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ABSTRACT

The association of long-duration gamma-ray bursts (LGRBs) with Type Ic supernovae presents a challenge to
supernova explosion models. In the collapsar model for LGRBs, gamma rays are produced in an ultrarelativistic
jet launching from the magnetosphere of the black hole that forms in the aftermath of the collapse of a rotating
progenitor star. The jet is collimated along the star’s rotation axis, but the concomitant luminous supernova should
be relatively—though certainly not entirely—spherical, and should synthesize a substantial mass of 56Ni. Our goal
is to provide a qualitative assessment of the possibility that accretion of the progenitor envelope onto the black hole,
which powers the LGRB, could also deposit sufficient energy and nickel mass in the envelope to produce a luminous
supernova. For this, the energy dissipated near the black hole during accretion must be transported outward, where
it can drive a supernova-like shock wave. Here we suggest that the energy is transported by convection and develop
an analytical toy model, relying on global mass and energy conservation, for the dynamics of stellar collapse.
The model suggests that a ∼10 000 km s−1 shock can be driven into the envelope and that ∼1051 erg explosions
are possible. The efficiency with which the accretion energy is being transferred to the envelope is governed by
the competition of advection and convection at distances ∼100–1000 km from the black hole and is sensitive to
the values of the convective mixing length, the magnitude of the effective viscous stress, and the specific angular
momentum of the infalling envelope. Substantial masses of 56Ni may be synthesized in the convective accretion
flow over the course of tens of seconds from the initial circularization of the infalling envelope around the black
hole. The synthesized nickel is convectively mixed with a much larger mass of unburned ejecta.

Key words: accretion, accretion disks – black hole physics – gamma-ray burst: general – nuclear reactions,
nucleosynthesis, abundances – supernovae: general

1. INTRODUCTION

A growing number of long-duration gamma-ray bursts
(LGRBs) are being discovered in association with Type Ic su-
pernovae (Galama et al. 1998, 2000; Reichart 1999; Bloom
et al. 2002; Della Valle et al. 2003, 2006; Garnavich et al. 2003;
Hjorth et al. 2003; Kawabata et al. 2003; Stanek et al. 2003;
Matheson et al. 2003; Malesani et al. 2004; Campana et al.
2006; Mirabal et al. 2006; Modjaz et al. 2006; Pian et al. 2006;
Chornock et al. 2010; Cobb et al. 2010; Starling et al. 2011),
yet on the basis of the non-detection of late-time radio emission
in a sample of Type Ic supernovae, Podsiadlowski et al. (2004)
and Soderberg et al. (2006) inferred that less than 10% of all
Type Ic supernovae are associated with standard LGRBs. The
process producing LGRBs and their concomitant supernovae
remains a subject of debate (Woosley & Bloom 2006, and ref-
erences therein). In the collapsar model for LGRBs (Woosley
1993), the gamma rays are produced in an ultrarelativistic jet
launching from the magnetosphere of the black hole that forms
in the aftermath of the collapse of a rotating progenitor. The jet
is powered by a continuous infall and disklike accretion of the
progenitor star’s interior. While the collapsar model seems to
successfully explain the power and duration of LGRBs, it is not
clear at present whether it naturally gives rise to a supernova-
like stellar explosion. It has been argued that a “wind” out-
flowing from the nonradiative parts of the collapsar disk may
convey sufficient energy to the stellar envelope for an explo-
sion, and that 56Ni is synthesized in the wind to later produce an
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optically bright supernova (e.g., MacFadyen & Woosley 1999;
MacFadyen 2003; Pruet et al. 2003, 2004; Kohri et al. 2005).
The mechanics of energy transfer from the disk to the super-
nova ejecta and its implications for nickel synthesis remain
open problems and are the subject of the present study.

Here we provide a crude assessment of the possibility that
the accretion onto the black hole that powers the LGRB might
also deposit sufficient energy in the progenitor envelope to
produce a supernova. For this, the accretion energy dissipated
near the black hole must be transported to exterior mass
coordinates of the star. We hypothesize that the energy is
transported by convection to energize the outward moving
shock, as was originally suggested by Narayan et al. (2001). Our
two-dimensional simulations of collapsar accretion (Lindner
et al. 2010), in which we simulated only relatively large radii
(r > 500 km) and did not incorporate neutrino and nuclear
physics, corroborate the crucial role of convection. Our approach
in the present work differs from existing assessments of the
viability of collapsar supernovae (e.g., Kohri et al. 2005) in
that we attempt to sketch out the global structure of the flow
by incorporating disk accretion, convective energy transport,
shock dynamics, and long-term stellar infall (the latter having
been studied in Kumar et al. 2008a, 2008b) in a single toy
model. Particularly important are the non-Keplerian nature of
the accretion flow and the precise form of the viscous torque in a
pressure-supported regime; the latter aspects seem to have been
neglected in existing treatments of collapsar disks but came to
light in the 2.5D simulations of Lindner et al. (2010).

The toy model allows us to investigate how the shock
expansion interferes with the rate with which the infalling
material is accreting onto the black hole. This differs from
the approaches that implicitly postulate, as in the advection-
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dominated accretion flow (ADAF) paradigm (e.g., Narayan &
Yi 1994, 1995; Blandford & Begelman 1999), that the inflow
occurs in the equatorial region and is spatially separated from
a non-interfering wind that carries mass and energy into an
axial outflow cone. Our treatment is similar in spirit to the toy
model constructed by Janka (2001), following in the footsteps
of Bethe (1990, 1993a, 1993b, 1995, 1996, 1997), to assess
conditions for shock revival by neutrino heating in core-collapse
supernovae; the key differences include the central roles of
rotation and convection in collapsars, and comparatively lower
mass accretion rates, longer timescales, and lower fluid densities
in the latter systems.

This work is organized as follows. In Section 2, we discuss
the formation of an accretion shock and the post-shock condi-
tions immediately following shock formation. In Section 3, we
analyze the structure of the inner accretion flow and estimate
the luminosity that convection can transport toward the shock
wave. In Section 4, we impose global mass and energy conser-
vation, and in Section 5 we utilize these to so estimate the shock
expansion velocity and the total energy deposited in the stellar
envelope. In Section 6, we discuss the prospects for 56Ni pro-
duction in our model. In Section 7, we present our conclusions
and briefly discuss some implications.

2. THE ACCRETION SHOCK

The formation of the black hole in stellar core collapse might
be preceded by a failed explosion resulting from a bounce and
subsequent shock revival by neutrino heating (Bethe & Wilson
1985, see also MacFadyen et al. 2001), or by an ejection of
a magnetic field from a magnetized proto-neutron star (e.g.,
Bisnovatyi-Kogan 1971; Wheeler et al. 2000; Thompson et al.
2004; Bucciantini et al. 2007; Burrows et al. 2007; Dessart et al.
2008). The magnetic outflow may be too axially collimated
to produce a standard supernova explosion (Bucciantini et al.
2008, 2009). Here we ignore the possibility of any type of
explosion preceding the collapse into a black hole, and assume
that during the first few seconds from the collapse of the stellar
core, an unshocked stellar envelope accretes quasi-radially onto
the black hole.

For a few solar mass black hole, direct unshocked accretion
through the event horizon of the black hole is possible during
an initial interval measuring in the tens of seconds, while
the specific angular momentum of the infalling shells is in
the range � � 1016 (MBH/M�) cm2 s−1 (MBH is the black hole
mass and the critical specific angular momentum decreases with
increasing black hole spin for prograde accretion). Because
the specific angular momentum of the innermost stellar shells
increases outward, unshocked accretion takes place as shells at
mass coordinates ∼(3–6)M� arrive near the black hole in the
unmixed and fully mixed pre-supernova models (see, e.g., Heger
et al. 2000, 2005; MacFadyen et al. 2001; Petrovic et al. 2005;
Woosley & Heger 2006). When the specific angular momentum
arriving near the innermost stable orbit around the black hole
becomes comparable to the angular momentum of the innermost
stable circular orbit (ISCO), the accretion occurs through a
“dwarf” or “mini”-disk (Lee & Ramirez-Ruiz 2006; Zalamea
& Beloborodov 2009); during this transitional period, the black
hole could acquire rapid rotation and accretion takes place at
the rate Ṁ ∼ (0.1–0.2) M� s−1. At some time tsh that depends
on the stellar mass and rotational profile, the flow crossing the
ISCO becomes subsonic and a quasi-spherical accretion shock
wave forms around the black hole (e.g., MacFadyen & Woosley

1999; Lee & Ramirez-Ruiz 2006; Nagataki et al. 2007; López-
Cámara et al. 2009; Lindner et al. 2010).

The initial radius of the shock, rsh, is just larger than
rISCO ∼ 5–50 km, where the latter depends on the mass and
angular momentum of the black hole. If the shock proceeds
to travel outward, the rate with which material accretes onto
the black hole drops rapidly (Lindner et al. 2010), e.g., by a
factor of 10 or more during the first second from the inception
of the shock. Dynamics of the shock wave is governed by the
rate of stellar envelope infall and the conditions in the rotating
downstream fluid. Besides the heating at the accretion shock,
the fluid is heated by the dissipation of magnetohydrodynamic
(MHD) turbulence driven by the magnetorotational instability
(MRI; e.g., Thompson et al. 2005, and references therein).
The fluid cools by neutrino emission, primarily through pair
annihilation and pair capture onto nucleons (the Urca process).
The fluid also cools through the disintegration of nuclei into
helium and free nucleons as it passes the shock and accretes
toward the black hole. The latter process can be reversible, as the
energy consumed in disintegration can be recovered if the free
nucleons and helium end up getting transported by convection
(“dredged up”) to radii with lower entropies where they can
recombine into heavier nuclei.

The character of the flow is sensitive to the relative magnitude
of the cooling and heating rates. When the cooling is comparable
to the heating, the flow collapses into a rotationally supported,
neutrino-cooled accretion disk (e.g., MacFadyen & Woosley
1999; Popham et al. 1999; Narayan et al. 2001; Di Matteo
et al. 2002; Kohri & Mineshige 2002; Janiuk et al. 2004;
Setiawan et al. 2004; Kohri et al. 2005; Lee et al. 2005; Chen &
Beloborodov 2007; Kawanaka & Mineshige 2007). The flow
accretes onto the black hole through a thin disk when the
accretion rate is higher than a minimum value that depends
on the viscous stress-to-pressure ratio α and the black hole’s
spin parameter a; this is because disks with a larger α are less
dense and cooler. In disks that are optically thin to neutrinos, for
a given α, neutrino cooling dominates disk thermodynamics at
relatively high accretion rates and small radii; at lower accretion
rates or larger radii, the flow becomes geometrically thick and
nonradiative. For example, Chen & Beloborodov (2007) found
that for α = 0.01, a neutrino-cooled disk can be present around
an MBH = 3 M� black hole for Ṁ � (10−4 −10−3) M� s−1, but
for α = 0.1, the accretion rate must be Ṁ � (0.02–0.1) M� s−1

for a thin disk to be present.5

The true value of α in the regime in which pressure and
centrifugal forces are of the same order, and where the fluid,
as we shall see, is convective, is not known. If the flow is
convective, then the convection may contribute to the buildup
of the magnetic stress (Balbus & Hawley 2002; Igumenshchev
2002; Igumenshchev et al. 2003; Christodoulou et al. 2003), and
this may motivate a large value of α and a large critical accretion
rate required for the presence of a thin, neutrino-cooled disk.
If α ∼ 0.1, which is the value we take as the fiducial for what
follows, then the very initial accretion rate drop following shock
expansion already brings the accretion rate below the critical rate

5 If the volumetric neutrino cooling rate is Qν ∝ ρA T B , where
(A, B) = (0, 9) for pair annihilation and (A, B) = (1, 6) for Urca, and if, for
the purpose of illustration, radiation and low-density relativistic pairs dominate
the pressure at the thin-to-thick transition radius rν and the gravitational field
is Newtonian, then it is straightforward to show that for fixed Ṁ , we have
rν ∝ α2(4A+B)/(32–12A+5B), which gives rν ∝ α−18/13 for pair annihilation and
rν ∝ α−2 for Urca. The value of α must be smaller than a critical maximum
value if rν is to be larger than rISCO, as required for neutrino-cooled, thin-disk
accretion.

2



The Astrophysical Journal, 744:103 (15pp), 2012 January 10 Milosavljević et al.

for efficient neutrino cooling, and the flow is nonradiative and
geometrically thick at all radii.6 The toy model that we present
below will be restricted to this non-neutrino-cooled regime.

It may be worth noting that the picture in which a superson-
ically infalling flow passes an accretion shock, becomes pre-
dominantly rotationally supported, and proceeds to accrete onto
a central compact object, either through a neutrino-cooled thin
disk, or through a nonradiative thick disk, resonates with the
work examining the post-supernova fallback onto a neutron star,
or examining the Bondi–Hoyle accretion onto a neutron star em-
bedded in a common envelope (see, e.g., Chevalier 1996; Brown
et al. 2000, and references therein). Because the characteristic
accretion rates in these contexts, which are ∼1 M� yr−1, are
orders of magnitude below those anticipated in collapsars, the
maximum values of α for which neutrino-cooled disk solutions
exist are much smaller than those in collapsars. Furthermore,
photon diffusion may be relevant in the fallback and common-
envelope contexts (see, e.g., Blondin 1986), but in collapsars,
complete photon trapping is a safe assumption.

We work under the assumption that the accretion shock
remains quasi-spherical as it traverses the star, and thus, that
the thermal “wind” produced in the inner accretion disk remains
trapped within the surface of the shock so that the wind’s energy
is distributed quasi-spherically behind the shock, as seen in
idealized 2.5D simulations (Lindner et al. 2010). We can allow
for the possibility that a collimated electromagnetic outflow
distinct from the thermal wind, such as a jet enveloped by a
cocoon of shocked stellar fluid (see, e.g., Zhang et al. 2003,
2004; Zhang & MacFadyen 2006; Morsony et al. 2007; Wang
et al. 2008), is present along the axis of rotation; our analysis
should be construed as applying to the equatorial region not
occupied by the jet. Regardless of the presence of the jet,
on timescales much shorter than the free-fall time from the
surface of the star, the axial “funnel” region is not empty, and
remains overpressured either by the freely falling axial low-
angular-momentum material, or by the jet’s hot cocoon. Thermal
outflow from the predominantly rotationally supported central
accretion flow launches at oblique angles from the surface of
the disk, following “gyrentropes” (the surfaces of approximately
constant angular momentum, Bernoulli function, and entropy;
see Blandford & Begelman 2004), as is evident in numerous
simulations of radiatively inefficient accretion flows in regions
in which the magnetic field is not dynamically important (Stone
et al. 1999; Igumenshchev et al. 2000; Abramowicz et al. 2002;
Hawley & Balbus 2002; Proga & Begelman 2003; Proga et al.
2003; Lindner et al. 2010). The thermal wind then mixes with the
post-shock fluid; in this sense, we think of the oblique thermal
wind as a form of convection (or, more adequately, stochastic
circulation) with an effective mixing length that can be large
and need not be limited by the local pressure scale height.

At radii r � rISCO, the turbulent dissipation rate (due to
MRI) is a steeply declining function of radius and this gives
rise to strong entropy inversion and convective instability. The
degree of rotational support in the post-shock fluid increases
inward (Lindner et al. 2010). The inner, rotationally supported
torus may, according to the Solberg–Høiland criterion, be
convectively stable in the equatorial direction; instability is still

6 In our companion 1.5D numerical simulations (Lindner et al. 2011), we
estimated the vertical-pressure-scale-height-to-radius ratio and found that in
our fiducial model, within r � (100–200) km the ratio dipped below 0.5, the
value characteristic of a geometrically thick flow, but only moderately, to 0.3.
The flow remained relatively geometrically thick at all times. We attributed the
observed moderate thinning of the accretion flow to the cooling of the flow by
the dissociation of helium nuclei into free nucleons.

present in a direction inclined relative to the equator, and a
fluid element thus transported obliquely, along a gyrentrope,
eventually mixes with the denser equatorial fluid. With this
in mind, we develop an effective, spherically averaged picture
in which we postulate that convective heat transport proceeds
according to the prescription of mixing length theory (MLT)
for a non-rotating atmosphere in which the mixing length is
interpreted as a parameter that hides the complexity arising
from the rotation and vertical stratification.

The specific angular momentum of the post-shock fluid
immediately following shock formation is only slightly larger
than that of a circular orbit at rISCO. The mass of the shocked fluid
comprises only a small fraction of the mass of the progenitor
star. Barring an extremely steep pre-collapse radial gradient
in the specific angular momentum of the progenitor star, the
specific angular momentum in the shocked fluid varies only
over a narrow range of values, and is further homogenized by
convective mixing. At the smallest radii, viscous redistribution
produces a small, positive gradient in � turning over to a small
negative gradient at radii at which the viscous time (associated
with the MRI stress) becomes comparable to the age of the flow.
At radii where the viscous time is longer than the age of the flow
so that no significant viscous angular momentum redistribution
could have taken place, the specific angular momentum is a
passive scalar transported by convective eddies. We refer the
reader to Figure 4 in Lindner et al. (2010), where the near-radial
independence of the specific angular momentum of the shocked
fluid can clearly be seen.

3. ADVECTION AND CONVECTION

A fraction of the energy dissipated by the accreting shocked
stellar envelope is advected into the black hole; the rest is trans-
ported outward by convection and can power an explosion. Here
we study the competition between advection and convection in
the innermost segments of the accretion flow and attempt to as-
sess the asymptotic luminosity carried by the shocked envelope.
We work in the spherically averaged picture in which fluid vari-
ables depend on the spherical radius r and represent spherical
averages over the angular coordinates θ and φ. In Section 3.1,
we write relations for the transport of internal and total energy in
the inner accretion flow, and in Section 3.2 we discuss the nature
of radial force balance in the flow. In Section 3.3, we present our
toy model for the radial structure of the flow. In Section 3.4, we
justify our adoption of a simple equation of state that will serve
as basis for our toy models. In Section 3.5, we review the sev-
eral key timescales characterizing the innermost accretion flow.
In Section 3.6, we argue that convection is an effective energy
transport mechanism only down to some minimum radius; at
still smaller radii, the energy dissipated by accretion is advected
into the black hole. In Section 3.7, we provide estimates of lu-
minosity carried by convection. In Section 3.8, we discuss the
impact of nuclear processes, and in Section 3.9 we summarize
our conclusions to help us prepare to undertake an analysis of
the structure and dynamics of the envelope in Sections 4 and 5.

3.1. Energetics and Transport

At radii much smaller than the radius of the shock, r � rsh,
where the accretion flow is in a quasi-steady state characterized
by a radial force balance and the bulk inward motion is entirely
due to viscous accretion, the conservation of internal energy can
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be written in the form

vrρT
ds

dr
+

1

r2

d

dr
[r2(Fconv +vrρεnuc +Fmix)] = Qvisc−Qν, (1)

where vr is the mass-weighted average radial velocity, ρ is
the fluid density, s is the specific entropy, εnuc is the specific
(negative) nuclear binding energy, Fconv is the heat flux carried
by convection, Fmix is the flux of nuclear binding energy due to
convective mixing, Qvisc is the rate of viscous dissipation that
is proportional to the square of the local shearing rate, and Qν

is the rate of cooling through neutrino emission under optically
thin conditions. For the purpose of analytic transparency and
clarity, we have opted not to carry out a formally self-consistent
spherical averaging procedure in which all specific-angular-
momentum-dependent terms in Equation (1) and, depending on
the symmetries assumed, the forthcoming equations could carry
additional numerical factors resulting from the θ -dependence of
�(r, θ, φ).7

In the part of the flow where the fluid is in radial force
equilibrium, the radial motion associated with the viscous
angular momentum transport occurs with velocity

vr ∼
(

r2ρ
d�

dr

)−1
d

dr

(
r4νρ

dΩ
dr

)
, (2)

where ν is the kinematic shear viscosity and Ω = �/r2 is
the angular velocity. This result applies at the radii that are in
viscous quasi-equilibrium, i.e., where radial angular momentum
transport rate is approximately independent of radius; note also
that vr (r) must be continuous and differentiable at any local
extrema of �(r).

The conservation of total energy can be expressed as

1

r2

d

dr

{
r2vrρ

[
1

2

(
v2

r +
�2

r2

)
+

γP

(γ − 1)ρ
+ εnuc + Φ

]

− r2ρν�
dΩ
dr

+ r2(Fconv + Fmix)

}
= −Qν, (3)

where γ is the adiabatic index of the shocked fluid and Φ is the
gravitational potential. We work in the approximation in which
the gravitational potential and fluid mechanics are nonrelativis-
tic; this is clearly not true close to the black hole, but for our
purposes it will suffice that it be a good approximation outside
the innermost advective region. In line with our hypothesis that
the post-shock-formation accretion rate drops below the critical
value for efficient neutrino cooling, we will assume Qν ≈ 0.

In MLT, if global compositional gradients and nuclear com-
position changes inside convective cells can be ignored, the heat
flux carried by convection is

Fconv = 1

4
cP ρ

[
−∇Φ

ρ

(
∂ρ

∂T

)
P

]1/2

λ2
conv

(
− T

cP

ds

dr

)3/2

, (4)

where cP is the specific heat at constant pressure and λconv is the
convective mixing length. The nuclear binding energy is a sum
over nuclear species, εnuc = ∑

i EiXi/mi , where Ei, Xi, and mi
denote, respectively, the binding energies, mass fractions, and

7 For example, if the density ρ is assumed to be spherically symmetric and
spherical shells are assumed to rotate rigidly, � ∝ sin2 θ , then the “�”
appearing in the equations in this section can be interpreted as representing
2/3 of the maximum, equatorial specific angular momentum, while the terms
quadratic in � would require an overall correction factor of 6/5.

nuclear masses of the species. We model the mixing of nuclear
species in the diffusion approximation (e.g., Cloutman & Eoll
1976; Kuhfuß 1986)[

∂(ρXi)

∂t

]
mix

= 1

r2

∂

∂r

(
r2 1

3
χmixvconvλconvρ

∂Xi

∂r

)
, (5)

where

vconv ∼ 1

2
λconv

[∇Φ
ρ

(
∂ρ

∂T

)
P

T

cP

ds

dr

]1/2

(6)

is the velocity of convective cells and χmix ∼ 1 is a dimen-
sionless parameter characterizing the efficiency of convective
mixing.8 The flux of energy due to the convective mixing can
then be obtained by multiplying Equation (5) with Ei/mi and
summing over nuclear species to find

Fmix = −1

3
χmixvconvλconvρ

dεnuc

dr
. (7)

We assume that the convective motions are subsonic.

3.2. Radial Force Balance and Viscosity

If the shocked accretion flow has nearly uniform specific
angular momentum, the fractional contribution of rotation to
radial force balance decreases radially outward. A relatively
large mass fraction of the shocked fluid is supported by radial
pressure gradients, and only a very small fraction is rotationally
supported (Lindner et al. 2010). Let rrot be defined as the
radius at which the radial pressure gradient force and the
centrifugal force are equal, −ρ−1dP/dr = �2/r3 ∼ 1

2∇Φ.
We will find in the model star that we consider, the black hole
strongly dominates the gravitational potential at r � 104 km
at all times (see Section 5 and Figure 1); at these radii, the
infalling gas is a negligible perturbation. Thus, here we take
that ∇Φ ∼ GMBH/r2. Given the weak dependence of � on
radius, since the centrifugal acceleration equals a half of the
gravitational acceleration at rrot, we have

rrot ∼ 2
�2

GMBH
. (8)

The radius rrot should not be confused with the circular test
particle orbit radius which occurs at �2/(GMBH), again treating
the potential as Newtonian. While the fluid is in approximate
radial force balance on both sides of rrot as long as the latter
radius is contained within rsh, the structure of the flow changes
character at rrot.

At pressure-supported radii, r � rrot, the contribution of rota-
tion to radial force balance is negligible, and thus a hydrostatic
balance can be achieved if the pressure is P ∼ ρλP ∇Φ. If
the vertical and horizontal pressure scale heights are compara-
ble, i.e., if the flow is thick and radial stratification limits the
growing wavelength of the MRI, viscosity can be modeled with
(Thompson et al. 2005)

ν ∼ αλ2
P Ω (pressure support), (9)

8 For a criticism of the application of MLT to mixing, see, e.g., Ventura et al.
(1998) and references therein.
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Figure 1. Density ρ, radial velocity vr , and pressure P of the toy model as
given by Equations (37), (40), and (41), for M = 12.5 M�, r = 1010 cm,
γ = 1.4, MBH,0 = 2.5 M�, � = 1017 cm2 s−1, α = 0.1, λconv/r = 0.75,
Lnuc = 0, tsh = 20 s, and t − tsh = (0.5, 1, 2, 4, 8) s; the convective luminosity
was calculated from Equation (28). The radial velocity does not take into account
the negative radial velocity resulting from viscous angular momentum transport.
The density jump at the shock is smaller than it should be because our adopted
density profile for the infalling envelope, ρ ∝ r−3/2 for rsh < r < rcrit is too
steep at radii just smaller than rcrit, where ρ ∝ r−1.

where λP ≡ |∇ ln P |−1 is the local pressure scale height. The
viscous heating rate is Qvisc = ρνσ 2, where σ = rdΩ/dr is
the shear. With this, the viscous heating rate is

Qvisc ∼ αρλ2
P Ω

(
r
dΩ
dr

)2

(pressure support). (10)

Where the flow is predominantly rotationally supported, r �
rrot, and especially if it collapses into a thin, neutrino-cooled
disk, in which the vertical pressure scale height limits the MRI,
we would instead have the thin disk value (Shakura & Sunyaev
1973)

ν ∼ αP/ρΩ (rotational support). (11)

We will find that the radii of interest are almost certainly
unaffected by neutrino cooling, but the form of viscosity in

Equation (11) is still the appropriate one in the region r < rrot.
With this,

Qvisc ∼ α
P

Ω

(
r
dΩ
dr

)2

(rotational support). (12)

3.3. A Model for Radial Structure

With the black hole dominating the gravity, ∇Φ ≈ GMBH/r2,
we model the density, pressure, and specific angular momentum
with power-law profiles,

ρ ∝ r−δ, P ∝ r−ξ , � ∝ rλ. (13)

Then, mass continuity ∂(r4vrρ)/∂r = 0 combined with
Equations (2) and (9) and hydrostatic balance implies that
ξ ≈ δ + 1 = λ + 2. Note that λ can be positive or negative.
With this, for nearly radially independent specific angular mo-
mentum λ ≈ 0, we have that ξ ≈ 2, so that P ∼ 1

2ρGMBH/r

and ν ∼ 1
4α�. Recall that an approximate radial independence

of the specific angular momentum is expected given the argu-
ments we have presented in final paragraph of Section 2 and is
seen in rotating, two-dimensional numerical simulations (see,
e.g., Lindner et al. 2010, Figure 4).

At rotationally supported radii, r � rrot, if the disk half-
thickness is one-half of the radius, H ∼ 1

2 r , and vertical
pressure balance requires (H/r)−2(P/ρ) ∼ GMBH/r , it follows
that P ∼ 1

4ρGMBH/r and from Equation (11) we find that
ν ∼ 1

4αGMBHr/�. Mass continuity and hydrostatic balance
now imply ξ ≈ δ + 1 ≈ 3 − λ. Note the slightly different
numerical coefficient multiplying ρGMBH/r in the expression
for pressure in the rotationally and pressure-supported regimes.

In what follows, we adopt, but cannot rigorously justify,
the power-law model for the radial dependence of the density
and pressure in Equation (13). The model is certainly ad hoc,
but it does seem to crudely approximate the structure of the
solutions that we have obtained with full, time-dependent,
hydrodynamical integrations that we present in a separate,
companion paper (Lindner et al. 2011), where we find

ξ ≈ 2, δ ≈ 1, λ ≈ 0 (pressure support), (14)

over a wide range of radii where the shocked fluid is supported
by pressure. In our analytical toy model, unless we explicitly
state otherwise, we assume that the power laws with indices
in Equation (14) describe the radial structure of the pressure-
supported shocked fluid even where viscous quasi-equilibrium
has not been reached. The power-law model allows us to
investigate the general properties of collapsar hydrodynamics
in the aftermath of the formation of a black hole, and illustrate,
as we shall see, the potential for an accretion-powered explosion,
but does not grant us the ability to assess the energetics of the
explosion with accuracy.

3.4. The Equation of State in the Innermost Flow

To allow us to develop an analytical toy model of the in-
nermost accretion flow, we adopt a simple equation of state.
Chen & Beloborodov (2007) showed that the inner, geometri-
cally thin, neutrino-cooled disk is on the cusp of degeneracy
and does not submit itself to reduction to one of the analytically
tractable limits (see, also, Bisnovatyi-Kogan 2001). However,
in our companion numerical investigation (Lindner et al. 2011),
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we find that following the rapid drop in the central accretion
rate, the accretion flow no longer cools efficiently and is hot and
geometrically thick with the densities and temperatures reach-
ing ∼108 g cm−3 and ∼2 × 1010 K, respectively, at the relevant,
innermost radii. Relativistic electrons and pairs dominate the
pressure and the adiabatic index remains ≈4/3. Following a
brief transient associated with the initial formation of a rota-
tionally supported torus, degeneracy remains weak, μe < kT ,
within the innermost ∼1000 km, where μe denotes the electron
chemical potential.

To proceed with our highly simplified analysis of the ampli-
tudes the various terms in Equation (1), we will assume that
photons and low-density relativistic electrons and pairs domi-
nate the equation of state in the thick disk so that P ∝ T 4 and
s ∝ T 3/ρ, and will pretend that the impact of nuclear processes
on the energetics can be ignored (we lift the latter restriction in
Section 3.8 below). For proton-to-nucleon fractions Ye ∼ 0.5
and the relevant range of densities and temperatures, the as-
sumed scalings of the pressure and specific entropy are valid as
long as (30/7π6)(pFc/kT )6 � 1, where pF = (3π2ρ/2mp)1/3h̄

is the Fermi momentum, or T � 1.4×1010 (ρ/108 g cm−3)1/3 K
(see, e.g., Bisnovatyi-Kogan 2001). In the hot, geometrically
thick, low accretion rate regime, this condition is satisfied in the
inner ∼1000 km, where we are about to argue a critical radius
should exist within which convection will fail to transport the
dissipated energy. Our adoption of a simple equation of state
allows us to construct a crude analytical toy model for the ac-
cretion flow; for a more accurate numerical treatment, please
see Lindner et al. (2011).

3.5. Timescales

For reference, here we provide and comment on several
timescales characterizing the innermost accretion flow. The
timescales can be compared with the one on which the energy
liberated in central accretion flow energizes the stellar envelope,
which in Section 5 we find is rather long, ∼10 s or longer.
We evaluate the characteristic timescales assuming the ad hoc
power-law radial scalings in Equation (13) with the indices given
in Equation (14), in the regime in which the flow is supported
by pressure. In place of the dynamical timescale we quote the
timescale for free fall from rest at infinity

τFF ∼ r

vFF
∼ r3/2

(2GMBH)1/2

∼ 1 ms
( r

100 km

)3/2
(

MBH

5 M�

)−1/2

. (15)

The viscous timescale can be estimated by dividing the radius
with radial velocity, given in Equation (2) resulting from angular
momentum transport by the viscous torque

τvisc ∼ r

vr

∼ 1

2

r4

α λ2
P �

∼ 20 ms
( α

0.1

)−1 ( r

100 km

)2
(

�

1017 cm2 s−1

)−1

. (16)

Thus, over the relevant ∼10 s timescale, only portion of
the shocked, pressure-supported material within the inner
∼2000 km can accrete viscously. Since τconv ∝ r3/2 while
τvisc ∝ r2 with a larger numerical prefactor, we have τconv �
τvisc at the larger radii in the shocked fluid that convective cells

have reached. Convection alone will tend to erase gradients in
the specific angular momentum profile, consistent with our as-
sumptions that λ ≈ 0, and this is clearly seen in two-dimensional
simulations (see, e.g., Lindner et al. 2010, Figure 4).

With the convection we associate the convective eddy radial
crossing timescale

τconv ∼ λconv

vconv
∼ 4 r3/2

(2GMBH)1/2

∼ 4 ms
( r

100 km

)3/2
(

MBH

5 M�

)−1/2

, (17)

which is only somewhat longer than the free-fall timescale as a
consequence of the steep negative entropy gradient implied by
our assumed density profile.

We turn to estimating the timescale for cooling by neutrino
emission. At densities ρ ∼ 107 g cm−3 (the density dependence
is relatively weak) and temperatures �1010 K, the nuclei are
almost completely disintegrated and neutrino emission by pair
capture onto nucleons (Urca) dominates the cooling. At lower
temperatures, a fraction of the nucleons are in nuclei and
neutrino emission by pair annihilation dominates. Ignoring the
weak dependence of the free nucleon fraction and of the Urca
cooling rate on density, we can write (see, e.g., Popham et al.
1999; Di Matteo et al. 2002)

Qcool ∼ 1025 erg s−1 cm−3

×
⎧⎨
⎩

0.9 (TK/1010)6(ρg cm−3/107), TK � 1010,

0.5 (TK/1010)9, TK � 1010.

(18)

With this, the cooling times are

τcool ∼ P

(γ − 1)Qcool

∼
⎧⎨
⎩

2.2 s (rkm/100)1/2 (ρg cm−3/107)−3/2 (MBH,�/5)−1/2,

0.6 s (rkm/100)5/4 (ρg cm−3/107)−5/4 (MBH,�/5)−5/4,

(19)

where the first version applies at temperatures above ∼1010 K,
the second below. Note for the densities assumed here and
verified in Section 5 and Figure 1, we have that τcool �
τvisc, τconv at all radii, which justifies our neglect of cooling in
the treatment of the flow energetics. We provide the timescale
for convergence to nuclear statistical equilibrium (NSE) in
Equation (53) below.

An additional timescale is the shock crossing time (see
Section 5 below)

τshock ∼ r

vsh
∼ 100 ms

( r

100 km

) ( vsh

103 km s−1

)−1
, (20)

where vsh is the shock velocity. Comparing τconv with τshock
for the fiducial choice MBH ∼ 5 M�, we find that for vsh ∼
104 km s−1, the convection can keep up with the shock out to
∼600 km, while for slower shocks vsh ∼ 103 km s−1, convection
can keep up until the shock has reached ∼6 × 104 km. Indeed,
we will find that the shock slows down considerably after the
first ∼10 s. This justifies our assumption that convection is fully
developed in the shocked stellar envelope and can transport
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energy from the innermost accretion flow toward the shock wave
in the course of its traversal of the progenitor’s interior. The
shock, however, must eventually decouple and re-accelerate in
the outer atmosphere.

3.6. The Failure of Convection at Small Radii

We will attempt to compare the relative amplitudes of the ad-
vection term Qadv ≡ vrρT ds/dr , the convection term Qconv ≡
�∇· �Fconv = r−2d(r2Fconv)/dr , and the viscous heating term Qvisc
in Equation (1). The detailed form of these terms depends on the
equation of state; we work assuming that P ∝ T 4 and s ∝ T 3/ρ
(see Section 3.4). In the pressure-supported regime, with hydro-
static balance implying ξ ≈ δ + 1, we find Qadv ∝ r−2−ξ+λ,
while the convective term is Qconv ∝ r−3/2−ξ , thus the ratio of
the advection to the convective term is Qadv/Qconv ∝ r−1/2+λ,
which for rotation laws λ < 1/2 increases inward. This opens
the possibility for the presence of an ADAF at the very smallest
radii; at larger radii, we have a convection-dominated accre-
tion flow (CDAF; see, e.g., Stone et al. 1999; Igumenshchev
et al. 2000; Blandford & Begelman 2004). In the rotationally
supported regime, Qadv ∝ r−1−ξ−λ and Qadv/Qconv ∝ r1/2−λ,
implying that, to the extent that convective transport in the ro-
tationally supported regime (see Section 2) can be modeled
with MLT—this assumption can only be tested and calibrated
with multidimensional hydrodynamic simulations—the small-
est radii favor a CDAF. Thus for estimating the luminosity car-
ried by the shocked fluid toward the expanding shock wave, it is
key to pin down the radius rADAF of the ADAF–CDAF transition
and its relation to the radius rrot separating the inner rotationally
supported region from the outer, pressure-supported region. The
radii ∼rrot seem to be the most susceptible to the appearance of
an ADAF.

The ADAF regime can occur at radii smaller than a transition
radius rADAF where the spherically averaged advection fluxes
in Equation (3), in brackets, exceed the convection fluxes Fconv
and Fmix. This, in general, differs from the criterion requiring
that (Qadv,Qconv) > Qvisc in the equatorial region, which
has been employed elsewhere (e.g., Kohri et al. 2005), since
we distinguish spherically averaged advection and spherically
averaged convection. In what follows we will conservatively
assume that an ADAF is present and

rADAF � rrot (21)

so that at r < rADAF, the bulk of the dissipated energy travels
inward. If ADAF is absent and CDAF extends to the innermost
radii, then rADAF in the forthcoming development should be
replaced by rISCO; in this case, the convection must carry most
of the energy dissipated according to Equation (12).

Comparing the negative (radially inward) radial advection
luminosity

Ladv = 4πr2vr

γP

γ − 1
(22)

to the positive (radially outward) accretion luminosity

Lacc = 4πr2vrρΦ (23)

in the pressure-supported regime we find that Ladv ∝ r−ξ+λ+1

while Lacc ∝ r−1. Again, since ξ ≈ δ + 1 = λ + 2 for r > rrot,
we find that Ladv = −2Lacc ∝ r−1. On the other hand, the
convection luminosity

Lconv = 4πr2Fconv (24)

is Lconv ∝ r−ξ+3/2 ∝ r−λ−1/2. In this regime, the energy flux
due to kinetic energy advection is minus one-half of the viscous
torque; their sum should be relatively small at the radii where
Lconv dominates energy transport. With λ < 1

2 , therefore, there is
a radius at which the positive convection luminosity Lconv cannot
compete with the inward advection luminosity reduced by the
outward accretion luminosity Ladv + Lacc as long as pressure
support holds. Note that the viscous luminosity

Lvisc = −4πr2ρν�
dΩ
dr

(25)

is relatively small compared to Ladv and Lacc.

3.7. Estimates of the Luminosity

The luminosity that is transported outward from the smallest
radii through the convective shocked stellar envelope is chal-
lenging to estimate because of the non-self-similar nature of the
accretion flow. In this section, we consider energy transport by
hydrodynamic processes: advection, viscous stress, and convec-
tion; we recall that cooling by neutrino emission is inefficient
and defer addressing of the role of nuclear compositional trans-
formation in the transport of energy to the following section.
To offset theoretical uncertainties, we attempt to place multiple
constraints on the luminosity. If the specific angular momentum
in the shocked region is nearly independent of radius, |λ| � 1

2 ,
mass continuity at the radii where ∂�/∂t ∼ 0 implies δ ≈ 1.
As indicated in Section 3.3, we adopt an ansatz whereby ξ = 2,
δ = 1, and λ ≈ 0 throughout the pressure-supported section of
the shocked region, even the radii where the flow has not reached
viscous quasi-equilibrium, so that ρ(r) = ρ(rADAF)rADAF/r .
Since the sum of advection, accretion, and convection luminosi-
ties, Ladv + Lacc + Lconv, must be independent of radius in a
quasi-steady state, the pressure profile at the radii where con-
vection does not dominate energy transport should rise inward
less steeply than radial hydrostatic balance implies; the latter is
possible, of course, because of the increasing role of rotation at
small radii.

We hypothesize that Ladv(rrot) + Lacc(rrot) ∼ 0, which is
indeed satisfied if P (r � rrot) ∼ 1

4ρGMBH/r as we suggested
above; thus, the net luminosity flowing through this radius,
ignoring nuclear and neutrino contributions, is simply the
convection luminosity L = Lconv(rrot). With this, we have that
L = (Ladv +Lacc +Lconv)(rrot) ∼ L1, where in the toy model with
radiation-like equation of state (Section 3.4), from Equations (4)
and (8),

L1 ≡ Lconv(rrot) ∼ πGMBH�ρ(rrot)

[
λconv(rrot)

rrot

]2

. (26)

Note that L1 does not depend on the viscosity parameter α.
The ADAF–CDAF transition radius rADAF can be defined as

the radius at which Ladv = −Lconv. From this and Equations (4),
(22), and (24) we obtain

rADAF ∼ 32α2 �2

GMBH

[
λconv(rADAF)

rADAF

]−4

, (27)

which is larger than rrot when λconv(rADAF) < 2α1/2rADAF. The
advection radius rADAF is larger by a dimensionless factor of
the form ∼16 [λconv(rADAF)/rADAF]−2 than the critical radius,
discussed by Abramowicz et al. (2002), at which the accretion
velocity |vr | exceeds the velocity of convective cells vconv.
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Combining Equation (27) with Equation (23) we have L =
(Ladv + Lacc + Lconv)(rADAF) ∼ L2 where

L2 ≡ Lacc(rADAF) ∼ 2παGMBH�ρ(rADAF). (28)

Since convection can carry the luminosity L to the accretion
shock, the energy available to power an explosion is also
sensitive to �, λconv, and α; it will be also sensitive to the nuclear
processes that we have neglected in this toy model thus far.
Of course, if α is particularly small, neutrino cooling and the
settling of the flow into a thin disk may start competing with
advection at the smallest radii.

An additional lower limit on rADAF can be placed by noting
that this is the smallest radius such that convection can transport
all the energy dissipated exterior to the radius,∫ r

rADAF

Qvisc4πr2dr � Lconv(r) for any r > rADAF, (29)

which, with Equations (4), (10), and (24), yields the condition

rADAF � 2α2/3 �2

GMBH

[
λconv(rADAF)

rADAF

]−4/3

. (30)

This differs from our previous estimate only by a numerical
constant of the order of unity and should be interpreted as only
a lower limit on the ADAF–CDAF transition because of the
possibility that advection or nuclear energy transfer through
disintegration, recombination, and compositional mixing is still
able to carry inward some of the energy dissipated outside this
radius.

The density at the rotation and the advection radius can be
related to the immediate post-shock density via ρ(rrot)rrot ∼
ρ(rADAF)rADAF ∼ ρ(rsh)rsh. With this, we have that, for α ∼
0.1, the two different luminosity estimates are comparable,
L2/L1 ∼ (8α)−1[λconv(rADAF)/rADAF]2 ∼ O(1), which lends
support to the consistency of our two methods to estimate the
luminosity carried by the convective envelope. We can thus
combine Equations (26) and (28) to write

L ∼
[

1,
1

8α

(
λconv

r

)2

rADAF

]
π

2

(GMBH)2

�

×
(

λconv

r

)2

rADAF

rshρ(rsh), (31)

where the dimensionless coefficients in brackets correspond to
L ∼ L1 and L ∼ L2, respectively.

If the gravitational potential is approximately Keplerian, hy-
drostatic balance in the pressure-supported outer parts of the
post-shock region requires that P ∝ r−ξ with ξ = 2, and
thus, most of the mass and energy resides close to the shock.
In a medium in which relativistic, low-density electrons and
pairs dominate the equation of state, 4πr2Fconv ∝ r−ξ+3/2,
hence (δ, ξ ) = (1, 2) does not ensure a radius-independent
convective luminosity. In reality, some of the convective lu-
minosity is converted into bulk motion with vr > 0, and
weakly relativistic and degenerate electrons and pairs will dom-
inate the equation of state; these effects will reconcile the
radial momentum equation for the non-rotating outer region,
vrdvr/dr = −∇Φ − ρ−1dP/dr , with the convective flux con-
servation d(r2Fconv)/dr = 0 to yield the correct, and likely
radially dependent, indices δ and ξ . We allow our toy model to

depart from local self-consistency; instead, in Section 4 below,
we require global mass and energy conservation. Beforehand,
however, we must address the possibility that nuclear composi-
tional transformation contributes to radial energy transport.

3.8. Nuclear Disintegration and Recombination

Our requirement that neutrino cooling be inefficient at rISCO
can clearly be relaxed to require that it be inefficient at rADAF;
this is generally the case for relatively large α and central
accretion rates Ṁ � 0.1 M� s−1. Relativistic effects are also
weak outside rADAF, especially when the black hole rotates
rapidly. A more significant concern is the possibility that
nuclear composition changes as material passes the shock and
arrives at rADAF. At densities expected in the vicinity of rADAF,
which are ∼106–108 g cm−3, and on timescales ∼0.1–10 s, the
principal nucleosynthetic products reach NSE conditions at
temperatures T � 4 × 109 K. For proton-to-nucleon fractions
Ye ∼ 0.5, the iron-group-to-helium transition takes place at
T ∼ (5–7) × 109 K, and the helium-to-free nucleon transition
takes place at T > (7–10) × 109 K. These temperatures can
be compared to an estimate of the temperature in our model at
pressure-supported radii, r > rrot, that reads

T ∼ 1.3 × 1010 K βrad,1/3

(
GMBHr

�2

)−1/4 (
MBH

5 M�

)1/4

×
(

ρ

107 g cm−3

)1/4 (
�

1017 cm2 s−1

)−1/2

, (32)

where βrad,1/3 is the fraction of pressure in relativistic species
to total pressure in units of one third. The temperature of
the accretion flow clearly straddles the temperatures at which
compositional transitions occur.

If the helium-to-nucleon transition occurs at radii rdis com-
parable to or smaller than rADAF, which can be the case during
a period following shock formation, then the net energy flux
through rADAF should be augmented with

Lnuc∼
{

4πr2ρ

[
vr

(
εnuc−ε∞

nuc

)−1

3
χmixvconvλconv

dεnuc

dr

]}
rADAF

,

(33)

where ε∞
nuc ≈ −8 MeV/mp is the specific (negative) pre-shock

nuclear binding energy of the material at the advection radius.
The second term in brackets in Equation (33) represents the
outward energy transport arising from the convective compo-
sitional mixing. If, with the help of Equations (2) and (9), we
identify

Ṁ = −4πr2ρvr ∼ 2πα�rshρ(rsh) (34)

with the rate with which shocked material accretes onto the
black hole, and further identify

Ṁconv = 4πr2ρvconv (35)

with the rate with which convective cells transport mass radially,
then we can rewrite Equation (33) as

Lnuc ∼
[(

ε∞
nuc − εnuc

)
Ṁ − 1

3
χmix

λconv

r

dεnuc

dr
Ṁconv

]
rADAF

.(36)

It is typical of CDAFs that Ṁconv � Ṁ , and thus, depending
on the relative location of rdis and rADAF, the mixing term
may reduce the parameter space in which Lnuc < 0 and could
potentially even lead to Lnuc > 0.
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3.9. Summary on Advection and Convection

Our goal has been to estimate the rate with which energy
is carried toward larger radii of the shocked stellar atmosphere
where the flow has the potential to become “dynamical” and en-
gender an explosion. If given such an estimate of the luminosity
of the inner accretion flow, we are in position to investigate the
global, time-dependent hydrodynamics of the star by treating
the central luminosity as a source and by requiring global en-
ergy conservation. This is the subject of the following section.
To attempt to estimate the luminosity, we have examined ra-
dial energy transport in the inner accretion flow which occurs
in an approximate quasi-steady state so that the time derivative
term in the spherically averaged energy transport equation can
be neglected and radial force balance is a good approximation.
Unfortunately, exact analytical treatment is complicated by the
radially increasing dominance of pressure support over rota-
tional support in our model. For this reason, we have steered
away from attempting to identify a formal solution to the eigen-
value problem defined by the conservation of mass, angular
momentum, and energy in a flow allowing for advection as
well as convection (see, e.g., Abramowicz et al. 2002; Lu et al.
2004, who solve the eigenvalue problem under simplifying as-
sumptions that do not apply in the present context). Instead, we
have adopted an intuitive approach in which we make educated
guesses about the radial scaling of the fluid variables.

Our intuitive approach has allowed us to conclude that while
the dominant energy transport term at large radii is convection,
at small radii, convection should not be able to compete with
advection, implying that the flow transitions from a CDAF to an
ADAF at some critical radius. This critical radius will generally
depend on the viscous stress-to-pressure ratio α, the efficiency
of the convection (which we parameterize in terms of the mixing
length), and the angular momentum of the accreting fluid, but
in our approximate treatment, we are not able to pin it down
with absolute certainty; instead, we provide an approximation
in Equation (27) and a lower limit in Equation (30). Only the
energy dissipated outside the critical radius will flow outward
and contribute to the luminosity of the central source. We
have obtained two slightly different estimates of the luminosity,
which we summarize in Equation (31), and have also estimated
the impact of energy transport by nuclear disintegration and
recombination in Equation (36). In the following section, we
incorporate the luminosity estimate in dynamical model of the
envelope surrounding the inner, rotationally supported accretion
flow.

4. MASS AND ENERGY CONSERVATION

We proceed to study the global dynamics of the stellar enve-
lope outside of the innermost, rotationally supported accretion
flow. A fraction of the envelope has passed the accretion shock;
the kinematics of the shock, as we shall see, is the principal
determinant of the conditions in the innermost flow, while the
luminosity transported outward from the innermost flow is the
driver of the shock’s dynamics. Keeping in mind this interde-
pendence, we model the density and radial velocity structure of
the fluid flow inside and outside the shock radius and require
mass and energy conservation. Normally, mass, momentum, and
energy conservation are imposed in the form of jump conditions
applied to the shock transition itself, but this approach generally
leads to violation of global mass and energy conservation, unless
one solves the full, time- and radius-dependent hydrodynamic
transport equations. For the purpose of analytic transparency,

we opt for a simpler approach in which we adopt a model den-
sity and velocity field, and then require global mass and energy
conservation. This may violate local conservation at the shock.

If at mass coordinates just exterior to those first passing
through a nascent accretion shock, the stellar pre-supernova
density profile is approximately ρ,t=0 ∼ M/4πrr

2, where
M the stellar mass enclosed within some radius r, then the
subsequent flow of material into the shock may resemble the
self-similar collapse of nearly hydrostatic isothermal spheres of
Shu (1977). This solution is characterized by a critical point (a
rarefaction front) that recedes into the pre-collapse envelope at
the speed of sound. The critical point starts traversing the star
outward at t = 0, and thus it is well ahead of the shock front,
which starts traveling after tens of seconds, even if the shock
travels supersonically. The density profile of the collapsing
envelope in the self-similar solution steepens from ρ ∝ r−1 in
the immediate vicinity of the critical point to ρ ∝ r−3/2 at radii
r � rcrit ∼ (5–10) × 104 km, where the critical point traverses
the star at the sound speed drcrit/dt = (γGM/2r)1/2, where
γ is the adiabatic index of the stellar envelope. We adopt
ρ ∝ r−3/2 for the infalling envelope. The fluid velocity can
be approximated via v ∼ (1 − r/rcrit)vff , where vff(r, t) =
−[GM(r, t)/r]1/2 is the free-fall velocity.

Let M be the stellar mass enclosed within some radius r.
Then we model the stellar density profile via

ρ(r) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Msh/
(
2πr2

shr
)
, r < rsh,

M/
(
4πrr

1/2
crit r

3/2
)
, rsh < r < rcrit,

M/(4πrr
2), rcrit < r < r,

(37)

where
Msh = 2πr3

shρ(rsh) (38)

is the mass of the shocked fluid. The equation of mass continuity
in the post-shock fluid, ∂ρ/∂t + r−2∂(r2vrρ)/∂r = 0, implies,
for the outer region r ∼ rsh in which viscous accretion can be
ignored

vr ∼ r
d

dt
ln

rsh

M
1/2
sh

, (39)

and with this we model the radial velocity profile via

vr (r) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

rd ln
(
rsh/M

1/2
sh

)
/dt, r < rsh,

−(1 − r/rcrit)[GM(r, t)/r]1/2, rsh < r < rcrit,

0, rcrit < r < r,
(40)

where M(r, t) = MBH +
∫ r

0 4πρr2dr . Finally, in the outer parts
of the shocked region, r ∼ rsh, the momentum of the shocked
fluid contributes negligibly to radial pressure balance, and thus
the shocked region is quasi-hydrostatic. We model the pressure
profile via

P (r) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
2ρr∇Φ, r < rsh,

1
2 [ρr∇Φ]rcrit

r
(r/rcrit)−γ , rsh < r < rcrit,

1
2 [ρr∇Φ]rr

, rcrit < r < r,

(41)

where, again, Φ is the total gravitational of the black hole and
the mass distribution in Equation (37).
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Mass conservation requires that

d

dt

(
MBH + Msh +

∫ r

rsh

4πr2ρdr

)
= 0. (42)

The mass of the black hole at the moment of shock formation is

MBH(tsh) = MBH,0 +
1

3

rcrit(tsh)

r

M, (43)

where MBH,0 is the initial black hole mass immediately follow-
ing core collapse in excess of the mass available in the core
from the inward-extrapolated profile ρ ∝ r−2. Since the ac-
cretion rate into the black hole just prior to shock formation
Ṁ(t < tsh) ∼ 1

3 (M/r)drcrit/dt is similar to the accretion rate
into the shock after shock formation, and the black hole accre-
tion rate experiences a drop as the shock starts traveling outward,
we expect dMsh/dt � dMBH/dt .

Pretending that r ∼ 105 km is the true edge of the star
and that efficient neutrino cooling, if anywhere, occurs only at
r < rADAF, global energy conservation can be written as

L + Lnuc = d

dt
(U + K + W + Enuc)

−
∫ r

rADAF

d

dt

(
−GMBH

r

)
4πρr2dr, (44)

where L is the net energy flow rate at rADAF, while U, K, W,
and Enuc are the total internal, kinetic, gravitational potential,
and nuclear energies in the annulus rADAF < r < r. The
contribution of nuclear composition change to the energy flux
through the advection radius, Lnuc, is significant only when the
helium-to-free nucleon disintegration occurs at radii � rADAF.
After the shock has expanded far beyond the disintegration
radius, we can assume that the mass in free nucleons evolves
very slowly in time, and thus, dEnuc/dt ≈ 0.

The total internal energy is the sum over the shocked and
unshocked regions

U ≈
∫ rsh

rADAF

P

γ − 1
4πr2dr +

∫ r

rsh

P

γ − 1
4πr2dr, (45)

where the pressure is calculated following the model in
Equation (41). The kinetic energy is calculated via

K =
∫ rcrit

rADAF

1

2
ρv2

r 4πr2dr. (46)

The total gravitational energy W of the density in Equation (37)
in the presence of self-gravity and the gravity of the black hole
is straightforward to calculate,

W =
∫ r

rADAF

(
−GMBH

r
+

1

2
Φρ

)
ρ 4πr2dr, (47)

where the gravitational potential of the fluid outside of the black
hole is related to the density via 4πGρ = ∇2Φρ .

5. SHOCK DYNAMICS

Equations (42) and (44) can be construed as constraints
relating the shock velocity to the shock radius and time,
vsh(rsh, t). The equation drsh/dt = vsh can then be integrated to
solve for rsh(t). Since we expect that the shock velocity varies

slowly in time, we do not carry out the formal integration and
instead approximate

rsh ∼ (t − tsh)vsh, (48)

where, as before, tsh denotes the shock formation time. This
allows us to estimate vsh(t) and rsh(t). In Figure 1, we show a
typical time evolution of the density, radial velocity, and pressure
profile for a fiducial stellar model with M = 12.5 M�, r =
1010 cm, γ = 1.4, MBH,0 = 2.5 M�, and � = 1017 cm2 s−1.
This model approximates the density profile of the fully mixed
pre-supernova Wolf–Rayet model 16TI of Woosley & Heger
(2006) in the radial range 2 × 108 cm � r � 5 × 109 cm. At
radii r � 1

2 r, our toy model overestimates the stellar envelope
density, which declines increasingly steeply with radius, and
thus it underestimates the shock velocity after the first ∼10 s.
Note that the black hole dominates the mass enclosed for
r � 4 × 104 km at all times, which justifies our neglect of
the infalling mass in the calculation of the force balance in
Section 3.2.

The density jump at the shock in Figure 1 is substantially
smaller than it should be; e.g., in the strong-shock limit—which
is not always reached here—the density jumps sevenfold for
γ = 4

3 . The anomaly seems to be an artifact of our assumption
that the density in the region rsh < r < rcrit is a pure power
law ρ ∝ r−3/2. In reality, as illustrated in the Shu (1977)
solution for the self-similar collapse of isothermal spheres, the
density profile is less steep, ρ ∝ r−1, just inside rcrit, and thus
our immediate pre-shock density is an overestimate. Since the
immediate post-shock density is calculated independently from
global mass conservation, the ratio of the two densities as seen
in Figure 1 is also an overestimate. In spite of this, the model
does conserve mass and energy globally.

For the viscous stress-to-pressure ratio, we adopt α = 0.1
and in Figure 2, we show the evolution of the shock velocity,
the total energy of the stellar envelope, and the rate with which
the envelope is accreting onto the black hole for three values
of the convective mixing length, λconv/r = (0.5, 0.75, 1.0), with
and without nuclear disintegration losses. The luminosity car-
ried by the post-shock region was calculated using Equation (28)
so that L = L2 (the second case in brackets in Equation (31)) and
thus, vsh(t) and E(t) depend only on the ratio (λconv/r)4/(α�).

From its pre-shock value of Ṁ(t < tsh) ≈ 0.14 M� s−1,
the accretion rate has dropped to Ṁ = (0.003–0.03) M� s−1

after the first second from shock formation, and to Ṁ =
(0.001–0.004)M� s−1 after 10 s. The steeper drops occur in the
more energetic shocks with larger convective mixing lengths;
at such low accretion rates and α ∼ 0.1, neutrino cooling
is negligible compared to viscous heating, at least at r >
rADAF � 0.5 × 107 cm; this justifies our leaving out of the
cooling term in Equation (44). If the gamma-ray luminosity of
the LGRB prompt emission is controlled by the rate with which
material is accreting onto the black hole, then the steep drop
in accretion rate associated with shock expansion could explain
the termination of the prompt emission (Lindner et al. 2010).

The model with λconv/r = 1.0 acquires positive energy, and
the envelope is unbound and poised to explode at ∼5 s after
shock formation, when the shock velocity is ∼10 000 km s−1.
The model with λconv/r = 0.75 is on track to acquire positive
energy after the shock reaches rcrit ∼ r, which are shock radii
that our toy model is not designed to handle. The model with
λconv/r = 0.5 does not appear to evolve toward a globally
unbound state, though of course, for a realistic pre-supernova
density profile that declines steeply with radius at r � 1

2 r, the
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Figure 2. Shock velocity vsh, the total energy of the fluid outside the black
hole E, and the accretion rate onto the black hole Ṁ ≡ dMBH/dt as a
function of time from shock formation, t − tsh, for the fiducial model with
M = 12.5 M�, r = 1010 cm, γ = 1.4, MBH,0 = 2.5 M�, � = 1017 cm2 s−1,
α = 0.1, and tsh = 20 s; the convective luminosity was calculated from
Equation (28). The solid curves are ignoring nuclear disintegration, Lnuc = 0,
for λconv/r = (0.5, 0.75, 1.0); larger convective mixing length gives faster
shocks, more energy deposition, and lower accretion rates. The dotted lines
are the same but with maximum energy loss due to nuclear disintegration,
Lnuc = −8 MeV Ṁ/mp . The pre-shock accretion rate, not shown in the figure,
is Ṁ(t < tsh) ≈ 0.14 M� s−1.

shock will ultimately emerge from the star and unbind a fraction
of its mass. The latter model is sensitive to nuclear disintegration
losses; with Lnuc ≈ −8 MeV Ṁ/mp, the shock seems to stall at
∼2 × 109 cm.

These results indicate that the potential for explosion in
collapsar-accretion-powered objects depends critically on the
efficiency of convection. We are not aware of a numerical
calibration of the effective convective mixing length λconv, if
the latter is defined as the mixing length that gives an MLT heat
flux equal to the true energy flux carried by convection in the
regime, characteristic of supernovae, in which the convective
velocities are comparable to the sound speed. Such a calibration
would improve the toy model presented here.

The 2.5D axisymmetric hydrodynamic simulations of Lind-
ner et al. (2010), which were carried out with a realistic equation
of state (Timmes & Swesty 2000), developed a fully convective
flow in the shock downstream. These runs were restricted to the
domain with cylindrical radii R > Rmin = (0.5–2) × 103 km
and the stress-to-pressure ratio was α ≈ 0.01. The luminos-
ity carried by the convective envelope was Fconv ∼ 0.05 csP ,
where cs is the sound speed, and the shock velocity is vsh ∼
(0.5–1.5) × 103 km s−1. If we artificially set rADAF = Rmin and
chose α = 0.01 and � ∼ 3 × 1017 cm2 s−1, then our toy model
reproduces the relatively low shock velocities in Lindner et al.
(2010). An additional complication not investigated in Lindner
et al. is the exothermic and endothermic compositional change
in rising and sinking convective cells.

6. NUCLEOSYNTHESIS AND NICKEL

The production of an optically bright supernova requires
the synthesis of a substantial mass of 56Ni. This requires that
a substantial mass of the shocked stellar envelope be heated
to temperatures � 5 × 109 K. Also, the reprocessed material
must freezeout into iron group elements. Finally, the proton-
to-nucleon ratio during freezeout must be Ye ≈ 0.5. To check
whether nickel may indeed be synthesized in accretion-powered
explosions, we will examine these requirements, respectively,
in Sections 6.1, 6.2, and 6.3, but first, we briefly review some of
the different scenarios.

In the standard model for core-collapse supernovae, nickel
is synthesized when the shock is fast and the immediate
post-shock temperature is sufficiently high (e.g., Woosley &
Weaver 1995; Heger et al. 2003). Nucleosynthesis calculations
for LGRB supernovae and their ultra-energetic version—the
hypernovae—typically employ a piston to accelerate supernova
ejecta (e.g., Maeda & Tominaga 2009; Dessart et al. 2011), or
inject an energetic jet (e.g., Tominaga et al. 2007), or apply
heating in the downstream of the stalled shock (e.g., Fryer
et al. 2006) to initiate an explosion. These studies find that
high nickel masses inferred in the supernovae associated with
LGRBs require the injection of energies � 1052 erg (Tominaga
et al. 2007; Maeda & Tominaga 2009). However, the physical
mechanism that deposits such large energies in the stellar
envelope remains to be elucidated.

In a different scenario, nucleosynthesis in the collapsar
scenario occurs in a freely expanding outflow, fireball or
wind, coming from a disk of material accreting onto the
black hole. For the outflow to synthesize 56Ni, the inner disk
must be nondegenerate so that proton–neutron equality can be
maintained, which is possible with moderate accretion rates;
alternatively, neutron–proton equality can be re-established in
the wind, and simultaneously, the material must not freezeout in
the expanding wind too quickly to produce nickel (Beloborodov
2003; Pruet et al. 2003, 2004). These possibilities are clearly
very interesting, but they require the presence of an open funnel
through which the outflow from the inner accretion disk can
escape.

A funnel-like density distribution is undoubtedly present
at small radii where rotational support is competitive with
pressure support. It is not clear, however, that the funnel can
be open at somewhat larger radii, where rotational support is
not significant. The axial region may further be overpressured
by the hot cocoon produced during the electromagnetic jet’s
first traversal of the star. Lacking a funnel, the disk outflow
encounters infalling stellar layers. In this regime, however, the
mechanics of nucleosynthesis in the collapsar must be examined
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in the context of the interaction and mixing of the outflow with
the (shocked) stellar envelope. To attempt to understand the
implications of the interaction of convection-like outflows from
the hot inner region with the cooler, but more massive layers
of the shocked stellar envelope, we adapt some of the useful
approximations developed by Beloborodov (2003) and Pruet
et al. (2004).

6.1. The Mass Reprocessed to NSE

While only a small fraction of the shocked fluid is hot enough
to allow nuclear burning, because of the pervasive convection
in the shock downstream, a much larger fraction of the shocked
fluid can be circulated through the hot inner region and can
thus be reprocessed into free nucleons, helium, or the iron
group elements. Let rNSE denote the radius within which NSE
among the principal nucleosynthetic products is established on
a convective eddy crossing time. We would like to calculate
the mass fraction of the shocked fluid that under the action of
the convective mixing visits the radii r < rNSE. For this, we
must solve Equation (5) with X denoting the mass fraction of
unreprocessed elements subject to the boundary condition that
none of the unreprocessed elements survive inside rNSE. We seek
a quasi-steady-state solution

∂

∂r

(
4πr2 1

3
χmixvconvλconvρ

∂X

∂r

)
= 0. (49)

In MLT, the convective velocity can be estimated from
Equation (6), which, assuming the power-law pressure and den-
sity profiles, ρ ∝ r−δ and P ∝ r−ξ and the simple equation of
state discussed in Section 3.4 reduces to

vconv ∼ 1

2

(
3

2
ξ − 1

2
δ

)1/2
λconv

r
vff, (50)

where vff is the free-fall velocity. At small radii, for the purpose
of a rough estimate, we can assume that vff ∼ (GMBH/r)1/2 so
that vconv ∝ r−1/2. If, as before, δ = 1 and λconv ∝ r , we can
rewrite Equation (49) as

∂

∂r

(
r3/2Θ

∂X

∂r

)
= 0, (51)

where Θ ≡ 4
3πχmixvconvλconvr

1/2ρ is an approximately radius-
independent coefficient. Integrating this twice and setting
X(rNSE) = 0 and X(rsh) = 1, to obtain the mass flux of species
X through rNSE is ṀX(rNSE) = 1

2 Θr
1/2
NSE. The fraction fNSE of the

shocked fluid that is reprocessed through rNSE then equals

fNSE ∼ ṀX(rNSE)

Msh

rsh

vsh

∼ 1

3
χmix

(
rNSE

rsh

)1/2
λconv(rsh)

rsh

vconv(rsh)

vsh
. (52)

Khokhlov (1991) approximated the timescale for convergence
to NSE via

τNSE ∼ ρ0.2
g cm−3 exp[179.7/(TK/109) − 40.5] s, (53)

which is consistent with the more recent estimate of Calder et al.
(2007). Setting τNSE ∼ 0.1 s, this yields rNSE ∼ (0.5–2)×108 cm
where the temperatures are TNSE ∼ 4 × 109 K. The typical total

reprocessed mass prior to the final acceleration of the shock (for
rsh � r) for our fiducial toy model is

MNSE ∼ fNSEMsh. (54)

When at time t ∼ r/vsh(r) the shock radius reaches the edge
of the stellar model, rsh ∼ r, the reprocessed mass becomes

M
t<t
NSE ∼ 0.15 M� χmix

( rNSE

108 cm

)1/2 ( r

1010 cm

)−1

×
[
λconv(r)

r

]2 [
vsh(r)

5 × 108 cm s−1

]−1

×
(

M

10 M�

)1/2 (
M − MBH

5 M�

)
. (55)

In deriving Equation (55), we have assumed that the convective
velocity is of the form given in Equation (50).

It is possible that substantial additional nuclear reprocessing
inside rNSE can take place over a longer period after the shock
has proceeded to accelerate down the steep density gradient of
the outer stellar envelope and breakout of the star. Thus, the
NSE mass estimate quoted in Equation (55) can be considered
a lower limit. If following shock breakout at ∼t the density
inside the original stellar radius r decreases exponentially, e.g.,
on a free-fall time ρt>t ∝ exp[−vff(r)t/rstar], then following
shock breakout an additional mass is reprocessed through NSE
and can be estimated via

M
t>t
NSE ∼

∫ ∞

t

ṀX(t)dt

∼ r

vff(r)
ṀX(t) exp

[
−vff(r)t

r

]

∼ vsh(r)

vff(r)
exp

[
− vff(r)

vsh(r)

]
M

t<t
NSE . (56)

This shows that if the average shock velocity inside the star is
large compared to the free-fall velocity at the stellar surface,
vsh � vff , most of the reprocessing to NSE takes place after
the shock leaves the star. To arrive at this conclusion, we have
employed a number of extremely crude approximations; a more
accurate approach would clearly require carrying out a time
integration on a realistic model star.

6.2. Freezeout into the Iron Group

What fraction of the reprocessed fluid can turn into iron
group elements? Investigations of the nucleosynthetic footprint
of freely expanding winds have been carried out by many au-
thors (e.g., Beloborodov 2003; Pruet et al. 2003, 2004; Nagataki
et al. 2006; Surman et al. 2006; Maeda & Tominaga 2009;
Metzger 2011), but we are not aware of a systematic investiga-
tion of nucleosynthesis in a quasi-hydrostatic, convective atmo-
sphere straddling a region in NSE and a frozenout atmosphere.
We anticipate carrying out multidimensional simulations of tur-
bulent convection in the presence of nuclear burning to learn
about the compositional yields in such flows. Here, we attempt
to harness the expanding wind solutions by applying them to in-
dividual convective cells. This is undoubtedly extremely crude,
but is consistent in spirit with the nature of the approximations
entering the derivation of MLT.

Pruet et al. (2004) calculated the mass fraction of the
iron group (more precisely, of 56Ni since they assume mildly
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proton-rich conditions, Ye = 0.51) in a freely expanding
collapsar wind as a function of the entropy per baryon in
units of the Boltzmann constant, S ≡ (mp/kB)s and the
variable Ṁwind/v

3
wind. Defining the dimensionless parameter

μ ≡ (Ṁwind/v
3
wind)/[0.1 M� s−1/(0.1c)3], an XFe > 50%

freezeout into the iron group requires μ � (2, 13, 40) for
S = (20, 30, 40), while, similarly, an XFe > 25% freezeout
requires μ � (0.1, 0.6, 2, 4) for S = (20, 30, 40, 50). The
freezeout into iron group prefers low entropies, high densities,
and slow convection.

We can apply the Pruet et al. (2004) result to a single rising
convective cell by identifying Ṁwind/v

3
wind with 4πr2ρ/v2

conv. In
the absence of degeneracy, the entropy per baryon at the helium-
to-iron group boundary can be estimated from Equation (12) in
Pruet et al. (2004),

S ≈ 5.21
T 3

MeV

ρg cm−3/108
+

1

4

[
15.4 + ln

(
T

3/2
MeV

ρg cm−3/108

)]
, (57)

which, with T = TNSE ∼ 4 × 109 K, becomes S ∼ 21/ρ6 +
4.6–0.25 ln ρ6, where ρ6 ≡ ρ(rNSE)/106 g cm−3. Electron de-
generacy sets in at temperatures Tdeg � 2 × 109 ρ6 K (e.g.,
Beloborodov 2003), below the temperature at which the iron
group freezeout occurs. If the velocity of convective cells is
as given by Equation (50) with the exponents given in Equa-
tion (14), we obtain

μ ∼ 4
r3

8 ρ6

M5

[
λconv(rNSE)

rNSE

]−2

, (58)

where r8 ≡ rNSE/108 cm and M5 ≡ MBH/5M�. This esti-
mate, which may be excessively conservative, suggests that ef-
ficient freezeout into iron group elements requires ρ(rNSE) �
106 g cm−3. Such densities are clearly realized in the convective
accretion flow, but are probably not realized in the relativistic (or
nearly relativistic) axial jet where freezeout is into α-particles.

6.3. Nickel Synthesis and Implications for Supernovae

The proton-to-nucleon ratio of the stellar envelope entering
the accretion shock is Ye ≈ 0.5, and with this value, 56Ni domi-
nates the composition of the iron group products produced in the
convective accretion flow. However if significant deleptoniza-
tion operates at ∼few × rISCO, convection may transport the
neutron-rich fluid near ∼rNSE and thus tip the balance in favor
of iron and the lighter iron group isotopes. Beloborodov (2003)
derives an estimate of the equilibrium value of Ye(T , ρ) in at
most mildly degenerate matter that is transparent to neutrinos
and applies it to a rotationally supported accretion flow with
vertical scale height H ∼ 1

2 r to conclude that Ye drops below
proton–neutron equality when accretion rates exceed Ṁ > Ṁn

where

Ṁn = 0.055 M� s−1
( α

0.1

) (
r

rg

)1/2 (
MBH

5 M�

)2

, (59)

where rg = 2GMBH/c2. Our toy model suggests that the
accretion rate drops well below Ṁn very quickly following the
initial shock formation, and this implies Ye � 0.5, where, at
densities ρ ∼ 108 g cm−3 characteristic of the innermost disk,
56Ni dominates the iron group.

These crude estimates make us optimistic that supernovae
powered by collapsar accretion can synthesize nickel masses

similar to those required to explain the light curves of super-
novae associated with LGRBs. More detailed work is required
to characterize the interplay of convection and nucleosynthesis
in the shocked, pressure-supported accretion flow of a collapsar.
A prediction of the present model is that in the supernova ejecta,
nickel is mixed with a much larger mass of unburned stellar ma-
terial. This mixing produces a supernova with a steeper initial
rise that is brighter at early times than a spherically symmet-
ric explosion (see, e.g., Woosley & Bloom 2006). While our
toy model assumes a quasi-spherical shock wave, the global
structure of the explosion should become aspherical just prior
to and following shock breakout, and certainly on timescales of
∼100 s, with higher entropy material outflowing near the rota-
tion axis, as seen in the idealized 2.5D simulations of Lindner
et al. (2010). Such asphericities can be detected through spec-
tropolarimetry (Wang & Wheeler 2008) and spectroscopy (e.g.,
Tanaka et al. 2009) and if present at shock breakout can also
be inferred from the breakout light curve (Couch et al. 2011).
We will address the structure of the ejecta and the implications
for the supernova light curve and other observational properties
elsewhere.

7. CONCLUSIONS AND DISCUSSION

With the aim of shedding light on the mechanism that
produces Type Ic supernovae in LGRB sources, we have
developed a toy model for the accretion of a rotating stellar
envelope onto a black hole in the aftermath of stellar core
collapse. The purpose of the toy model is to test the ability of
collapsar accretion to produce supernovae, and identify aspects
of the problem, such as the nature of the ADAF to CDAF
transition and the mechanics of convection, that require further
investigation.

The spherically averaged toy model for a rotating collapsing
star assumes that no prompt explosion prior to black hole
formation takes place. The model is constructed to globally
conserve mass and energy. We track the dynamics of the outward
traveling shock wave that forms when infalling stellar layers
have sufficient angular momentum to be held up the centrifugal
barrier and circularize around the black hole.

The shocked fluid, heated by the dissipation of MHD tur-
bulence that we model with a viscous shear stress term, is
convective; we treat this convection in the mixing length ap-
proximation. Some of the dissipated energy is advected into the
black hole; the rest is transported by convection through the
expanding shocked region and is available to power a super-
nova. The amount of energy delivered to the stellar envelope
depends on the location of the boundary of the ADAF at small
radii and CDAF at large radii.

The ADAF to CDAF transition is particularly sensitive to
the effective convective mixing length. If the mixing length is
sufficiently large, our model can acquire positive total energies
of at least ∼1051 erg over the course of 10 s or longer, which lays
open the possibility of a supernova. It does not seem, however,
that the mechanism could produce “hypernova”-like energies
(�1052 erg), at least not in Wolf–Rayet progenitors.

The rate with which shocked stellar fluid accretes onto the
black hole drops drastically following the inception of the
accretion shock, and thus, losses to neutrino emission are
negligible. If the luminosity of the LGRB prompt emission is
correlated with the accretion rate, then the abrupt termination
of the prompt emission and the steep decline of the early X-ray
afterglow can be interpreted as a consequence of the accretion
rate drop (see, also, Lindner et al. 2010).
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Because of the rapid convective mixing, tens of percent of a
solar mass can be reprocessed through the hot inner radii of the
accretion flow where NSE is reached on a dynamical time. Some
reprocessing takes place after the accretion shock breaks out of
the star. Conditions are favorable for the freezing out of the
reprocessed matter into 56Ni, which due to pre-shock-breakout
convection should be intermixed with a much larger mass of
hydrostatic α-elements in the stellar ejecta.

We have assumed throughout that the specific angular mo-
mentum of the initial star increases more or less monotonically
outward, as one might expect in fully mixed pre-supernova mod-
els (Woosley & Heger 2006). If this is not the case, then the
nonmonotonicity (see, e.g., Heger et al. 2000, 2005; Petrovic
et al. 2005) might have interesting consequences for the evolu-
tion of the accretion rate. For example, the accretion rate may
surge if the average specific angular momentum in the shocked
region drops below the critical value for rotational support near
ISCO, and this might result in a “flaring” in the LGRB X-
ray light curve (see, e.g., López-Cámara et al. 2010; Perna &
MacFadyen 2010).

Wolf–Rayet stars that seem to be the most plausible LGRB
progenitor candidates were the target this inquiry, but the
analysis can be adapted to other contexts in which the collapse
of a stellar core into a black hole occurs. It would be interesting
to check whether the collapse into a black hole in the core
of a rotating supermassive star (e.g., Fowler 1966; Bond et al.
1984; Fuller et al. 1986; Baumgarte & Shapiro 1999; Shibata
& Shapiro 2002), could, as we find here for Wolf–Rayet stars,
lead to an unbinding of a significant fraction of the remaining
stellar envelope.

In an attempt to elucidate the rapid formation of massive
black holes in early galaxies, Begelman et al. (2006, 2008) and
Begelman (2010) have proposed that a black hole can form at the
center of a large accumulation of gas (∼106 M�) in a gas-rich
primordial galaxy. The black hole subsequently accretes the gas
at the center of the rotating, pressure-supported gaseous object, a
“quasistar,” in such a way that the object remains gravitationally
bound. In this picture, the accretion rate settles in a quasi-steady
state in which the energy dissipated at the innermost radii is
transported convectively to the outer radiative zone; the latter,
thanks to an internal self-regulating adjustment in the structure
of the quasistar, carries a radiative flux that remains below the
Eddington limit. Our results suggest that the fate of the quasistar
may depend on the energetics of the relatively short period in the
immediate aftermath of black hole formation and that the path
to a self-regulating quasi-steady state deserves further inquiry.
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