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ABSTRACT

The discovery of radio pulsars in compact orbits around Sgr A* would allow an unprecedented and detailed
investigation of the spacetime of this supermassive black hole. This paper shows that pulsar timing, including that
of a single pulsar, has the potential to provide novel tests of general relativity, in particular its cosmic censorship
conjecture and no-hair theorem for rotating black holes. These experiments can be performed by timing observations
with 100 μs precision, achievable with the Square Kilometre Array for a normal pulsar at frequency above 15 GHz.
Based on the standard pulsar timing technique, we develop a method that allows the determination of the mass,
spin, and quadrupole moment of Sgr A*, and provides a consistent covariance analysis of the measurement errors.
Furthermore, we test this method in detailed mock data simulations. It seems likely that only for orbital periods
below ∼0.3 yr is there the possibility of having negligible external perturbations. For such orbits, we expect a
∼10−3 test of the frame dragging and a ∼10−2 test of the no-hair theorem within five years, if Sgr A* is spinning
rapidly. Our method is also capable of identifying perturbations caused by distributed mass around Sgr A*, thus
providing high confidence in these gravity tests. Our analysis is not affected by uncertainties in our knowledge of
the distance to the Galactic center, R0. A combination of pulsar timing with the astrometric results of stellar orbits
would greatly improve the measurement precision of R0.
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1. INTRODUCTION

One of the most intriguing results of general relativity
(GR) is the uniqueness theorem for the stationary black hole
solutions of the Einstein–Maxwell equations (see Heusler 1998,
and references therein). This uniqueness theorem states that
(under certain conditions) all stationary electrovac5 black hole
spacetimes with a non-degenerate horizon are described by
the Kerr–Newman metric. It implies that in GR all stationary
black holes are parameterized by only three parameters: mass
(M), spin (S), and electric charge (“black holes have no hair”).
All uncharged black hole solutions are described by the Kerr
metric and, therefore, are uniquely determined by M and S.
Astrophysical black holes are believed to be the result of a
gravitational collapse. During this collapse all the properties
of the progenitor, apart from mass and spin, are radiated
away by gravitational radiation while the gravitational field
asymptotically approaches its stationary configuration (Price
1972a, 1972b). The outer spacetime of an astrophysical black
hole should therefore be described by the Kerr metric.6 Since the
Kerr metric has a maximum spin at which it still exhibits an event
horizon, Penrose’s cosmic censorship conjecture (CCC) within
GR (Penrose 1979) requires the dimensionless spin parameter
χ to satisfy

χ ≡ c

G

S

M2
� 1 . (1)

5 Electrovac spacetimes are the solutions of the Einstein–Maxwell equations.
6 Strictly speaking, this is only true for a certain approximation since, to
some extent, astrophysical black holes will be influenced by nearby masses
(accretion, orbiting objects). We will address this issue for Sgr A* in this paper
at the end of the discussion section.

A measured value for χ that exceeds 1 would pose a serious
problem for our understanding of spacetime, since this would
indicate that either GR is wrong or that a region may be visible to
the outside universe, where our present understanding of gravity
and spacetime breaks down.

As a result of the no-hair theorem, all higher multipole
moments (l � 2) of the gravitational field of an astrophysical
black hole can be expressed as a function of M and S (Hansen
1974). In particular, the dimensionless quadrupole moment q
satisfies the relation

q ≡ c4

G2

Q

M3
= −χ2 . (2)

A measurement of the quadrupole moment, in combination with
a mass and a spin measurement, would therefore provide a test
of the no-hair theorem for Kerr black holes.

Some of the clearest evidence for the existence of black holes
comes from the monitoring of ∼30 stellar orbits in the center
of our Galaxy (Schödel et al. 2002; Ghez et al. 2008; Gillessen
et al. 2009), where the shortest orbital period, Pb, is 16 years.
Known by its radio nomenclature of Sgr A*, current estimates
put the mass of this black hole to around 4 × 106 M�. A black
hole of that size at a distance of 8 kpc is an ideal laboratory for
black hole physics, strong-field gravity and, in particular, a test
of the no-hair theorem for Kerr black holes (e.g., Psaltis 2008;
Johannsen & Psaltis 2011). It has been shown by Will (2008)
that the discovery of stars in highly eccentric (e ∼ 0.9) orbits
very close to Sgr A* (Pb � 0.1 yr) could be used to test the
general relativistic no-hair theorem. This experiment requires
an astrometric precision at the level of 10 μas, which seems
achievable with the upcoming infrared astrometry experiments,
such as GRAVITY (Eisenhauer et al. 2009). At a distance
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of 8 kpc, an angle of 10 μas corresponds to a length scale
of ∼107 km.

On the other hand, if close-in pulsars could be found and
tracked in their orbits, even for those with poor timing precision
the time of arrival (TOA) for a (integrated) pulsar signal can
be measured with an uncertainty of a few milliseconds, corre-
sponding to a light travel distance of ∼103 km. Moreover, a
phase-connected solution with an appropriate timing model al-
lows a determination of the pulsar orbit, which provides even
more precision. Hence, as shown by Wex & Kopeikin (1999)
and Kramer et al. (2004), a pulsar in orbit around the supermas-
sive black hole in the Galactic center (GC) would provide an
ideal probe to measure the mass, the spin, and the quadrupole
moment of Sgr A*, and consequently to test the no-hair theorem
for Kerr black holes. In their discussion on “bumpy black holes,”
Vigeland & Hughes (2010) suggest that a pulsar in orbit around
a black hole could be used for mapping its multipole moment
structure. In a recent publication, Angélil et al. (2010) have dis-
cussed the importance of frame dragging and the quadrupole
moment for stars and pulsars in orbit around Sgr A*, based on
numerical integration of geodesics in a Kerr spacetime. For pul-
sars, however, the results in this paper are only indicative.7 Wang
et al. (2009a, 2009b) have shown that if a pulsar is found in a
very close orbit around Sgr A* (e.g., Pb � 1 day), observers at
the Earth can receive additional pulses traveling along a path that
is strongly bent by the gravitational potential of the black hole.
The exploitation of this information would provide unique con-
straints on the strongly curved spacetime geometry near Sgr A*.

In this paper we will demonstrate how the mass, the spin
(magnitude and orientation), and the quadrupole moment of
Sgr A* can be determined from timing a pulsar in a sufficiently
tight orbit around the supermassive black hole. Our analysis
is based on simulated TOAs and a timing model that allows
for a phase-connected solution, consistently accounting for
the relativistic effects in the motion of the pulsar and the
propagation of the radio signals. Based on this, we can determine
the expected precision for the individual parameters while
accounting for all the correlations between the parameters. In all
discussions and simulations, we focus on the leading order in the
individual effects of interest. We are well aware that in an actual
timing model for orbits close to Sgr A* we need to account for
higher-order effects in the orbital motion and signal propagation.
For many of the effects discussed below, higher-order terms
have already been calculated (e.g., Damour & Schäfer 1988;
Wex 1995; Kopeikin 1997; Königsdörffer & Gopakumar 2005).
However, to estimate the expected precision and covariances in
the parameter determination, it is sufficient to use a timing model
that combines just the leading terms of all contributions relevant
here. The second-order terms contribute at a ∼β2

O level, where
βO is the orbital velocity parameter introduced by Damour &
Taylor (1992). For a test particle in orbit around a mass M

βO =
(

2πGM

c3Pb

)1/3

� 0.0158

(
M

4 × 106 M�

)1/3 (
Pb

1 yr

)−1/3

.

(3)

7 The Angélil et al. (2010) results for a pulsar are not derived from a
consistent covariance analysis based on a timing model that incorporates all
the relevant effects simultaneously. Moreover, pulsar timing is treated as a
radial velocity measurement experiment, which is incorrect. In fact, pulsar
timing makes use of phase-connected solutions for the rotational phase of a
pulsar leading to a precision in the parameter estimations that can be several
orders of magnitude better (Lorimer & Kramer 2005). Also, the timing
precision assumed by Angélil et al. (2010) seems too optimistic for a GC
pulsar, as will become clear from the analysis presented in this paper.

As an example, for an orbital period of 0.1 yr we find β2
O ≈ 10−3.

At this point it is worth mentioning that for the most relativistic
binary pulsar, the double pulsar, one finds β2

O � 4.3 × 10−6

(Kramer & Wex 2009), which nicely illustrates how much
more relativistic a pulsar in a Pb � 1 yr orbit around Sgr A*
would be.

Previous studies suggest that about 1000 pulsars can be
expected to be orbiting Sgr A* with periods less than 100 years
(Cordes & Lazio 1997; Genzel et al. 2003; Pfahl & Loeb 2004;
Wharton et al. 2011),8 and some of them may be associated with
remnants of the observed S-star population in the neighborhood.
Deep pulsar searches toward the GC region have already been
conducted with a few radio telescopes (Effelsberg, Green Bank,
Parkes) at frequencies up to 15 GHz (e.g., Kramer et al.
2000; Macquart et al. 2010; M. Kramer et al. 2011, private
communication). Five pulsars were found no more than 200 pc
away from Sgr A* (Johnston et al. 2006; Deneva et al. 2009,
M. Kramer et al. 2011, private communication), which is
consistent with the estimated large pulsar population within that
region. However, they are not close enough to the supermassive
black hole to probe its gravitational field. In this paper we
will focus on timing observations of such pulsars, and show
how far they could take us in probing the gravitational field
of Sgr A*, provided the system is found to be sufficiently
free of external perturbations. The main purpose, therefore,
is the development of the methodology and the estimation of
its potential in testing the Kerr nature of Sgr A* based on
mock data simulations. For further elaboration on either the
existence of pulsars in close orbits around Sgr A* or the search
for them we refer the reader to the rich literature (Lorimer &
Kramer 2005) and future work in progress. In Section 2, we
discuss the expected timing precision and the orbital periods
required for our measurements. Section 3 presents the various
relativistic effects that can be used to determine the mass of
Sgr A* and, based on simulations, the expected precision in the
mass measurement. In Section 4, we show how the spin can be
extracted from the timing measurement, how this information
can be used to test the CCC, and how the presence of a distributed
mass in the vicinity of Sgr A* would affect this measurement.
Section 5 provides the details on the quadrupole measurement
and the no-hair theorem test. In Section 6, we summarize and
discuss our findings.

2. TIMING A PULSAR IN ORBIT AROUND Sgr A*

Pulsar timing involves measuring the TOAs of a pulsar’s
pulses and monitoring them on a timescale of years (e.g.,
Taylor 1992). The precision of TOA measurements of young
pulsars near the GC, by future telescopes, will mainly be limited
by three effects that have significantly different dependencies
on observing frequency: first the signal-to-noise ratio of the
measured pulses, second the pulse phase jitter intrinsic to the
pulsar, and third the changes in pulse shape caused by interstellar
scintillation (Cordes & Shannon 2010; Liu et al. 2011). The
first effect is independent of frequency under our assumption
that the pulse width does not change with frequency. In reality,
the pulse width does evolve but that is secondary to the overall
timing error. The second and third effects are strongly frequency
dependent due to the steep pulsar spectrum and the pulse
broadening caused by the large amount of scattering from the
high electron density in the ionized gas near the GC. The strong

8 The result from the GC survey by Macquart et al. (2010) indicated that the
actual number of such pulsars may be less.
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Figure 1. Predicted TOA measurement precision of a young pulsar near the GC
for two different spectral indices α. The curves take into account pulse phase
jitter intrinsic to the pulsar, pulse broadening from scattering along the entire
line of sight, and from the finite number of scintles included in the measurement.
Scattering is dominated by a region of high plasma density that surrounds the
GC. We assumed a 4 hr integration time using a 100 m radio telescope and a
1 hr integration time using an SKA-like telescope, both with a highest operating
frequency of 30 GHz and a bandwidth of 1 GHz. It is found that observational
frequencies above 15 GHz favor pulsar timing observation, where 100 μs TOA
precision seems achievable, in particular with the SKA. The parameters used
for these calculations can be found in the text.

(A color version of this figure is available in the online journal.)

dependence of scattering on frequency (∝ f −4; see the next
paragraph) implies that observations need to be made at much
higher frequencies than are typically used for pulsar timing.

There have been previous studies on optimizing the observa-
tional frequency for the purpose of pulsar searches toward the
central parsec region (Cordes & Lazio 1997; Macquart et al.
2010). Figure 1 shows the estimated timing precision for a
canonical pulsar near Sgr A* as a function of the observing
frequency. The calculation of the achievable TOA uncertainty
σTOA accounts for three contributions:

σ 2
TOA = σ 2

rn + σ 2
J + σ 2

scint . (4)

Here σrn, σJ , and σscint represent the uncertainties contributed by
radiometer noise, pulse phase jitter, and interstellar scintillation,
respectively, which can be calculated by following, e.g., Cordes
& Shannon (2010). Specifically, we use a spin period P = 0.5 s,
an intrinsic pulse width Wi = 10 ms, and a period-averaged
flux density S1400 = 1 mJy at 1.4 GHz. For a 100 m diameter
dish and the Square Kilometre Array (SKA), we use a gain
of 2 K Jy−1, 100 K Jy−1, and an integration time of 4 hr and
1 hr, respectively. Two different spectral indices of the pulsar
flux density, which typify many of these measured for pulsars
(Maron et al. 2000), are used in our calculations. The scattering
timescale is estimated to be τscat ≈ 2.3 × 106 ms at 1 GHz, as
derived from the observed scattering diameter of Sgr A* and the
estimated location of the scattering material along the line of
sight, the latter as incorporated in the NE2001 model (� = b = 0
and D = 8.5 kpc; Cordes & Lazio 2002). For this large amount
of scattering, we use a scaling of τscat ∝ f −4 (e.g., Löhmer
et al. 2001) rather than the often used Kolmogorov scaling
τscat ∝ f −4.4 (e.g., Rickett 1990), because the dominant length
scale is less than the inner scale of the wavenumber spectrum
for the electron density. Note that all potential pulsars with close
orbits of interest for the GR tests will be seen along essentially
the same line of sight as Sgr A*, so one can assume that their
lines of sight will have the same scattering characteristics. The
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Figure 2. Timescales of secular orbital precession for a pulsar in orbit around
Sgr A* as a function of orbital period Pb (semimajor axis a). The letters M, S,
Q, and P stand for the contribution by the mass monopole (pericenter advance),
the spin (frame dragging), the quadrupole moment, and the stellar perturbation,
respectively. Here we assume an orbital eccentricity of 0.5 and 103 objects of
one solar mass within 1 mpc around Sgr A*. As a comparison, the Schwarzschild
radius of Sgr A* is ∼4 × 10−4 mpc.

(A color version of this figure is available in the online journal.)

system temperature (e.g., � 40 K at 15 GHz) is calculated
by summing the radio background, receiver temperature, and
emission of the atmosphere. It clearly follows from Figure 1
that with a radio telescope like SKA TOA uncertainties of
below 100 μs seem likely for an observational frequency above
15 GHz, similar to the result of optimized searching frequency.
A detection of millisecond pulsars (MSPs) in the Galactic center
is unlikely (Cordes & Lazio 1997; Macquart et al. 2010), so they
are not considered in the following simulations. However, we
will show that the black hole properties can already be extracted
by finding and timing a relatively slow pulsar. If an MSP were to
be found after all, the experiment may reach a correspondingly
higher precision.

Precision of long-term timing of a young pulsar is often
limited by irregularities of the pulsar’s rotation, supposedly
associated with either the internal superfluid flux (e.g., Melatos
& Warszawski 2009), or external magnetic field activity (e.g.,
Lyne et al. 2010). The amplitude of the low-frequency noise
resulting from these instabilities varies from about 10 μs to
100 ms (Hobbs et al. 2010), and in some cases the noise can
be modeled by following the approach proposed by Lyne et al.
(2010) to improve the timing precision by orders of magnitude.
Consequently, a TOA precision of 100 μs is a reasonable fiducial
value which we will use in our simulations below.

Although the purpose of this paper is to discuss potential grav-
ity tests with a pulsar in orbit around Sgr A*, provided the system
is found to be sufficiently clean, we nevertheless would like to
complete this section with a brief discussion on possible effects
that could complicate or even spoil these tests. Merritt et al.
(2010) and Sadeghian & Will (2011) have shown that for orbits
with an orbital period Pb larger than 0.1 yr, it becomes likely
that the distribution of stars in the vicinity causes “external”
perturbations of the orbital motion of the pulsar and prevents a
clean test of the no-hair theorem or even a measurement of the
Lense–Thirring effect. In order to evaluate the significance of
the perturbation, following the analysis of Merritt et al. (2010),
in Figure 2 the relation of precessional timescale against orbital
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size is presented for four different contributions: the pericenter
advance, the frame dragging effect, the black hole quadrupole,
and the surrounding mass distribution. Here we assume 103

(the highest number applied in Merritt et al. 2010) objects of
one solar mass isotropically distributed within 1 mpc around
Sgr A*. Similar to Merritt et al. (2010), we do not consider the
influence of objects outside the central 1 mpc region. One can
see that for wide orbits (Pb ∼ 10 yr) the pericenter advance is
still significantly larger than the precession caused by external
perturbations. This suggests that for orbital periods less than
about 10 years the measured ω̇ can be used to tightly constrain
the black hole mass. The frame dragging will be dominant over
the stellar noise if the orbital period is less than 0.5 years, while
only for orbital periods �0.1 yr is the (secular) contribution of
the quadrupole moment expected to be significantly above the
external perturbation. We note that the assumptions applied to
calculate the precessional timescale by stellar perturbation may
not be secure, as the actual stellar components and mass distri-
butions within the central pc (especially the central mpc) are still
not fully understood. For instance, the precessional torque could
be larger if there exists a high fraction of massive objects near
Sgr A* due to mass segregation (O’Leary et al. 2009; Keshet
et al. 2009; Kocsis & Tremaine 2011) or a significant anisotropy
in the distribution of the surrounding masses. In fact, it has been
argued by Merritt et al. (2010) that a high fraction of 10 M�
black holes in this region would make astrometric tests of GR
problematic at all radii. Concerning pulsars, however, as will
be discussed in Sections 4.3 and 5.2, the gravitomagnetic and
quadrupolar fields of Sgr A* will result in unique features in the
timing residuals which can be tracked well with high-precision
timing observations, and one can still expect to be able to extract
the Sgr A* spin and quadrupole moment from the timing data, to
some extent. However this depends strongly on the details of the
external perturbations, which will only be known once a pulsar
is discovered in that region.

3. MASS MEASUREMENT

The current best estimate for the mass of Sgr A* gives 4.30 ±
0.20(stat) ± 0.30(sys) × 106 M� (Gillessen et al. 2009).9 The
proposed method has the potential to improve the measurement
accuracy by a factor of ∼105. This is possible using pulsar
timing. Indeed, the most precise mass measurements for stars
(other than the Sun) come from pulsar timing observations
(Jacoby et al. 2005; Freire et al. 2011). Those are achieved
in binary pulsar systems where, in addition to the Keplerian
parameters, one can determine a set of post-Keplerian (PK)
parameters as theory-independent relativistic corrections. In
any theory of gravity the PK parameters are functions of the
two a priori unknown masses of the system, which can be
determined once two PK parameters have been obtained (see
Damour & Taylor 1992 for definitions of the Keplerian and
PK parameters). Since in our case the mass of the pulsar can be
neglected in comparison to the mass of the black hole, in general
one PK parameter is sufficient to estimate the mass of Sgr A*
with a precision at the 10−6 level. In the following, we briefly
discuss three relativistic effects that can be used for a mass
determination and present the results of extensive simulations
at the end of this section. As mentioned in Section 1, in a
discussion of measurement precision it is sufficient to keep the
first-order terms in the description of these effects.

9 The main uncertainty is from the limited knowledge of the distance to the
GC.

3.1. Post-Keplerian Parameters and Mass Determination

In eccentric binary pulsars the precession of periastron, ω̇, is
usually the first PK parameter that can be measured with high
precision. It allows the determination of the total mass of the
system, which in our case can be equated to the mass of the
black hole MBH. To first order one finds (Robertson 1938)

ω̇ � 3

1 − e2

(
2π

Pb

)5/3 (
GMBH

c3

)2/3

� (0.269 deg yr−1)
1

1 − e2

(
Pb

1 yr

)−5/3 (
MBH

4 × 106 M�

)2/3

,

(5)

where e is the orbital eccentricity. As an example, for a 0.3 yr
orbit with an eccentricity of 0.5 the orbit precesses at a rate of
about 2.7 deg yr−1. After five years of weekly observations with
a timing uncertainty of 100 μs, this precession will be measured
with a fractional precision of better than 10−7. This, however,
is not the precision with which the mass of Sgr A* can be
determined. If the black hole is rotating, a significant fraction
of the pericenter precession can come from the frame dragging
(Barker & O’Connell 1975a). Depending on the orientation and
the spin of the black hole, this could be up to about 1% of the
total precession. A measurement of the spin and the orientation
of the black hole would allow to correct for this Lense–Thirring
contribution ω̇LT. But, as we will show later, we will use the
observed ω̇ and the mass measurement from other relativistic
effects to calculate ω̇LT and use it in the spin determination
(ω̇ ≡ ω̇M + ω̇LT).

The Einstein delay is a combination of the second-order
Doppler effect and gravitational redshift. From its amplitude
γE, which is a PK parameter, one can determine the mass of the
black hole, since (to first post-Newtonian order) (Blandford &
Teukolsky 1976)

γE � 2e

(
Pb

2π

)1/3 (
GMBH

c3

)2/3

� (2500 s) e

(
Pb

1 yr

)1/3 (
MBH

4 × 106 M�

)2/3

. (6)

For a 0.3 yr orbit with an eccentricity of 0.5 the amplitude of the
Einstein delay will be of order 800 s. However, the Einstein delay
is a priori not separable from the Roemer delay,10 and can only
be measured with sufficient accuracy after some time, when
the relativistic precession has changed the orbital orientation
sufficiently. For a pulsar in a 0.3 yr orbit this is already the
case after a few orbits. After a few years the Einstein delay
can be measured with high precision, as will be shown in the
simulations below. The dragging of inertial frames in the vicinity
of the black hole also affects the Einstein delay. However, this
occurs only at higher orders (Wex 1995), which in most cases
can be neglected or easily accounted for in a combined mass
and spin measurement.

The Shapiro delay accounts for the extra light traveling time
due to the curvature of spacetime caused by the existence of
surrounding masses (here mainly Sgr A*). The Shapiro delay

10 The Roemer delay is defined as ΔR = −K̂0 · r, where K̂0 is the unit vector
of the line of sight and r is the position vector of the pulsar with respect to the
barycenter of the binary system. The Roemer delay describes the contribution
of the pulsar motion to the time delay.
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contains two separately measurable PK parameters, the mass
of the black hole MBH and sin i. The signal is usually only
sufficiently strong for edge-on systems (e.g., Kramer et al.
2006), but in our case even for a face-on orbit (i = 0) the
effect will be significant due to the large mass of Sgr A*, if the
orbit is eccentric. Using the equation of Blandford & Teukolsky
(1976)

ΔS � 2GMBH

c3
ln

(
1 + e cos ϕ

1 − sin i sin(ω + ϕ)

)

� (39.4 s)

(
MBH

4 × 106 M�

)
ln

(
1 + e cos ϕ

1 − sin i sin(ω + ϕ)

)

(7)

as a first-order estimation, one can see that for an eccentricity
of 0.5 the Shapiro delay for i = 0 amounts to about 40 s. This
already indicates that the Shapiro delay allows a precise mass
determination, even for a pulsar with poor timing precision.
Apart from containing MBH directly, the Shapiro delay gives a
second, though indirect, access to the Sgr A* mass via sin i and
the mass function. One finds

GMBH �
( cx

sin i

)3
(

2π

Pb

)2

, (8)

where x is the projected semimajor axis of the pulsar orbit (in
light seconds), which is an observable Keplerian parameter. It
depends on the orbital eccentricity and inclination, of which the
latter is more constraining.

In addition, there are significant contributions to the signal
propagation caused by frame dragging. A first-order analytic
equation for this effect can be found in Wex & Kopeikin (1999).
From this it is clear that the frame dragging can have a significant
contribution to the propagation delay, but in most cases will have
a distinct signature that can be fitted for, leading at the same
time to a precise mass measurement and a lower limit on the
spin parameter χ . Contributions from higher-order multipole
moments and light bending effects can easily be accounted for
in an analytic way (see, e.g., Kopeikin 1997).

The inclination of the pulsar orbit with respect to the line-of-
sight i (modulo a π − i ambiguity; see Figure 4) can be obtained
either directly from the Shapiro delay, as explained above, or
via Equation (8) by using the mass, MBH, derived from any
other PK parameter. Therefore, in Sections 4 and 5 where the
determination of spin and quadrupole is presented, we can treat
the inclination angle as a parameter that is known with sufficient
precision. A brief discussion on the π−i ambiguity can be found
in Section 4.1.

3.2. Simulations

The simulations performed in this paper mainly contain two
steps: creating TOAs and determining parameters together with
their measurement uncertainties. First, the TOAs are created
regularly with regard to solar system barycentric time and then
combined with the three time delays (Roemer, Einstein, and
Shapiro; see the above subsection) to account for the changes
in the signal arrival time due to the orbital motion of the
pulsar around Sgr A*. Next the simulated TOAs are passed
to the TEMPO software package. Based on a timing model,
TEMPO performs a least-squares fit to yield a phase-connected
solution of the TOAs and determines the model parameters. The
measurement uncertainties of these parameters are calculated
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Figure 3. Simulated fractional precision for the mass determination of Sgr A*
as a function of the orbital period Pb obtained from three different relativistic
effects: precession of the orbit (ω̇), Einstein delay (γE), and Shapiro delay (ΔS).
The mass determinations are based on simulated data, assuming weekly TOAs
with an uncertainty of 100 μs over a time span of five years. We used an orbital
eccentricity e of 0.5 and an orbital inclination i, relevant for the Shapiro delay,
of 60◦. The simulations were done for a non-rotating black hole. Note that for
various practical reasons (such as the uncertainty in the pulsar mass), a precision
below 10−7 seems unrealistic. Also, as explained in the text, for a rotating black
hole ω̇ cannot be used directly for a high-precision mass determination due to
the large contribution of frame dragging.

(A color version of this figure is available in the online journal.)

via a covariance matrix. This is the standard procedure for
pulsar timing observations and is explained in great detail in
Taylor (1994), Lorimer & Kramer (2005), Hobbs et al. (2006),
and Edwards et al. (2006). Most of the timing models used in this
paper are part of the TEMPO standard implementation available
as a download from the sources given in these references.
Whenever we use an extension to these well-tested models, to
account for specific effects which are not covered by the standard
software, we will mention this explicitly in the corresponding
section.

In this subsection, we present the simulations for the mass
determination. For this we assumed five years of observations
with weekly TOAs which contain white Gaussian noise with a
standard deviation of 100 μs. Figure 3 shows the results of our
simulations for a typical system configuration. If this is not the
case then, as outlined above, ω̇ cannot a priori be used for a high-
precision mass measurement due to an unknown contribution
from the frame dragging, as we will show later.

In practice, not just one single relativistic effect will be
used to determine the mass of Sgr A*, but a consistent model,
accounting simultaneously for frame dragging effects in the
orbital motion and the signal propagation, will be used to
determine the mass and spin at the best level. How the spin
of Sgr A* affects the timing observations and how it can be
extracted from the timing data are the subject of the next section.

4. FRAME DRAGGING, SPIN MEASUREMENT, AND
GR’s COSMIC CENSORSHIP CONJECTURE

Although there is clear indication that Sgr A* rotates, its
actual rate of rotation is still not well determined. Investiga-
tions of flares from accreting gas in the near-infrared and in
X-rays yield a range of χ ≈ 0.22 to 0.99 (Genzel et al. 2003;
Aschenbach et al. 2004; Bélanger et al. 2006; Aschenbach
2010). The rather large range in the estimates of χ is also a
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Figure 4. Definition of angles in Sgr A* spin reference frame. The orientation
of the orbit with respect to the observer is given by the orbital inclination i
and the longitude of pericenter ω as measured from the ascending node in
the plane of the sky. The pulsar orbit with respect to the equatorial plane of the
rotating black hole is determined by the inclination θ , the equatorial longitude
of the ascending node by Φ, and the equatorial longitude of pericenter by Ψ.
The angle between the line of sight and the Sgr A* spin is denoted by λ.

result of the uncertainty in the underlying model assumptions.
A pulsar, however, would provide a clean probe of the gravita-
tional field of Sgr A* and, in the absence of any major exter-
nal perturbations, give direct access to the dragging of inertial
frames in the vicinity of Sgr A*. In Wex & Kopeikin (1999),
it has been shown that in relativistic pulsar–black hole binaries
the (additional) precession of a pulsar orbit due to the frame
dragging caused by the spin of the black hole (Lense–Thirring
precession) is the most promising effect to determine the direc-
tion and magnitude of the black hole spin. This, in general, is
also the case for a pulsar in orbit about Sgr A*. The assumption
made in Wex & Kopeikin (1999), that the spin of the black hole
S is clearly smaller than the orbital angular momentum L, is no
longer valid here. The ratio of the spin of the black hole and the
angular orbital momentum is given by

SBH

L
= MBH

MPSR
βe χ , (9)

where βe = βO/
√

1 − e2 and MPSR is the mass of the pulsar. For
a pulsar with an orbital period of less than one year SBH/L is
greater than 50,000 χ . Thus, the total angular momentum J of
the system is completely dominated by the spin of Sgr A*, whose
direction will therefore practically coincide with the direction of
J, and can, for the considerations here, be viewed as a constant in
time. In this case, the orbital motion to post-Newtonian accuracy
including first-order spin terms can be taken from Appendix B
in Wex (1995). This is sufficient to simulate all the relevant
effects (see Königsdörffer & Gopakumar 2005 for higher-order
corrections) for a system free of external perturbations. It also
accounts for the fact that the precession is stronger near the
pericenter.

4.1. Spin Determination from the Timing Parameters

Averaging over one orbit, one obtains the rates of the secular
precession of the pulsar orbit caused by frame dragging (Barker

& O’Connell 1975a):11

Φ̇ = ΩLT

Ψ̇ = −3 ΩLT cos θ

}
ΩLT = 4π

Pb
β3

e χ ≡ Ω̂ χ . (10)

The definitions of the angles Φ, Ψ, and θ are given in Figure 4.
The secular changes for the angles Φ and Ψ are linear in time.
As discussed in detail in Wex (1998) and Wex & Kopeikin
(1999), this linear-in-time evolution translates into a nonlinear-
in-time evolution of the observable angles that enter the timing
model for a pulsar, i.e., the longitude of pericenter ω and the
inclination of the orbit with respect to the line-of-sight i (as part
of the projected semimajor axis x). One finds12

ci = cθcλ − sθ sλcΦ (11)

and

sin(ω − Ψ) = sλ sΦ

si

, cos(ω − Ψ) = cλ − cθ ci

sθ si

. (12)

Since the angles i, θ , and λ are in the range 0 to π , their sines
sX are non-negative and can be expressed as sX =√

1−c2
X. As

shown by Wex (1998), if the change in Φ is small (less than a
few degrees) over the time span of the timing observations, the
most straightforward way to analyze the timing data is to fit for
the coefficients of the Taylor expansion of ω(t) and x(t)

ω = ω0 + ω̇0(t − t0) + 1
2 ω̈0(t − t0)2 + · · · , (13)

x = x0 + ẋ0(t − t0) + 1
2 ẍ0(t − t0)2 + · · · , (14)

and to use the parameters ω0, x0, and their time derivatives as
intermediate parameters to determine the angles θ , λ, Φ0, Ψ0,
and the spin parameter χ . For the configurations considered
in this paper it is sufficient to keep only terms up to second
order in t − t0. Nevertheless, we have extended TEMPO to
account for cubic terms in order to test their significance in
all our simulations. We would like to note in passing that
the coefficients of the cubic terms can be calculated from the
other coefficients based on basic geometric relations, and
therefore they would not add further information concerning
the orientation of the system and the spin magnitude.

From the derivatives of Equations (11) and (12) one finds
the relation between the time derivatives, the orientation of the
orbit at a given epoch, and the spin of Sgr A*. In practice,
the linear trend becomes visible in the timing data soon after
the start of the observation, allowing the measurement of ẋ0 and
the extraction of the Lense–Thirring contribution from ω̇0. One
finds (for convenience we drop the index 0)

ẋ = − xs−2
i cis3ΩLT , (15)

ω̇ − ω̇M = s−2
i

[
(1 − 3s2

i )cθ − cicλ

]
ΩLT , (16)

where s3 ≡ sθ sλsΦ. Since at this point x, |ci |, and si are known
quantities, the measurement of ẋ determines the quantity |s3|χ ,
which must not exceed unity since according to the CCC χ � 1

11 To estimate the measurability of the Lense–Thirring effect, it is sufficient to
use the averaged precession rate. In practice, the precession of the orbital plane
is more complicated as can be seen from the analytic solution given in
Appendix B of Wex (1995).
12 We define cX ≡ cos X and sX ≡ sin X.
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and |s3| � 1 by definition. Hence, as soon as ẋ becomes
measurable one has a first test for the CCC.

To fully determine the magnitude and orientation of the spin,
the measurement of higher-order derivatives is necessary. The
second time derivatives read

ẍ = − xs−4
i

[
s2

3 + s2
i ci(cθcλ − ci)

]
Ω2

LT , (17)

ω̈ = s−4
i

[
2cicθ − (2 − s2

i )cλ

]
s3Ω2

LT , (18)

which give us now, in total, six equations (Equations (11),
(12), (15), (16), (17), and (18)) for five unknowns (θ , λ, Φ0,
Ψ0, χ ). For a discussion of the solution of these equations, we
introduce the variables χθ ≡ cθχ , χλ ≡ cλχ , and ζ3 ≡ s3χ .
The parameters χθ and χλ represent the projection of the
(normalized) spin onto the orbital angular momentum and the
line-of-sight direction, respectively. They can be determined
from the timing parameters via the equations for the first time
derivatives,

− ẋs2
i (xΩ̂)−1 ≡ X1 = ciζ3 , (19)

(ω̇ − ω̇M)s2
i Ω̂−1 ≡ W1 = (1 − 3s2

i )χθ − ciχλ , (20)

and those of the second time derivatives

(ẍx + ẋ2s2
i c

−2
i )s4

i (xΩ̂)−2 ≡ X2 = c2
i (χ2

θ + χ2
λ )

− ci(1 + c2
i )χθχλ , (21)

− ω̈ẋ−1xc2
i s

2
i Ω̂−1 ≡ W2 = 2c2

i χθ − ci(1 + c2
i )χλ . (22)

where ζ3 has been eliminated using Equation (19). The
quantities X1, W1, X2, and W2 are defined such that they do not
change when the sign of ci is flipped. The above equations can
be easily solved analytically. By the time the second derivatives
are observable, si, ẋ, ω̇LT, and so X1 and W1, will be known with
high precision. For a given sign of ci = ±√

1−s2
i , Equation (22)

will lead to a unique solution for χθ , χλ, and ζ3. For some
orientations Equation (21) turns out to be more constraining.
However, this gives us in general two solutions for (χθ , χλ). But
then Equation (22), although less constraining, can be used to
rule out one of the two solutions. The best way to represent
the solution is to plot the constraints from Equations (20), (21),
and (22) in the χθ–χλ plane. Possible solutions are represented
by the region where all three curves meet within the uncer-
tainty given by the measurement errors of ẋ, ω̇LT, ẍ, and ω̈. This
will become clear in the section below, where we present the
simulations.

With χθ , χλ and ζ3 known, we can calculate the spin parameter
of the black hole via

χ = s−1
i

√
ζ 2

3 + χ2
θ + χ2

λ − 2ciχθχλ . (23)

Once χ is determined, we can calculate all the angles. Finally,
the i ↔ π − i ambiguity leaves us with two different solutions
in the orientation by (Φ0, λ) ↔ (π + Φ0, π − λ), for which χ
has the same value.

4.2. Simulations

The technique described in the previous subsection has been
tested by a set of standard simulations for various orbital
configurations. For a given system, following the procedures
described in Section 3.2 we simulate weekly 100 μs TOAs

χ λ
 =

 χ
 c

os
(λ

)

-1

-0.5

0

0.5

1

χθ = χ cos(θ)
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Figure 5. Determination of the Sgr A* orientation in the χθ –χλ plane. For this
simulation, we have used an orbital period of 0.3 yr, an orbital eccentricity
of 0.5, χ = 1, Ψ0 = 45◦, Φ0 = 45◦, θ = 60◦, and λ = 60◦, which are in
agreement with the constraints by Zamaninasab et al. (2011). A change in the
sign of ci mirrors the figure along the χλ = 0 line, meaning that the solution
for θ is invariant, but λ changes to π − λ. The corresponding spin parameter, as
calculated from Equation (23), is χ = 0.9997 ± 0.0010 (95% C.L.). In all the
χθ –χλ plots (Figures 5–8) we plot the 68% confidence intervals. However, in
most cases the separation between the two lines is below the resolution of the
plot. The dotted ellipse is the boundary of the area for Kerr black holes (see the
text for details).

(A color version of this figure is available in the online journal.)

over a time span of five years. Here in the calculations of the
time delays, in addition to the relativistic pericenter advance
we also consider the influence of Sgr A* spin by inputting the
secular changes of Φ and Ψ described in Equation (10). Then,
in order to determine the PK parameters, we fit the TOAs with
the main-sequence star timing model of TEMPO, which we
have extended to model the secular changes in pericenter and
projected semimajor axis up to third order in the time derivatives.
The third-order coefficient turns out not to be significant in the
simulations presented here. Figures 5 and 6 show the χθ–χλ

plane for two different orientations of the black hole and the
pulsar orbit. According to GR the solution has to lie within the
boundaries of the figures, since −1 � χθ , χλ � 1 for a Kerr
black hole. Moreover, the solution (χθ , χλ) has to lie within an
ellipse defined by setting χ = 1 in Equation (23), in order to
represent a Kerr black hole with an event horizon. Once ẋ is
measured, one can determine ζ3 from Equation (19) and use
this quantity to plot the ellipse defined by Equation (23) in the
χθ–χλ plane.

Figure 7 shows a simulation for a Kerr solution with a spin
that exceeds the spin of an extreme Kerr black hole. Within GR,
this would represent a naked singularity. For such an object the
CCC is violated and the predictability of the (classical) theory
breaks down. Also, all three lines have to agree in a common
region, otherwise either GR is not the correct theory or there are
external perturbations present, a situation which we discuss in
more detail in the next section.

4.3. Identification of External Perturbations

As discussed in great detail by Merritt et al. (2010), the orbit of
a star or pulsar around Sgr A* may be subject to perturbations
from other stars in the vicinity of the black hole. Depending
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Figure 6. Same as Figure 5, but Φ0 = 105◦, θ = 30◦, and λ = 75◦.
The corresponding spin parameter, as calculated from Equation (23), is χ =
1.0001 ± 0.0003 (95% CL).

(A color version of this figure is available in the online journal.)
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Figure 7. Parameters as in Figure 5, but χ = 1.2 (naked Kerr singularity). The
dotted ellipse is the (outer) border of the region where, for the measured orbital
inclination and ẋ, the Kerr black holes are located, i.e., where χ � 1.

(A color version of this figure is available in the online journal.)

on the number density of the stars, this could significantly
affect the precession of the pulsar orbit. Nevertheless, since
we have three lines in the χθ–χλ plane that need to intersect, our
analysis will unveil the presence of any external perturbations.
In Figure 8, we present a χθ–χλ diagram based on timing
data that contain (besides the gravitational field of Sgr A*)
an external perturbation causing an additional precession of the
pericenter. For orbits with Pb � 0.3 yr, even a small (compared
to the Lense–Thirring precession) external contribution to the
precession of the pericenter leads to a situation where the ω̇, ω̈,
and ẍ lines fail to intersect in one point within the measurement
precision. The same is true if there is an external contribution
to a change in the inclination of the orbital plane. Hence, if all
three lines intersect, we not only have a precise determination of
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Figure 8. Parameters as in Figure 5, but the precession of the pericenter has an
additional contribution from an external perturbation that amounts to 10% of
the Lense–Thirring contribution. For a better resolution only the first quadrant
of Figure 5 is plotted here.

(A color version of this figure is available in the online journal.)

the spin of the black hole, but also a test that this measurement
is not contaminated by external perturbations.

At this point, we would like to add a more detailed comment
on the discriminating power of the pulsar test concerning
external perturbations. In practice, the three-line test outlined
above is not simply based on the secular precession rates.
We emphasize that a consistent fit of the timing data, with
a model that includes the Lense–Thirring precession, needs
to incorporate the full dynamics of the orbital precession as
given by Appendix B in Wex (1995). The phase dependence
of the Lense–Thirring precession rate is a direct result of the
Coriolis-type force caused by the dipolar gravitomagnetic field
of the central rotating black hole. Hence, we can identify an
external perturbation based on this quasi-periodic effect, even
in a fine-tuned situation where the external mass distribution
manages to mimic a secular Lense–Thirring precession. In
fact, we have conducted simulations and found that the phase-
dependent precession rate leads to an effect that is typically four
orders of magnitude larger than the timing precision assumed in
our simulations. This is in line with the findings of Damour &
Deruelle (1986), who pointed out the strength of quasi-periodic
effects in tests of gravity.

5. QUADRUPOLE MEASUREMENT AND NO-HAIR
THEOREM TEST

The quadrupole moment of the black hole leads to an
additional secular precession of the pulsar orbit. This precession,
however, is much smaller than the Lense–Thirring precession
even for compact orbits (Pb ∼ 0.1 yr). Further, it can be shown
that the secular terms of the precession cannot be separated from
the Lense–Thirring effect. For this reason, it has been argued
by Wex & Kopeikin (1999) that while the spin magnitude and
the orientation of the black hole are mainly determined by the
overall precession of the orbit, the quadrupole of the black hole
is mostly determined via its periodic influence on the motion
of the pulsar from one pericenter to the next. As will be shown
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Figure 9. Residuals caused by the quadrupole moment of Sgr A* plotted for
two orbital phases. We have used the same orbital and black hole parameters as
in Figure 5.

(A color version of this figure is available in the online journal.)

in this section, these periodic features of the quadrupole can be
used to fit for the quadrupole moment of Sgr A*.

5.1. Extracting the Quadrupole from the Timing Data

The deviations in the motion of the pulsar caused by the
quadrupole moment lead to a variation in the Roemer delay,
which we describe by a change in the coordinate position of the
pulsar according to

r′ = (r + δr (q))(n̂ + δn̂(q)) . (24)

The vector δn̂ is calculated from the changes in the angles

Φ′ = Φ + δΦ(q) , Ψ′ = Φ + δΨ(q) , θ ′ = θ + δθ (q) , (25)

according to δn̂ = n̂′−n̂. To first order in ε ≡ −3Q/a2(1−e2)2,
the detailed equations for the δ-quantities can be taken from
Garfinkel (1959), with slight modifications that account for the
dominating precession of the pericenter caused by the mass
monopole: the term (5y2 − 1) in the auxiliary constants m and
γ has to be replaced by 2ω̇Pb/πε, where ω̇ is the total advance
of the pericenter. Based on this, we have developed a timing
model that includes the contribution of the quadrupole moment
of Sgr A* to first order in ε. Figure 9 illustrates the unique
periodic timing residuals caused by the quadrupole moment of
Sgr A*.

This periodic signal will not only allow the determination of
the quadrupole moment of Sgr A* with high precision, but also
provide a clear identification of the quadrupolar nature of the
gravitational field. Moreover, due to the large advance of the
pericenter the quadrupolar signal will change in a characteristic
way from one orbit to the next. This clearly helps to identify
any external “contamination” of the orbital motion of the pulsar,
and, as in the spin determination, provides high confidence in
the reliability of a no-hair theorem test with a pulsar around
Sgr A*.

5.2. Simulations

We have tested the procedure outlined above in a number
of mock data simulations for various orbital configurations.
Again following the procedures described in Section 3.2, we
assume weekly TOAs with a precision of 100 μs for a time span
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Figure 10. Measurement precision for the quadrupole moment of Sgr A* as a
function of orbital period for three different eccentricities, in the absence of any
external perturbations. We have used the same orbital and black hole parameters
as in Figure 5. For the timing, we assumed the same time span and characteristics
of TOAs as in Figure 5. This time, however, the TOAs were equally distributed
with respect to the true anomaly in order to account for the fact that timing needs
to be done more frequently around the pericenter to optimize the measurement
of the quadrupolar signal in the TOAs.

(A color version of this figure is available in the online journal.)

of five years. This time we extended our simulations and the
timing model used in Section 4.2 to account for the periodic
effects due to the quadrupole moment of Sgr A* described
in Equation (24). Our results are summarized in Figure 10.
Note that the precision of the spin determination is at least one
order of magnitude better than the determination of q. Hence,
the uncertainty in the q-measurement is the limiting factor for
the no-hair theorem test. As a conclusion of our simulations,
if the external perturbations are negligible, for orbits with
Pb � 0.5 yr the no-hair theorem can be tested with high
precision. If we adopt the precessional rates from the stellar
perturbation calculated in Figure 2, we conclude that the test
can be achieved with high precision for orbits with Pb � 0.1 yr.
This range can be extended if the characteristic quadrupolar
features remain separable in the presence of perturbations. This,
however, depends on the details of the external mass distribution,
which we will not investigate further in this paper.

6. DISCUSSION

In this paper we have developed a method to determine the
mass, the spin, and the quadrupole moment of Sgr A* using
a pulsar in a compact orbit around this supermassive black
hole. Our investigation is based on a consistent timing model
that includes all the relativistic and precessional effects that
can be used to extract these parameters of Sgr A*. Based on
simulated timing data for a pulsar in orbit around Sgr A*,
we have shown in a consistent covariance analysis that, even
with a moderate timing precision (∼100 μs), one can expect
to be able to determine the mass, the spin, and the quadrupole
moment of Sgr A* with high precision, provided the orbital
period is well below one year. As a result of our simulations, for
a compact orbit (orbital period of a few months) one can expect
to measure the spin with a precision of 10−3 or even better.
We have shown how the method would allow the identification
of an object whose frame dragging exceeds that of an extreme
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Kerr black hole, and therefore would provide a test of the CCC.
Furthermore, for such orbits the determination of the quadrupole
moment of Sgr A* seems feasible at precision level of a few
percent or even better, depending on the size and orientation of
the pulsar orbit and the spin of Sgr A*. In combination with the
precise spin measurement from the Lense–Thirring effect, this
yields a high-precision test of the no-hair theorem of stationary
black holes.

Moreover, we have shown that, in general, our analysis will
be able to unveil the presence of external perturbations caused
by the presence of distributed mass, therefore providing high
confidence in a spin and quadrupole determination based on
pulsar timing. Nevertheless, further studies are required to see
whether the spin and quadrupole moment can still be extracted if
the timing data are “contaminated” by external perturbations. If
perturbations arise from a smooth concentration of dark matter
particles in the vicinity of Sgr A*, we may be able to learn
something about the properties of dark matter that clusters
around Sgr A*, assuming GR is correct.

Finally, we need to emphasize that the tests presented are
not affected by an uncertainty in the distance to the GC. On
the contrary, a mass determination via pulsar timing would give
a greatly improved value for R0 if combined with astrometric
measurements in the near-infrared.

Once a pulsar is detected in a compact orbit around Sgr A*,
continuous timing will allow more and more measurements and
tests as the timing baseline grows with time. In the following
we summarize the most important steps in this experiment.

1. After timing one orbit, all Keplerian parameters will be well
known and also the pericenter advance will be measured
with good precision. This will already provide a good
estimate of the mass of Sgr A*.

2. Timing a few more orbits would then allow the determina-
tion of additional PK parameters, like the Shapiro parame-
ters (rSh, sin i) and the amplitude of the Einstein delay (γE).
These parameters allow a robust determination of Sgr A*
mass and the inclination of the pulsar orbit with respect to
the line of sight.

3. At this stage, for most orbital and spin orientations, a
measurement of a change in the projected semimajor axis
(ẋ) caused by the Lense–Thirring effect will be possible.
Via Equation (19) this allows for a first test of the CCC,
which requires −1 � ζ3 � 1. Furthermore, at this point
one can plot the “ellipse of extreme Kerr black holes” in
the χθ–χλ plane, i.e., the boundary of the area where χ � 1
(cf. Figure 5).

4. Around the same time the mass measurement should reach
a precision that allows the extraction of the Lense–Thirring
contribution to the precession of the pericenter (ω̇LT), giving
a line-like region in the χθ–χλ plane.

5. After a few years of timing the second time derivatives of
ω and x should be known with high precision, allowing
a precise determination of the Sgr A* spin (magnitude
and direction). At this stage we also have a test for the
“cleanness” of the system, and whether the spin is below
the Kerr bound (χ = 1).

6. At the same time the parameters obtained for the pulsar
orbit and the Sgr A* spin can be used to model the periodic
features in the timing residuals, which are caused by the
quadrupole moment of Sgr A*. This allows a determination
of the quadrupole moment and a test of the no-hair theorem.

A potential problem for the timing of a pulsar in a compact
orbit around Sgr A* is posed by the relativistic spin precession,

as pointed out by Merritt et al. (2010). This change in the pulsar
orientation with respect to a distant observer not only causes a
variation of the pulse profile, which makes precise timing more
difficult, but also can turn the pulsar emission away from our
line of sight (Weisberg et al. 1989; Kramer 1998). To leading
order the spin precession is given by the de Sitter precession rate,
which for MBH 
 MPSR reads (Barker & O’Connell 1975b)

ΩdS � 3π

Pb
β2

e � (0.13 deg yr−1)
1

1 − e2

(
Pb

1 yr

)−5/3

. (26)

Consequently, for orbital periods below one year relativistic
spin precession is expected to play an important role in the
timing observations. We note in passing that the Pugh–Schiff
precession rate caused by frame dragging (ΩFD ∼ 2πβ3

e χ/Pb;
Pugh 1959; Schiff 1960) is only relevant in the case of very
compact, highly eccentric orbits (ΩFD ∼ 1 deg yr−1 for
Pb = 0.1 yr, e = 0.8, and χ = 1), and could provide an
independent test of the rotation of Sgr A*.

The no-hair theorem test can also be affected by the accretion
disk around Sgr A*. To get an idea about the strength of such an
effect, one can estimate the influence by calculating the fraction
of the quadrupolar potential of the disk to that of the black hole.
This ratio is given by

R ∼ Mdisk

MBH

(
rdisk

rg

)2

, (27)

where Mdisk and rdisk are the mass and outer radius of the disk,
and rg ≡ GMBH/c2 is the black hole gravitational radius.
Following the advection-dominated accretion flow model of
Yuan et al. (2009) and adopting, as an upper limit, the disk scale
of ≈1 arcsec determined from X-ray observation (Baganoff
et al. 2001), we obtain R ≈ 0.4%, which indicates that the
quadrupole moment measurement of Sgr A* would not be biased
by the contribution of the disk above the 1% precision level.
Furthermore, in a very recent publication, based on current
X-ray and millimeter observations, Psaltis (2011) concludes
that for compact orbits, like the ones discussed in this paper,
hydrodynamic drag forces from plasma in the vicinity of Sgr A*
are expected to be negligible.
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Damour, T., & Schäfer, G. 1988, Nuovo Cimento B, 101, 127
Damour, T., & Taylor, J. H. 1992, Phys. Rev. D, 45, 1840
Deneva, J. S., Cordes, J. M., & Lazio, T. J. W. 2009, ApJ, 702, L177
Edwards, R. T., Hobbs, G. B., & Manchester, R. N. 2006, MNRAS, 372,

1549
Eisenhauer, F., Perrin, G., Brandner, W., et al. 2009, in Science with the

VLT in the ELT Era, ed. A. Moorwood (Astrophysics and Space Science
Proceedings; Netherlands: Springer), 361

Freire, P. C. C., Bassa, C. G., Wex, N., et al. 2011, MNRAS, 412, 2763
Garfinkel, B. 1959, AJ, 64, 353
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