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ABSTRACT

Angular momentum evolution in low-mass stars is determined by initial conditions during star formation, stellar
structure evolution, and the behavior of stellar magnetic fields. Here we show that the empirical picture of angular
momentum evolution arises naturally if rotation is related to magnetic field strength instead of to magnetic flux and
formulate a corrected braking law based on this. Angular momentum evolution then becomes a strong function of
stellar radius, explaining the main trends observed in open clusters and field stars at a few Gyr: the steep transition in
rotation at the boundary to full convection arises primarily from the large change in radius across this boundary and
does not require changes in dynamo mode or field topology. Additionally, the data suggest transient core-envelope
decoupling among solar-type stars and field saturation at longer periods in very low mass stars. For solar-type stars,
our model is also in good agreement with the empirical Skumanich law. Finally, in further support of the theory,
we show that the predicted age at which low-mass stars spin down from the saturated to unsaturated field regimes
in our model corresponds remarkably well to the observed lifetime of magnetic activity in these stars.
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1. INTRODUCTION

Angular momentum evolution in low-mass stars is the result
of a complex interplay between initial conditions during star
formation, the evolution of stellar structure, and the behavior
of stellar winds and magnetic fields. Data on stellar rotation
at different ages thus provide invaluable insights into star
formation and evolution. More than four decades ago, Kraft
(1970) discussed the distribution of angular momentum (J)
with stellar mass and showed that in stars more massive than
∼1.5 M�, J is proportional to mass, consistent with conserved
stellar angular momentum since their formation. Lower-mass
stars, in contrast, evince much lower angular momenta, an
effect ascribed to magnetic braking due to coupling between an
ionized wind and magnetic fields spawned by an internal stellar
dynamo (this does not occur in higher-mass stars, presumably
because dynamos cannot exist in their mainly radiative interiors;
Schatzman 1962; Weber & Davis 1967; Mestel 1968, 1984).

Specifically, during pre-main sequence (PMS) evolution, the
rotation of a low-mass star is regulated by the competition be-
tween spin-up due to contraction at constant angular momentum
and spin-down due to magnetic braking by a wind that actively
removes angular momentum. Contraction ceases once the star
arrives on the main sequence (MS), and wind-driven braking
spins the star down for the rest of its MS lifetime.

A large amount of rotation data for low-mass stars has been
gathered over the past decades, both in the field and in clusters of
various ages, in order to determine the precise rules underlying
the qualitative picture of angular momentum evolution painted
above (Barnes 2007; Reiners & Basri 2008; Irwin & Bouvier
2009). These efforts are still hampered to some degree by
observational bias: for instance, in a normal ground-based
observing campaign, it is difficult to detect rotation periods
shorter than a few hours or longer than a few weeks. This may
skew our view of the distribution of angular momenta at any
age, and in particular of the distribution at very early ages,
which is currently required as an empirical initial condition for

models of rotational evolution. Nevertheless, a broad physical
framework has emerged. Faster rotation generates stronger
magnetic fields, and it is the field stresses that transfer the stellar
angular momentum to the outflowing winds, thereby braking
the star. The rate of angular momentum loss is thus proportional
to the angular velocity of rotation raised to some power, where
the exponent depends on the magnetic field geometry (Mestel
1984; Kawaler 1988). Moreover, the data also require that
this exponent change at some critical rotation velocity (the
“saturation” velocity), such that the loss rate increases more
slowly with rotation above this threshold (Chaboyer et al.
1995; Sills et al. 2000). Models incorporating these features
and using the observed angular momenta in very young star-
forming regions (SFRs) and in the present-day Sun as the
initial and final boundary conditions, respectively, can reproduce
the rotation data for solar-mass stars at various ages with
reasonable success. An additional effect which may play a
role in solar-type stars is rotational decoupling between the
radiative core and the convective envelope (Bouvier 2008; Irwin
& Bouvier 2009); we revisit this point later.

What this theoretical picture is currently not able to do is
simultaneously match the rotational evolution of very low mass
stars (VLMS; � 0.5 M�; Irwin & Bouvier 2009). This is our
goal here. We first summarize the observed trends in the rotation
of these stars and then describe our modeling.

2. EMPIRICAL FRAMEWORK

A compilation of more than 3000 stellar rotation rates spread
over different ages is presented by Irwin & Bouvier (2009). It
reveals that in very young clusters (<10 Myr), the distribution
of rotation rates is relatively uniform, with periods between 1
and 10 days for stars over the entire mass range ∼1.5–0.1 M�.
By ages between 100 Myr and 200 Myr, though, the situation
has changed. Stars with mass >0.5 M� mostly evince periods
of a few to 10 days, but the VLMS now show a clear trend
of faster rotation with decreasing mass: the maximum period
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drops from ∼10 days at 0.5 M� to <∼ 1 day by 0.2 M�. At later
ages of around 600 Myr, the data are more sparse but the same
trend is still evident: stars more massive than ∼0.5 M� have
mostly slowed to periods around 10 days, while in the VLMS
the rotation period declines rapidly with lower stellar mass.
Finally, the trend is repeated in field stars at ages of a few Gyr
(corresponding to the young-disk population). Rotation rates are
now generally very low for stars above 0.4 M�: observed periods
are of order that of the Sun, 10–20 days, and projected surface
velocities (v sin i) below typical detection limits. Young-disk
VLMS below 0.4 M�, on the other hand, again manifest a steep
dropoff in rotation period with decreasing stellar mass, with
periods down to a fraction of a day.3 The transition between the
two regimes is abrupt and coincides with the boundary at which
stars become fully convective.

The theory of angular momentum evolution as currently
formulated can explain neither the mass-dependent periods nor
the very fast rotation in the field seen in the VLMS. For example,
the theory predicts all VLMS to have converged to very slow
rotation by a few Gyr, contrary to observations (Irwin & Bouvier
2009). Various prescriptive fixes have been suggested, invoking
a dependence of angular momentum evolution on parameters
ranging from mass- and rotation-dependent wind velocities
(Irwin & Bouvier 2009; Irwin et al. 2011) to convective overturn
timescales (Barnes & Kim 2010). None of these fixes provide
a theoretical motivation, however, for the particular form of the
dependencies invoked. For instance, Sills et al. (2000), using
a standard Rossby number scaling for the saturation velocity,
find that “neither solid-body rotation nor differentially rotating
models can simultaneously reproduce the observed stellar spin-
down in the 0.6–1.1 M� range and for stars between 0.1 and
0.6 M�.” Consequently, they argue that “the saturation threshold
drops more steeply at low masses than would be predicted by
a simple Rossby number scaling” and are forced to adopt an
ad hoc scaling to match the very low mass data. The fact that
the turnover in periods in field stars happens close to the stellar
mass where the interiors become fully convective has moreover
led to the suggestion that changes in the dynamo or field
topology in fully convective stars may drive the turnover (Irwin
& Bouvier 2009), but how this actually works is also unspecified.
Here we re-examine the basic formulation of the theory of
angular momentum evolution for low-mass stars in general and
show that a fundamental dependence on radius has previously
been missed. The error arises due to a confusion between
magnetic field strength and magnetic flux in the formulation by
Kawaler (1988, hereafter K88), which has been widely adopted.
Accounting for this effect allows all low-mass stars, from solar
mass to VLMS, to be broadly fit by the same theory.

In Sections 3– 5, we present our new formulation of angular
momentum evolution, under the simplest possible physically
motivated assumptions. After a brief discussion of the methods
we use to determine stellar masses (Section 6), and of our
adopted initial conditions (Section 7), we compare our model
predictions to data for young clusters and field stars in Section 8.
We show that the overall empirical picture of rotation evolution
is well reproduced by our theory. Concurrently, we point
out remaining discrepancies between the model and data,
and explain them via secondary physical effects not included

3 Irwin et al. (2011) have recently found a population of extremely slowly
rotating M dwarfs, with periods of ∼20–100 days, but all these appear to be
old-disk/halo stars at ages of ∼10 Gyr: much older than the young-disk field
stars at a few Gyr we are referring to here. We discuss the old population later
in the paper.

in our theory from the outset, namely, (1) transient core-
envelope decoupling in solar-type stars and (2) Rossby number
scaling of the saturation velocity, particularly important for very
old VLMS (old-disk/halo ages). As further support for our
model, we show that it also predicts the observed lifetime of
magnetic activity in low-mass stars remarkably well. Finally,
in Section 9 we discuss possible sophistications (e.g., in the
magnetic topology) that may be introduced into the theory to
reflect reality still better.

3. FORMALISM FOR ANGULAR
MOMENTUM EVOLUTION

Following the work of Mestel (1968) and Roxburgh (1983),
we assume that the magnetic field enforces corotation of the
outflowing coronal gas out to some radius rA, at which point the
wind velocity becomes Alfvénic, so that the wind flows freely
beyond rA. We further make the usual simplifying assumption
that the Alfvén surface SA is approximately spherical, i.e.,
defined by a single radius rA. Finally, we assume that the
magnetic field is radial everywhere (i.e., of multipole order
m = 2). Higher-order multipoles present no problems for the
formalism below (see Roxburgh 1983). However, we choose
the simplest field geometry here to show that the main observed
features of angular momentum evolution in low-mass stars do
not require variations of the field geometry with stellar mass,
but arise out of basic considerations of the relationship between
the field strength and rotation. The limitations of a radial field,
and improvements possible by considering more realistic field
topologies, are discussed at the end in Section 9. Note that K88,
and current models based on it, use m = 2.25, very close to our
purely radial field m = 2.

We denote stellar mass, radius, angular velocity, and mass-
loss rate by M, R, Ω, and Ṁ , and radial distance from the stellar
center by r. All values at the base of the wind are denoted by
the subscript “0.” We adopt the usual approximation that the
wind base is essentially at the stellar surface, so r0 ≈ R. All
quantities on the Alfvén surface are denoted by the subscript
“A.” Following Mestel (1984, hereafter M84), we parameterize
the average magnetic field strength on the stellar surface, B0, as
a power law in the stellar angular velocity:

B0 ∝ Ωa, (1)

where a likely varies between 1 and 2 for unsaturated fields
(regime where field strength increases with rotation) and drops
to 0 by definition when the field strength saturates (i.e., remains
constant with increasing rotation; saturation discussed further
below). Such a dependence of field strength on angular velocity
is expected for both the αΩ dynamo postulated for solar-type
stars with a radiative–convective interface (Durney & Stenflo
1972, and references therein), and the α2 dynamo that may
operate in fully convective VLMS (Chabrier & Küker 2006).
Note here the critical difference between our parameterization
and that by K88, who assumes that the surface magnetic flux
goes as some power of the angular velocity (B0R

2 ∝ Ωa)
instead of the magnetic field strength obeying this relationship
(Equation (1)). The functional form we adopt is empirically
observed (Saar 1996), where it is often written in the form
f B ∝ Ωa . Here B is the strength of the observed field and f is its
areal covering fraction, making f B the estimated mean surface
field strength, corresponding exactly to B0 in our notation.
While K88 refers to the latter empirical studies, he erroneously
concludes that fB is the total flux, when it is really the observed
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flux normalized by the total stellar surface area, i.e., the mean
flux density, which is just the mean field strength. The error is
preserved in many later works based on the K88 formalism; the
factor of R2 it introduces has serious repercussions.

Our formulation above implicitly demands defining the crit-
ical (saturation) rotation velocity Ωcrit, where the switch from
the unsaturated to saturated regime occurs, and the (constant)
field strength Bcrit in the saturated regime. We thus explicitly
rewrite Equation (1) for the field strength as

B0 = Bcrit for Ω � Ωcrit (saturated)

B0 = Bcrit

(
Ω

Ωcrit

)a

for Ω < Ωcrit (unsaturated). (2)

This form of the field scaling is motivated by theory as well
as observations of sun-like stars and M stars (Reiners et al.
2009). Specifically, we adopt an exponent of a = 1.5 in
the unsaturated regime, within the range 1–2 expected from
theoretical considerations and consistent with the data (e.g.,
Saar 1996 finds f B ∝ Ω1.7). Ωcrit and Bcrit are free parameters
determined from the data, as discussed in Section 5.

We further parameterize the wind velocity vA along field lines
at the Alfvén radius rA as

vA ≡ V0

( rA

R

)q

, (3)

where V0 is some constant with dimensions of velocity defined
on the stellar surface and q is the parametric exponent. vA is
empirically unknown and must be specified. We follow K88
in assuming that vA is proportional to the escape velocity
at the Alfvén surface: vA = KV

√
GM/rA, where KV is

some dimensionless constant scaling factor. Thus, we have
V0 = KV

√
GM/R and q = −1/2. While other choices of

velocity may also be argued for (e.g., see M84), here we stick to
K88’s choice of the escape velocity (comparable to the thermal
velocity adopted by M84 for “slow rotators”) to adhere as closely
as possible to the models currently used.

Finally, we assume that the mass-loss rate Ṁ , saturation
field strength Bcrit, critical angular velocity for saturation Ωcrit,
and the velocity scaling factor KV are all constant with time
and the same for stars of all masses. While this may well
be an oversimplification, we have very little observational or
theoretical guidance on how to fix the time and mass dependence
of these quantities. As such, we a priori ignore such potential
dependencies in our quest for the simplest physically motivated
theory to compare to observations. Note, in particular, that this
means we do not assume a mass-dependent scaling of Ωcrit from
the outset, in contrast to most current formulations of angular
momentum evolution (e.g., Barnes & Sofia 1996; Krishnamurthi
et al. 1997; Sills et al. 2000). Any discrepancies that arise in
the comparison of our model to the data will then motivate an
examination of such dependencies a posteriori, as discussed in
Sections 7 and 8.

Now, assuming a spherical Alfvénic surface and field-
enforced corotation of the gas out to rA at the stellar angular
velocity, the rate at which the star loses angular momentum is
given by

dJ

dt
= −2

3
ṀΩr2

A. (4)

To make progress, we note that by the definition of the Alfvén
radius, the wind velocity vA at rA must equal the Alfvén
velocity there: vA ≡ BA/

√
4πρA, where BA and ρA are the field

strength and wind density at rA. Moreover, BA = B0(R/rA)2

for a radial field, mass continuity along field lines demands
ρ0v0/B0 = ρAvA/BA, and the mass-loss rate is given by
Ṁ = 4πr2

AρAvA. Inserting these into Equations (2)– (4), with
the parametric exponents a = 1.5 and q = −1/2, finally yields
the rate of angular momentum loss with radial fields to be

dJ

dt
= −C

[
Ω

(
R16

M2

)1/3
]

for Ω � Ωcrit

dJ

dt
= −C

[(
Ω

Ωcrit

)4

Ω
(

R16

M2

)1/3
]

for Ω < Ωcrit

with C ≡ 2

3

(
B 8

crit

G 2K 4
V Ṁ

)1/3

. (5)

The terms within square brackets in the expressions for dJ/dt
affect the time evolution and mass dependence of the angular
momentum loss rate, while the constant C, comprising terms
that are (assumed to be) star and time independent, affects the
global scaling of dJ/dt .

There are two noteworthy points about Equation (5). First,
it includes a strong dependence on the stellar radius R. If we
had instead followed K88 in parameterizing the magnetic flux
in terms of the angular velocity, the dependence on the stellar
radius would have decreased by a factor of R16/3, i.e., dJ/dt
would have become entirely independent of the radius (as shown
explicitly by K88’s Equation (10), using his exponent n = 2 for
radial fields). This insensitivity to R, contrary to our equation,
accounts for why previous studies based on the K88 formulation
have not identified the evolution of the stellar radius as being
vital to understanding magnetic braking.4

Second, the rate of angular momentum loss is also very
sensitive to the saturation threshold Ωcrit, with the loss rate
declining rapidly once the stellar angular velocity decreases
below this limit. This combined dependence on stellar radius
and Ωcrit implies the following.

4. TRENDS IN THE MODEL SPIN-UP AND SPIN-DOWN

Consider first the effect of stellar radius alone. During PMS
evolution, contraction drives spin-up, which halts when the star
reaches a stable radius on the MS. Concurrently, spin-down due
to angular momentum loss decreases with smaller stellar radius,
by Equation (5), during both PMS and MS phases. Since a less
massive star has a smaller radius at a given age and also arrives
later on the MS, it follows that rotation will tend to be faster,
and the spin-down timescale longer, with decreasing mass at
any specified age. Figure 1 illustrates the radius dependence of
the loss (braking) rate dJ/dt , given by the term (R16/M2)1/3 in
Equation (5), for low-mass stars over a range of ages (we use
mass–radius–age relationships from the theoretical evolutionary
tracks by Baraffe et al. 1998, hereafter BCAH98). We call this
term the “intrinsic braking efficiency” (since it depends only
on the evolution of the stellar structure, which we assume here
is rotation independent). We see that (1) overall, the intrinsic
braking efficiency falls off with decreasing mass at any given

4 K88 discusses the effects of varying field geometries; while we only discuss
radial fields here, the fundamental point is that for any specified field
geometry, K88’s formulation in terms of magnetic flux yields a much weaker
dependence of dJ/dt on stellar radius than our formulation in terms of
magnetic field strength.
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Figure 1. Relative intrinsic braking efficiency R16/3M−2/3, black lines show evolutionary tracks for [.08, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.8, 1, 1.2] M�, colored lines
show isochrones at ages [5, 10, 50, 100, 1000] Myr.

(A color version of this figure is available in the online journal.)

age and (2) the falloff with diminishing mass steepens with age,
as solar-type stars arrive on the MS and cease contraction upon
the formation of a radiative core (by ∼30 Myr for 1 M�) while
fully convective VLMS continue contracting to much smaller
radii and arrive on the MS at increasingly later ages (from
∼200 Myr at 0.3 M� to ∼600 Myr at 0.1 M�). This behavior
of the intrinsic braking efficiency is a fundamental ingredient
in the evolution of angular momentum in low-mass stars, and
crucial for understanding the observed mass dependence of
their rotation periods and the very fast rotation of VLMS at a
few Gyr.

We now further assume solid-body rotation (J = 2MR2Ω/5)
in all cases. This is a good approximation for fully convective
objects, but may break down temporarily when a radiative core
develops (due to “core-envelope decoupling”); we discuss this
issue further in Section 8. For now, this assumption implies that
once a star arrives on the MS, it spins down as (integrating
Equation (5) for any given stellar mass at its fixed MS radius)

Ω(t)

Ω0
= e−(t−t0)/tS ,

tS ≡
[
C

5

2MR2

(
R16

M2

)1/3
]−1

(t0 � t < tcrit : saturated)

Ω(t)

Ωcrit
=

[
(t − tcrit)

tU
+ 1

]−1/4

,

tU ≡
[

4C
5

2MR2

(
R16

M2

)1/3
]−1

(tcrit � t : unsaturated).

(6)

Here tS and tU are the MS spin-down timescales in the
saturated and unsaturated domains, respectively, t0 is the age
at which the star arrives on the MS (set by stellar evolution),
Ω0 is its angular velocity at that time (set by a combination of
PMS spin-up and spin-down, with the former dominating since

the average timescale for contraction during PMS evolution is
shorter than that for spin-down; see Section 4.1 below), and
tcrit is the subsequent age at which the star slows to below the
critical rate Ωcrit (with tcrit determined by setting Ω(t) = Ωcrit
in the saturated equation ⇒ tcrit = t0 + tS ln [Ω0/Ωcrit]). Thus, a
star arrives on the MS spinning rapidly, in the saturated regime
and then slows down exponentially quickly to Ωcrit; thereafter
the spin-down rate diminishes to a very weak power law, and the
star remains within a factor of a few of Ωcrit for the rest of its MS
lifetime. For a star of a given mass (and hence MS radius), the
constant C determines, via tS and tU , precisely how quickly the
unsaturated regime is achieved and how close the star remains
to Ωcrit thereafter.

4.1. Comparison to Skumanich Law

In our model, stars on the MS first spin down exponen-
tially rapidly to Ωcrit; thereafter the spin-down rate diminishes
significantly, with the decrease in angular velocity with time
asymptotically approaching a weak power law: Ω(t) ∝ t−1/4.
On the other hand, observed rotation rates in solar-type stars
from the age of the Pleiades (∼100 Myr) to the Sun seem
to approximately follow the empirical Skumanich law (Sku-
manich 1972): Ω(t) ∝ t−1/2. Is our model compatible with the
latter?

We examine this in Figure 2, where we plot our model
predictions for angular velocity as a function of time for stars
of mass 1, 0.5, and 0.1 M�. To best illustrate the differences
between the masses, we have adopted the same initial rotation
period for all three: ∼8 days (within the range of initial periods
observed in very young clusters; see Section 7). The velocities
are scaled such that the 1 M� curve replicates the rotation period
of the present-day Sun (specifically, we have used the best-fit
values of Ωcrit and C for our model, the choice of which is
described in Sections 5 and 8.1.1). For all three stars, we overplot
the rotation curves expected for pure spin-up during the PMS
phase. For the 1 M� case, we also overplot the individual Ω(t)
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Figure 2. Angular velocity evolution according to Equation (6) for three different model stars; black solid line: 1 M�; red dotted line: 0.5 M�; blue dotted line: 0.1 M�.
The Skumanich braking law t−0.5 is shown for comparison (black dotted line). For the 1 M� case, we overplot the braking laws for saturated regimes; saturated case,
t < tcrit: e−(t−t0)/tS (gray dash-dotted line), and unsaturated case, t > tcrit: [(t − tcrit)/tU ]−1/4 (gray dotted line). Gray solid lines show hypothetical angular velocity
evolution in the absence of any braking for the three model masses considered.

(A color version of this figure is available in the online journal.)

predicted by our model for the saturated and unsaturated regimes
on the MS (Equation (6)), as well as the Skumanich law.

Four facts are immediately apparent. First, for almost their
entire PMS lifetimes (∼30, 150, and 600 Myr for 1, 0.5, and
0.1 M�, respectively), spin up dominates in these stars. This
illustrates our earlier statement that the angular velocity at which
low-mass stars arrive on the MS is mainly set by spin-up due
to PMS contraction, since the contraction timescales are shorter
in the PMS phase than the spin-down timescales. Nevertheless,
we see that there is some contribution from angular momentum
loss during this phase as well: stars arrive on the MS spinning
somewhat slower (by a factor of �2) than predicted by PMS
spin-up alone. The curves also illustrate our earlier point that for
a given initial rotation period, higher-mass stars always rotate
slower than lower-mass ones and spin down faster, due to a
combination of larger radius, earlier arrival on the MS, and
higher intrinsic braking efficiency.

Second, for ages from ∼30 Myr to 2 Gyr, the Skumanich
curve is in close agreement with the average trend in angular
velocity for our 1 M� model, where the latter is a combination
of exponential decay in the saturated regime (up to ∼200 Myr)
and power-law decay in the unsaturated domain (at >200 Myr).
Specifically, our predicted angular velocities at Pleiades and
Hyades ages (100 and 650 Myr, respectively) deviate by only
20%–30% from the Skumanich curve5 and by much less from
650 Myr to 2 Gyr. In other words, the Skumanich law is a very
good linear approximation (in a log–log plot) to our model from
100 Myr to 2 Gyr.

Third, the Skumanich curve is a very good match to our 1 M�
model from 2 to 8 Gyr, while our Ω(t) ∝ t−1/4 curve lies above

5 This relatively small difference is even less significant considering that
Skumanich (1972) used the mean rotation rates in these two clusters to
construct his fit, while the 1 M� model we plot here corresponds to only one
choice of initial rotation period out of the range observed in young clusters.
For solar-mass stars, the effect of the initial period continues to be significant
at 100–200 Myr (i.e., Pleiades ages), though it is negligible by the age of the
Hyades (see Figure 4 and discussion in Section 8).

both after ∼3 Gyr. The reason is that solar-mass stars have
already begun evolving off the MS by 3 Gyr, becoming larger at
later ages (the current solar radius is ∼10% greater than its MS
value). While our full model incorporates this radius change,
our power-law curve for the unsaturated regime is valid only
on the MS (as stated in the derivation of Equation (6)). The
increasing radius at >3 Gyr spins down solar-mass stars faster
than the Ω(t) ∝ t−1/4 expected for a constant MS radius and
makes our 1 M� model nearly identical to the Ω(t) ∝ t−1/2

empirical Skumanich curve at these ages.
Thus, the Skumanich curve for solar-types is better under-

stood as a mean fit to rotation data from the Pleiades to the Sun,
born of three distinct physical phenomena: exponential spin-
down in the saturated regime on the early-MS (Pleiades ages),
power-law spin-down in the unsaturated regime on the mid- to
late-MS (�Hyades ages), and expansion in the early post-MS
(present-day Sun). Our model explicitly accounts for each of
these processes, and in doing so yields good overall agreement
with the empirical Skumanich law for solar masses.

Finally, Figure 2 also shows that a Skumanich power law
is not a good match to our model predictions for VLMS. For a
fixed initial rotation period, these stars arrive on the MS spinning
considerably faster than their solar-mass counterparts (because
of their longer PMS lifetimes and much smaller MS radii, as
discussed earlier); consequently, they remain in the saturated,
exponential spin-down regime for much longer on the MS, and a
t−1/2 power law is far too shallow to fit their MS angular velocity
evolution up to ages of a few to several Gyr. As we show shortly,
our model accurately reflects the observed behavior of VLMS.

5. CHOICE OF Ωcrit AND C
The specific exponent for the radius dependence in

Equation (5) is fixed by our choices of field geometry (radial)
and Alfvén velocity (proportional to escape velocity), which
are justified on the grounds of being the simplest possibilities
(though we reexamine their validity later). A similar a priori
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choice of Ωcrit and C, however, is much harder. From a theoret-
ical perspective, Ωcrit may ultimately depend on the convective
turnover timescale, τconv (Krishnamurthi et al. 1997). However,
τconv is ill defined, poorly constrained by theory and data, and
possibly strongly time and mass dependent (Kim & Demarque
1996), so invoking it a priori only introduces more free pa-
rameters (we do examine its importance a posteriori and find
it may indeed play a role). Observationally, VLMS in the field
(M dwarfs) are mostly saturated, but where Ωcrit occurs and satu-
ration ends are unclear (because the v sin i fall below detectable
limits; Reiners 2007). Conversely, field solar-mass stars are pre-
dominantly unsaturated with very slow rotation, again making
Ωcrit hard to determine.

Similarly, the factor C involves the poorly known quantities
Bcrit, KV , and Ṁ . Observations of saturated field M dwarfs as
well as very young T Tauri stars indicate Bcrit of a few kG;
nevertheless, the field star data in this regard are very limited
and poorly constrained (Saar 1996). KV must a priori be of order
unity, if our choice of escape velocity is to be reasonably valid,
but from an observational perspective it is unknown. Finally,
the mass-loss rate Ṁ is usually assigned the present-day solar
value of ∼10−14 M� yr−1, but in reality is also very poorly
determined (or not at all) for other stellar masses and ages.
Recent simulations, for instance, suggest Ṁ may be orders of
magnitude larger in VLMS (Vidotto et al. 2011). In this sense,
our assumption of a fixed Ṁ for all stars and ages (as usually
assumed in studies of rotational evolution) represents a globally
and temporally averaged mass-loss rate, but we do not know
what the actual value of this mean is.

Given these theoretical and observational uncertainties, we
consider Ωcrit and C to be the two free parameters in our model,
which are determined as follows. Given an initial distribution of
angular momenta, a specified pair of values [Ωcrit, C] (mass
and time independent in our simple theory) uniquely fixes
the shape of the period–mass curve and the absolute scaling
of the periods at every subsequent age. We therefore evolve
an observed sample of rotation periods at a very young age
(which serves as our estimate of the initial angular momentum
distribution; Section 7) forward in time to the age of the Sun (i.e.,
a few Gyr), using a range of values for Ωcrit and C. The [Ωcrit, C]
pair that best fits both the present-day solar rotation period and
the rotation–mass distribution of field stars at roughly the same
age then represents our best estimate of these two parameters
(Section 8.1.1). Note that the individual empirical uncertainties
in Bcrit, KV , and Ṁ are unimportant, since they are subsumed
within the single quantity C, making this a simple problem of
fixing two unknowns with two observations.

We then test our theory by using this best-fit [Ωcrit, C] pair to
similarly generate the mass–period distribution at various other
ages and comparing to observations (Section 8.1.2). We also test
the theory by comparing its predictions to the observed lifetimes
of magnetically driven activity in low-mass stars (Section 8.3).
Finally, we examine the plausibility of our inferred best-fit Ωcrit
(Section 8.2) and C (Section 9) as a separate constraint on the
model. These tests in turn provide some deeper physical insights
into the processes involved in rotation regulation.

Below, we first discuss the data we use, before going on to
comparisons with our model.

6. ROTATION AND ACTIVITY DATA, AND STELLAR
MASS DETERMINATION

In our analysis of the data (Sections 7 and 8), masses for
the observed stars have been inferred as follows. In the vast

majority of cases, we have used the mean distance to the SFR
or open cluster, or the known distance to the individual stars
from parallax measurements, together with extinction data,
to convert the apparent magnitude in a selected photometric
band (IC, J, or K) to an absolute magnitude. Masses are then
derived from mass–magnitude relationships: either theoretical
ones from the BCAH98 evolutionary tracks for the adopted age
of the region/cluster or empirical ones for low-mass stars on the
MS (Delfosse et al. 2000; Xia et al. 2008). In the handful of cases
where this is onerous, Teff are calculated from either spectral
type–Teff or color–Teff empirical relationships, and masses from
the mass–Teff relationship supplied by the BCAH98 tracks for
the age of the cluster.

The BCAH98 tracks we employ are actually a concatenation
of two sets of models: those using a convective mixing-length
parameter of αmix = 1.0, appropriate for masses �0.6 M�,
and those with αmix = 1.9 (the value required to fit the Sun),
appropriate for masses >0.6 M� (see discussion in Baraffe et al.
2002). The concatenated set yields a smooth mass–magnitude
relationship spanning the two αmix regimes for any specified
age. We further note that the BCAH98 tracks, which do not
incorporate the formation of photospheric dust, are appropriate
for the 0.1–1 M� range investigated in this paper (chemical
equilibrium calculations indicate that dust formation becomes
important at Teff � 2500 K (Allard et al. 2001), significantly
lower than the temperatures of �2800 K expected for stellar
masses of 0.1–1 M� over the ∼1 Myr–10 Gyr age range
considered here).

Specifically, for the individual populations we have examined,
rotation data and stellar masses are obtained as follows.

Orion Nebula Cluster (ONC). Stellar periods are taken from
Herbst et al. (2002) (who have compiled data from both their
own study and from Herbst et al. 2000 and Stassun et al. 1999).
Photometry and extinctions for these stars are from Hillenbrand
(1997; used by Herbst et al. 2002 as well). Absolute IC-band
magnitudes (MIC

) are computed from the observed IC and AV
(latter converted to AIC

assuming a normal extinction law:
RV ≡ AV /E(B − V ) = 3.1 ⇒ AIC

= 0.60AV Schlegel et al.
1998), and adopting a mean distance to the ONC of d = 450 pc
(Herbst et al. 2002). Masses are then derived from the BCAH98
mass–MIC

relationships, assuming a mean age of 1 Myr for the
ONC (Irwin & Bouvier 2009).

NGC 2264. Rotation and photometric data are from Lamm
et al. (2005). Masses are calculated as above, from the BCAH98
mass–MIC

relationships, using the mean E(B −V ) = 0.55 mag
and d = 760 pc adopted by Lamm et al. (2005) and assuming
a mean age of 2 Myr (Irwin & Bouvier 2009). Note that
Lamm et al. use D’Antona & Mazzitelli (1997) evolutionary
tracks to infer a mean age of 0.5 Myr for the ONC and
1 Myr for NGC 2264, half the values we adopt for these two
regions. However, as Lamm et al. note, the latter tracks give
systematically smaller ages compared to others; since we use
BCAH98 models instead, we adopt the larger ages provided
by Irwin & Bouvier (2009) based on comparisons to the same
models.

M50. Rotation and photometric data are from Irwin et al.
(2009). Masses are again from the BCAH98 mass–MIC

rela-
tionships, using the mean AIC

= 0.25 mag, d = 1000 pc, and
age = 150 Myr adopted by Irwin et al. (who also employ the
same method to derive masses).

Praesepe/Hyades. Since the Praesepe and Hyades clusters
are nearly coeval with an age of ∼600–650 Myr (Delorme et al.
2011; Irwin & Bouvier 2009), we follow Irwin & Bouvier (2009)
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in lumping them into a single population with an adopted mean
age of 650 Myr. Rotation and photometric data for Praesepe
are from Scholz & Eislöffel (2007), Scholz et al. (2011), and
Delorme et al. (2011), and for Hyades from Radick et al. (1987),
Prosser et al. (1995), and Delorme et al. (2011). The Delorme
et al. survey makes up the bulk of the data.

Crucial to our mass determination here is the fact that by
∼600 Myr, all stars in the mass range 0.1–1 M� have arrived
on the MS. Radick et al. (1987) and Prosser et al. (1995) focus
on a relatively small number of solar-type stars in the Hyades
and supply (B − V) colors for their samples; we convert the
latter to Teff using the empirical MS color–Teff relationship
compiled by Kenyon & Hartmann (1995), and thereby derive
masses from the BCAH98 mass–Teff relationship for 650 Myr.
For Praesepe, Scholz & Eislöffel (2007) and Scholz et al. (2011)
have determined masses by calculating MIC

and MJ from their IC
and J photometry, respectively (for a mean distance of 170 pc),
and then applying the BCAH98 mass–magnitude relationships
for an age of 630 Myr (essentially identical to our adopted
650 Myr). For MS M dwarfs (stars �0.6 M�, comprising nearly
the entire sample in the latter two surveys), Delfosse et al. (2000)
show that the BCAH98 models are a very good match to the
tight empirical MS mass–magnitude relationships in the near-
infrared (and argue that the same is likely true in the IC band
too). Consequently, we adopt these masses unchanged.

Finally, for the Delorme et al. (2011) sample, we calculate MK
from their K-band photometry, assuming a distance of 170 pc to
Praesepe and 45 pc to Hyades,6 and then derive masses from the
empirical MS mass–MK relationships of Delfosse et al. (2000)
appropriate for �0.6 M�) and Xia et al. (2008) applicable to
stars ∼0.6–1 M�: for 0.1–0.6 M�. The Xia et al. mass–MK fit is
nearly indistinguishable from that of Delfosse et al. (2000).7

It is worth noting that the masses Delorme et al. (2011) find
for their sample are in some cases significantly at odds with
ours, with discrepancies of up to 30% at the lowest masses. This
is because they derive mass from (V − K) color instead of from
MK . The V band is known to be severely affected by metallicity
variations, unlike the JHK bands (BCAH98; Delfosse et al.
2000; Xia et al. 2008); thus, on the MS, the mass–(V − K)
relationship evinces much greater scatter than the very tight
mass–MK relationship (Delfosse et al. 2000), and the latter yields
far better mass estimates. This has important consequences for
understanding rotational evolution as a function of mass, as we
point out in Section 8.1.2.

Field M dwarfs. Rotation periods and photometric data,
for both young disk and old-disk/halo field M dwarfs, are
from Irwin et al. (2011). These authors use MK (calculated
from literature K-band photometry combined with parallactic
distances) to derive masses from the empirical MS M dwarf
mass–MK relationship of Delfosse et al. (2000). Since this
is our preferred method for field M dwarfs (as discussed
above), we adopt these masses unchanged. We note that the
old-disk/halo stars may have lower metallicities than the young-
disk population; however, this is unlikely to skew the mass
estimates, given the insensitivity of the Delfosse et al. (2000)
relationship in the K band to metallicity (see above).

6 Delorme et al. (2011) provide parallaxes for some of their Hyades sample,
but not for the majority; we therefore use the mean distance to the Hyades in
all cases for uniformity. The parallactic distances they do provide are
consistent with a small scatter around our mean d = 45 pc.
7 Delorme et al. supply K2MASS, while the two empirical mass–magnitude
relationships we employ use KCIT. The difference between the two filters is
negligible for our purposes, however, over the 0.1–1 M� range of interest here,
and we ignore it.

Lastly, we also compare our model predictions to empirical
activity lifetimes for MS M dwarfs. We obtain the mean activity
lifetime for each M spectral sub-class from the large survey
by West et al. (2008). The Teff corresponding to each sub-type
is determined from the MS spectral type–Teff calibrations of
Kenyon & Hartmann (1995) and Golimowski et al. (2004);
corresponding masses are then derived from the BCAH98 MS
mass–Teff relationship.

7. CHOICE OF INITIAL CONDITIONS AND
DISK-LOCKING

In order to compare our theory of angular momentum evolu-
tion to stellar data at various epochs, we must first specify the
initial distribution of angular momenta in our model. Observed
rotation rates in very young SFRs provide our best estimate of
this initial condition. The ONC (at ∼1 Myr) and NGC 2264 (at
∼2 Myr), with the most extensive data on rotation in newborn
low-mass stars, are currently the SFRs of choice in this regard.
To maximize the sample size, we combine the data for the two
regions as follows.

Most current models of angular momentum evolution assume
a period of “disk-locking” during the initial disk accretion
phase, wherein the angular velocity of the star is held constant
by star–disk interactions (Shu et al. 1994; Mohanty & Shu
2008). While there is considerable debate about the mechanism,
efficiency, lifetime, and mass dependence of this phenomenon,
it seems to play a role in at least some significant fraction of
low-mass stars (see review by Herbst et al. 2007, and extensive
references therein). In particular, many young accreting solar-
type stars are observed to rotate much slower than possible in
the presence of only spin-up due to gravitational contraction,
indicating some source of braking; modeling the evolution of
these slow rotators from the PMS to the zero-age MS also
seems to require substantial braking during the early PMS phase
(Herbst et al. 2007). Disk-locking provides such a mechanism.
Furthermore, the locking timescales implied for solar-mass stars
by such modeling is ∼5–10 Myr, consistent with the observed
accretion timescale in these stars. For VLMS, disk-locking has
been less scrutinized, but there is some evidence that it operates
in these stars as well—accreting VLMS (and brown dwarfs)
seems to rotate preferentially slower than non-accreting ones
(Scholz & Eislöffel 2004; Mohanty et al. 2005a)—albeit perhaps
less efficiently than in solar-mass stars (Lamm et al. 2005).
Moreover, the accretion timescale in VLMS is also 5–10 Myr,
similar to that in solar-types (Mohanty et al. 2005b).

Under the circumstances, we assume the simplest scenario:
disk-locking for the first 5 Myr, for all stars within the 0.1–1 M�
range of interest here. The same condition is adopted by Irwin
& Bouvier (2009). To impose this constraint on our initial
conditions—given by the observed rotation rates in the ONC
and NGC 2264—we simply assign the stars in these SFRs
the radii predicted by the BCAH98 tracks at 5 Myr for their
derived masses, while keeping their rotation periods fixed at the
observed values. This mimics gravitational contraction from 1
to 5 Myr (for the ONC), or from 2 to 5 Myr (for NGC 2264), at
constant angular velocity, which is what disk-locking till 5 Myr
means. The two samples are then merged, with the combined
data set representing the period and radius distribution expected
at the end of the disk-locking phase for our initial conditions; this
forms the starting point for our model evolution beyond 5 Myr.
The period distribution in this data set is plotted in Figure 4 (left
panel); most of the stars lie between 0.8 and 10 days, with a
few as slow as 20–30 days. A caveat, mentioned earlier, is that
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Figure 3. Distribution of rotational periods (upper panel) and surface rotation velocities (lower panel) among fields stars (red stars; period data from Irwin et al. 2011;
v sin i data sample explained in Reiners & Basri 2008) and according to our model at an age of 3 Gyr (black circles). The Sun is shown as a green circle in the upper
panel plots. Three model calculations with different values of Pcrit are shown; from left to right: Pcrit = 10, 8.5, and 7 days.

(A color version of this figure is available in the online journal.)

the data may be biased by selection effects: we may be missing
very rapid and/or very slow rotators. This must be clarified by
future surveys.

8. RESULTS

8.1. Radius-dependent Evolution and Transient
Core-envelope Decoupling

8.1.1. Best-fit Ωcrit and C

Figure 3 shows the above initial distribution evolved to an
age of 3 Gyr, for various values of Ωcrit and C, compared to data
for the Sun and other young-disk field low-mass stars.8

We plot the results in both period and v sin i domains,
because there are significantly more field dwarfs with v sin i
measurements than with known periods. We have converted
our model periods to velocities v using the BCAH98 MS
mass–radius relationship, and v to v sin i assuming sin i =√

3/2, the mean value for a random distribution of inclinations.
The latter conversion is only true in a statistically averaged sense
and not strictly accurate for comparison to a single observed
population (which represents only one instantiation of all
possible sin i distributions, not the average). A mathematically
rigorous comparison between the model velocities and v sin i
data requires involved statistical analyses (Gaigé 1993), best
accomplished with detailed Monte Carlo simulations (Clarke
& Bouvier 2000). In our case, however, the v sin i plots are
only used to illustrate more clearly the stellar mass (spectral
type) at which there is a sharp break in the rotation distribution

8 The age of the Sun is 4.5 Gyr; the ages of the field stars shown are not
precisely known, but expected to lie in the range 1–5 Gyr (young disk). We
thus choose an evolutionary age of 3 Gyr for our model as a reasonable mean
to compare to the Sun and these stars; changing this by ∼±2 Gyr has no
substantial effect on our final results.

and to show that our best-fit model reproduces this break both
in period and velocity space. The average value of sin i is
sufficient for this limited purpose: statistical variations in the
sin i distribution should not significantly change the presence
or location of the very steep observed transition from a large
population of undetected v sin i to a similarly large population
of high v sin i.

We further note that the observed stars plotted in the
period–mass panels are only those shown to belong kinemat-
ically to the young (thin) disk population, via a careful position-
dependent velocity analysis by Irwin et al. (2011). While the
total sample of field stars with known periods is significantly
larger (see compilation by Irwin et al. 2011), most of these do not
have kinematic ages determined as accurately. Consequently, by
including them one risks vitiating the true young-disk popula-
tion with significantly older stars, especially at longer periods
(where old-disk/halo stars dominate; see Irwin et al. 2011). We
have therefore excluded these from the present analysis (for the
same reason, we have also excluded stars found by Irwin et al.
to be kinematically “intermediate” between the thin- and thick-
disk populations). For stars shown in the v sin i–mass panels
(from Reiners & Basri 2008), the kinematic age is not as well
determined. However, the observed break in the velocity dis-
tribution is at a spectral type ∼M3 (mass ∼ 0.35 M�), with a
velocity detection threshold of ∼3 km s−1. Using the MS radii
for stellar masses �0.35 M� from the BCAH98 tracks, one finds
that the detected velocities correspond to periods <5 days, and
in most cases �1 day (the fact that these are projected veloci-
ties makes the real periods even shorter). At such short periods,
young-disk and old-disk/halo stars appear to have a similar
period–mass distribution (see Irwin et al. 2011, especially their
Figure 11), so assuming a young-disk age should not signifi-
cantly skew our results in the v sin i–mass parameter space.

8



The Astrophysical Journal, 746:43 (14pp), 2012 February 10 Reiners & Mohanty

Note first that, independent of the precise choice of [Ωcrit, C],
the model reproduces the qualitative shape of the data from
solar-type stars down to VLMS remarkably well: slow and
nearly constant rotation periods (undetected v sin i) down to
some threshold mass, followed by a sharp transition to faster
rotation with decreasing mass (later type). This arises directly
from the strong radius dependence of our angular momentum
loss rate, as discussed earlier. Such a qualitative match over
the entire 0.1–1 M� range has not been possible with previous
models based on the K88 formalism (without invoking ad hoc
mass dependencies specifically constructed to fit the data) and
bolsters our physically motivated picture.

For a quantitative match, we simultaneously fit the position
of the Sun and the mass (or spectral type) at which the VLMS
periods (or v sin i) turn over. The plot shows models with
Pcrit ≡ 2π/Ωcrit = 7–10 days; for each latter value, C is chosen to
reproduce the observed rotation period of the Sun, yielding C =
4.43 × 103–8.86 × 102 (gm5 cm−10 s3)1/3. With the Sun fixed,
the turnover in the data at spectral type ∼M3 (mass ∼0.35 M�)
requires 7 days < Pcrit < 10 days. Pcrit � 10 days cannot match
the very slow rotation (undetected v sin i) at �0.35 M�/earlier
than M3: the sharp break in the v sin i distribution is predicted
to occur at an earlier spectral type than observed (the bottom
left panel in Figure 3). Conversely, Pcrit � 7 days cannot fit
the fast rotation at <0.35 M�/later than M3: the sharp turnover
in model rotation rates happens at a later spectral type/lower
mass than in the data (right panels of both period and v sin i
distributions in Figure 3). We find that Pcrit = 8.5 days best
matches the turnover in the rotation data (middle panels). Our
best-fit choice is thus [Ωcrit, C] = [8.56 × 10−6 s−1, 2.66 × 103

(gm5 cm−10 s3)1/3]. We defer a physical interpretation of these
values to Sections 8.2 and 9; for now, we incorporate them into
our model to test the theory at other ages.

8.1.2. Comparisons to Open Clusters

The results are plotted in Figure 4. The first panel is simply
the rotation data for our combined sample of ONC+NGC 2264,
representing our model distribution of rotation periods at the
end of the disk locking phase at 5 Myr, as discussed earlier. The
second panel shows this distribution evolved via our theory to an
age of 130 Myr, using the best-fit [Ωcrit, C] inferred above. For
comparison we plot the data for the coeval M50 open cluster. We
see that the lower envelope of data periods is clearly inclined
from ∼1 to 0.5 M�: with the exception of a few extremely
rapid rotators at ∼0.1 day between ∼1 and 0.8 M�, the fastest
rotation rate observed increases with decreasing mass. This
tilted lower envelope of rapid rotators seems to be a universal
feature of clusters at this age (Barnes 2007; Irwin & Bouvier
2009). Crucially, our simple model quantitatively matches this
envelope very well. Note that the shape of the envelope is not
simply due to PMS spin-up: as we have pointed out (Figure 2),
spin-down does have some effect even during the PMS phase,
and moreover stars down to 0.5 M� have all arrived on the
MS before 130 Myr. Instead, it arises in our model from the
strong radius dependence of the angular momentum loss rate:
less massive stars have a smaller radius and thus a lower intrinsic
braking efficiency.

Equally clearly, we do not reproduce the upper envelope of
slowest rotators for masses �0.3 M�. The most likely reason
is core-envelope decoupling, wherein only the outer convective
layer is spun down rapidly by the wind (producing the slow
surface rotation that is observed), while the inner radiative
core only spins down over longer timescales dictated by the

inefficient “coupling” via which it transfers angular momentum
to the outer convective layer (lengthening the overall stellar spin-
down timescale). Specifically, it is suggestive that all low-mass
stars down to ∼0.3 M� (the convective boundary, below which
stars are always fully convective) develop a radiative core by
∼130 Myr, and stars �0.6 M� do so by �50 Myr (see Figure 1).
In this case, the “hump”-shaped upper envelope of slow rotators
observed for masses �0.3 M� is precisely what core-envelope
decoupling would predict: stars that have just formed a radiative
core (∼0.3 M� at 130 Myr) would be starting to evince longer
periods due to decoupling; this lengthening of periods would
be maximized in more massive stars that formed a radiative
core earlier and are currently strongly decoupled (which our
plot suggests occurs around 0.4–0.6 M� at 130 Myr); and the
periods would decline again toward still more massive stars in
which the time since the formation of the core is approaching
the coupling timescale. Concurrently, stars in which no radiative
core has formed yet should evince no increase in period due
to decoupling; this is indeed what our plot shows for masses
<0.3 M� (always fully convective), whose upper envelope of
periods (admittedly defined by only a few observed stars in
M50) agrees well with our model of solid-body rotation.

Our simple theory, with only solid-body rotation, does not
account for core-envelope decoupling. On the other hand, the
model of Irwin & Bouvier (2009), based on the K88 formulation
but including core-envelope decoupling phenomenologically,
does produce the very long observed periods in solar type stars at
∼130 Myr; conversely, it cannot account for the fast rotation of
fully convective field stars (which should rotate as solid bodies),
which our theory does (Figure 3). We thus postulate that the
strongly radius-dependent spin-down in our model (absent in
K88 and Irwin & Bouvier 2009), combined with core-envelope
decoupling (absent in our theory), should yield a good fit to all
low-mass stars at 100–200 Myr (as we have qualitatively argued
above for M50). This will be addressed in a forthcoming paper.

The third panel of Figure 4 shows our model evolved
to 650 Myr, compared to the combined data for Hyades
and Praesepe. The match between model and data is now
significantly better than at 130 Myr. The model reproduces very
well the mean period of the upper envelope of 1–0.7 M� stars
(∼10 days), the upper envelope for stellar masses �0.3 M�
(which are all fully convective stars), and the lower envelope
of periods for stars down to 0.4 M�. All 1–0.1 M� stars have
reached the MS and thus stopped spinning up by ∼600 Myr, so
these good fits are all strongly linked to the radius-dependent
angular momentum loss in our theory.

What we do not reproduce is the gently rising upper envelope
of periods with decreasing mass down to 0.4 M� (our theory
predicts a declining upper envelope with mass over the entire
1–0.1 M� range), and the upper envelope in general from 0.7
to 0.3 M�. These discrepancies, and the overall convex shape
of the upper envelope of periods from 1 to 0.3 M�, are again
almost certainly due to core-envelope decoupling. As described
earlier, stars that have just formed a radiative core should just be
starting to exhibit the longer periods associated with decoupling
(essentially no such stars at 650 Myr: see end of this paragraph);
more massive stars with cores formed earlier should be strongly
decoupled (our plot indicates this occurs around 0.4 M� at
650 Myr); and even more massive stars, in which the time
since core formation is becoming comparable to the coupling
timescale, should evince a decline in periods with increasing
mass due to burgeoning coupling, as is observed. The veracity
of this scenario is bolstered by three additional trends. First, the
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Figure 4. Evolution of rotational periods. The initial angular momentum distribution taken from ONC and NGC 2264 (left panel, see the text) is assumed. In the other
two plots, we show angular momentum evolution of the initial sample as black points and observations of clusters at different ages as red stars. Data taken from the
literature: ONC: Herbst et al. (2002); NGC 2264: Lamm et al. (2005); M50: Irwin et al. (2009); Hyades, Praesepe: Radick et al. (1987); Prosser et al. (1995); Scholz
& Eislöffel (2007); Scholz et al. (2011); Delorme et al. (2011).

(A color version of this figure is available in the online journal.)

peak of the upper envelope is clearly shifted to lower masses
going from 130 to 650 Myr (from a plateau over ∼0.6–0.4 M�
in M50 to a peak at 0.4 M� in Hyades/Praesepe), which is what
core-envelope decoupling predicts (since lower-mass stars form
radiative cores later, they are strongly decoupled later as well).
Second, stars with mass �0.3 M� remain fully convective even
on the MS, and thus should not exhibit any decoupling effects.
This is indeed what we see: the upper envelope at these masses is
an excellent match to our model of solid-body rotation. Third,
we see a steep increase in periods toward stars slightly more
massive than the fully convective boundary at ∼0.3 M�, with the
peak in the period distribution already reached by 0.4 M�. This
is also explained by core-envelope decoupling: since all stars
down to the convective boundary have developed a radiative
core by ∼130 Myr, i.e., well before 650 Myr, stars slightly more
massive than this boundary are all already strongly decoupled
at 650 Myr. Thus, at this age, there should indeed be a sharp rise
in periods from fully convective (fully coupled) stars to those
slightly more massive with a radiative core (fully decoupled).

In this picture, the good agreement noted earlier, between the
data and our model in the mean period of the upper envelope
of 1–0.7 M� stars, indicates that these stars are nearly fully
coupled again. The implied coupling timescale (time elapsed
between core formation in these stars, at <50 Myr, and the onset
of good coupling) is thus <600 Myr, as also found by Irwin &
Bouvier (2009) through an explicit modeling of core-envelope
decoupling.

As an aside, we note that the masses Delorme et al. (2011)
derive for their Hyades sample imply periods of 10–20 days
for some stars down to 0.2 M�, considerably slower than the
upper envelope of more massive solar-type stars (see their
Figure 15). However, the upper envelope of initial periods
in SFRs is relatively flat with mass at 10–20 days (e.g., our
ONC + NGC 2264 sample; specifically, there is no evidence of
slower initial periods or more efficient disk-locking in VLMS; if
anything, the opposite is more likely). Moreover, stars �0.3 M�
cannot undergo core-envelope decoupling (they are always fully
convective). It is thus very hard to understand how these stars can
rotate much slower on the early-MS than solar-type stars, which
arrive on the MS much earlier and thus have a far shorter PMS
spin-up phase, and which undergo core-envelope decoupling to
boot. However, accounting for the scatter in mass introduced by
Delorme et al. ’s (V − K) color-dependent mass-determination
technique, and correcting for this with our absolute magnitude-
based method (see Section 6), we find that these large periods

are actually associated with masses >0.3 M�, i.e., stars more
massive than the fully convective boundary (as shown in
our plot). This removes the dilemma, since core-envelope
decoupling can now fully explain the observed large periods,
as described above, and maximum periods are now shorter
in fully convective stars than in solar-types, as expected. This
undercores the need for good mass estimates for understanding
rotation evolution.

In summary, our theory predicts rotation in low-mass stars
to be fundamentally radius and hence mass dependent. Fixing
our two free model parameters, Ωcrit and C, via comparison
to the Sun and other roughly coeval field stars, enables us to
quantitatively reproduce many of the features of the observed
mass–rotation distribution from 130 Myr up to a few Gyr
(Figures 3 and 4), without invoking variations in dynamo
mode or field topology. The trends that we do not replicate
are all qualitatively explicable with the addition of transient
core-envelope decoupling (not included in our model), which
is important for ages intermediate between the formation of a
radiative core and the resumption of good coupling <600 Myr
later. This will be quantitatively verified in our next paper. After
the decoupling phase in solar-type stars, and always for fully
convective VLMS, our radius-dependent theory is in excellent
agreement with the data up to a few Gyr.

8.2. Mass (Rossby Number) Dependence of Ωcrit

There is still a last wrinkle. Figure 5 (bottom left)
shows our model evolved to 10 Gyr, compared to data for
old-disk/halo field M dwarfs recently published by Irwin et al.
(2011; ages ∼7–13 Gyr). Most of the observed periods at
�0.3 M� are very long—20 to >100 days—while our model
barely reaches 20 days at these masses.9 With our choice of
Pcrit (=8.5 days) and C, slowing to observed periods an order
of magnitude longer than Pcrit requires > 1012 yr. One solution
is to fiddle with the spin-down timescales tS and tU via C, or
invoke radically different fields, wind velocities etc. Very pre-
cise fine-tuning would then be needed, however, to avoid doing
violence to the match already obtained to both solar-types and
VLMS at earlier ages; that our simple theory (complemented by
core-envelope decoupling at open cluster ages) yields this good
match argues against such physically unmotivated “fitting.”

9 The spin-down of unsaturated ∼1 M� stars to 60 days by 10 Gyr is due to
their increase in radius as they move off the MS by ∼3 Gyr; the same cannot
apply to the VLMS, whose MS lifetimes exceed a Hubble time.
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Figure 5. Model distribution of rotational periods at ages 3 Gyr (upper panel) and 10 Gyr (lower panel). Left panel: model with one critical rotation period
Pcrit = 8.5 days for all stars (upper left panel is identical to top middle panel in Figure 3). Right panel: model using Pcrit = 8.5 days for stars with M > 0.4 M� and
Pcrit = 40 days for less massive stars. Blue and red stars show measurements of rotation periods (Irwin et al. 2011) in M stars, red stars are young-disk objects, blue
stars are halo objects.

(A color version of this figure is available in the online journal.)

Instead, the simplest solution is that Pcrit is much larger in stars
�0.3 M� (i.e., they remain saturated at much slower rotation
rates than higher-mass stars). There is good reason to believe
so, as discussed below. For now, note that at a young-disk age
of ∼3 Gyr, the observed stars at �0.3 M� are mostly saturated.
Thus, while they set a lower limit on our best-fit Pcrit, they are
insensitive to the upper limit, which is set instead by unsaturated
slow rotators (undetected v sin i) at >0.3 M� (including the
Sun; see discussion of Figure 3 in Section 8.1.1). Hence invoking
a much larger Pcrit only for stars �0.3 M� should preserve all our
results upto a few Gyr, while enabling these stars alone to remain
saturated—and thus spin down exponentially—for much longer,
thereby achieving far longer periods by 10 Gyr. Figure 5 (right
panels) illustrates this, for a fiducial Pcrit = 40 days (motivated
below) for �0.3 M�; Pcrit is held fixed at 8.5 days for higher
masses and C is unchanged for all masses. We see that the match
to data at 3 Gyr continues to be excellent, while at 10 Gyr our
model now fits the very slowly rotating old-disk/halo stars as
well.

As an aside, we note the additional presence of relatively
rapid rotators around 0.2 M�, offset from the tail of rapid
rotators at ∼0.1 M� in our 10 Gyr model. However, these do
not represent any fundamental puzzle. The observed stars span
ages of 7–13 Gyr, while our model is for a unique age of 10 Gyr;
implementing the observed age range in our model should allow
us to simultaneously fit the extremely slow and relatively rapid
rotators (e.g., a 7 Gyr model would evince a tail of rapid rotators
at a higher mass, more in line with the data). We do not attempt
this in our present exploratory analysis, where we simply seek

to understand the additional physics implied by the very slow
rotators; fitting the entire period distribution of these old stars
is undertaken in our next paper.

What is the physical basis for an increased Pcrit at the
lowest masses? In dynamo theory (both αΩ and α2; Chabrier
& Küker 2006), the magnetic field strength is determined
not by the rotation rate alone, but its ratio to the convective
turnover timescale τc, i.e., by the Rossby number: R ≡ P/τc.
Saturation sets in whenR decreases below some threshold value
Rcrit. In this paradigm, our Pcrit is really to be interpreted as
Pcrit ≡ τcRcrit. There is some empirical evidence thatRcrit ∼ 0.1
(Reiners et al. 2009). If we assume the latter, then our Pcrit =
8.5 days inferred for stars spanning 1–>0.3 M� implies τc ∼
85 days for these masses. While τc is only well defined within
the idealized mixing-length theory (MLT), and even then hard
to characterize, approximate MLT models indicate MS values
of ∼40–150 days for 1–0.5 M� (Kim & Demarque 1996). It is
suggestive that the mean is then indeed very close to our implied
85 days, and the range within a factor of two of this value.
At the same time, extrapolation of the MLT models indicates
τc � 250 days on the MS for masses �0.3 M�.

From an empirical standpoint, the overall situation is similar,
but differs from the above estimates of τc in an important
respect. Using a Rossby number formalism, and examining
various markers of magnetically driven activity, Stȩpień (1994)
and Kiraga & Stȩpień (2007) have investigated the convective
turnover time for ∼0.2–1.2 M� stars. While their analysis does
not yield the absolute value of τc (Stȩpień 1994), they find
that the relative (i.e., scaled) value of τc increases from 1.2
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Figure 6. Activity lifetimes of M dwarfs from (West et al. 2008; filled circles), compared to the critical timescale for rotational braking in our model,
tcrit = t0 + tS ln [Ω0/Ωcrit] (red line).

(A color version of this figure is available in the online journal.)

to 0.8 M�, then levels off until ∼0.5 M�, and then increases
steeply again till ∼0.2 M�. The theoretical estimates by Kim &
Demarque (1996) miss this intermediate plateau in turnover
timescales: they predict a factor of ∼4 increase in τc from
1 to 0.5 M�, while the empirical results imply a very small
increase of only a factor of ∼1.5. On the other hand, both the
empirical analysis and (extrapolated) theory indicate a large
increase in τc going from 1 M� to VLMS at �0.3 M�. Given the
difficulties in calculating τc from first principles—the convective
velocities and lengthscales are not theoretically well determined
(nor unique with depth), and the assumption of MLT introduces
further uncertainties (Kim & Demarque 1996)—the empirical
estimates of τc appear a better guide at present (where τc is to be
regarded as an “effective” overturn timescale that is meaningful
to the star, rather than a quantity defined only within MLT).

Under the circumstances, it is highly suggestive that the
empirical τc are roughly constant for solar-type stars down to
∼0.5 M�, and then rise sharply toward lower masses; this is
precisely the trend we have advocated above to explain the
very slowly rotating old VLMS. To quantify this agreement,
we scale the relative τc values from Kiraga & Stȩpień (2007)
such that the mean τc over 1–0.5 M� equals our best-fit value of
85 days for these stars (as derived above using Rcrit = 0.1; also
equal to the mean theoretical τc for this mass range, as noted
earlier). We find that the effective τc implied by the results of
Kiraga & Stȩpień (2007), for stars �0.3 M�, is then �300 days
(close to the extrapolated theoretical τc for these masses). With
Rcrit = 0.1, this implies Pcrit � 30 days, completely consistent
with the fiducial Pcrit = 40 days we have used to fit the observed
periods of these stars. It thus appears that the effective τc is
indeed a physically important parameter for angular momentum
evolution. In our next paper, we include the observed mass
dependence of this parameter in a smoother fashion, instead of
as the step function adopted here.

We emphasize that while we are led to a lengthening of
Pcrit at roughly the mass boundary for full convection to
explain the oldest VLMS, this is a separate effect from the
radius dependence of angular momentum loss that yields a
sharp turnover in periods near this boundary at a few Gyr

and critically shapes the entire mass–period relationship at
all ages.

We further reiterate that a mass-dependent Pcrit alone cannot
explain the evolution of the mass–rotation relationship; the
separate radius dependence of dJ/dt is essential. Without
the latter, Sills et al. (2000) (using the K88 formalism) were
forced to conclude that a simple physically motivated mass-
dependent Rossby number scaling cannot explain rotation from
solar masses to VLMS; allied with radius dependence, we have
shown that it can. The fact that the two distinct effects both have
a strong influence at masses near the fully convective boundary
is unsurprising: as stellar masses decrease toward this boundary,
both the MS radius and luminosity decline rapidly; the former
drives the strong radius dependence of dJ/dt , while the latter
yields the rapid increase in τc (since slower convective velocities
can transport the luminosity outward) and hence in Pcrit.

8.3. Activity Lifetimes

Independent information on the timescales of rotational
braking comes from activity measurements. It is well established
that chromospheric and coronal emission scale with rotation in
the sense that, below a critical rotation velocity, emission is
stronger with faster rotation, while above that velocity, activity
is saturated (e.g., Pizzolato et al. 2003). Because braking is
significantly weaker in low-mass stars, this immediately leads
to the conclusion that activity lifetimes must be significantly
longer at very low masses. Activity lifetimes of M dwarfs were
determined by West et al. (2008), who define “lifetime” as the
typical timescale over which Hα can be observed in emission
in their sample, before the emission falls below their detection
limit. West et al. (2008) present activity lifetimes for spectral
type bins M0–M7; we have converted the latter to stellar masses
as described in Section 6.

We compare these empirical lifetimes to the tcrit implied
by our model as a function of stellar mass, where tcrit is
the age at which a star spins down from the saturated to
unsaturated field strength regime (Section 4). The results are
plotted in Figure 6. We note from the outset that there are
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some caveats regarding the validity of this comparison. First,
it implicitly assumes that saturation of the field strength and
of activity are related phenomena. While saturation of the
magnetic field is commonly assumed to be the basis for saturated
activity, the relationship between the two must be more firmly
established by future observations. Second, our value of tcrit
is not necessarily identical to the time at which Hα emission
becomes undetectable, because activity diminishes rather slowly
when the star is braked in the unsaturated regime. Third,
the comparison assumes that field strength alone determines
activity levels. For the latest type M dwarfs, this link becomes
weaker, because the low atmospheric ionization (due to the
low Teff) means that the generation of magnetic stresses, and
hence activity, becomes inefficient even if the field is strong
(Mohanty et al. 2002). Finally, as always, there are inaccuracies
in converting spectral types to stellar masses via evolutionary
models; these uncertainties are probably largest in the coolest
dwarfs, where mass drops very steeply with spectral type (so
small errors in the latter produce larger scatter in mass).

In spite of these caveats, Figure 6 shows that the timescale for
saturated braking, tcrit, reproduces very well the activity lifetimes
of M stars with masses between 0.2 and 0.6 M�. Below 0.2 M�,
activity lifetimes are shorter than tcrit, but the discrepancy may
be explained by the inefficient generation of magnetic stresses
due to low photospheric ionization, as mentioned above. in
summary, over a large range in stellar mass, the activity lifetimes
of chromospheric emission can be explained by the spin-down
timescales alone, without requiring a change in the magnetic
dynamo from solar-like to fully convective stars.

9. DISCUSSION OF MAGNETIC TOPOLOGY AND C

In this work, we have assumed that the stellar fields are radial,
as the simplest possible choice. Real surface fields, however,
appear to be a complex mixture of multipoles. With our simple
model, we have not found any need to invoke variations in the
field topology with stellar mass to explain the data; nevertheless,
is it possible that in real stars, such variations play a role in
sculpting the observed mass–rotation distribution?

To answer this, consider the current data concerning field
structure. The basic result so far is that stars below the convective
boundary appear to have more dipolar fields, while higher-mass
solar-type stars (i.e., with radiative cores) seem to harbor a
preponderance of higher-order multipolar fields (Morin et al.
2010). Prima facie, however, this change goes in the wrong
direction to explain the observed trend in rotation periods: fields
ordered on larger scales (e.g., dipoles) should lead to higher
rates of angular momentum loss than fields ordered on smaller
scales (i.e., higher-order multipoles). This would lead to slower
rotation in fully convective stars compared to solar-types, not
higher as observed.

Additionally, the change in field topology in fully convective
stars does not appear monotonic; stars later that 0.2 M� appear
to become less dipolar again, similar to solar-types and unlike
fully convective stars with mass �0.2 M� (Morin et al. 2010).
So a change in magnetic topology cannot even be invoked
in the same way for all fully convective stars, apart from
the serious problem with the expected trend discussed above.
Fundamentally, we believe that substantially more data, and a
more careful examination of the selection effects for the stars
with measured field structure, are required before any firm
conclusions can be drawn about how field topology actually
changes from solar-type to fully convective objects.

This does not mean, however, that the field structure is
unimportant for angular momentum evolution. One possible
effect of the field structure becomes clearer upon considering
the constant C in our model. For our best-fit value of C, and
making the standard assumption KV = 1, we find that (1) if
we assume the standard solar value for Ṁ = 10−14 M� yr−1,
then Bcrit = 20 G, which is far too small, and (2) conversely,
if we assume Bcrit ∼ 1 kG, consistent with data (Reiners et al.
2009), then Ṁ ∼ 10−7M� yr−1, which is comparable to values
during the initial disk accretion phase and far too large for
stellar winds. This simply tells us that, for radial fields, the
standard values of KV , Bcrit, and Ṁ yield a C too large, i.e.,
too high a rate of angular momentum loss (because larger C
implies shorter spin-down timescales; see Equation (6)). There
are two possible resolutions. (1) The standard values must be
modified. For instance, if Bcrit ∼ 1 kG, as seems likely, then we
may have KV ∼ 10 and Ṁ ∼ 10−10 M� yr−1, i.e., Alfvén
velocities somewhat higher than escape, and average mass-
loss rates much higher than current solar (agreeing with some
simulations of Ṁ in VLMS and PMS solar-mass stars; Vidotto
et al. 2011, and references therein). (2) Radial fields, which
yield the highest rate of angular momentum loss (since they
have the lowest possible multipole order), are less applicable
than higher-order multipoles. Given that mulipole orders higher
than radial are indeed broadly consistent with field configuration
data at all stellar masses (e.g., Donati & Landstreet 2009),
the latter solution must be important at some level, regardless
of additional variations in KV and Ṁ . We explore the effect
of more complex field geometries in our next paper; further
improvements will doubtless result from more observations as
well as advances in theory and simulations. Nevertheless, it is
heartening that the very simple theory presented here is able
to (1) reproduce the broad observational picture of angular
momentum evolution from solar-type stars to VLMS, (2) reveals
the importance of additional secondary effects such as core-
envelope decoupling and mass-dependent overturn timescales,
and (3) puts us in a position to quantitatively probe the remaining
unknowns, such as Ṁ and field configuration, in the future.
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