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ABSTRACT

We re-examine the popular belief that a telluric planet or a satellite on an eccentric orbit can, outside a spin–orbit
resonance, be captured in a quasi-static tidal equilibrium called pseudosynchronous rotation. The existence of
such configurations was deduced from oversimplified tidal models assuming either a constant tidal torque or a
torque linear in the tidal frequency. A more accurate treatment requires that the torque be decomposed into the
Darwin–Kaula series over the tidal modes, and that this decomposition be combined with a realistic choice of
rheological properties of the mantle, which we choose to be a combination of the Andrade model at ordinary
frequencies and the Maxwell model at low frequencies. This development demonstrates that there exist no stable
equilibrium states for solid planets and moons, other than spin–orbit resonances.
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1. MOTIVATION

The ongoing quest for extraterrestrial life has placed exo-
planets and their properties into the forefront of scientific inves-
tigation. The trend has provided additional momentum to the
development of a broad variety of techniques and approaches
employed in the planetary sciences. For example, the recent re-
vival of interest in mechanics of bodily tides is partly due to
the importance of the planetary spin for the prospects of finding
habitable worlds near other stars.

Well-known examples of dynamical equilibria achieved via
tidal coupling include our Moon, which is in a 1:1 spin–orbit
resonance with the Earth, and Mercury which makes exactly
three sidereal rotations over every two orbital revolutions around
the Sun. Similar behavior is expected of the growing number of
known super-Earths—especially if their composition happens
to be similar to that of the terrestrial planets of the solar system,
i.e., if they have massive solid or partially molten mantles of
rocky minerals.

Unfortunately, some of the published far-reaching conclu-
sions about specific exoplanets are based on incomplete or ad
hoc models which should never be used for solid materials, in-
cluding those with partial melt. Both these models, introduced
by Goldreich (1966) mainly for the ease of analytical treat-
ment, predict quasi-static pseudosynchronous rotation states,
with the planet being trapped in a slowly changing equilibrium
state at a faster-than-synchronous rotation rate and a vanishing
orbit-averaged tidal torque. Except in specific (very narrow) fre-
quency bands, these models are incompatible with the rheologi-
cal properties of realistic mantles and crusts. Analysis based on
actual rheologies demonstrates the impossibility of pseudosyn-
chronous rotation for homogeneous terrestrial objects. Whether
this prohibition extends to planets and moons with internal or
surface oceans remains an open issue and needs further research.

2. THE CONSTANT ANGULAR LAG MODEL

A consistent linear theory of bodily tides is based on Fourier
decomposition of the tide, with subsequent inclusion of the
response at each separate mode. The ensuing level of complexity

has tempted many to circumvent it by developing simpler
approaches. Serving as good illustrations and reflecting some
qualitative aspects of the tidal interaction, such models are
not necessarily applicable for quantitative purposes (Efroimsky
& Lainey 2007) and should certainly be eschewed when fine
features of near-resonant dynamics are explored.

2.1. The Essence of the Method

One, often-used, toy model prescribes the following:

1. to set both the Love number k2 and geometric lag
εg frequency-independent;

2. to insert their values into the popular short formula

Tz = 3

2
GM 2

1
R5

r6
k2 sin 2εg (1a)

for the polar component of the torque wherewith a tide-
raising perturber of mass M1 acts on a tidally perturbed body
of radius R located at a distance r, the obliquity i assumed
small; and

3. to combine formula (1a) with the assumption that the angle
εg stays constant while the tide-raising perturber stays on
one side of the bulge (in the sense of the directions as seen
from the perturbed body’s center).

For a nonzero eccentricity e, and in a sufficient proximity
of the 1:1 resonance, the relative orientation of the perturber
and the bulge changes twice over an orbital period. Hence,
within this model, the angle εg is set, by hand, to change its
sign abruptly twice in a cycle, while keeping its magnitude
| εg | fixed. Therefore the model can be written down as

Tz = 3

2
GM 2

1
R5

r6
k2 sin 2|εg| Sgn (ν̇ − θ̇) , (1b)

θ and θ̇ being the perturbed body’s sidereal angle and spin
rate, and ν being the true anomaly.

Historically, the method dates back to the paper by
MacDonald (1964) and therefore is often referred to as the Mac-
Donald torque (e.g., Touma & Wisdom 1994, Section 2.7.1).
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The approach is also called the constant angular lag model
or the constant tidal torque model, both names being some-
what misleading. Indeed, in the vicinity of the 1:1 resonance,
the sign of the lag (and the torque) is set positive or nega-
tive, when the bulge falls behind or advances relative to the
direction toward the perturber. So both quantities change their
sign twice over a period—a circumstance that makes the term
constant inappropriate. Furthermore, the torque depends upon
the distance and is always evolving in time unless the orbit is
circular.

The abrupt switch of the sign of the torque (3), with its
magnitude staying unchanged, is quite a contrived assertion1

which by itself indicates that the model is unphysical. A deeper,
mathematical, objection will be brought up in Section 2.4.

Saying goodbye to the constant-angular-lag model will not
be easy, because it has been a textbook standard for nearly
half a century. Given the attractive simplicity of the model, one
will always be tempted to enquire if perhaps it would still be
producing at least qualitative results of some value. To see that
it would not, we shall have to scrutinize the principal outcomes
of the model.

The perturber’s orbit is set to lie in the equatorial plane of the
perturbed body; in other words, the obliquity is set zero. Two
special situations of interest emerge here. One is the case of exact
synchronism, the other being the case of a vanishing average
tidal torque. Both settings were explored by Goldreich (1966)
whose results are explained in detail by Murray & Dermott
(1999).

2.2. The Synchronous Spin Case

Suppose the tidally perturbed body on an elliptic (e �= 0)
orbit is caught into the 1:1 spin–orbit resonance: n = θ̇ . Then,
as explained in Section 5.2 of Murray & Dermott (1999),
the angular motion rate θ̇ exceeds n over exactly one-half
of the orbital time period, and falls short of n during the
other half of the period. Correspondingly, the tidal torque
Tz is positive (accelerating) through the former half of the
period, and is negative (decelerating) through the latter half.
The instantaneous tidal torque is proportional to a negative
power of the instantaneous distance r between the bodies. As
depicted in Figure 5.3 in Murray & Dermott (1999), when the
disturbed body’s angular motion is faster than the mean motion,
the bodies are closer, so the positive (spinning up) tidal torque
is larger in absolute value than the negative torque for the other
half of the period. Thus the resultant orbit-averaged torque 〈Tz〉
is positive, and the net effect is to accelerate the tidally perturbed
body’s spin. (Recall that the undisturbed body is assumed to be
spherical or oblate, so the tidal torque is the only one coming
into play.)

2.3. The Case of Vanishing Tidal Torque

The second important application of the constant angular lag
model is the situation where the orbit-averaged tidal torque
vanishes: 〈Tz〉 = 0. Vanishing of the average tidal torque
entails a dynamical equilibrium: the tidally disturbed body keeps
spinning at a steady rate. A calculation of this rate, borrowed
from Goldreich (1966), is presented in Murray & Dermott

1 Stated alternatively, if we represent (a/r)6 as a series of Fourier harmonics
cos(jM), j = 0, 1, . . ., where a is the semimajor axis and M is the mean
anomaly, we shall have to accept that the cos(M) tidal mode generates a
positive (accelerating) torque for M ∈ [−π/2, +π/2], abruptly switching to a
negative value for M ∈ [π/2, 3π/2].

(1999) and is often cited in the literature. According to that
development, the equilibrium is achieved, for a zero obliquity,
at the spin rate of

θ̇ eq = n

(
1 +

19

2
e2

)
, (2)

e being the eccentricity. At first glance, the result looks unassail-
able. Indeed, for θ̇ = n, the bulge is lagging behind the central
line over one-half of the time period (around the periastron), so
the torque accelerates the rotation. Over the other half of the
period, the torque decelerates, being weaker due to a larger dis-
tance. So the state θ̇ = n looks unstable, as the overall average
torque seems to be accelerating.

It is however well known that the Moon is not staying in
this pseudosynchronous regime (which would be 3% faster
than the synchronous rotation wherein the Moon is presently
locked). Murray & Dermott (1999) point at the lunar quadrupole
moment as the reason why the Moon is not pseudosynchronous.
A deeper reason though lies in the constant geometric lag model
being genuinely flawed, and in the entire calculation leading to
Equation (2) being invalid.

2.4. A Major Objection Against the
Constant-angular-lag Model

As well known, the generic expression for the tidal amend-
ment to the perturbed body’s potential is furnished by a Fourier
series developed by Kaula (1964). We term it the Darwin–Kaula
expansion, as a partial sum of that series was written down by
Darwin (1879). Accordingly, the generic expression of the tidal
torque also must look as an infinite series. The series remains
infinite even if we include into it only the degree-2 terms, i.e.,
those proportional to the quadrupole Love number k2. The very
fact that the expansion for the torque can be wrapped into a short
and neat form (1) is an indicator of some extra, very special as-
sumption being involved.

As was pointed out in Williams & Efroimsky (2012), such
an assumption indeed is present in the constant-angular-lag
model, though this assumption is never stipulated explicitly.
The situation is elucidated in detail in the paper by Efroimsky
& Makarov (2013) to which we refer the reader. Here we shall
provide only a brief summary.

As explained in Williams & Efroimsky (2012), the concise
expression (1) presented above for the torque is equivalent to
the full Darwin–Kaula expansion for the potential, only if the
following assumptions are made.

1. In all terms of the Darwin–Kaula series for the tidal
amendment to the potential of the perturbed body, i.e., for
all Fourier tidal modes ωlmpq, the time lags are endowed
with the same frequency-independent value Δt .

2. The obliquity is set small.
3. Only the terms with l = m = 2 are retained, and the

Love number k2 entering these terms is assumed frequency-
independent. Here, the degree l and the order m are the
first two integers of the four-number set lmpq used to
number the Fourier modes showing up in the Darwin–Kaula
expansion.

The so-processed Darwin–Kaula series for the tidal potential
becomes equivalent to a concise expression (Equation (16b) in
Williams & Efroimsky 2012) wherefrom our expression (1) for
the torque ensues.
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Alternatively, the above three assumptions could be applied
directly to the Darwin–Kaula expansion for the tidal torque.
Once again, the outcome would be the above expression (1)
for the torque. This is demonstrated in Efroimsky & Makarov
(2013, Equation (34)).

Under the three assumptions, the instantaneous geometric lag
angle turns out to be2

εg ≡ (ν̇ − θ̇ ) Δt, (3)

Δt being the frequency-independent time lag, ν being the true
anomaly of the perturber, and θ being the sidereal angle of the
tidally perturbed body. From this expression, it is straightfor-
ward that the validity of formula (3) is incompatible with the
geometric lag being constant. Indeed, the road to Equation (3)
is paved with the aforementioned three assumptions, one of
which being that of a constant Δt . As can be observed from
Equation (3), the latter is incompatible with the geometric lag
being constant, unless the eccentricity is nil.3

On all these grounds, the constant-geometric-lag (constant-
torque) model should be discarded as such.

3. PSEUDOSYNCHRONISM IN THE
CONSTANT TIME LAG MODEL

As distinct from the constant geometric lag approach, the
constant time lag model sets the time delay Δt independent of
the tidal mode frequency. Pioneered by Darwin (1879), this
assumption was a part of numerous works, e.g., Hut (1981) and
Eggleton et al. (1998). The assumption was also the base for
one of the two models considered by Goldreich & Peale (1966,
Equation (23)), the other model addressed in that paper being
the constant geometric lag method discarded before.

The constant time lag model is unique, in that it makes the
full Darwin–Kaula expansion for the tidal potential (or torque)
equivalent to a much shorter and simpler expression. In regard
to the tidal potential, this is the equivalence of the full series
(18) and a simpler expression (17) in our preceding paper
Efroimsky & Makarov (2013). In application to the torque, this
is the equivalence of the appropriate full series to the simpler
expression (34) in Efroimsky & Makarov (2013).

If we agree to limit our approximation to the lowest degree
and order, l = m = 2, the aforementioned simpler expressions
read as

U (r) = −3

4
GM1 k2

R5

r6
cos(2 (ν̇ − θ̇) Δt)

= 3

4
GM1 k2

R5

r6
cos(2 | ν̇ − θ̇ | Δt), (4)

2 The geometric angular lag εg is not to be confused with the instantaneous
phase lag (or longitudinal lag)

εph ≡ 2 (ν̇ − θ̇) Δt = 2εg

sometimes used in the literature (Efroimsky & Williams 2009; Williams &
Efroimsky 2012).
3 As a last resort, one can suggest (a) to tune the time dependence of Δt so
that the lag angle εg in Equation (3) stays constant in time and (b) to assume
that the time lags at all Fourier tidal modes are equal to the specially evolving
Δt . This would imply that the lagging properties of the material at all
frequencies are being tuned in a fine manner, continuously and simultaneously,
so that Δt adjusts its evolution rate, to stay inverse to ν̇ − θ̇ at any instant of
time. With the rate of change of ν̇ − θ̇ being defined by the orbital parameters,
the existence of such a rheology in nature looks impossible.

for the potential, and as

Tz = 3

2
GM 2

1 k2
R5

r6
sin(2 (ν̇ − θ̇ ) Δt)

= 3

2
GM 2

1 k2
R5

r6
sin(2 | ν̇ − θ̇ | Δt) Sgn (ν̇ − θ̇ ) , (5)

for the polar torque.
A detailed derivation of Equation (4) can be found in Williams

& Efroimsky (2012), while derivation of Equation (5) is offered
in Efroimsky & Makarov (2013).

To average the torque, it is instrumental to insert into
Equation (5) the distance r expressed through the semimajor
axis a, eccentricity e, and true anomaly ν, and to integrate over
the orbital cycle. The procedure gets simplified greatly for small
lags, when one can substitute the sine with its argument. Then
the calculation (presented in detail in the Appendix to Williams
& Efroimsky 2012) renders

〈 Tz 〉 ∝
[

1 + 15
2 e2 + 45

8 e4 + 5
16e6

(1 − e2)6
− θ̇

n

1 + 3e2 + 3
8e4

(1 − e2)9/2

]
.

(6)

This expression was obtained by Eggleton et al. (1998), though
its equivalent was present in an earlier paper by Hut (1981,
Equation (11)). In a somewhat disguised form, this expression
can be found in a much earlier work by Goldreich & Peale
(1966, Equation (24)).

We find readily that the equilibrium (i.e., vanishing of the
average tidal torque) is achieved at

θ̇equ = n

[
1 + 6e2 +

3

8
e4 +

173

8
e6 + O(e8)

]
. (7)

Note that the pseudosynchronous rate of rotation depends
only on the mean motion and eccentricity. This enables us to
solve Equation (7) with respect to e, for a fixed dimensionless
spin rate θ̇/n. The outcome will be the equilibrium eccentricity
eequ, i.e., the eccentricity that ensures the vanishing of the
average torque at a certain value of θ̇/n. In Figures 1 and 2,
the equilibrium eccentricity eequ is depicted as a function
of θ̇/n. For the model leading to expression (6) for the torque,
this is a monotonically rising curve.

The curve divides the plane into two parts corresponding to
the two opposite signs of the average polar torque 〈Tz〉. While
〈Tz〉 is positive (accelerating) everywhere above the curve,
it stays negative (decelerating) everywhere below the curve.
Indeed, if we fix the eccentricity and make θ̇/n very large, this
will guarantee us that we get into the lower right part of the
picture, i.e., below the rising curve. In this situation, i.e., for a
fixed eccentricity and a sufficiently swift spin, the second term
of the torque (6) must be leading, wherefore the torque must be
negative, i.e., despinning. Similarly, by fixing the eccentricity
and making the spin rate very small, we ensure getting into
the upper left part of the picture, and also ensure that the first
term in Equation (6) is leading, so the torque is positive, i.e.,
accelerating the spin. Since the smoothly rising curve4 eequ(θ̇/n)
corresponds to a zero 〈Tz〉, it is impossible to change the sign of
〈Tz〉 without crossing the curve.

4 Here and hereafter, the symbol eequ(θ̇/n) implies eequ as a function of the
ratio θ̇/n. This is not a product of eequ and θ̇/n.
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Figure 1. Equilibrium eccentricity (one corresponding to a vanishing average tidal torque) depicted against the dimensionless spin rate θ̇/n. Calculations were made
for a tidally perturbed rotating body with parameters of the Moon, as shown in Table 1. The monotonically rising curve corresponds to the linear torque (constant
time lag) model. The jagged dotted line corresponds to a realistic rheology introduced in Section 4. Both functions were computed with a step of 0.01 in θ̇/n. In
both cases, the resulting curve divides the plane into two parts corresponding to the two opposite signs of the average polar torque 〈 Tz 〉. While 〈 Tz 〉 is positive
(accelerating) everywhere above the curve, it stays negative (decelerating) everywhere below the curve. The small arrows indicate the action of the tidal torque upon
small perturbations of the spin rate away from an equilibrium state. For the constant time lag model, the torque is restoring, and the equilibrium is stable. In the case
of realistic rheology, though, the emerging nonzero torque drives the rotator away from the stable spin—unless the spin is in one of the resonances.

(A color version of this figure is available in the online journal.)

Figure 2. Equilibrium eccentricities of a zero secular tidal torque acting on a tidally perturbed super-Earth, depicted against the dimensionless spin rate θ̇/n. Parameters
of the super-Earth are given in Table 1, and are consistent with those chosen for GJ581d in Makarov et al. (2012). The monotonically rising curve represents the
prediction of the constant time lag model. The jigsaw dotted curve illustrates the prediction of the realistic rheological model described in Section 4. The function was
computed for a grid of points at a step of 0.01 in θ̇/n.

(A color version of this figure is available in the online journal.)

Within the constant time lag model, the function eequ(θ̇/n)
being a smoothly rising curve explains the emergence of
pseudosynchronism. To see this, consider a point on this curve,
corresponding to a certain pseudosynchronous state. A small
perturbation in θ̇/n makes the tidally perturbed body rotate

either faster or slower than the pseudosyncronous rate, and a
nonzero tidal torque emerges. Illustrated by the two counter-
directed short arrows on the plot in Figure 1, the tidal torque is
restoring, in that its action is opposite to the sign of perturbation.
Thus, the tidal torque will return the perturbed rotator to the

4
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equilibrium state, i.e., to the initial position on the curve. So the
equilibrium is stable.5

The constant time lag model ignores the important contribu-
tion of rigidity (Segatz et al. 1988) and inelasticity (Karato &
Spetzler 1990) to the tidal response of Earth-like planets. As
a result, the model is incapable to account correctly for creep.
As will be discussed in the following section, the above deriva-
tion of quasi-stable pseudosynchronism, from the linear torque
model, is inapplicable to Earth-like planets with rigid mantles.
However, in the viscous limit, this model may still be applica-
ble to celestial bodies that do not have appreciable rigidity or
inelasticity, such as gaseous planets and stars. Observations of
binary stars, especially of short-period active stars on eccentric
orbit, hold the best prospect of proving or disproving the linear
torque model for this type of object (Ferraz-Mello 2012; Torres
et al. 2010).

The spin rate of active stars can be inferred from the charac-
teristic periods of photometric variations caused by the passage
of large spots or groups of spots across the visible disk of the
star. The orbital period and the eccentricity are determined from
spectroscopic radial velocity measurements. We find somewhat
conflicting evidence for the existence of pseudosychronism in
binary stars. Some stars with considerable eccentricities appear
to have pseudosynchronous rotation (Hall 1986; Fekel et al.
1998), which is consistent with the original prediction by Hut
(1981). Other stars clearly rotate faster or slower than the pre-
dicted rate (Fekel et al. 1993; Strassmeier et al. 2011). Even
more puzzling, a significant number of tight binary systems
have been found on circularized orbits, albeit spinning clearly
asynchronously. This fact comes into contradiction with one of
the important predictions of the linear torque theory: that syn-
chronization (or pseudosyncronization) of rotation is achieved
much sooner than circularization (P. P. Eggleton 2011, private
communication). Thus, the impression created by the current
body of observations is that the constant time lag model is, at
least, not universally applicable to stars. This should not come
as a surprise, because there exist theoretical indications that
stars may have magnetic rigidity (Williams 2004, 2005, 2006;
Ogilvie 2008; Garaud et al. 2010).6

Finally, it should be mentioned that, contrary to a common
belief, the purely viscous model does not render a frequency-
independent time lag at all frequencies. Stated differently,
the purely viscous model does not imply that the factors
kl(ωlmpq) sin εl(ωlmpq) are linear functions of the tidal mode
ωlmpq for all values of the mode. It can be demonstrated that

5 Being stable, the equilibrium is quasi-static, in the following sense. As the
tidal dissipation goes on, the process of despinning continues. The argument
θ̇/n slowly decreases, and so does the appropriate value of the equilibrium
eccentricity. After a perturbation in e from an equilibrium state gives birth to a
torque, the torque corrects swiftly the spin rate in such a way that the rotator
returns to an equilibrium state. However, the equilibrium state itself is evolving
slowly. In the case of a two-body problem, this evolution is always directed
toward the configuration with θ̇/n = 1 and e = 0. For a viscous body, this
was proven by Hut (1981). For a broader class of viscoelastic rheologies, the
proof was offered by Bambusi and Haus (2012).
6 Another deviation from the purely viscous model can be caused by the
so-called Λ-effect responsible for differential rotation (Käpylä & Brandenburg
2008; Kichatinov 2005; Rudiger 1989). Turbulent convection generates an
extra stress called Reynolds stress. While in a non-rotating convection zone
this stress can be described as an addition to the viscosity, this can no longer be
done when the rotation period becomes comparable to or shorter than the
convective turnover time. In that situation, a non-viscous input, the so-called
Λ-effect, shows up. In its presence, the stress tensor in the stellar material will
no longer be proportional to the time derivative of the strain tensor, but will
contain terms proportional directly to velocity. Thus the purely viscous model
falls apart, and a frequency-independent time lag is no longer an option.

this linearity takes place at low frequencies, but gets violated at
frequencies higher than Gρ2R2/η, where G, ρ, R, and η are the
Newton gravity constant, mean density, radius, and the mean
viscosity of the perturbed body, respectively. We shall address
this topic elsewhere.

4. EQUILIBRIUM TORQUES FOR EARTH-LIKE
PLANETS AND MOONS

To build a consistent theory of bodily tides, one has, first, to
decompose the tide into a Fourier series and, second, to attribute
to each Fourier component its own phase delay and magnitude
decrease (the latter being expressed by the Love number appro-
priate to the said Fourier mode). Development of the decomposi-
tion technique was started by Darwin (1879) and accomplished
in full by Kaula (1964). Attribution of phase delays and Love
number values to the Fourier modes took a much longer time,
because of the necessity to explore rheological properties of the
mantle at various frequencies. This exploration, by both seis-
mological and geodetic methods, has been going on intensively
through the past dozens of years. Merger of the Darwin–Kaula
decomposition technique with the results from solid-Earth rhe-
ology is explained in Efroimsky (2012a). The paper relied on
a combined rheological model (Andrade at higher frequencies,
Maxwell at lower frequencies), because of this model’s ability to
best match laboratory experiments and both seismic and geode-
tic measurements of dissipation over a range of frequencies in
the solid Earth.7 The merger of the Darwin–Kaula expansion
with the combined rheological model, worked out in Efroim-
sky (2012a), has been used to predict spin–orbit resonances of
a Mercury analogue having a constant eccentricity and a zero
obliquity (Makarov 2012) and tidal properties of super-Earths
(Efroimsky 2012b).

4.1. Expression for the Tidal Torque

It is explained in Appendix A that the average polar compo-
nent of the tidal torque can be approximated with the following
expression, provided that (1) the obliquity is small, and (2) the
perturbed body and the perturber are not too close to one another
(so only the terms with degree-2 Love number are important):

〈 Tz〉l=2 = 3

2

GM 2
1

a

(
R

a

)5 7∑
q=−1

G 2
20q(e)k2(ω220q)

× sin ε2(ω220q) + O(e8 ε) + O(i2 ε) (8a)

= 3

2

GM 2
1

a

(
R

a

)5 7∑
q=−1

G 2
20q(e)k2(ω220q) sin | ε2(ω220q) |

× Sgn (ω220q) + O(e8 ε) + O(i2 ε). (8b)

This is the polar (orthogonal to the equator) component of the
torque wherewith the tidally perturbed body is acted upon by

7 Motivation for the combined model stems from the mantle being
predominantly viscoelastic at frequencies below some threshold, and
predominantly inelastic at frequencies above it. As explained in Karato &
Spetzler (1990), dissipation above the threshold is dominated by defect
unpinning (see also Miguel et al. 2002). When the frequency descends below
the threshold, the effectiveness of this mechanism declines, because the
Andrade term in the expression for the complex compliance decreases
exponentially. The response of the mantle approaches that of the Maxwell
body. So slow processes (like the postglacial rebound) are viscoelastic. For
Earth’s mantle, the threshold frequency is of the order of 1 yr−1. Its value,
though, is exponentially sensitive to the temperature and therefore may be very
different for exoplanets and exomoons.
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Figure 3. Angular acceleration due to the secular tidal torque (8) in the vicinity of the 2:1 resonance. The dotted kink is the q = 2 term which is an odd function
when centered at θ̇/n = 1 + q/2 = 2. The solid line renders the total torque (8), i.e., a sum of the q = 2 kink and the bias comprised by the terms with q �= 2. Near
the resonance, the bias is a slowly changing function of θ̇/n and can be approximated with a constant. The q = 2 kink resides on the right slope of a more powerful
q = 1 kink which is centered at θ̇/n = 1 and dominates the bias. So, the q = 2 kink is shifted downward and goes through nil a tiny bit to the left of the resonance.
The figure is borrowed from our work Makarov et al. (2012) devoted to the super-Earth GJ581d.

the perturber. The angular brackets denote orbital averaging,
G stands for the Newton gravitational constant, M1 signifies
the mass of the perturber (the star, if the perturbed body is its
planet; or the planet, if the perturbed body is a satellite), a is
the semimajor axis, while R is the radius of the tidally perturbed
body. The degree-2 dynamical Love number k2 and the phase
lag ε2 are functions of the Fourier tidal mode

ω220q = (2 + q)n − 2θ̇ . (9)

While the dynamical Love numbers k2(ω220q) are positive
definite, the sign of each phase lag ε2(ω220q) coincides
with that of the Fourier mode ω220q , as can be understood
from formulae (A4) and (A5) in Appendix A. It is for
this reason that the products k2(ω220q) sin ε2(ω220q) emerg-
ing in expression (8a) are rewritten in expression (8b) as
k2(ω220q) sin | ε2(ω220q) | Sgn (ω220q).

A generic expression for the torque implies summation over
the four integer indices lmpq serving to number the Fourier tidal
modes ωlmpq entering the spectrum—see Appendix A below. The
terms of that series also depend upon the obliquity. As the lmpq
term contains a factor (R/a)2l+1, it is often sufficient to keep only
the degree-2 terms (l = 2). In this case, with an extra assumption
of small obliquity, it is enough to limit the summation to the
terms with m = 2, p = 0. This gives expression (8).

While the full expression for the torque implies summation
over all integer values of q, numerical tests demonstrate that,
for eccentricities not exceeding ∼0.3, it is enough to take
into account the terms up to e7, inclusive. This would require
summation from q = − 7 through q = 7. However, the values
of the numerical factors entering the eccentricity polynomials
G20q(e) are such that in practice it turns out to be sufficient to
include only the terms with q varying from − 1 through 7.

4.2. The Tidal Torque and the Equilibrium Eccentricity
as Functions of the Spin Rate

Expression (9) makes each product k2 sin ε2 a function of the

planetary spin rate
�
θ :

k2(ω220q) sin | ε2(ω220q) | Sgn (ω220q) = k2(2(n − θ̇ ) + q n)

× sin | ε2(2(n − θ̇ ) + q n) |Sgn (2(n − θ̇) + q n) . (10)

Consequently, the entire sum (8) can be treated as a function

of
�
θ . The mean motion and eccentricity will play the role of

parameters whose evolution is much slower than that of
�
θ .

Each product k2 sin ε2 is an odd function of the tidal mode
ω220q and has the shape of a kink centered around ω220q = 0.
When we employ relation (10) to write these products as
functions of the spin rate, the new functions will still be kinks,
though centered around θ̇ = n(1 + q/2). In Figure 3, the dotted
line depicts the product8

k2(ω2202) sin ε2(ω2202) = k2(4 n − 2 θ̇ ) sin ε2(4 n − 2 θ̇ )

= k2(4 n − 2 θ̇ ) sin | ε2(4 n − 2 θ̇ ) | Sgn (4 n − 2 θ̇ ) .

(11)

The kink shape of the k2 sin ε2 products is determined by the
rheological properties of the planet and its self-gravitation (see
Appendix B for details and references). A kink transcends nil
and changes sign continuously as the spin rate goes through the
appropriate resonance.

In the sum (8), the kink-shaped products stand with multipli-
ers G2

20q(e). So the overall tidal torque (8), as a function of θ̇ ,
is a superposition of many kinks having different magnitudes
and centered at different resonances (nine kinks, if we sum over
q = − 1, . . ., 7). The ensuing curve will cross the horizontal

axis in points extremely close to the resonances
�
θ = n (1+ q/2),

but not exactly in these resonances—like the solid line in
Figure 3.

4.3. The Physical Meaning of the Kink

The physical forcing frequencies in the mantle, χ220q , are
absolute values of the Fourier modes:

χ220q = | ω220q | . (12)

The dynamical Love number is an even function of the tidal
mode ω220q , while the phase lag is an odd function. For this

8 In formula (11), the notations k2(4n − 2θ̇) and ε2(4n − 2θ̇) stand for k2 and
ε2 as functions of the argument 4n − 2θ̇ . These are not products of k2 or ε2

with (4n − 2θ̇). The same pertains to formula (10).

6



The Astrophysical Journal, 764:27 (12pp), 2013 February 10 Makarov & Efroimsky

Table 1
Parameters of the Tidal Model

Name Description Units Values

Moon Super-Earth
(GJ581d)

ξ Moment of inertia coefficient 2/5 2/5
R Radius of the perturbed body m 1.737 × 106 1.083 × 107

M2 Mass of the perturbed body kg 7.3477 × 1022 4.23 × 1025

M1 Mass of the perturbing body kg 5.97 × 1024 6.17 × 1029

a Semimajor axis m 3.84399 × 108 3.3 × 1010

n Mean motion, i.e., 2π/Porb yr−1 84 34.25
e Orbital eccentricity 0.0549 0.27
(B − A)/C Triaxiality 2.278 × 10−4 5 × 10−5

G Gravitational constant m3 kg−1 yr−2 66468 66468
τM Maxwell time yr 5 50
μ Unrelaxed rigidity modulus Pa 0.8 × 1011 0.8 × 1011

α The Andrade parameter 0.2 0.2

reason, the product k2(ω220q) sin εl(ω220q) can be rewritten as a
function of the physical frequency χ , multiplied by the sign of
the appropriate Fourier mode:

k2(ω220q) sin εl(ω220q) = k2(χ220q) sin |ε2(χ220q)|
× Sgn (ω220q). (13)

Outside the inter-peak interval (i.e., at frequencies that are
not too low), the positive definite quantity9 k2(χ ) sin |ε2(χ )|
is decreasing monotonically with increase of the frequency
χ = χ2202. This happens for two reasons. One, intuitively
obvious, is that the dynamical Love number decreases at higher
frequencies, because materials are inertial, and it is getting
harder for their shape to keep up with the varying stress as
the frequency goes up. Less obvious is the circumstance that
the sine of the phase lag (i.e., the inverse tidal quality factor),
too, decreases as the frequency grows.10 Supported by a mighty
volume of seismological, geodetic, and laboratory data, this
behavior may look counterintuitive because this is not what
one would expect from a viscous fluid. The fact, however, is
that at physically interesting frequencies the mantle behaves
not as a viscous or a Kelvin–Vogt body but as an Andrade
body dissipation wherein obeys the law sin ε ∝ χ − α , with
α ≈ 0.14–0.4 for most solids (Efroimsky 2012a, 2012b).

Finally, the steep (but still continuous) near-resonant jumps
connecting the peaks of the kink are explained by the fact that
at those locations self-gravitation “beats” rheology (Efroimsky
2012a, 2012b).

The kink shape of k2 sin ε2 (generally, of kl sin εl) entails
somewhat counterintuitive consequences for the phase lag and
the geometric lag angle. Consider the principal, semidiurnal
bulge. Its phase lag and the geometric lag angle are

ε2(ω2200) = ω2200 Δt2(ω2200) = 2 (n − θ̇ ) Δt2(ω2200) (14)

9 This quantity is often denoted as k2/Q, though notation k2/Q2 would be
more appropriate. Tidal quality factors are not identical to the seismic quality
factor, the difference becoming crucial at low frequencies.
10 To illustrate the decrease of the Love number, imagine that we dip a spoon
into a bowl of honey, and apply to the spoon an oscillating force of a fixed
amplitude. Naturally, the amplitude of motion of the spoon will be larger for
lower frequencies. Sadly, this simple example will not help us to illustrate how
the phase decreases with the growth of frequency. Naively, one might expect
an anti-phase response at high frequencies, like in the case of a damped driven
harmonic oscillator. This regime would indeed be taking place, had the mantle
obeyed a constant time lag law. However, real minerals behave differently, so
our parallels with a viscously damped oscillator or a viscous liquid have their
limitations.

and

δ2(ω2200) = 1

2
| ε2(ω2200) | = | n − θ̇ |Δt2(ω2200) . (15)

Were a planet composed of a material with the time lag
Δt2(ω2200) insensitive to the value of the principal tidal mode
ω2200 = 2 (n − θ̇ ), the geometric lag angle would be larger
for a higher value of this frequency. This indeed is what one
would, intuitively, expect: the higher the difference between θ̇
and n the larger the angle. However, for a realistic rheology, an
increase of the δ2200 angle due to an increase in 2 |n − θ̇ | will
take place only within an extremely close proximity of the 1:1
resonance. Stepping beyond the kink’s peak, we shall find that
an increase in 2 |n − θ̇ | will be accompanied by such a decrease
in the time lag Δt2(ω2200) that the product of these two quantities
will, overall, be decreasing with growing frequency. So both the
phase lag and the geometric lag angle will become smaller.

4.4. Instability of Pseudosynchronous Rotation:
Physical Interpretation

Since the mode dependence of the products (10) follows from
the rheological properties of the mantle and from self-gravitation
of the planet, these products turn out to be functions not only
of the tidal mode ω220q , but also of the parameters defining
the size and rheology of the perturbed body. These parameters
(presented in Table 1) are the body’s radius R and mass M2,
as well as its unrelaxed rigidity μ, Maxwell time τM , inelastic
(Andrade) time τA, and the Andrade parameter α.

For a given selection of these parameters’ values and a
fixed spin rate θ̇ , there is a unique eccentricity eequ at which
〈 Tz〉l=2 = 0. The dependence of eequ on the relative rate of
rotation θ̇/n can be found for a grid of points by numerically
determining the roots of 〈 Tz〉l=2 in e. To accomplish this, we
recall that each term in Equation (8) is a polynomial in e
and, therefore, so is the entire right-hand side of Equation (8).
Computational search of the roots was carried out for two sets
of parameters listed in Table 1, one representing the Moon
orbiting the Earth, and the other a hypothetical super-Earth
orbiting a solar analogue. The choice of parameters is intended
to represent the range of applicability of the model. The resulting
dependencies of eequ upon θ̇/n are presented in Figures 1 and 2.

The jigsaw shape of the found dependencies eequ(θ̇/n) is
remarkably different from the predictions of the linear torque
model. The curves for the Moon (Figure 1) and the super-Earth
(Figure 2) are monotonically descending with a rising rate of

7
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(a) (b)

Figure 4. Angular acceleration of the super-Earth (Table 1) caused by the secular tidal torque in the vicinity of the 5:2 resonance, (a) showing the entire resonance
interval, and (b) showing in more detail the same curve in the area of the local maximum.

(A color version of this figure is available in the online journal.)

rotation, everywhere between the spin–orbit resonances. This
has profound implications for the character of equilibrium at a
zero tidal torque. Consider an arbitrary point on the downhill
portion of the curve, e.g., the one in Figure 1, from which two
short arrows with opposite directions are drawn. A perturbation
in θ̇ away from this point, whether spinning the planet up or
slowing it down, will cause a nonzero tidal torque acting in the
same direction—as indicated by the direction of the arrows.
Thereby, the tidal equilibrium achieved at eequ between the
resonances is inherently unstable. Similarly, a perturbation in
e will make the planet diverge from the curve of zero torque
rather than return to it. Hence, the states of zero tidal torque at
non-resonant spin rates are transient by nature.

In a narrow vicinity of each spin–orbit resonance, eequ takes a
rapid upward increase. Computation of the roots of Equation (8)
is numerically difficult in these areas because of a very large
gradient of the curve. The slope of the segments at the resonances
is positive; therefore, there exists a stable equilibrium just as in
the case of the linear torque model. A deviation of the spin
rate from a resonant value gives rise to a nonzero restoring
torque, as indicated by a pair of inward arrows in Figure 1 at the
resonance 3:2.

To obtain a physical explanation of the unstable nature of the
pseudosynchronous rotation, recall two circumstances. First,
each term of the sum (8) has the shape of a kink. Second, each
such kink, as a function of θ̇ , is increasing monotonically ev-
erywhere except near the appropriate resonance, as in Figure 3.
For this reason, an infinitesimal increase in θ̇/n furnishes an
infinitesimal increase in the tidal torque (not necessarily in its
absolute value). This happens for an arbitrary value of e and
for the values of θ̇/n outside the narrow resonances. Specifi-
cally, for e = eequ, the torque is zero and acquires a positive
value, which leads to further spin-up. The spin-up continues
until θ̇/n stumbles into a resonance. (Resonances are depicted
with near-vertical segments of the dotted curves in Figures 1
and 2.)

4.5. On the Choice of the Values for Physical Parameters

Figures 1 and 2 reveal, in comparison, that the structure of the
equilibrium tidal torque is similar for a wide range of values of
planetary parameters. The values employed to build these plots
are shown in Table 1. The rapid jumps of eequ at resonances and
the smooth descents between the resonances are characteristic

of small moons and large planets likewise. The values of eequ at
resonances appear to be the same for the Moon and the model
super-Earth. The most noticeable difference is in the amplitude
of the resonance jumps, which is significantly higher for the
Moon. By experimenting with the input parameters, we found
out that this amplitude is sensitive mainly to the Maxwell time
τM , which differs by an order of magnitude between our model
bodies.

The choice of such a small Maxwell time for the Moon, only
5 yr, is justified by the likely presence of a high percentage of
partial melt in the lower lunar mantle. The presence of partial
melt follows from the modeling carried out by Weber et al.
(2011) and also from an earlier study by Nakamura et al. (1974).
There exists data pointing at the possibility of the lunar Maxwell
time being of the order of months.11

The choice of the parameters of the super-Earth was con-
sistent with that made in Makarov et al. (2012) for the planet
GJ581d.

The Arrhenius law requires that planets and moons with hotter
interiors have lower viscosity of mantles and, thus, have shorter
Maxwell times. So, we surmise that the secular tidal torque for
such objects should be relatively more efficient in capturing at
higher spin–orbit resonances.

5. RESONANT ROTATION OF AXISYMMETRIC BODIES

We have determined that a stable spin–orbit equilibrium is
achieved at spin rates where the value of the secular polar
tidal torque is zero, while the derivative of the equilibrium
eccentricity with respect to the spin rate, deequ/d(θ̇/n), is
negative. With the realistic tidal model discussed in Appendix B,
this may happen only in the vicinity of spin–orbit resonances
because the derivative of the torque is positive elsewhere. The

11 The smallness of the lunar τM ensues from the unexpected frequency
dependence of the lunar tidal Q factor. According to Williams et al. (2008), the
tidal Q increases from ∼29 at a month to ∼35 at one year, a slope
incompatible with the seismic properties of rocks which are expected to have a
seismic Q decreasing with increase of the period. As explained in Efroimsky
(2012a), this unexpected slope may have emerged due to the difference
between the tidal and seismic Q at low frequencies. It is possible that the
frequency range in which the lunar tides were studied could be close to or
slightly left of the peak of the function k2(ω2200) sin | ε2(ω2200) |. In this case,
τM of the Moon may be of the order of days. Fortunately, the choice of the
value of τM does not influence considerably the jagged shape of the
dependency eequ(θ̇/n). The resulting plot turns out to be similar to the jagged
plot for τM = 5 yr depicted in Figure 1.
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Figure 5. Capture of an axisymmetric super-Earth (Table 1, but with (B − A)/C = 0) in 5:2 resonance. Note that the ultimate equilibrium spin rate is slightly less
than 2.5 n.

(A color version of this figure is available in the online journal.)

secular torque (8), as well as the angular acceleration caused by
it, has “kinks” in the vicinity of spin–orbit commensurabilities
θ̇/n = 1 + q/2, with an integer q of either sign. An example
thereof is shown in Figure 4 for the super-Earth model, within
a segment of the spin rate around θ̇/n = 5/2. The kink is
comprised by a local maximum below the resonance and a
minimum above the resonance.

To understand the plot in Figure 4, recall that in the vicinity of
each resonance q ′, i.e., for θ̇/n close to 1 + q ′/2, the right-hand
side of Equation (8) can be decomposed into two parts. One part
is the q = q ′ term. It is a kink-looking odd function of the tidal
mode ω220q , and it goes through nil at exactly ω220q = 0. From
Equation (9), this term can also be interpreted as a function of
the spin rate, antisymmetric with respect to the resonance point
θ̇/n = 1 + q ′/2, where this term goes through nil. The second
part, called bias, is the rest of the sum, i.e., the input of all the
q �= q ′ Fourier modes into the values assumed by the torque in
the vicinity of the q = q ′ resonance. The bias can be negative
or positive in value, depending on the eccentricity. For not too
large eccentricities, it is usually negative. Being a very slowly
changing function within the resonance interval, it can, to a good
approximation, be assumed constant there.

Having summed up all the terms in Equation (8), and
exploring the behavior of this sum near θ̇/n = 1 + q ′/2, we
see that the resulting curve does not cross the horizontal axis at
θ̇/n = 1 + q ′/2. One can say that the bias slightly displaces
the location of zeros. The zeros are located close to resonances
but not exactly in resonances.

In Figure 4(a), the values of the overall torque (in fact, of the
total angular acceleration proportional to the torque) are defined
mostly by the q = 3 term which, in this vicinity, looks like an
antisymmetric kink. However, the curve is shifted down due to
the bias which is defined mainly by the right slope of the q = 1
kink located to the left. Since the right slope of the q = 1 kink
is negative, the q = 3 kink is shifted down. As a result, the
maximum secular torque barely rises above zero, and the curve
has two zeros located to the left of the point θ̇/n = 5/2, close
to the maximum of the kink. The interval of the resonance is
defined by the location of the peaks: θ̇/n = 2.4998 and 2.5002.

Figure 4(b) is a blow-up of Figure 4(a) showing in greater
detail the area around the maximum of the kink. The root of the

function within the resonance interval is at 2.49985 rather than
exactly 2.5. For the same reason, the torque value is negative at
θ̇/n = 2.5.

In the framework of this model, it is reasonable to define
capture in resonance as an equilibrium state in which the body’s
average rotation rate stays between the values corresponding to
these two peaks. This definition is adequate because, as we saw
above, stable equilibrium is possible only on negative slopes of
the angular acceleration (or tidal torque) as a function of the
spin rate.

When a triaxial planet is captured in a 5:2 resonance, its time-
averaged spin rate is exactly 2.5 n. Similarly, the Moon’s spin
rate, captured in synchronous rotation, is exactly 1 n. However,
we know that the time-averaged tidal torque is nonzero at this
spin rate. Why does the Moon not accelerate? For a triaxial
body, the nonzero secular tidal torque is compensated by a
counteracting triaxiality-caused torque, through a small tilt of
the average inertia axis with respect to the line connecting the
centers of the bodies. A nonzero time-averaged tilt generates a
secular triaxial torque. This mechanism of torque compensation
obviously does not work for the rather hypothetical case of
axisymmetric body, which would be subject to only tidal forces.
Would the Moon be facing the Earth always with the same side
if it were completely axisymmetric? First, we have to find out if
capture in spin–orbit resonance is at all possible. The answer is
yes, as long as the secular torque changes sign in the vicinity of
that resonance.12 Even though the maximum torque in Figure 4
barely rises above zero at spin rates below the resonance, it
turns out to be sufficient for capture in 5:2. Figure 5 displays the
results of a numerical integration of the evolution of spin rate
for the super-Earth model (Table 1) at τM = 50 yr with an initial
spin rate of θ̇ (0) = 2.51 n. The planet is captured in about
8500 yr, but the equilibrium spin rate at 2.49985 n is clearly
below the resonance value. This value is consistent with the root
of the secular torque within the resonance interval, Figure 4(b).
Thus, the equilibrium resonance state of an axisymmetric body
is achieved at the spin rate where the secular tidal torque equals
zero, as expected.

12 Triaxial bodies can be captured in spin–orbit resonances even if the secular
tidal torque is negative everywhere in the vicinity of that resonance.
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6. WORD OF CAUTION

As was demonstrated above, stability of pseudosynchronous
spin hinges upon rheology. Being stable for the constant time lag
model, the regime is expected to be transient for realistic man-
tles, insofar as their k2 (χ ) sin ε2 (χ ) has one pronounced peak
(not counting the opposite one at the negative value of the tidal
mode)—see Figure 3. The situation will have to be re-analyzed
for bodies of complex structure (with surface or internal oceans)
as well as for bodies of yet unexplored rheologies. Specifically,
if it happens that somewhere in the universe there exist bodies
with not one but two pronounced peaks of k2 sin ε2 at positive
frequencies, the “ditch” between these peaks may, in principle,
lead to the emergence of a pseudosynchronous rotation state.
Such a peak may emerge at the boundary of two frequency
bands dominated by different friction mechanisms, i.e., when a
new mechanism is “turned on” very quickly with the increase of
frequency. Although highly hypothetical, such situations should
not be written off completely.

7. DISCUSSION

The shortness of Earth’s day was undoubtedly beneficial for
proliferation of biological life, making the daily temperature
variation moderate. The situation may be drastically different
for the growing class of potentially habitable super-Earth exo-
planets. Due to the observational selection effect, the spectro-
scopically detected super-Earths are found mostly around lower-
mass stars, whose habitable zones are inevitably narrower and
closer. For such systems, any conclusion about potential habit-
ability of a given exoplanet becomes especially uncertain, and
the analysis becomes intricately involved with regard to such
parameters as the amount of stellar irradiation, the chemical
composition of a hypothetical atmosphere, and the internal heat-
ing. The rate of rotation is also a crucial parameter which for
now remains unavailable from observation. The most advanced
climatic simulations are based on a certain assumption of the
spin–orbit state of the planet, e.g., a tidal synchronization (1:1
resonance) is assumed, as in Selsis et al. (2011). A tidally syn-
chronized planet showing the same side to its host star has this
side always exposed to plentiful irradiation, the other side stay-
ing dark. Such planets can hardly retain an atmosphere and can
hardly be habitable. However, a spin–orbit locking into higher
commensurabilities (e.g., 3:2, as in the case of Mercury) allows
the planet to rotate with respect to the host star, and leaves the
planet a possibility of sustaining a stable atmosphere and hav-
ing water in the liquid form on the surface. Three-dimensional
climatic simulations of the potentially habitable super-Earth
GJ 581d, by Wordsworth et al. (2010), were performed for a set
of possible spin–orbit resonances, including 2:1. As was later
explained in Makarov et al. (2012), this resonance is the likeli-
est state of GJ 581d for a wide range of rheological parameters,
assuming a terrestrial composition of its mantle. Wordsworth
et al. (2010) drew attention to the fact that a tidally synchro-
nized atmosphere may be short-lived because of the collapse
of CO2 on the night side. A similar phenomenon may occur
on a slowly rotating planet. Both the constant angular lag tidal
model and the constant time lag model predict that oblate plan-
ets with moderate and large eccentricities are captured in stable
pseudosynchronous rotations, in which case their spin rate only
slightly exceeds their orbital mean motion. This would make an
entire class of detected exoplanets unsuitable for biological life.
In this paper, we prove that the prediction of pseudosynchronism
is germane to the abovementioned simplified models of tidal in-

teractions, models inapplicable to solid planets or moons. Super-
Earth exoplanets of Earth-like composition on eccentric orbits
are likely to be captured into spin–orbit resonances higher than
1:1, but there is no such thing as pseudosynchronous rotation
for these objects.
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APPENDIX A

THE TIDAL TORQUE

The additional potential U of a tidally perturbed body can be
expanded into a Fourier series over the tidal modes

ωlmpq ≡ (l − 2p) ω̇ + (l − 2p + q)Ṁ + m(Ω̇ − θ̇ )

≈ (l − 2p + q) n − m θ̇ , (A1)

where θ and θ̇ are the sidereal angle and rotation rate of the
body, while ω, Ω, n, and M are the periapse, the node, the mean
motion, and the mean anomaly of the perturber as seen from the
perturbed body.

While the tidal modes ωlmpq can be of either sign, the forcing
frequencies

χlmpq = | ωlmpq | ≈ |(l − 2p + q)n − mθ̇ | (A2)

at which the strain and stress oscillate are positive-definite.
The series expansion of the additional potential U was

developed by Kaula (1964), its partial sum known yet to Darwin
(1879). Therefore, the series for U and the resulting series for
the torque are often named the Darwin–Kaula expansions.

An accurate derivation of the expansion for the torque
demonstrates that the torque contains both a rapidly oscillating
and a secular part (Efroimsky 2012a). Having a zero orbital
average, the oscillating part nevertheless may play a role in
dissipation of free librations. In Makarov et al. (2012), it was
explored whether the oscillating part of the torque can influence
capture into resonances. Changing the outcome of a particular
realization of the capture scenario, the oscillating part did not
alter the statistics.

The secular part of the polar torque is

〈 Tz〉 = 2 GM 2
star

∞∑
l=2

R2l + 1

a2l + 2

l∑
m=0

(l − m)!

(l + m)!
m

l∑
p=0

F 2
lmp(i)

×
∞∑

q=−∞
G 2

lpq(e) kl(ωlmpq) sin εl(ωlmpq) , (A3)

where the angular brackets signify orbital averaging, G denotes
Newton’s gravity constant, a, i, e are the semimajor axis, incli-
nation (or obliquity), and eccentricity, while Flmp(i) and Glpq(e)
are the inclination functions and eccentricity polynomials. The
Love numbers kl and the phase lags εl depend on the modes (A1).

In the Darwin–Kaula theory, the phase lags come into being as
products of the modes ωlmpq by the corresponding time delays:

εl(ωlmpq) = ωlmpq Δtl(ωlmpq) , (A4)
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where, for causality reasons, the time lags Δtl(ωlmpq) are
positive-definite. Therefore, (A4) may be rewritten as

εl(ωlmpq) = χlmpq Δtl(ωlmpq) Sgn (ωlmpq) , (A5)

χlmpq being the physical forcing frequencies (A2). As a result of
this, the entire expression for the polar component of the torque
can be written down as

〈Tz〉 = 2 GM 2
star

∞∑
l=2

R2l + 1

a2l + 2

l∑
m=0

(l − m)!

(l + m)!
m

l∑
p=0

F 2
lmp(i)

×
∞∑

q=−∞
G 2

lpq(e) kl(ωlmpq) sin | εl(ωlmpq) | Sgn (ωlmpq) .

(A6)

Be mindful that we prefer to denote the lags with13 εl(ωlmpq)
and Δtl(ωlmpq), and not with εlmpq and Δtlmpq. This agrees with
the standard notation style for the Love numbers.

When the bodies are not too close (R/a � 1), we drop the
terms with l > 2. For small obliquities (i  0), we leave only
i-independent terms (the next-order terms being quadratic in i).
Finally, for eccentricities not exceeding ∼0.3, only the terms
up to e7 are important. Formally, this would imply summation
over q = − 7, . . .7. However, the term with q = − 2 vanishes
identically, while those with q = − 7, . . . − 3 are accompanied
with extremely small numerical factors and can thus be dropped.
So, the polar component of the torque is approximated with

〈 Tz〉l=2 = 3

2
GM 2

star R
5 a−6

7∑
q=−1

G 2
20q(e)k2(ω220q)

× sin | ε2(ω220q) | Sgn (ω220q) + O(e8 ε) + O(i2 ε).

(A7)

This expression (with a sum running over all integers q =
−∞, . . .∞) was written, for the first time, by Goldreich &
Peale (1966), with no proof. A sketch of a proof was later
suggested by Dobrovolskis (2007).

The functional form of the dependence of the factors kl sin εl

upon the mode ωlmpq is determined by the size and mass of
the body and by its rheological properties. By rheology we
imply the so-called constitutive equation of the medium, i.e.,
an equation interconnecting the strain and stress. For linear
deformations, such equations can be rewritten in the frequency
domain where each harmonic mode of the strain becomes
expressed algebraically through the appropriate harmonic mode
of the stress. Using the method explained in Efroimsky (2012a,
2012b), the algebraic relations can be used to find the shape of
the functions kl(ωlmpq) sin εl(ωlmpq) standing in the terms of the
Darwin–Kaula expansion of the tidal torque.

Calculations of the shapes of these functions, presented in
Efroimsky (2012a, 2012b), are based on a combined rheolog-
ical model (Andrade at higher frequencies, Maxwell at lower

13 Although Kaula (1964) denoted the phase lags with εlmpq, the notation
εl(ωlmpq) is more logical. It serves to emphasize the fact that for a
homogeneous near-spherical body the functional dependence of a lag upon the
tidal mode is defined by the degree l solely, while the dependence of the lag
upon m, p, q comes about only due to the tidal mode ωlmpq being dependent
on these integers. While in the case of triaxial bodies the functional form of the
lags is parameterized by all the four integers, for small triaxiality this
complication may be ignored.

frequencies), because of this model’s ability to best match lab-
oratory experiments and both seismic and geodetic measure-
ments of dissipation over a broad range of frequencies in the
solid Earth. It is reasonable to assume that the model is ap-
plicable to the mantles of other terrestrial planets and moons.
As demonstrated in Efroimsky (2012a, 2012b), this combined
model furnishes for kl sin εl a kink-shaped dependence upon the
Fourier mode—as in Figure 4.

APPENDIX B

CALCULATION OF THE FACTORS kl(ωlmpq) sin εl(ωlmpq)

As explained in Efroimsky (2012a, 2012b), the products
kl(ωlmpq) sin εl(ωlmpq) can be expressed through the mass and
radius of the planet, and the real and imaginary parts of the
complex compliance of its mantle. Thereby, the shape of the
functional dependence of kl sin εl upon ωlmpq is defined by both
the self-gravitation of the planet and its rheological properties.
The functions turn out to be odd. They go continuously through
nil, changing their sign, when the argument ωlmpq goes through
nil, i.e., when a commensurability is crossed.

These odd functions can then be written down as
kl(ωlmpq) sin | εl(ωlmpq) | Sgn (ωlmpq). Here the product
kl(ωlmpq) sin | εl(ωlmpq) | is an even function of the tidal mode
and can thus be treated as a function not of the tidal mode ωlmpq
but of its absolute value χlmpq = | ωlmpq | , which is the actual
frequency of the oscillating stress in the mantle:

kl(ωlmpq) sin εl(ωlmpq) = kl(ωlmpq) sin | εl(ωlmpq) | Sgn (ωlmpq)

= kl(χlmpq) sin | εl(χlmpq) | Sgn (ωlmpq) .

(B1)

The development in Efroimsky (2012a, 2012b) results in the
following frequency dependence:

kl(ωlmpq) sin εl(ωlmpq) = 3

2 (l − 1)

× −Al J Im[J̄ (χ )]

(Re[J̄ (χ )] + Al J )2 + (Im[J̄ (χ )] )2
Sgn (ωlmpq),

(B2)

where χ is a shortened notation for the frequency χlmpq, while
coefficients Al are given by

Al ≡ (2 l 2 + 4 l + 3) μ

l g ρ R
= 3 (2 l 2 + 4 l + 3) μ

4 l π Gρ2 R2
. (B3)

with G being the Newton gravitational constant, and R, ρ, μ,
and g being the radius, mean density, unrelaxed rigidity, and
surface gravity of the planet. The functions

Re[J̄ (χ )] = J + J (χτA)−α cos
(α π

2

)
Γ(α + 1) (B4)

and

Im[J̄ (χ )] = −J (χτM )−1 − J (χτA)−α sin
(α π

2

)
Γ(α + 1)

(B5)

are the real and imaginary parts of the complex compliance J̄ (χ )
of the mantle. Here, α is the Andrade parameter assuming values
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of about 0.3 for solid silicates and about 0.14–0.2 for partial
melts. In our computations, we used α = 0.2. The quantity J is
the unrelaxed compliance of the mantle, which is the inverse of
the mantle’s unrelaxed rigidity μ. The parameters τM and τA are
typical timescales characterizing the mantle’s viscoelastic and
inelastic response, correspondingly.

The Maxwell time τM is the ratio of the mantle’s viscosity
η to its rigidity μ. While for the Earth’s mantle it has a value
of about 500 years, it may be much shorter for warmer planets
and moons due to the exponential temperature dependence of
the viscosity.

The inelastic (Andrade) time τA is expected to be of the same
order as or lower than τM , over the frequencies higher than some
threshold. For these frequencies then, the inelastic (containing
τA) terms in (B4–B5) will be comparable to or larger than
the viscoelastic (containing τM ) terms. However, at frequencies
below the threshold, inelasticity ceases to play a major role in the
internal friction, giving way to viscous friction which becomes
dominant. Therefore at very low frequencies the mantle’s
behavior approaches that of a Maxwell body. Mathematically,
this implies that below the threshold the parameter τA increases
rapidly as the frequency goes down (Efroimsky 2012a, 2012b).
So only the first term in (B4) and the first term in (B5)
are important, and we arrive at the complex compliance of a
Maxwell material. The location of the frequency threshold may
vary considerably for different planets. For the Earth, it is of the
order of 1 yr−1 (Karato & Spetzler 1990).

Numerical computations show that the probabilities of cap-
ture into resonances are not very sensitive to the value of τA, nor
to the location of the threshold, nor to how quickly inelasticity
yields to viscoelasticity with the decrease of frequency. In our
numerics, we treat τA in the same way as in Makarov et al.
(2012) and Makarov (2012). We set the threshold to be the same
as for the solid Earth, 1 yr−1. We then kept τA = τM over the
frequencies above the threshold. For frequencies lower than the
threshold, we set τA to grow exponentially with the decrease
of the frequency. This way, at low frequencies the rheological
model approaches the Maxwell one exponentially. For details,
see Makarov et al. (2012) and Makarov (2012).

Writing a code, it is easier to divide both the numerator and
denominator of (B2) by J 2:

kl(ωlmpq) sin εl(ωlmpq) = 3

2 (l − 1)

−Al I
(R + Al)2 + I2

× Sgn (ωlmpq), (B6)

where R and I are the dimensionless real and imaginary parts
of the complex compliance:

R = 1 + (χτA)−α cos
(α π

2

)
Γ(α + 1), (B7)

I = −(χτM )−1 − (χτA)−α sin
(α π

2

)
Γ(α + 1), (B8)

χ being a short notation for the physical forcing frequency
χlmpq ≡ | ωlmpq |.
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