105 from
which all of the other 4H × 8H × 8H runs were restarted. The
different Am values are denoted by the color. The runs with
Am > 1 appear to adjust on a roughly 50 orbit timescale after
which a statistical steady state follows. In general, the stress
increases with increasing Am (decreasing diffusion) for these
runs. However, the Am = 10 and Am = 100 runs have roughly
the same values at late times, as do the Am = 300, 1000, and
10,000 runs.

The Am = 1 case deserves extra attention. From Figure 2,
it would appear that the turbulence completely dies away. A
closer examination of the stress histories show that the Maxwell
stress levels out to a small but positive value, while continuing
to slowly decrease with time. The Reynolds stress approaches
an oscillatory behavior which occasionally brings it below zero.
Space-time plots of various quantities in this run indicate that the
gas is no longer MRI turbulent. The remnant Maxwell stress is
the result of a residual large scale Bx and By field near the mid-
plane, and the Reynolds stress appears to arise from residual
waves propagating through the box. The longer term behavior
of this Am value could not be examined because even with
STS, the diffusion limited time step is very small for Am = 1;
running it out further would be very computationally expensive.
However, these results strongly indicate that the MRI turbulence
has completely decayed away, consistent with the results of Bai
& Stone (2011). This behavior will play an important role in the
variable Am simulations of Section 3.2.
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Figure 3. Time-averaged total stress (i.e., α) as a function of Am for the standard
4H × 8H × 8H simulations. There is a general trend of increasing stress level
with increasing Am.

We time average this normalized stress and define the
Shakura–Sunyaev α parameter,

α = WRφ

c2
s

, (15)

where the overbar denotes the time average, which is done from
orbit 100 onward for most of the constant Am runs with Am >
1; from orbit 72 onward for runs C10L, Z30 AU, and Z100 AU;
and from orbit 25 to 53 for the Am = 105 “starter” simulation.
Figure 3 displays α versus Am for these runs. The arrow on the

Am = 1 run indicates that that the stress level is continually
decreasing. The trend of α with Am can be compared with the
unstratified simulations shown in Figure 10 of Bai & Stone
(2011). These trends roughly agree, though the results from
Bai & Stone (2011) show a monotonic increase of α with Am,
whereas our results show that different Am values can lead to
very similar α values.

This difference may be attributable to different background
magnetic field strengths as the background field evolves via the
usual MRI dynamo (e.g., Davis et al. 2010; Simon et al. 2011b).
To understand this further, first let us consider the space-time
diagrams of the toroidal field By for C10, C100, C300, and
C1000 as shown in Figure 4. In these diagrams, the field has
been averaged over x and y and is plotted in the (t, z) plane.
The most obvious feature from these diagrams is that the period
of the dynamo flipping of By changes with Am; as ambipolar
diffusion becomes stronger, the period increases. In particular,
for Am = 10, the period is ∼50 orbits, and for Am = 100 (only
considering times past the initial 50 orbit transient period), the
period is ∼15–20 orbits. For Am � 300, the period is ∼10 orbits
as is usually observed in stratified MRI simulations.

The most relevant feature here, however, is that the back-
ground toroidal field strength is different for different values of
Am. In Bai & Stone (2011), it was found that with zero net ver-
tical flux, the stress level increases with increasing net toroidal
flux (which is mostly conserved in unstratified simulations).
Therefore, in our stratified simulations, two effects are expected
to determine the saturated stress values: the value of Am and
the background toroidal field strength, set by the dynamo. To
demonstrate this effect more robustly, we calculate a version of

Figure 4. Space-time plot of By averaged over x and y for Am = 10 (upper left), Am = 100 (upper right), Am = 300 (lower left), and Am = 1000 (lower right). The
“butterfly” dynamo is present in all simulations, but the period of the By flipping increases with decreasing Am. In particular, the period is ∼40–50 orbits for Am =
10 and ∼15–20 orbits for Am = 100. For the other two cases, the period is ∼10 orbits, equal to that in ideal MHD calculations.

(A color version of this figure is available in the online journal.)
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Figure 5. Vertical profiles of βy as defined by Equation (16) (top) and the total
stress normalized by the square of the sound speed (bottom). The quantities have
been averaged over x and y and over time from orbit 100 onward as described
in the text. The blue line corresponds to Am = 10, red to Am = 100, orange
to Am = 300, black to Am = 1000, green to Am = 104, and dashed line to
Am = 105 (the time average for this run is done from orbit 25 to the end of
the calculation). The stress increases with Am roughly uniformly at all heights.
There is no obvious trend between βy and Am.

(A color version of this figure is available in the online journal.)

the plasma β for the background toroidal field,

βy ≡ 2〈P 〉/〈By〉2, (16)

where the overbars indicate a time average (from orbit 100
onward) and the angled brackets denote an average over x and y.
This quantity is representative of the amplitude of the oscillating
background toroidal field. βy is a function of z only, and we plot
it along with the vertical profile of the total stress (which has
again, been averaged in time and for all x and y) in Figure 5.

The stress profile reveals the same behavior as that in Figure 3;
there is a general trend of increasing stress with increasing
Am. Furthermore, this increase occurs uniformly across all z.
However, C300 and C1000 have roughly the same stress profiles,
and C10 peaks at around the same value as C100. Examining
the βy for these particular simulations, we see that C300 has
a lower value (stronger field) than does C1000. Similarly, C10
has a significantly smaller βy than C100. These results confirm
that it is indeed the larger background toroidal field strength that
make the stress levels in run C10 approach that in run C100,
and the stress in run C300 approach that in run C1000. We
note, however, that C1000 and C10000 have both the same βy

profiles and the same stress profiles. This could indicate that
for Am > 1000, the turbulence levels are approaching that of

ideal MHD. The slightly higher stress for C1e5 would then be
explained by its lower βy .

It remains unclear why the background field strength varies in
the way that it does. Could this also be controlled by the value
of Am? This is not unreasonable considering that ambipolar
diffusion already affects the period of the toroidal field flipping.
The question of exactly how Am and the dynamo are related is
very open. Unfortunately, exploring it in detail would take us
too far from our goals in this paper, and so, we leave it for future
work.

The final diagnostic we employ is the two-point autocorrela-
tion function (ACF) first used in the context of MRI simulations
in Guan et al. (2009). We employ this diagnostic for similar
reasons as those in Simon et al. (2012); we wish to determine
the structure of the turbulent magnetic field and check that the
domain sizes we use are sufficiently large to properly capture
important turbulent scales. Thus, we define the ACF of the ith
component of the perturbed magnetic field as

ACF(δBi(�x)) =
∫

δBi(t, x)δBi(t, x + �x)d3x∫
δBi(t, x)2d3x

, (17)

where δBi is the value of Bi after subtracting off the horizontal
mean field. In equation form,

δBi(x, y, z) ≡ Bi(x, y, z) − 〈Bi〉xy(z), (18)

and the average denoted by 〈〉xy is the horizontal average. We
have defined the ACF to be normalized by its maximum value (at
Δx = Δy = Δz = 0). The ACF of the total turbulent magnetic
field is then defined as ACF(δB) = ACF(δBx) + ACF(δBy) +
ACF(δBz). The overbar denotes a time average done from orbit
100 to 125 in all cases.

From Figure 6, it appears that the Am = 100 ACF is roughly
consistent between a domain size of 2H × 4H × 8H and
4H × 8H × 8H , though there is a slight difference in the
size of the tilted centroid. However, as we will see shortly,
2H × 4H × 8H is actually too small for Am = 100. The
standard box size, 4H × 8H × 8H , appears to properly contain
the ACF for Am = 100, but not as well for Am = 10. The
centroid of the Am = 10 case is larger and appears to have
a longer tail that intersects the toroidal boundary. Going to an
even larger domain, 8H × 16H × 8H , the ACF(B) for Am =
10 looks more well contained, though the very end of the tail
does appear to touch the toroidal boundary. This effect is not
as dramatic as in the smaller domain. Going to an even larger
domain and running Am = 10 is prohibitively expensive given
our current computational resources.

Returning to the smallest domain, we note some odd features.
Despite the reasonable ACF, an inspection of the stress history
and the α value (see Table 1) show this calculation to be quite
different than Am = 100 at larger domain sizes. An examination
of the space-time evolution of By, Figure 7, brings the point home
further, as it indicates that the dynamo behavior is completely
shut off for this particular run. This is again inconsistent with the
larger domain Am = 100. Thus, we conclude that 2H×4H×8H
is too small of a domain for Am = 100 and will likely be too
small for smaller values of Am as well.

As indicated by these results, the standard box size of
4H ×8H ×8H is large enough for all of our simulations except
for Am � 10. It is computationally too expensive for us to run
all of our simulations at the larger 8H × 16H × 8H . Therefore,
we elect to use the smaller size as our standard, and we compare
the evolution of the stress between the 4H × 8H × 8H and
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Figure 6. Autocorrelation function (ACF) of the magnetic field, as defined by Equation (17), for simulations (from left to right) with Am = 100 and size 2H ×4H ×8H ,
Am = 100 and size 4H × 8H × 8H , Am = 10 and size 4H × 8H × 8H , and Am = 10 and size 8H × 16H × 8H . As Am is decreased, larger and larger domains
are needed to properly contain the ACF. Furthermore, the tilted centroid feature becomes less tilted with respect to the y axis and more elongated as Am is decreased.

(A color version of this figure is available in the online journal.)

Figure 7. Space-time plot of By averaged over x and y for the Am = 100 run at domain size 2H × 4H × 8H . There is a remnant dynamo behavior that rapidly dies
away as the simulation adjusts to the new value of Am. Eventually, the dynamo activity ceases altogether, which is inconsistent with the larger domain counterpart of
Am = 100. This domain size appears to be too small to properly capture the dynamo at Am = 100.

(A color version of this figure is available in the online journal.)

8H × 16H × 8H domains for Am = 10 to justify using a
smaller domain for comparison between Am = 10 and other
Am values. Figure 8 shows the WRφ evolution for these two
domain sizes with Am = 10. The use of a smaller domain size
does not appear to make a difference for this value of Am.
Furthermore, the By space-time plot for the larger domain looks
very similar to the smaller domain. Evidently, we can get away
with using a smaller domain for Am = 10. However, these ACFs
suggest that caution be used when running ambipolar diffusion
shearing box calculations.

One final thing to note from ACF(B) is that as Am is
decreased, the tilted centroid component appears to become
more elongated (hence the need for larger domains) and less
tilted with respect to the y axis.

To summarize this section, we find the turbulent stress level
dependence on Am in vertically stratified simulations to be
generally consistent with the results of unstratified simulations

(Bai & Stone 2011); α increases with Am, and for Am � 1,
there is no turbulence. We also find that as Am is decreased,
larger domain sizes are needed in order to properly capture the
turbulent structures represented by the ACF. These runs serve
as a baseline for interpreting the results from the next section,
in which Am varies spatially and temporally based upon our
model for surface layer ionization.

3.2. Variable Am Calculations

We now turn our attention to the two calculations with
spatially and temporally varying Am (the “Z” simulations in
Table 1). As stated previously, these simulations adopt more
realistic non-constant Am values and directly address questions
such as “How vigorous is outer disk MRI-driven turbulence?”
or “What is the mass accretion rate in the outer disk?” under
the assumption that the outer disk is not threaded by any

8
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Figure 8. Density-weighted volume average of the total (Maxwell and Reynolds)
stress, normalized by the square of the sound speed, vs. time for the Am = 10
simulation at a domain size of 4H ×8H ×8H (solid line) and 8H ×16H ×8H

(dotted line). Note that the 8H × 16H × 8H run was restarted from orbit 22
of a different “starter” simulation. For comparison purposes, we translated the
solution to the right by 28 orbits. The curves show a nearly identical evolution.

net vertical magnetic field. We run them all at the largest
domain size, 8H × 16H × 8H , because there are regions of
Am � 1 in these calculations.

As before, we begin by examining the density-weighted stress
normalized by the square of the sound speed, as shown in
Figure 9. It is clear from the figure that the stress levels are
lowered dramatically compared to the ideal MHD case. Indeed,
by calculating the average of the curve from orbit 72 onward, we
find that the α values are ∼10−3, one order of magnitude below
what is expected from observations (Hartmann et al. 1998).

While the turbulence initially decreases drastically, it has not
completely died away. Consider the space-time diagrams in the
(t, z) plane for various horizontally averaged quantities of run
Z100AU, as shown in Figure 10. From both the Maxwell and
Reynolds stress plots, there is a significant region in z over which
the MRI is indeed active. The vertical structure is consistent
with what we would expect from our ionization profile; there
is a significant “ambipolar dead zone” corresponding to where
Am = 1 and the higher Am regions correspond to turbulent
activity. We will calculate an actual mass accretion rate at both
30 AU and 100 AU in Section 4.1.

Despite there being very little Maxwell stress in the ambipolar
dead zone, there is still Reynolds stress in this region. This
stress is likely produced by the active layers, similar to what
is observed in simulations that include an Ohmic dead zone
(Fleming & Stone 2003). It is possible, however, that as in
run C1, the Reynolds stress here is simply left over from
the turbulent state from which the run was restarted. To test
this notion, we restarted Z100AU at orbit 85 and set all
perturbed velocity components to zero throughout the domain
(the shear profile is of course maintained). We find that the
active MRI layers do indeed induce velocity fluctuations within
the ambipolar dead zone, which leads to a positive Reynolds
stress on average.

Finally, the horizontally averaged By space-time plot shows
interesting behavior. Within the ambipolar dead zone, the
toroidal field remains fixed in sign, though the magnitude
appears to be decreasing. Between 1 and 2 scale heights above
and below the mid-plane, the usual MRI dynamo reappears,
with a By oscillation period of ∼10 orbits, identical to ideal
MHD. Again, from the Maxwell stress plot, it is obvious that

Figure 9. Density-weighted volume average of the total (Maxwell and Reynolds)
stress, normalized by the square of the sound speed, vs. time for the Z30 AU
simulation (solid line) and the Z100AU simulation (dashed line). The curves
show a clear drop from the initial state of vigorous turbulence to levels near
WRφ/c2

s ∼ 10−3.

this region is turbulent. For |z| > 2H , however, there is a strong
toroidal field that remains stationary. There are slight changes
in magnitude as the toroidal field from the turbulent region
propagates outward.

Examining the same diagrams for Z30AU reveals very similar
behavior. There is a thin layer of strong Maxwell and Reynolds
stress located around |z| ∼ 2H , along with a positive Reynolds
stress induced in the ambipolar dead zone by the active layers. In
this calculation, however, the active region is much narrower in
z when compared to Z100AU. This is because the FUV photons
do not ionize the disk quite as deep as at R = 100 AU, and as is
usual, the MRI appears to be inactive for |z| � 2H . Thus, the
MRI-active region is forced to be contained within a smaller z
region.

In Simon et al. (2011b), the authors found that the toroidal
and radial field in a resistivity dominated mid-plane region
evolved in time. Occasionally, the toroidal field grew to strong
enough levels that the MRI became temporarily re-activated,
after which the Ohmic resistivity quenched the turbulence again.
This variability occurred on very long timescales of ∼100 orbits.
In these simulations, we do see that the toroidal field in the
ambipolar dead zone changes in amplitude over time. Is it
possible, then, that the field could grow to large enough values
to eventually re-activate the MRI in that region? Integrating
our simulations out for many hundreds of orbits is prohibitively
expensive, and therefore, we will not be able to observe any such
variability in our stratified simulations. Instead, we have run an
unstratified shearing box of size 8H×16H×H with Am = 1 and
uniform toroidal field of strength β = 10, chosen to determine if
a strong toroidal field MRI will be active with Am = 1. We start
the simulation with a relatively large amplitude perturbation
to the density and velocities, such that the initial perturbations
should already be reasonably nonlinear. As a control, we also ran
this identical setup with Am = 105. With Am = 1, we observed
decay of the initial perturbations and no development of any
MRI turbulence, whereas with Am = 105, the MRI becomes
active and generates sustained turbulence for many orbits. Thus,
even in the presence of a strong field, Am = 1 is sufficient to
quench MRI-driven turbulence. We therefore do not expect the
behavior observed in Simon et al. (2011b) to occur in these
simulations.
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Figure 10. Space-time plots of Maxwell stress (top), Reynolds stress (middle), and toroidal field, By (bottom) for run Z100 AU, where each quantity has been averaged
over all x and y. The stresses are normalized by the initial peak gas pressure (Po = 5 × 10−7), whereas By is in code units. There is a clear “active” region between 1
and 2 scale heights above and below the mid-plane, where the Maxwell stress is non-negligible and the toroidal field dynamo is active. Within 1 scale height of the
mid-plane, there is no MRI turbulence, though there is non-zero Reynolds stress.

(A color version of this figure is available in the online journal.)

The vertical structure is also depicted via time- and hori-
zontally averaged quantities as a function of z, as is shown in
Figure 11. From the top two panels, it is obvious that there is
a double-peak structure to the stress; no doubt a result of the

ambipolar dead zone. Within this dead zone, the Reynolds stress
dominates over the Maxwell stress. From the space-time dia-
grams above, any non-zero Maxwell stress within this region
likely results from large scale correlations in the magnetic field
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Figure 11. Time- and horizontally averaged stresses (upper row) and energies (bottom row) vs. z in scale heights for the run at 30 AU (left column) and 100 AU (right
column). The time average is done from orbit 72 onward, and the horizontal average is done over all x and y. In the stress plots, the solid line is the Maxwell stress,
and the dashed line is the Reynolds stress. In the energy plots, the solid line is the gas pressure, the dashed line is the magnetic energy, and the dotted line is the kinetic
energy. All quantities are normalized by the initial peak gas pressure (Po = 5 × 10−7).

rather than any sort of turbulence. Note that there are regions
where the stress can go negative, and since the vertical axis is
logarithmic, the curves are simply cut off where the values drop
below zero.

The bottom two panels show the various energies (i.e.,
thermal, kinetic, and magnetic) as a function of height. The
thermal pressure dominates over the vast majority of the disk’s
vertical structure. However, for |z| � 2.5H , the magnetic energy
dominates over all other energies. We note in particular the very
strong magnetic dominance in the upper z regions of Z30AU
(lower left panel). This magnetic field is stationary in time
according to the space-time diagram for this run, akin to the
lower panel of Figure 10.

We attribute some of this behavior to the gas density floor.
Indeed, looking at the vertical pressure profile (which follows
the gas density), the pressure is prevented from going below
10−4 of its initial peak value. The resulting gradient in the gas
pressure has an effect on the buoyant properties of the field. We
address this issue further in the next section.

3.3. The Effect of the Density Floor

To test the effect of lowering the density floor, we restarted
simulations C10 and Z30AU at orbits 120 and 56, respectively,

and lowered the density floor to 3 × 10−5, roughly three times
smaller than the original density floor. While this new value
for the floor may still be higher than what the density would
naturally be, it becomes extremely expensive to run lower
density floor calculations even for a short integration. Thus,
our main goal in running these calculations is to observe the
immediate effect of lowering the floor on properties such as the
density-weighted stress and the buoyancy of the magnetic field
in the upper disk regions. Is the evolution of the system altered
drastically? What, if any, changes occur?

Examining the space-time diagrams for these restarted runs
indicate that the lowered density floors lead to enhanced
buoyancy of the magnetic fields. For example, consider the lower
left panel of Figure 11. Once the floor is lowered, the magnetic
energy for z � −2H immediately drops to lower values as the
field rises away from the mid-plane.10 The same behavior is
observed in run C10 for both z � −2H and z � 2H . Thus, the
presence of a strong magnetic field for |z| > 2H , as is shown in
the lower panel of Figure 10, is artificial. That being said, based
upon the results of ideal MHD calculations (Simon et al. 2011b)

10 The field for z � 2H does not appear to change significantly over the time
that we integrated this simulation. However, we did not evolve this simulation
for very long, and we speculate that a longer evolution would show a change in
the magnetic field strength in this region.
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in which the density is on average larger than the floor value at
all locations, we still expect the field to be superthermal in this
region; it will just be weaker.

Does this feature affect our main results so far? An examina-
tion of the stress evolution shows that the decrease in the density
floor does lead to a decrease in the volume-averaged stresses.
Quantitatively speaking, in Z30AU, the magnetic energy aver-
aged over z � −2H drops by a factor of ∼4 in going from orbit
56 to 78.5. During this same time, the volume-averaged stresses
decrease by a factor of ∼1.5, and the stress does not appear to
be leveling off. Running the simulation out further is compu-
tationally prohibitive given the small time step induced by the
lower density floor. So, there is an effect due to the density floor.
Since we have not fully quantified this effect, it should be borne
in mind when we calculate mass accretion rates in Section 4.1.
We address the density floor issue again in Section 4.2.

4. IMPLICATIONS FOR PROTOPLANETARY DISK
STRUCTURE AND EVOLUTION

4.1. Mass Accretion Rate

One of the most important properties of disk evolution is
the mass accretion rate due to angular momentum transport.
We can calculate this quantity, Ṁ , for Z30AU and Z100AU
by utilizing Equation (40) in Balbus & Hawley (1998), which
assumes accretion is in steady-state. We take this equation in
the limit that R � Ro, as appropriate for the shearing box
approximation:

Ṁ = 2πΣ
Ω

WRφ ≈ 8.5 × 10−6αR
−1/2
AU M� yr−1, (19)

where the expression on the right comes from applying this
formula to the minimum-mass solar nebula model, and α is
defined as in Equation (15). The definition of WRφ in Balbus
& Hawley (1998) is the same as ours in the sense that it is a
density-weighted stress. From this equation, we calculate that
Ṁ ≈ 2.5×10−9 M� yr−1 at 30 AU and Ṁ ≈ 1.2×10−9 M� yr−1

at 100 AU. Of course, due to the effect from the high density
floor (see discussion in Section 3.3), the actual accretion rates
are likely to be lower, and these values serve as an upper limit.

These accretion rates are at least one order of magnitude too
small (likely even smaller, again due to the density floor) to
account for the observed accretion rates in Classical T Tauri
systems (e.g., Hartmann et al. 1998).

We can also compare our results to semi-analytical predic-
tions made by Bai (2011a) based upon the results of unstratified
simulations with a net vertical magnetic flux (Bai & Stone 2011).
This comparison will allow us to gauge the potential importance
of having a net vertical flux in regions of strong ambipolar dif-
fusion. By first extracting the vertical profiles of ρ and Am,
and then by assuming constant magnetic field strength across
the MRI active region of the disk, we can estimate the accre-
tion rate for any given field strength using Equation (28) of Bai
(2011a). From this approach, Ṁ = 9.8 × 10−9 M� yr−1 and
3.5×10−8 M� yr−1 at 30 AU and 100 AU, respectively, roughly
one order of magnitude larger than our calculated rates and in
general agreement with observations.

These estimates suggest that it is very likely that a net vertical
field is required to attain the necessary turbulence levels, if
the MRI is indeed the dominant mechanism by which angular
momentum is transported. We will carry out actual shearing box

simulations with vertical stratification and ambipolar diffusion
in the presence of a net vertical magnetic field in Paper II.

4.2. Turbulent Line Width

Another property of disks of recent interest has been the
density-weighted distribution of turbulent velocities as a func-
tion of disk radius and height above the mid-plane. This was
first calculated by Simon et al. (2011a) for local MRI simu-
lations without ambipolar diffusion, but including the effects
of Ohmic resistivity. Another study, Forgan et al. (2012), car-
ried out a similar analysis for global calculations of self-gravity
driven turbulence. These distributions are a first-order approach
to making a connection with observational constraints of tur-
bulent line broadening in the sub-mm, such as those in Hughes
et al. (2011). In particular, the density-weighted velocity dis-
tribution represents the probability of observing a line with a
particular turbulent velocity broadening.

Here, we carry out an identical analysis to that done in
Simon et al. (2011a) for both of our variable Am calculations
(see that paper for the exact details of how to calculate the
velocity distribution). Figure 12 shows this velocity distribution
for Z30AU (top and middle) and Z100AU (bottom). As was
observed in Simon et al. (2011a) for their calculations with a
strong Ohmic dead zone (see their Figure 4, top panel), we
also observe a strong gradient in peak velocity as one probes
deeper toward the mid-plane. Indeed, the mid-plane velocity
distribution peaks around v/cs ∼ 0.01, just as in the Ohmic
case. Furthermore, as one probes the surface layers of the
disk |z| > 3H , the peak of the distribution occurs around
v/cs ∼ 0.2–0.4. There is also a non-negligible supersonic tail;
in Z100AU, this component comprises ∼1% of the horizontal
and vertical distributions at z > 3H . In Z30AU, this component
comprises ∼2% of the vertical distribution and ∼7% of the
horizontal distribution at z < −3H .

In the top panel of the figure, the red and black curves nearly
lie on top of each other. This is likely an artificial effect resulting
from the very dominant magnetic field that is stationary for
z > 2H in Z30AU (which itself results from the relatively large
density floor applied in this calculation). The magnetic field is
not nearly as dominant for z < −2H (the other side of the
mid-plane), and so the middle panel of Figure 12 shows the
velocity distribution calculated from this side. This distribution
looks much more similar to the other distributions.

To further test the effect of the density floor on our velocity
distributions, we have rerun Z30AU with the density floor
lowered to 3×10−5 (as discussed in Section 3.3). We calculated
the velocity distribution for this region during two separate
periods, each averaged over eight orbits. We do not see any
significant difference between these velocity distributions and
that shown in the middle panel of Figure 12.

Finally, the rough agreement between turbulent velocity dis-
tributions for the vertical velocity and the “in-plane” velocities
suggest that turbulent motions will be isotropic, consistent with
previous results (Simon et al. 2011a). We point out that veloc-
ity distribution for z > 0 in Z100AU suggests that the flow is
slightly anisotropic. We are not entirely sure why this is the
case. However, when we restarted this run and set the turbulent
velocity to zero (as described in Section 3.2), the resulting ve-
locity distribution was again nearly isotropic. Since this isotropy
is present in all of the other cases, it seems more likely that the
distribution for z > 0 in Z100AU is a peculiar case, perhaps
resulting from the exact nature of the turbulent state from which
this run was initiated.
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Figure 12. Density-weighted turbulent velocity distributions for Z30 AU (top
and middle) and Z100AU (bottom). The top and bottom panels correspond only
to velocities at z > 0, whereas the middle panel corresponds to z < 0. Each
color corresponds to different depths over which the distribution is calculated, as
labeled. The dashed lines are the vertical turbulent velocity |vz|/cs, and the solid
lines are the azimuthally averaged disk planar velocity |vh|/cs. Relatively small
velocities exist toward the mid-plane, as turbulence is very weak there. However,
far from the mid-plane, the velocity consistently peaks at v/cs ∼ 0.2–0.4, with
part of the distribution going into the supersonic regime.

(A color version of this figure is available in the online journal.)

5. SUMMARY AND CONCLUSIONS

We have run local shearing box simulations of MRI-driven
turbulence in the presence of ambipolar diffusion and in the

absence of a net vertical magnetic field. These simulations were
designed to address two primary questions.

1. How does MRI-driven turbulence behave in the presence
of both ambipolar diffusion and vertical gravity?

2. What are the implications for turbulence in the outer
regions of protoplanetary disks where ambipolar diffusion
is dominant?

With the ambipolar Elsasser number, Am, (see Equation (5))
remaining constant, we addressed the first question. We found
that the density-weighted stress decreases with increasing am-
bipolar diffusion and decays to negligible values for Am < 1.
Another parameter that controls the stress levels, however, is
the amplitude of the toroidal field strength, which oscillates in
time due to the dynamo (Simon et al. 2011b). The stronger
the amplitude of oscillation (but not so strong that the MRI is
suppressed in the presence of ambipolar diffusion), the larger
the turbulent stresses. The average strength of this varying field
combined with ambipolar diffusion affect the MRI in such a way
that the turbulent stress does not necessarily increase monoton-
ically with decreasing diffusion. All our results are consistent
with unstratified numerical simulations of Bai & Stone (2011),
although the subtleties of the ambipolar MRI dynamo due to
the addition of vertical gravity does not guarantee a one-to-one
correspondence between the level of diffusion and that of the
turbulent stress.

Additional noticeable effects emerged from these constant
Am calculations. First, as ambipolar diffusion is increased, the
dynamo oscillation period becomes longer. Above Am ∼100,
the oscillation period approaches the ideal MHD limit of 10
orbits. This result opens up more questions than it answers,
as we do not yet have an understanding of the dynamo in the
ideal MHD limit, let alone including a diffusion term. However,
it may be insightful to apply an ambipolar diffusion term to
current, simplified models of the MRI dynamo to help in further
understanding the physics of the dynamo. Second, the typical
turbulent fluctuations become larger in scale (i.e., have a larger
correlation length) and become more aligned with the azimuthal
direction as ambipolar diffusion is increased. This last point
has important implications for local simulations that include
ambipolar diffusion. Increased diffusion evidently favors larger
scale fluctuations, and for simulations with strong diffusion,
larger shearing boxes are required. A box size of at least
8H × 16H × 8H is required to properly capture, the MRI
turbulence with Am � 10. This also motivates further studies of
ambipolar diffusion and the MRI in global simulations, where
one is not limited by scales of order H.

To answer the second of our motivating questions, we ran
additional simulations that included a physically motivated
model for the ionization structure (and hence Am profile) of
the protoplanetary disk. These runs include the effect of a
strong FUV ionization layer based upon the work of Perez-
Becker & Chiang (2011), where a large ionization fraction
f ∼ 10−5 can be achieved in a very thin layer above and
below the disk mid-plane, while the rest of the disk is assumed
to have Am = 1. Although this ionization model still bears
uncertainties, it provides the essential physical ingredients that
allow us to explore the gas dynamics in the outer regions of
protoplanetary disks in a realistic manner, again assuming zero
vertical magnetic flux.

We find that despite this strong FUV ionization, the mass
accretion rate is of order 10−9 M� yr−1, too small to account for
observed accretion rates measured in T Tauri stars (Gullbring
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et al. 1998; Hartmann et al. 1998). In fact, this estimate should
be treated as an upper limit due to the increase in stress from
the relatively large density floor employed. This small accretion
rate and the presence of the ambipolar dead zone is reminiscent
of models for the Ohmic dead zone (Gammie 1996), many of
which also yield low accretion rates. The problem posed by an
ambipolar dead zone is, however, more serious. Close to the star,
the viscous timescale R2/ν can be short compared to the disk
lifetime given even a weak residual stress. If an Ohmic dead zone
can be supplied with gas from further out, it is then possible to
imagine gas accumulating there until some additional instability
allows gas to flow through onto the star (e.g., Armitage et al.
2001; Zhu et al. 2010; Martin et al. 2012). In the ambipolar
dead zone, conversely, low levels of stress imply that the main
mass reservoir is permanently inactive. Since this appears to
contradict observations, our simulations are either missing some
important aspect of the physics, or our basic understanding of
disks is incorrect.

There are several possibilities. First, we could be missing
some effects that strongly influence the MRI. Including the Hall
effect may substantially enhance the strength of MRI turbulence,
as indicated by previous works (see the Introduction). Except
for the simulations of Sano & Stone (2002a, 2002b), no one
has carried out nonlinear MRI simulations of the Hall effect.
Somewhat discouragingly, though, the results of the Sano
studies suggest that the Hall effect does not have a strong
influence when Ohmic resistivity is dominant. The same could
conceivably be true for ambipolar diffusion dominated regions
of the disk as this diffusion acts similar to Ohmic resistivity; it
damps out the turbulence.

Alternatively, it is possible that angular momentum transport
in the outer disk is dominated by an entirely different physical
mechanism, though the known candidates are not expected to
be efficient in this region unless the disk mass is high enough
that self-gravity is significant (Armitage 2011). It could also
be the case that the surface density drops off less rapidly than
that assumed in our model. If this is the case, then the induced
Reynolds stress from the active layers may be able to transport
more angular momentum outward, thus increasing the accretion
rate. However, a larger column in the outer disk leads to a
smaller active region and thus a smaller induced Reynolds
stress. Finally, one cannot exclude the possibility that the disk on
30–100 AU scales is genuinely inviscid, with observed accretion
coming from a larger-than-expected reservoir of gas closer to
the star.

However, by far the most promising possibility for explaining
these low accretion rates is the exclusion of a net vertical
magnetic field. Not only is the inclusion of a net vertical field the
most optimal magnetic geometry for the MRI with ambipolar
diffusion (Bai & Stone 2011), but it is very likely that the disk
would be penetrated by at least some amount of vertical field.
This vertical field allows the MRI to operate at small values of
Am and permits relatively strong turbulence with α ∼ 0.01 at
the mid-plane region of the outer disk (Bai 2011a, 2011b). It
should also make the accretion in the FUV ionized layer much
more efficient since the vertical field will be relatively strong
here due to the drop in gas pressure away from the mid-plane.
Indeed, an estimate of the accretion rate based on the models
of Perez-Becker & Chiang (2011) and Bai & Stone (2011) and
the simulations of Bai & Stone (2011; which include the effects
of a net vertical magnetic flux) returns a much more optimistic
Ṁ ∼ 10−8 M� yr−1. These considerations strongly motivate
our companion paper, where we will study in detail the effect of

net vertical fields on the accretion process in the limit of strong
ambipolar diffusion.

The outer regions of protoplanetary disks can be resolved at
sub-mm wavelengths, and with this in mind we have calculated
the probability distribution for turbulent velocities as a function
of height within the disk. We find that, although the ambipolar
dead zone severely restricts the accretion rate, turbulence in the
active surface layers remains strong. We obtain peak values of
∼0.4 of the isothermal sound speed. These results are similar to
those found by Simon et al. (2011a) in calculations of Ohmic
dead zones at smaller radii, and are consistent with observations
of HD 162396 made by Hughes et al. (2011). We predict that
the turbulent velocity (and hence line width) ought to be a
strong function of height at radii where an ambipolar dead
zone is present, which may be testable given observations of
multiple molecular tracers that probe different depths within the
disk.

The most promising avenue for observational progress lies in
ALMA measurements of the spatial structure and velocity field
of protoplanetary disks on the same (large) scales as those con-
sidered theoretically in this paper. As we have noted, improved
measurements of turbulent line broadening (Hughes et al. 2011)
at different depths within the disk can potentially provide di-
rect constraints of theoretical models. Such observations appear
to be technically feasible (A. M. Hughes 2012, private com-
munication). Our results, however, also motivate consideration
of disk evolution scenarios that are substantially different from
those usually adopted in the interpretation of observational data.
It is commonly assumed, for example, that the outer edges of
protoplanetary disks expand significantly as the disk evolves
viscously. If this is true, then measurements of the disk sur-
face density profile (when fit, for example, by similarity solu-
tions) constrain the radial variation of the angular momentum
transport. Our results, on the other hand, suggest that some
disks (those with negligible net vertical fields) may not evolve
viscously at all on large scales. It may therefore be useful to
consider models in which qualitatively different pathways of
disk evolution are driven by variations in the initial magnetic
flux, rather than by differences in the initial mass and angu-
lar momentum content of disk gas. Since strong vertical fields
can also lead to angular momentum loss via disk winds (e.g.,
Salmeron et al. 2011; Lesur et al. 2012), one possible scenario is
that strong vertical fields lead to wind-dominated disks, weaker
fields to stimulated MRI-driven evolution, and no vertical field
to effectively inviscid disks.
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APPENDIX

SUPER TIME-STEPPING

In this work, we have employed the STS technique of
Alexiades et al. (1996) to allow for an accelerated integration
while including the effects of strong ambipolar diffusion.
Following O’Sullivan & Downes (2006, 2007), the STS method
divides a compound time step ΔtSTS into N unequal substeps
Δτj (j = 1, . . . , N ) with

ΔtSTS =
N∑

j=1

Δτj . (A1)

By choosing Δτj judiciously, stability can be maintained even
when the averaged time step ΔtSTS/N is much larger than the
normal stable diffusion time step Δtdiff . The optimized lengths
for the substeps were found to be (Alexiades et al. 1996;
O’Sullivan & Downes 2006, 2007)

Δτj = Δtdiff

[
(ν − 1) cos

(
2j − 1

N

π

2

)
+ ν + 1

]−1

, (A2)

where 0 < ν < 1 is a free parameter. The sum of the substeps
gives

ΔtSTS = Δtdiff
N

2
√

ν

[
(1 +

√
ν)2N − (1 − √

ν)2N

(1 +
√

ν)2N + (1 − √
ν)2N

]

≡ G(N, ν)Δtdiff . (A3)

We note that as ν → 0, ΔtSTS → N2Δtdiff so that the STS
approach is asymptotically N times faster than the standard
explicit approach. However, the value of ν needs to be properly
chosen to achieve the optimal balance between performance and
accuracy. In general, the STS method provides better accuracy
as N decreases and ν increases, whereas large N and small ν lead
to higher efficiency. Here, we choose ν = 1/4N2 with a limit
of N � 12. At N = 12, one achieves an acceleration factor of
about nine. It is also found that further increasing N would not
significantly increase the efficiency without sacrificing accuracy
(J. M. Stone 2012, private communication based on a Princeton
Junior Project done by Sara Wellons).

In our calculations, we first compute the ideal MHD time step
ΔtMHD and the diffusion time step Δtdiff . The number of super
time steps N can be found from the condition G[N −1, 1/4(N −
1)2] < ΔtMHD/Δtdiff � G(N, 1/4N2). If N � 12, then we
modify Δtdiff so that ΔtMHD ≡ G(N, 1/4N2)Δtdiff . Otherwise,
we fix N = 12, and set ΔtMHD = ΔtdiffG[12, 1/(4 × 122)]. In
this way, we always have ΔtMHD = ΔtSTS.

As we use an operator-split algorithm for magnetic diffusion,
we integrate N STS substeps of the ambipolar diffusion term
with Δτj before evolving one MHD time step with ΔtSTS. With
STS, we have repeated the test problems (i.e., linear wave
damping test and C-type shock test) performed in Bai & Stone
(2011) and found essentially the same results for NSTS up to

10. Moreover, we repeated the unstratified MRI simulations
with Am = 1 (runs Z5 and M5 in Bai & Stone (2011)) and
with STS turned on. In these simulations NSTS reaches 12,
and the stress level we find is the same as reported in Bai &
Stone (2011). Combining our tests with the successful tests of
O’Sullivan & Downes (2006, 2007) and Choi et al. (2009),
we are confident that the STS technique implemented here
is capable of achieving substantial speedup while maintaining
accuracy.
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