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ABSTRACT

Motivated by recent results on lognormal statistics showing that the moment hierarchy of a lognormal variable
completely fails at capturing its information content in the large variance regime, in this work we discuss the
inadequacy of the hierarchy of correlation functions to describe a correlated lognormal field, which provides
a roughly accurate description of the nonlinear cosmological matter density field. We present families of fields
having the same hierarchy of correlation functions than the lognormal field at all orders. This explicitly demonstrates
the little studied though known fact that the correlation function hierarchy never provides a complete description of
a lognormal field, and that it fails to capture information in the nonlinear regime, where other simple observables
are left totally unconstrained. We discuss why perturbative, Edgeworth-like approaches to statistics in the nonlinear
regime, common in cosmology, can never reproduce or predict that effect, and why it is, however, generic for
tailed fields, hinting at a breakdown of the perturbation theory based on the field fluctuations. We make a rough but
successful quantitative connection to N-body simulations results that showed that the spectrum of the log-density
field carries more information than the spectrum of the field entering the nonlinear regime.
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1. INTRODUCTION

The nonlinear regime of structure formation in the universe is
the heart of highly challenging problems for statistical inference.
This regime is also potentially very rewarding, due to the large
number of modes present. As seen from the point of view of
statistics, the overall picture of the linear regime is very simple
in principle. Since fluctuations are believed to obey Gaussian
statistics at early times, an optimal description is furnished by
the two-point correlation, equivalently by the (power) spectrum,
the second member of the hierarchy of the N-point correlation
functions (White 1979; Peebles 1980; Fry 1985; Bernardeau
et al. 2002). The question of optimality is, however, very
far from clear leaving the linear regime, and clearly out of
reach yet, due to our inability to model and handle accurately
very high dimensional (field) statistics beyond the Gaussian.
Besides the difficulties inherent in an accurate modeling of
the observables on these scales, which can be approached with
perturbation theory or N-body simulations, statistical inference
also faces other types of problems. For instance, it was shown
that surprisingly little information is to be extracted from the
spectrum on these scales (Rimes & Hamilton 2005; Neyrinck
et al. 2006; Lee & Pen 2008), due to the appearance of heavy
correlations between the modes. A recent approach using local
transforms of the field prior the extraction of the spectrum, also
applied to its weighted projection the weak lensing convergence
field, was shown be successful at recapturing much information
(Neyrinck et al. 2009, 2011; Seo et al. 2011, 2012; Yu et al.
2011; Joachimi et al. 2011; Neyrinck 2011). This holds at least
in the absence of discreteness or shape noise issues. While it
is not yet totally clear to what extent such improvements can
propagate to improvements from galaxy survey or other sort
of data, it opens a new perspective on the statistics and the
description of nonlinear fields. The success of these transforms,
and the diagonal shape of the covariance of the spectrum up to

much smaller scales that it creates, suggests that a lognormal
picture is not inaccurate. That is, ln(1 + δ) may be not too far
away from a Gaussian field on these scales. Some other tentative
arguments for, and confirmations to some extent of this picture
in lower dimensionality have been known for a long time, and in
a variety of contexts (e.g., Coles & Jones 1991; Bernardeau &
Kofman 1995; Matsubara & Yokoyama 1996; Taylor & Watts
2000; Hilbert et al. 2011).

Besides the fact that higher order correlations may carry
information, another, largely ignored in cosmology, process of
statistical relevance is at work for tailed fields. The correlation
function hierarchy need not provide a complete description of
a field anymore in this regime, so that higher order statistics
may fail to capture additional pieces of information, as first
pointed out in Coles & Jones (1991). This possibly means
that these results on the log transform of the matter field
not only bring back information from higher order statistics,
but also information that was lost to the hierarchy. The one-
dimensional lognormal distribution is a known instance where
the moment hierarchy does not fully specify its statistics.
Explicit examples of other one-dimensional distributions with
the same moments are known (Heyde 1963). For this reason, the
correlation function hierarchy cannot fully specify the statistics
of a lognormal field. The first quantitative evaluation of this
effect, exact in one dimension, has shown that this has a huge
impact on the efficiency with which cosmological parameters
can be extracted from the moment hierarchy in the nonlinear
regime (Carron 2011). As pointed out by (Coles & Jones 1991),
this is a generic effect for tailed fields. Both the matter field
and even more so the convergence field (Das & Ostriker 2006;
Takahashi et al. 2011) show large tails in the nonlinear regime.
Using fits to simulations, this effect was indeed shown to affect
parameter inference in the one-dimensional distribution of the
convergence field (Carron 2012). However, very little is known
in higher dimensional settings. It is therefore important to gain
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more insights on these issues, since they strongly suggest a
fundamental limitation of the correlation function hierarchy in
the nonlinear regime.

The main purpose of this work is to make the existence of this
effect within any correlated lognormal field and its correlation
function hierarchy obvious. To this aim, nothing can be better
than an explicit example. In Section 3, we will therefore present
families of fields all having the same hierarchy of correlation
functions at all orders as the lognormal field for any mean and
two-point correlation function. We show in this light why this
effect is irrelevant in the linear regime, but not in the nonlinear
regime. Before turning to these aspects, we discuss in Section 2
why more standard approaches in cosmology of perturbative
nature, while of course perfectly sound in the weakly nonlinear
regime, can never predict or reproduce this effect. These are
presumably reasons for which this effect has been so little
studied in cosmology so far and are worth a few comments. In
Section 4, we then make a successful connection to these recent
simulation results, and we conclude in Section 5. The Appendix
collects proofs of key statements in Section 3.

1.1. Notation and Definitions

We will be dealing with random vectors ρ = (ρ1, . . . , ρd ),
being the sample a field

ρi = ρ(xi) > 0. (1)

For a vector n = (n1, . . . , nd ) of non-negative integers (multi-
index), we write as ρn the monomial in d variables,

ρn = ρ(x1)n1 · · · ρ(xd )nd . (2)

Throughout this work, we reserve bold letters for vectors of
integers exclusively. Let pρ(ρ) be a d-dimensional probability
density function such that all correlations of the form 〈ρn〉 exist.
We write the moment 〈ρn〉 with mn. Explicitly

mn = 〈ρn1 (x1) · · · ρnd (xd )〉. (3)

Correlations of order n are given by moments such that the order
|n| of the multiindex, defined as

|n| :=
d∑

i=1

ni (4)

is equal to n. We call these quantities moments or correlations
of the order of n. These moments coincide with the values of a
continuous n-point correlation function on the grid sampled by
(x1, . . . , xd ). We write δ for the dimensionless fluctuation field
and A for the field defined by ln ρ.

A := ln ρ, δ := ρ − ρ̄

ρ̄
. (5)

Such assignments involving ratios or logarithms of
d-dimensional quantities should be understood component per
component.

2. THE PROBLEM WITH TAILED FIELDS

In one dimension, the fact that the hierarchy does not
always fully specify the distribution is a well known and
still an active topic of research in the theory of moments in
mathematics (Shohat & Tamarkin 1963; Akhiezer 1965; Simon

1997 for classical references). The moment problem is to find
a distribution corresponding to a given moment series. When
a unique solution exists, it is called a determinate moment
problem. When several exist (in this case always infinitely
many), it is called an indeterminate moment problem. We
can refer to Coles & Jones (1991) and Carron (2011) for a
discussion in a cosmological context and more references. The
theory of the moment problem in several dimensions is less
developed, but typical criteria that guarantee determinacy, or
indeterminacy, linked to the decay rate of the distribution, stay
basically unchanged. Guiding us throughout the discussion in
this section will be the following instance: for any dimension d,
if

〈ec|ρ|〉 < ∞, |ρ| = (
ρ2

1 + · · · + ρ2
d

)1/2
(6)

for some c > 0, then the moment problem corresponding to the
moments of that distribution is determinate (Dunkl & Xu 2001,
theorem 3.1.17). By a “tailed” distribution, we have in mind in
this work a decay at infinity which is less than exponential, and
thus for which this criterion fails. In this regime, there may thus
be several distributions with the same hierarchy of correlations.

2.1. On the Relevance of This Effect for Parameter Inference

It should be clear why this can have in general a dramatic
impact for parameter inference from correlations. Imagine a
series of distributions with identical correlations at all orders,
one of these distributions being the one that actually describes
the observations. Since the distributions are different, they will
make in general different predictions for observables other than
the correlations. Pick for definiteness an observable 〈f (ρ)〉 (α)
with different predictions among this family of distribution, α
any model parameter. The knowledge of the entire hierarchy is
unable to distinguish from these different predictions for 〈f 〉,
since they result from equally valid distributions. If α enters the
true distribution in such a way that it makes a sharp prediction on
the value of 〈f 〉, this is highly valuable information definitely
lost to an analyst extracting correlations exclusively. On the
other hand, this argument allows us also to see that this effect can
become relevant only when perturbation theory breaks down. If
the fluctuation field δ is small, f can be expanded in powers
of δ, and thus 〈f 〉 can be obtained in an unique way from the
correlation hierarchy of δ.

There is a remarkable way to understand what is happening
there in terms of Fisher information, familiar to cosmologists.
Recall that the Fisher information matrix Fαβ associated with a
probability density function p(ρ|α, β, . . .) is defined as

Fαβ =
〈
∂ ln p

∂α

∂ ln p

∂β

〉
. (7)

Among the many properties that makes it a meaningful mea-
sure of information are its positivity, additivity for independent
variables, its invariance under invertible transformations, the
Cramér Rao bound, and the information inequality, stating that
any set of observables carries at most the same amount of Fisher
information as ρ itself. See Fisher (1925), Rao (1973), and van
den Bos (2007) for references to statistical works, and Jung-
man et al. (1996a, 1996b), Tegmark (1997), and Tegmark et al.
(1997) for the first implementations in cosmology, for Gaussian
variables. We refer to Carron et al. (2011) for an extensive dis-
cussion of the information inequality in a cosmological context,
and its deep connection with the concept of entropy. It is a fact
that the Fisher information content on α of the distribution is
entirely within the first n correlations if the function ∂α ln p is a
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polynomial of the order of n. In particular, the distributions for
which the Fisher information matrix is within the entire hierar-
chy are precisely those for which the functions ∂α ln p can be
written as a power series over the range of p. If not, the mean-
squared residual to the best series expansion is the amount of
Fisher information absent from the hierarchy (Carron 2011 for
a proof). It is simple to show that criterion (6), which guarantees
that the distribution is uniquely set by its correlations, implies
as well that the entire amount of Fisher information is within the
hierarchy: this follows from the very next theorem of the same
reference (Dunkl & Xu 2001, theorem 3.1.18), which states that
the polynomials in the d variables form a dense set of func-
tions with respect to the least mean-squared residual criterion if
Equation (6) is met. In particular, the functions ∂α ln p can be ar-
bitrarily well approximated by polynomials with respect to that
criterion, and therefore the correlations contain all of the Fisher
information.

It is important to note that if criterion (6) happens to be
met due to a cutoff at a large value ρcut on a otherwise
tailed distribution, the correlations still are poor probes for any
practical purposes. For instance, if a variable is lognormal over
a very long range, but decays quickly at infinity starting from
ρcut. Indeed, if ρcut is large enough, the correlations of the order
of up to, say, 2N , will be identical to that of the lognormal.
Since the information content of the first N correlations depends
on the first 2N only, they will be equally poor probes as for the
lognormal. They will contain the exact same amount of Fisher
information as the ones of the lognormal. It is the correlations of
the order of >N that are able to feel the cutoff, which will make
up for the difference between the total information content of
the lognormal distribution and its correlation hierarchy (if the
cutoff is at a large enough value, from Equation (7) the two
distributions have the same total amount of information). The
hierarchy is thus still not well suited for the analysis of data in
this regime.

For the same reason, even though any lognormal field is
indeterminate, this effect plays no role for parameter inference
in the linear regime, when the actual range of the variables is
still small, and the tail at infinity is not yet felt. This is because
in this regime, on one hand, the lognormal is still very close
to a Gaussian over the range where it takes substantial values,
and thus the lowest order correlations will still contain most
of the Fisher information, and on the other hand, a few higher
order terms are able to reproduce deviations of the functions
∂α ln p from the Gaussian very accurately over this small range.
This is consistent with the findings in Section 3 showing that
the families presented there are indistinguishable from the
lognormal for any practical purposes in the linear regime.

2.2. On Other Approaches to Non-Gaussian Statistics

Let us comment in light of the criterion (6) on typical
perturbative approaches in cosmology to parameterize (weakly)
non-Gaussian distributions. These involve moments, such as
Gram–Charlier, Edgeworth expansions, or the relation between
the moment generating function and the distribution (e.g., Fry
1985; Bernardeau 1994; Colombi 1994; Juszkiewicz et al. 1995;
Bernardeau & Kofman 1995; Blinnikov & Moessner 1998), in
one or several dimensions. It is therefore interesting to see to
what extent they fit into this picture. Typically, when applied to
the δ field, to first order these parameterize the non-Gaussianity
through a polynomial with coefficients involving the cumulants,

or equivalently the moments of the variable. Schematically,

pν(ν) ∝ e−ν2/2 (1 + α3H3(ν) + α4H4(ν) + · · ·) , (8)

with ν = δ/σδ . The coefficient αi depends on the first i moments.
The correction is given in terms of Hermite polynomials Hn,
which are the orthogonal polynomials associated with the
Gaussian distribution. Such expansions never produce a tailed
distribution, in the sense that Equation (6) is always met. The
decay of the distribution namely still is Gaussian. Now, to first
order and over the range of p, Equation (8) is equivalent to

ln pν(ν) ≈ const − ν2/2 + α3H3(ν) + α4H4(ν) + · · · . (9)

Therefore, the functions ∂α ln p will have close to polynomial
form. This is perfectly consistent with that decomposition of the
Fisher information. Indeed, this expansion creates a probability
density for which its Fisher information content is within the
moments that were used to build it. This is another way to see
that moment-indeterminate distributions cannot be produced by
perturbative expansions.

3. FIELDS WITH THE SAME HIERARCHY OF
CORRELATION FUNCTIONS

After reviewing the basic properties of correlated lognormal
variables, we present both continuous as well as discrete families
that have the same correlations as the lognormal at all orders,
for any dimensionality d. In fact, it turns out that a stronger
statement is true: for these families, all observables of the form

〈ρ(x1)n1 · · · ρ(xd )nd 〉, ni = · · · −1, 0, 1 · · · (10)

are identical to those of the lognormal field, i.e., any ni can also
be negative as well. Including the hierarchy of inverse powers
and “mixed” powers to the usual hierarchy thus still does not
provide a complete description.

These families are generalizations to any number of
dimension, means, and two-point correlations of known
one-dimensional examples that can be found in the statistical
literature (Heyde 1963; Stoianov 1987).

Requirements such as homogeneity and isotropy are actually
not needed for this section. In particular, unless otherwise
specified, Ā is a d-dimensional mean vector (Ā(x1), . . . , Ā(xd )),
whose components can differ in principle. Nevertheless, the
picture we have in mind is that of statistically homogeneous
isotropic fields in a box of volume V, where some set of Fourier
modes kmin to kmax can be probed. The corresponding Fourier
representation of the two-point correlations, in a continuous
notation, is

[ξA,δ]ij =
∫

d3k

(2π )3
PA,δ(k)eik·(xi−xj ) = ξA,δ(xi − xj ), (11)

where the integral runs over these modes, and ξA,δ(r) is the
ordinary two-point correlation function of δ or A. The matrix
inverse is given by

[
ξ−1
A,δ

]
ij

=
∫

d3k

(2π )3

1

PA,δ(k)
eik·(xi−xj ). (12)

This representation allows us to define a bit more rigorously
what we mean by linear and nonlinear lognormal field, or linear
and nonlinear regime, in the following discussion: if needed, it
can be formally set as PA(k) → 0 or PA(k) → ∞ respectively,
for all k.
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Figure 1. Three different one-dimensional distributions for z = A − Ā, with
identical moments 〈ρn〉 , ρ = eA, for all integer n, positive or negative. The
dashed line is the zero mean Gaussian distribution, so that ρ is lognormal.
The solid the member of the family in Equation (19) with the lowest possible
frequency, and amplitude ε = 0.1. The discrete one is Equation (25) with shift
parameter α = 0.25. They are shown at the scale of nonlinearity σδ = 1, where
this indeterminacy starts to become very relevant for inference. The families in
any dimension are qualitatively identical to these.

3.1. Basic Properties of Lognormal Fields

We say the field ρ := (ρ(x1), . . . , ρ(xd )) is lognormal if the
d-dimensional probability density function for A is Gaussian,

pA(A) = 1

(2π |ξA|)d/2 exp

(
−1

2
(A − Ā) · ξ−1

A (A − Ā)

)
,

(13)
where Ā is the mean vector of A, and ξA its covariance matrix,

[ξA]ij = 〈(A(xi) − Ā(xi))(A(xj ) − Ā(xj ))〉. (14)

The probability density for the vector ρ itself is then a
d-dimensional lognormal distribution, which we define for fur-
ther reference as pLN

ρ :

pLN
ρ (ρ) := pA(ln ρ)∏d

i=1 ρ(xi)
. (15)

The means and two-point correlations of A and δ are in one-to-
one correspondence. We have

Ā = ln ρ̄ − 1

2
σ 2

A, (16)

where σ 2
A is the diagonal of ξA, i.e., the variances of the

individual d points. Also,

[ξA]ij = ln(1 + [ξδ]ij ), [ξδ]ij := 〈δ(xi)δ(xj )〉. (17)

Especially, the variances are related through

σ 2
A = ln

(
1 + σ 2

δ

)
. (18)

3.2. Continuous Family

Define the statistics of ρ = ρ((x1), . . . , ρ(xd )) through the
following. Pick a real number ε with |ε| � 1. Pick further a set
of angular frequencies ω = (ω1, . . . , ωd ). Each of these must be
an integer. Fix pLN

ρ (ρ) the d-dimensional lognormal distribution
with mean Ā and covariance matrix ξA defined above. Then set

pρ(ρ) := pLN
ρ (ρ)

[
1 + ε sin

(
πω · ξ−1

A (A − Ā)
)]

. (19)

Figure 2. Same as Figure 1, for σδ = 0.1, when the indeterminacy is far less
relevant for inference, for the reasons given in the text. The discrete distribution
has been scaled by a constant factor for convenience.

Since |ε| � 1 this is positive and seen to be a well-defined
probability density function.3 The claim that pρ(ρ) defined
in this way has the same moments mn as the lognormal for
any multiindex n is proved in the Appendix. Note that in the
above definition, Ā is the quantity that enters the definition
of lognormal variables in Equation (13). It is, however, not
the mean of A = ln ρ anymore, when ρ is defined through
Equation (19).

The functional form of pρ(ρ) consists of the lognormal
envelope modulated by sinusoidal oscillations in A. The smaller
the two-point function the higher frequency the oscillations.
This may sound curious at first, since it seems to imply that the
more linear the field, the more different the distributions within
this family will thus appear. However, this is precisely when the
oscillations are the strongest that this effect is less relevant. This
can be seen as the following. Taking the average of any function
f with respect to pρ leads trivially to

〈f 〉 = 〈f 〉LN + ε
〈
f sin

(
πω · ξ−1

A (A − Ā)
)〉

LN , (20)

where the subscript LN denotes the average with respect to the
lognormal distribution. In the limit of the very linear regime,
other terms fixed, the second term will average out to zero for
any reasonable f, since it is the integral of a highly oscillating
function weighted by a smooth integrand. In the nonlinear
regime this in general ceases to be the case. This is illustrated as
the solid lines in Figure 1 (σδ = 1) and 2 (σδ = 0.1), showing the
member of that family in one dimension with minimal frequency
ω = 1 and ε = 0.1. The dotted lines on these figures are the
usual Gaussian for A − Ā = z.

The probability density function for ln ρ is not purely
Gaussian anymore. It is therefore of interest to see how the
correlations of A deviate from those of Gaussian variables. For
instance, the means 〈A − Ā〉 do not vanish anymore as for the
lognormal. A straightforward calculation leads to

〈(A − Ā)(xi)〉 = −ε πωi exp

(
−π2

2
ω · ξ−1

A ω

)
. (21)

3 For d = 1, there are very slight differences with Heyde original family.
Heyde unnecessarily writes 2π instead of π , and restricts ε and ω to be
positive.
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Picking ω as having a single non-zero entry, ω, at xi we get that
they can be as large as

〈(A − Ā)(xi)〉 = −ε πω exp

(
−π2

2
w2

[
ξ−1
A

]
ii

)

:= −ε πω exp

(
−π2

2

ω2

σ 2
A,eff(xi)

)
. (22)

Observables as simple as the means of A are therefore not
constrained by the knowledge of the entire correlation hierarchy
of the lognormal field. While the effect is irrelevant in the linear
regime (for, say, σA,eff = 0.1, the maximal value of the mean
in Equation (22) is only ≈10−215), deep in the nonlinear regime
this is not the case anymore. It is easy to show from the above
expression that the range available to 〈(A − Ā)(xi)〉, choosing
w appropriately, scales to infinity with ∝ σA,eff . The means are
thus left totally unconstrained in that regime. This and the very
sharp behavior is of course a generic effect, not limited to that
particular observable. It is obvious that the relevance of this
effect for parameter inference is very sensitive to the degree of
linearity of the field, and that large amounts of information are
lost to the hierarchy in the high variance regime.4

3.3. Discrete Family

Fix again the dimensionality d, the vector Ā, and the matrix
ξA. For all integer valued d-dimensional multiindex n define a
realization An of A as the following. Pick α = (α1, . . . , αd ) any
point, and set

An := Ā + ξA · (n − α) . (23)

While α can in principle be anything, only components αi ∈
[0, 1) will actually define different grids. As usual, ρ is given
by exponentiation,

ρn := exp (An) . (24)

Assign then to these realizations parameterized by n a probabil-
ity

Pn = 1

Z
exp

(
−1

2
(An − Ā) · ξ−1

A (An − Ā)

)
. (25)

These are usual Gaussian probabilities for An, except that we
have only a discrete set of field realizations. Note that it can be
written, maybe more conveniently, as

Pn = 1

Z
exp

(
−1

2
(n − α) · ξA (n − α)

)
. (26)

Since ξA is positive definite, the normalization factor Z is seen
to be well defined, as for more usual Gaussian integrals, and
so are the probabilities. This discrete probability distribution
has the same moments of ρn than the d-dimensional lognormal
distribution with associated Ā and ξA, as proven in the Appendix.
Again, this is also true when negative powers are allowed in the
correlations.

This family is clearly different from the previous, continuous
one. Rather than modulating the lognormal distribution with an
oscillating factor, it is a series of Dirac delta functions sampling

4 Among this family, it turns out that some observables such as the variances
〈(A − Ā)2(xi )〉 are always identical to σ 2

A(xi ) for any choice of ε and ω. We do
not attach any significance to this, since this is not the case for the discrete
family, though closed analytical expressions cannot be obtained in this case.

the lognormal on the grid given by Equation (23). The role of
α is to shift the sample by a small amount. If α is set to zero,
then A = Ā is part of the sample, while it is not if not. The fact
that this indeterminacy is irrelevant in the linear regime comes
this time from realizing that for any nice enough function f, the
average of f will converge to 〈f 〉LN due to the trapezoidal rule of
quadrature. The grid spacing at which A is sampled in this way
in Equation (24) becomes namely thinner and thinner. In the
nonlinear regime, the spacing is, however, very large, leading
again to large deviations. This is also illustrated in Figures 1
and 2 for the one-dimensional version of it, with shift parameter
α = 0.25.

4. CONNECTION TO SIMULATIONS AND DISCUSSION

One of us (Neyrinck 2011) analyzed the Coyote universe
N-body simulations suite (Heitmann et al. 2010; Lawrence et al.
2010) in a box of volume V = 2.2 Gpc3, with 2563 cells,
extracting the spectrum P (k) of A and δ over the range
0.02 Mpc−1 � k � 0.6 Mpc−1, comparing their statistical
power as a function of the smallest scale kmax included in the
analysis for several cosmological parameters. It was found that
the spectrum of A has more constraining power on cosmological
parameters than that of δ, when the nonlinear scales are included
in the analysis. We refer to that paper for more details on the
procedures and results. In this framework, ρ is 1 + δ, and thus
A = ln(1 + δ). The fields are statistically homogeneous and
isotropic.

Given the considerations of the previous sections, and the fact
that the density field is known to be somewhat close to lognor-
mal, these results can hardly be considered surprising. The field
A must be indeed closer to a Gaussian field for all values of the
cosmological parameters, so that low-order N point functions of
A must contain a larger fraction of the information than those of
δ (it is useful to remember that the full fields A and δ carry in all
cases the very same total amount of information, since the map-
ping between them is parameter independent and invertible). In
this section, we want to go a step further from these qualita-
tive considerations and make a quantitative comparison of these
results to simple analytical methods using lognormal statistics.

4.1. Treating Information in A as Gaussian

First, we need to make sure that a Gaussian description
of the field A is reasonable, at least for what concerns the
information content. In particular, this is not the case for the
smallest scales of A, since the covariance matrix of PA in
the 2563 box clearly shows substantial off-diagonal elements
starting from k 
 0.3 Mpc−1. We therefore repeated the same
analysis, performing the logarithmic transform on the δ field
only after smoothing δ on twice the original length scale, by
merging the 2563 into 1283 cells. This allowed us to extract the
spectra of A and δ over the range 0.02 Mpc−1 � k � 0.3 Mpc−1,
with a diagonal covariance matrix over the full range to a very
good approximation. It is important to realize that sadly it is
not identical to the much simpler approach of considering the
original A field only up to the new kmax: since all the scales
of δ have an impact on the large scales of A, the operations of
smoothing δ and then log transforming δ are not identical to log
transforming δ and then smoothing A.

For a purely Gaussian field with spectrum P, the information
content on α in the spectrum is given by

Fαα = V

2

∫
d3k

(2π )3

(
∂ ln P (k)

∂α

)2

, (27)
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Figure 3. Comparison of various estimates of the error bar on the linear power
spectrum amplitude, ln σ 2

8 , constrained using power spectra of the overdensity
δ (black) and the log-density A (red) in an N-body simulation. Solid curves
show how the error bars tighten as the maximum k analyzed increases up to the
Nyquist frequency, as in, e.g., Neyrinck (2011), Equation (29). Dotted curves
neglect the non-Gaussian component of the covariance matrices, as well as the
discrete nature of the Fourier-space mode lattice, Equation (27). The arrows
(one for each choice of σA, 0.7 and 0.9) show the expected degradation of the
error bars from analyzing δ instead of A in our model given by Equation (39);
these factors appear numerically in the first column of Table 1.

(A color version of this figure is available in the online journal.)

where the sum runs over the modes extracted, and

1√
Fαα

=: Δ(α) (28)

can be thought of as approximating the constraints on α
achievable with these modes. For reasons that become clear
below, we focus primarily on the parameter ln σ 2

8 , which has a
roughly constant impact both on ln Pδ and ln PA. In Figure 3,
we compare this for the δ field and the A field as a function of
kmax. The solid lines are the simulation results, evaluating the
covariance matrix Ckk′ between the modes k and k′ and setting

Δ
(

ln σ 2
8

) =
∑

k,k′�kmax

∂ ln P (k)

∂ln σ 2
8

C−1
kk′

∂ ln P (k′)
∂ln σ 2

8

. (29)

The dashed lines are the analytical expressions for Gaussian
fields, given in Equation (28) and Equation (27), with the
derivatives being those extracted from the simulations. Since
the derivatives are roughly constant, the dashed lines scale like
k−3/2, i.e., the inverse root of the number of modes. It is clear that
the log transform extends the (rough) validity of the Gaussian
approximation in terms of Fisher information to the full range of
scales we are dealing with. Note however that this is a statement
only on the first four point functions, since those are the only
ones that enter Equations (27) and (29).

4.2. Comparison to Simulations

To compare these results to analytical predictions from
lognormal statistics, we first note the following. For a parameter,
such as ln σ 2

8 , that obeys roughly

∂ ln PA(k)

∂α
≈ const =: c, (30)

the correlated Gaussian field A is equivalent, from the point of
view of the information on that parameter, to a field with the
same variance but with ξ (r) = 0 for r > 0. This may not sound

like an obvious statement so let us show this explicitly: start
from Equation (27) which leads to

Fαα = c2 V

2

∫
d3k

(2π )3
. (31)

The integration on the right, in a discrete description, is the
number of available modes, equal to the number d of grid points,
times the spacing of the modes Δk = (2π )3/V . It follows

Fαα = c2 d

2
. (32)

On the other hand, the observation of d uncorrelated Gaussian
variables with variance σ 2

A always carries the information

d

(
∂σ 2

A

∂α

)2
1

2σ 4
A

(33)

in their variances. If the derivative of ln P is the constant c, we
have

∂σ 2
A

∂α
=

∫
d3k

(2π )3

∂PA(k)

∂α

=
∫

d3k

(2π )3
PA(k)

∂ ln PA(k)

∂α

= c σ 2
A (34)

and thus expressions (32) and (33) are identical. In terms of
information on such parameters, the correlated, Gaussian A field
is thus exactly equivalent to d uncorrelated Gaussian variables
with the same variances. These parameters can be seen as
entering therefore predominantly the variance, the two-point
correlation function at zero lag, that contains most information,
and the correlations at non-zero lag carrying little independent
information. This is also expected to hold for the δ field, since it
is very nonlinear and the variance dominates over the clustering
in the two-point correlation matrix, i.e., the two-point correlation
matrix is close to diagonal, so that the variance will dominate
in any covariance matrix, as well as in the sensitivity to the
parameter.

Since information just adds up for any number of independent
variables, this means that we can try and directly use the exact
results one of us derived (Carron 2011) for the one-dimensional
lognormal distribution to get a rough but still reasonable estimate
of the improvement in the constraints from analyzing the A field.
In that work, the cumulative efficiencies were derived

εσ
N = 1

Fαα

N∑
n=2

(
sσ
n

)2 ∈ (0, 1) (35)

of the first N moments of the δ field to catch the information in
A (Equations (31)–(35) as well as Figures 1 and 2, solid line, in
that paper). These coefficients are extremely sensitive functions
of σ 2

A, decaying like exp(−4σ 2
A) ∼ σ−8

δ as soon as σA becomes
close to unity.

There is a slight modification to make to these coefficients
so that we can confront them to the simulations. From the
simulations only the spectrum of A were extracted, but not the
mean of A, which also carries information in principle, even if δ
itself has zero mean. For a one-dimensional lognormal variable
with unit mean, we have from Equation (16) that Ā = −σ 2

A.

6
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Table 1
Factors of Improvement in Constraints on Parameters

Δδ
2/ΔA

2 Δδ
3/ΔA

2 Δδ∞/ΔA
2

LN, σA = 0.7 2.0 1.6 1.3
LN, σA = 0.9 2.9 2.4 2.1
Sim. α = ln σ 2

8 2.5
Sim. α = ns 2.4

For that lognormal variable the total information is given by the
usual formula for the Gaussian A,

Fαα = 1

σ 2
A

(
∂Ā

∂α

)2

+
1

2σ 4
A

(
∂σ 2

A

∂α

)2

. (36)

It thus reduces to

Fαα = 1

2σ 4
A

(
∂σ 2

A

∂α

)2 (
1 +

σ 2
A

2

)
, (37)

where the rightmost term contains the part of the information in
the mean of A. The efficiency ratios of the moments of δ to that
of the variance of A only, excluding the mean, thus becomes

ε̃σ
N := εσ

N

(
1 +

σ 2
A

2

)
. (38)

Note that in principle these efficiencies can now be larger than
unity, if the moments of δ would capture not only the information
in σ 2

A, but also that in Ā.
The improvement factors, i.e., the ratio of the constraints on

α from analyzing the first N correlation functions of δ, to the
constraint from the two-point function of A, are thus in this
model [

ε̃σ
N

]−1/2 =: Δδ
N (α)/ΔA

2 (α). (39)

They are independent of the parameter α in this one-dimensional
picture, since the only relevant parameter is σ 2

A, or equiva-
lently σ 2

δ . Remember that the denominator on the right-hand
side can actually be calculated for any lognormal field from
Equation (27), our additional assumptions can be seen thus
as entering only the numerator. We argued that this ratio is
expected to be correct for parameters such as ln σ 2

8 , but they
become in all cases exact for a lognormal field whose vari-
ance dominates enough the clustering, ξδ(r)/σ 2

δ � 1, for
all r. The effective nearest neighbor distance given the modes
we used can be evaluated as rmin ≈ ∫

(d3k)/(2π )3−1/3
, and we

find ξδ(rmin)/σ 2
δ = 0.3.

Finally, there is slight ambiguity in evaluating ε̃σ
n . A purely

lognormal field has σA = [ln(1 + σ 2
δ )]1/2, but this relation is not

fulfilled precisely in our simulations. We obtain σA = 0.7, σδ =
1.1 and so, [ln(1 + σ 2

δ )]1/2 = 0.9 rather than 0.7. This discrep-
ancy may be due of course to an intrinsic failure of the lognormal
assumption, or to the presence of the smallest scales, slightly
correlated, as seen from the start of saturation in Figure 3.

We show in the first two rows of Table 1 the factors of
improvement for these two values of σA, 0.7 and 0.9, for
N = 2, 3 and ∞. The third row shows the improvement
found extracting PA rather than Pδ in the simulations. Given
our assumptions, and the very high sensitivity of εσ

N to the
variance of the field, they agree remarkably: for the sake of
comparison, a variance twice as large of σA = 2 → σδ = 7.3
would have predicted a factor of Δ2(δ)/Δ2(A) = 522 and for
σA = 3 → σδ = 90 a factor of ≈5 × 106.

We also performed this analysis for the tilt parameter ns,
which from its very definition has a very differentiated impact
over different modes, and finding, just as in the original
analysis (Neyrinck 2011), that the improvement factor is roughly
parameter independent as shown in the fourth row of the table.
This is another argument supporting the view that the dynamics
of the information are indeed captured by such a simple picture.
It may be due to the fact that the smallest scales, containing
the largest number of modes, contribute the majority of the
information in A for any parameter, and thus that the sensitivity
can be effectively treated as constant, equal to its value on
small scales, making our argument above valid for basically any
parameter. Note that for both values of σA the spectrum of A still
outperforms the entire hierarchy of δ by a sizeable factor for the
lognormal model. Of course, this is much more speculative.

5. CONCLUSION AND DISCUSSION

We have made clear that the correlation functions are generi-
cally very poor descriptors and probes of fields with large tails.
This is especially true for the lognormal field, a standard pre-
scription for the statistics of cosmological nonlinear fields, and
we provided other explicit fields with exactly the same hierar-
chy at all orders. We showed that the knowledge of the entire
hierarchy of N point functions of a nonlinear lognormal field is
insufficient to constrain other simple observables. We discussed
the links between these aspects and the failure of power series
expansions to reproduce relevant functions. We argued that this
inadequacy is responsible for the recent successes of the log
transforms in cosmology at recapturing information, and that
they may not only bring back information from higher order
statistics, but likely also information that cannot be probed at all
with the hierarchy. We then showed that the factors of improve-
ments on constraints from analyzing the spectrum of A to that
of δ as seen in N-body simulations are in quantitative agreement
with simple analytical predictions using lognormal statistics.

Observational noise issues were not considered in this work.
It remains therefore unclear to what extent these improvements
can be achieved with actual galaxy survey data. Generically, it is
reasonable to expect that noise will reduce these improvement
factors. This work nonetheless makes clear that in this case,
improving the specifications of a survey in order to decrease the
observational (e.g., shot) noise will be at the same time actually
reducing the efficiency with which cosmological parameters
can be extracted with the hierarchy of δ (i.e., the fraction of
information that is contained in the hierarchy with respect to the
total).

Surely, the question of the incompleteness of the hierarchy
of the matter or any other field is in itself to a certain extent
academical, since high-order correlations will most likely stay
out of reach for a long time. Nevertheless, it provides directions
and insights into the recent successes of these transforms,
strongly suggesting that in the nonlinear regime, an approach
using transforms is much more promising than targeting higher
order statistics for inference on any parameter. We are also
convinced that the statistical methods and formalism introduced
will be more widely applicable in the future. Progress on these
issues will be reported in due time.

We are thankful to the anonymous referee. J.C. warmly thanks
Alex Szalay, Xin Wang and the hospitality of the Physics and
Astronomy Department of Johns Hopkins University, where
this work was conducted. He also acknowledges the support of
the Swiss National Science Foundation. M.C.N. is grateful for

7



The Astrophysical Journal, 750:28 (9pp), 2012 May 1 Carron & Neyrinck

support from the W. M. Keck and the Gordon and Betty Moore
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APPENDIX

We prove the claim made in this work that the distributions
we defined have the same correlations than the lognormal at
all orders. As we will see this is also true including “negative
orders” and “mixed orders,” i.e., when negative powers of the
variables are allowed in the correlations.

Recall that for lognormal variables ρ = (ρ1, . . . , ρd )
with means and covariance matrix of their logarithms Ā =
(Ā1, . . . , Ād ) and ξA we have

mn := 〈ρn〉 = 〈
ρ

n1
1 · · · ρnd

d

〉 = exp

(
n · Ā +

1

2
n · ξAn

)
,

n = (n1, . . . , nd ). (A1)

A simple proof of this fact is to make use of the standard
formulae for Gaussian integrals, valid for any positive matrix
ξA, mean vector A, and vector z, that can be complex valued∫

ddA√
(2π )d det ξA

exp

(
−1

2
(A− Ā) · ξ−1

A (A− Ā) + (A− Ā) · z

)

= exp

(
1

2
z · ξAz

)
. (A2)

Essentially all calculations in this work follow from this formula.
Even the proof for the discrete family can be considered a
discrete version of that relation.

A.1. Continuous

To prove our claim it is enough to show that〈
ρn sin

(
π ω · ξ−1

A (A − Ā)
)〉

LN = 0. (A3)

This must hold for any d-dimensional multiindices ω and n (we
allow entries to be negative), where the average is taken with
respect to the lognormal density function, Equation (15). We
proceed as the following: we evaluate the following integral:

I (n,ω) := 〈
ρn exp

(
iπ ω · ξ−1

A (A − Ā)
)〉

LN , (A4)

and show that its imaginary part vanishes for ω and n as
specified.

Writing Equation (A4) using

ρn = exp(n · A) = exp[n · (A − Ā) + n · Ā] (A5)

leads immediately to the Gaussian integral given in
Equation (A2), with z = n + iπξ−1

A ω. It follows from that
equation

I (n,ω) = exp

[
n · Ā +

1

2

(
n + iπξ−1

A ω
) · ξA

(
n + iπξ−1

A ω
)]

.

(A6)
Separating real from imaginary argument, this expression re-
duces to

I (n,ω) = exp

(
n · Ā +

1

2
n · ξAn − π2

2
ω · ξ−1

A ω

)
· exp (iπ ω · n) . (A7)

The imaginary part of that expression is thus proportional to
sin π ω · n. Whenever ω and n are integer valued, so is their
scalar product ω · n = ∑

i ωini . Therefore, the sine vanishes
and Equation (A3) is proved.

A.2. Discrete

From Equations (23) and (24), we have

ρm
n = exp(m · Ā + m · ξA(n − α)). (A8)

It follows that the moments of ρ are given by

〈ρm〉 = em·Ā

Z

∑
n∈Zd

exp

[
−1

2
(n − α) ξA (n − α) + m · ξA (n − α)

]
.

(A9)

The proof is based on completing the square in the exponent, in
perfect analogy of standard proofs of the Gaussian integral in
Equation (A2). Write

−1

2
(n − α) · ξA (n − α) + m · ξA (n − α)

= −1

2
(n − m − α) ξA (n − m − α) +

1

2
m · ξAm, (A10)

and then perform the shift of summing index n → n + m,
obtaining

〈ρm〉 = exp

(
m · Ā +

1

2
m · ξAm

)

× 1

Z

∑
n∈Zd

exp

(
−1

2
(n − α) · ξA (n − α)

)
. (A11)

Since the sum ranges over all the multiindices, the shift does not
create boundary terms. This last sum is nothing else than Z, so
that we recover

〈ρm〉 = exp

(
m · Ā +

1

2
m · ξAm

)
, (A12)

which are indeed the same as the lognormal in Equation (A1).
Again, this is also true if negative entries in m are permitted.
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