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ABSTRACT

External occulters, otherwise known as starshades, have been proposed as a solution to one of the highest priority
yet technically vexing problems facing astrophysics—the direct imaging and characterization of terrestrial planets
around other stars. New apodization functions, developed over the past few years, now enable starshades of
just a few tens of meters diameter to occult central stars so efficiently that the orbiting exoplanets can be revealed
and other high-contrast imaging challenges addressed. In this paper, an analytic approach to the analysis of these
apodization functions is presented. It is used to develop a tolerance analysis suitable for use in designing practical
starshades. The results provide a mathematical basis for understanding starshades and a quantitative approach to
setting tolerances.
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1. INTRODUCTION

Nearly everybody wants to know if Earth-like planets abound
in the universe. Are warm, watery paradises common, and does
life arise everywhere it is given a chance? To answer these age-
old questions requires a very good telescope capable of pulling
the signal from a faint Earth-like planet out of the glare of its
parent star. It will probably be necessary to look out to distances
of 10 pc or more to have a good chance of finding such an Earth
twin (Turnbull et al. 2011). But at that distance, the Earth is only
30th mag and hovers less than 0.1 arcsec from the star.

This is a daunting challenge for telescope builders. An m = 30
object, at 0.1 arcsec angular separation, is at both the sensitivity
limit and angular resolution limit of the Hubble Space Telescope.
So an Earth-searching telescope has to be expensive and high
quality if it is to be able to resolve and study the planetary
system—even if there is no glare from the star.

The Terrestrial Planet Finder program encapsulated NASA’s
response. Two approaches were developed to building tele-
scopes that could null out the parent star and thereby enable
direct observation of the Habitable Zone. One approach uses
high precision nulling between spacecraft in the mid-infrared
to suppress the stellar glare (see, for example, Lawson et al.
2006). The other uses wavefront control and correction in an
internal coronagraph to remove the central starlight (e.g., Guyon
et al. 2006). Both approaches have proven to be difficult and
expensive.

More recently, the idea of an external occulter (Spitzer 1962)
has been resurrected. The idea (shown schematically in Figure 1)
is to keep the starlight from ever entering the telescope where it
causes such havoc. A properly shaped device flown on a separate
spacecraft can be moved into the line of sight such that it blots
out the star. If this external occulter (which is often called a
starshade) subtends a sufficiently small angle on the sky, it can
blot out the star without impeding the light from the nearby
planet. But this forces the shade onto a separate spacecraft.
Even if the shade is only slightly larger than the telescope, it
must be flown thousands of kilometers from the telescope in
order to appear small enough.

However, diffraction around the starshade and into the tele-
scope can be severe. This forces the starshade to be even
larger and farther away. In 1985 Marchal presented the first
serious diffraction analysis for external occulters. He showed

that apodization functions could greatly reduce the size of an
occulter compared to that required for a simple circular mask.
He also suggested the use of petals to approximate a circularly
symmetric function and thereby sidestep the problem of scatter-
ing through partially transmitting screens. But the size scales
required to view Earth-like planets remained impractically
high—occulters would have to be about a kilometer in diameter
and fly at a million kilometers of separation. Copi and Starkman
revisited this problem of suppression in 2000 and proposed a
practical design that could suppress to the 4 × 10−5 level.

A few years later it was shown there existed an apodization
function that allows one to reduce the required diameter of an
external occulter by over an order of magnitude (Cash 2006).
The reduction of the required diameter to a few tens of meters
for the first time brought starshades into a size range that could
be seriously considered for flight. The new function was the
“offset hyper-Gaussian” given by

A(ρ) = 0 for ρ < a (1)

and
A(ρ) = 1 − e−( ρ−a

b
)
n

for ρ > a. (2)

In that paper it was shown how this new apodization function
led to mission designs that would be capable of finding Earth-
like planets and searching for life, yet appeared to be within
the capability of current aerospace engineering techniques and
space agency budget constraints. A generalized computer search
by Vanderbei et al. (2007) showed that the optimal apodization
function strongly resembles an offset hyper-Gaussian and that
diameter reductions of no more than about another 25% can be
expected. This was not unexpected, because the offset hyper-
Gaussian already allows one to operate at only six Fresnel
zones of radius. In Section 5, the origins and tradeoffs between
the computer optimized solution and the hyper-Gaussian are
addressed.

A great deal more work has since transpired in studying
these systems. In particular, starshades are now embodied in
space astronomy mission concepts called the New Worlds
Observer (NWO; Cash et al. 2009) and THEIA (Kasdin et al.
2009). NWO nominally has design parameters of a = b =
12.5 m and n = 6. This means that the shade is 62 m across from
tip to tip. The diameter to the inflection point (2∗(a + b)), which
is more representative of the point at which the obscuration ends
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Figure 1. Starshade operates by shadowing a star while allowing a planet, less than an arcsecond away, to be viewed over the limb of the shade. To make the shadow
small and deep enough, there must be a very large distance between the starshade and the telescope.

and the transmission of exoplanet light begins, is 50 m. The New
Worlds starshade flies at a nominal distance (F) of 80,000 km
from its telescope. At that distance the 25 m radius to which
exoplanets can be seen subtends 0.064 arcsec, which is a small
enough Inner Working Angle to allow observation of Earth-like
planets at 10 pc. It operates in the visible band from 0.3 μ to 1μ
wavelength. These baseline parameters are used throughout the
paper when a nominal design is needed.

The search for the solution to the high-contrast occulter must
be carried out with the full complexity of the Fresnel regime.
A Fraunhoffer solution implies that, to good approximation, all
the rays impinge upon the mask with the same phase. But an
occulting mask fundamentally cannot operate in that manner. A
shadow is formed only when the sum of electric fields outside
the mask is small, thereby requiring a range of phases that sums
to zero. A Fraunhoffer solution would require the mask to be
restricted to a single zone and the sum of phases cannot be zero.
So, to achieve a net zero electric field in the focal plane, the
integral must extend out of the central zone at least into the first
negative Fresnel half-zone.

While it is quite remarkable that shadows of such extreme
depth can be generated across just a few zones that fact alone
is not enough to justify their choice for use in the pursuit of
exoplanets. First starshades must be understood so as to develop
certainty that they are applicable in a practical and affordable
manner. Unfortunately there is no long history of use that has
created a body of generally accepted knowledge and analysis
must start anew.

In addition to the analytic analysis discussed herein, practical
demonstrations of small starshades have been performed in the
laboratory. Scale models have now achieved shadows of depth
sufficient to support observations of exoplanets (Schindhelm
2007; Leviton 2007). So the basic performance of the apodiza-
tion function has already been demonstrated.

There are two aspects to the modeling that are necessary
for full understanding. First, the shadows need to be modeled
analytically. Direct use of the equations of diffraction as applied
to the apodization functions can give basic insight into the per-
formance of the shades. Simple scaling laws and an understand-
ing of the linkages between parameters can best be understood
from such results.

Second, detailed computer modeling is needed. Just as
raytracing is necessary for full understanding of the behavior
and tolerancing of complicated geometrical optics systems, so
too is full-up numerical modeling necessary to the design of
starshades. This paper addresses both these needs.

2. ANALYTIC ANALYSIS OF THE PROBLEM

The analysis begins with some general discussion of the
mathematics and physics that are needed to model the behavior

Table 1
List of Variables in Fresnel–Kirchoff Derivations

A E field amplitude
S Surface of integration
U Resultant electric field
P Point in shadow plane
P0 Point of E field origination
r Distance P0 to point in plane of integration
r0 Distance P0 to origin in plane of diffraction
r′ Distance P0 to point in z = 0 plane
r1 P0 height above z = 0 plane
s Distance P to point in plane of integration
s0 Distance P to origin in plane of integration
s′ Distance P to point in z = 0 plane
s1 P height below z = 0 plane
x, y, z Coordinates of diffraction plane
θ Angle between P0 direction and normal to plane
n Normal vector to diffraction plane
λ Wavelength of light
λ′ λcosθ
k 2π/λ

k′ 2π/λ′

of starshades. Since the goal is to reach accuracies below 10−12

in diffraction suppression, care must be exercised about the
assumptions and approximations. As such, the analysis must
begin with the most basic of electromagnetic equations and be
systematically derived from there.

2.1. Fresnel–Kirchoff Formulation

The starting point for the discussion will be the
Fresnel–Kirchoff formula as presented by Born and Wolf
(1999). We utilize their notation for the initial analysis
(Equations (3)–(21)) up through the proof of the Fresnel
approximation as summarized in Table 1. The Fresnel–Kirchoff
formula assumes that edge effects on the diffracting element
are small, which will surely be the case with a large diffract-
ing element like a starshade. There is some possibility of small
effects near the tips and near the base of the petals of a star-
shade, so these effects will eventually have to be measured in
the laboratory. But there is no reason to suspect that they will
be significant.

The electric field U due to the radiation at point P is given by

U (P ) = − iA

2λ

∫ ∫
s

eik(r+s)

rs
[cos(n, r) − cos(n, s)]dS, (3)

where r is the distance from the source to the surface and s is the
distance from surface to P. A is the amplitude of the disturbance
at unit distance from the source, λ is the wavelength, k is 2π/λ,
cos(n, r) is the cosine between the local normal to the surface
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Figure 2. Definition of the coordinates as defined by Born and Wolf and used
in Section 1.

and the line from the source to that point, and the integration
proceeds over the surface S.

Next, constrain S to be the z = 0 plane, and define r0 and s0
to be the distances from the source (P0) to the origin and the
origin to P, respectively, as in Figure 2. Then, defining r′ and s′
to be

r ′ =
√

r2
0 + x2 + y2 and s ′ =

√
s2

0 + x2 + y2 (4)

it is found that

U (P ) = − iA

2λ

∫ ∫
s

eik(r ′+s ′)

r ′s ′
( r0

r ′ +
s0

s ′
)

dS (5)

for the case where the plane of integration is perpendicular to
the r–s line.

However, it is useful to generalize to the case where the plane
of integration is tilted at an angle θ to the source to P0–P line.
In which case

r2 = r2
0 cos2 θ + (r0 sin θ + x)2 + y2 = r ′2 + 2xr0 sin θ

and s2 = s2
0 cos2 θ + (s0 sin θ − x)2 + y2 = s ′2 + 2xs0 sin θ,

(6)
which leads to

U (P ) = − iA

2λ
cos θ

∫ ∫
s

eik(r+s)

rs

( r0

r
+

s0

s

)
dxdy. (7)

The cosine term is the result of the oblique angle of the
disturbance on the mathematical plane and must be accounted
for.

2.2. Babinet’s Principle

To evaluate the diffraction into the shadow of a starshade
integration must be carried out over the infinite plane outside of
the obscuring mask. However, this tends to be impractical, so
use of Babinet’s principle allows the integration to proceed over
the occulter only. Born and Wolf present the principle as

U = Umask + Uaperture, (8)

which appears simple enough, but must be carefully applied.
Umask is Equation (7) integral over that part of the plane that

is opaque, while Uaperture is the integral over the rest of the
infinite plane. This equation is deceptively simple, and care
must be taken with its use. When U is defined by Equation (7),
its functional form can vary depending on the how the integral
is set up. In particular, if the plane of integration is tilted (e.g.,
the starshade tilts out of alignment) then the value of U can
be changed. This is an oddity of the Fresnel–Kirchoff formula,
but must be included to avoid serious mathematical error in the
application of Babinet’s Principle.

Take the case of a line from P0 to P running through the origin
of the plane of integration, which lies r0 from P0 and s0 from P.
The disturbance at P will then be given by

U (P ) = Aeik(r0+s0)

r0 + s0
. (9)

But evaluation of Equations (6) and (7) gives a somewhat
different answer.

In Equation (7) make the substitutions

x ′ = x

cos θ
, y ′ = y

cos θ
, λ′ = λ cos θ,

r0 = r1

cos θ
, s0 = s1

cos θ
(10)

to find that

U (P ) = − iA

2λ
cos2 θ

∫ ∫
s

eik′(r ′+s ′)

r ′s ′
( r1

r ′ +
s1

s ′
)

dxdy, (11)

where

r ′2 = r2
1 cos2 θ + (r1 sin θ + x)2 + y2

and s ′2 = s2
1 cos2 θ + (s1 sin θ − x)2 + y2.

(12)

But inspection of Equation (11) shows that it must be identical
to

U (P ) = cos2 θ
Aeik′(r1+s1)

r1 + s1
, (13)

which is the same as

U (P ) = cos θ
Aeik(r0+s0)

r0 + s0
. (14)

Equation (14) yields a disturbance that differs from Equation (9)
by a factor of cos θ although it differs only in the definition of the
plane over which the integration was performed, which should
not affect the value of the disturbance, but appears to anyway.
So whenever one sets up a calculation that has either P0 or P off
center, this mathematical artifact must be remembered.

2.3. The Fresnel Approximation

For the case of a starshade, both r0 and s0 are very much
larger than the size of the occulter that is to be integrated over.
This allows use of the approximation first used by Fresnel. Start
with Equation (7) and recognize from Equation (6) that

r

r0
=

√
1 +

x2

r2
0

+
y2

r2
0

+
2x sin θ

r0
≈ 1 +

x2

2r2
0

+
y2

2r2
0

+
x sin θ

r0

− x4

8r4
0

− y4

8r4
0

− x2 sin2 θ

2r2
0

+ ...

s

s0
=

√
1 +

x2

s2
0

+
y2

s2
0

− 2x sin θ

s0
≈ 1 +

x2

2s2
0

+
y2

2s2
0

− x sin θ

s0

− x4

8s4
0

− y4

8s4
0

− x2 sin2 θ

2s2
0

+ ... (15)
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Figure 3. Coordinates of the system are shown. The shade is to the right and its
plane is described by ρ and θ . The telescope is stationed in the plane to the left.
s is the distance off-axis, and it is assumed to lie along the x-axis with no loss
of generality.

and that the terms in x4 and y4 are exceedingly small and may
be safely dropped. Then

r + s ≈ r0 + s0 +
x2

2r0
+

y2

2r0
+

x2

2s0
+

y2

2s0

− x2 sin2 θ

2r0
+

x2 sin2 θ

2s0

and rs = r0s0

[
1 +

x2

2r2
0

+
y2

2r2
0

+
x sin θ

r0
− x2 sin2 θ

2r2
0

]

×
[

1 +
x2

2s2
0

+
y2

2s2
0

− x sin θ

s0
− x2 sin2 θ

2s2
0

]
. (16)

Because r0 is much greater than s0, all terms with r0 in the
denominator may be dropped. Finally, all the terms in the
product may be dropped, because the largest is x sin θ/s0, which
is of order 10−7. This results in

r + s ≈ r0 + s0 +
x2

2s0
+

y2

2s0
+

x2 sin2 θ

2s0
and rs = r0s0, (17)

which may be substituted into Equation (7) to find

U (P ) = − iA

λ
cos θ

eik(r0+s0)

r0s0

∫
e

iky2

2s0 dy

∫
e

ikx2

2s0 e
− ikx2 sin2 θ

2s0 dx,

(18)
which becomes, when the plane is perpendicular to P0–P,

U (P ) = − iA

λ

eik(r0+s0)

r0s0

∫
e

iky2

2s0 dy

∫
e

ikx2

2s0 dx, (19)

which is the usual form of the Fresnel approximation.
Often, when one wishes to evaluate the shadow from a tilted

starshade, the tilted aperture is approximated with its projection
into the untilted plane, which simply means that the x-direction
is integrated from a∗cos θ to b∗cos θ instead of a–b:

U (P ) = − iA

λ

eik(r0+s0)

r0s0

∫
e

iky2

2s0 dy

∫ b cos θ

a cos θ

e
ikx2

2s0 dx. (20)

A change of variable of x = z cos θ leads to

U (P ) = − iA

λ

eik(r0+s0)

r0s0
cos θ

∫
e

iky2

2s0 dy

∫ b

a

e
ikz2

2s0 e
− ikz2 sin2 θ

2s0 dz,

(21)

Table 2
List of Variables in Fresnel Approximation

λ Wavelength of light
k 2π/λ

ρ Radius of position on starshade
θ Angle of position on starshade
E Electric field amplitude at telescope plane
E0 Electric field amplitude incident on starshade
R Residual electric field amplitude in shadow
ε Small dimensionless perturbation factor
A Apodization function of starshade
F Distance starshade to telescope
a Offset radius of hyper-Gaussian
α a

√
k/F

b 1/e radius of hyper-Gaussian
β b

√
k/F

n Order of hyper-Gaussian
τ ρ

√
k/F

s distance off optic axis in telescope plane
σ s

√
k/F

P Number of petals

which is the same as Equation (18). Thus, the approximation of
projecting into the plane has the same level of accuracy as the
Fresnel approximation itself and may be used with confidence.

At this point the notation is changed from that of Born and
Wolf to one that is a little more intuitive for the application
at hand. Figure 3 defines the coordinate system, and a list of
variables is provided in Table 2. F is the distance from mask to
focal plane (formerly s0). ρ is the radius on the mask (

√
x2 + y2),

and θ its azimuthal angle. s is the distance off-axis on the focal
plane. Then, following the Fresnel approximation for large F

E = E0e
ikF e

iks
2F

iλF

∫ ∞

0
e

ikρ2

2F ρ

∫ 2π

0
A (θ, ρ) e

ikρs cos θ

F dθdρ. (22)

In the case of a circularly symmetric apodization one can first
integrate over angle, finding

E = E0keikF e
iks2

2F

iF

∫ ∞

0
e

ikρ2

2F A (ρ) J0

(
kρs

F

)
ρdρ. (23)

If A(ρ) is unity to some radius a, and zero beyond, and if
ikρ2/2F is small, then this integral leads to the familiar Airy
disk that describes the point-spread function of the typical
diffraction-limited telescope.

2.4. On-axis Analysis

For mathematical simplicity first confine the analysis of the
on-axis (s = 0) position. When s is much smaller than F/(kρ)
across the mask, the Bessel function term remains close to unity
and Equation (23) simplifies to

E = k

iF
eikF

∫ ∞

0
A (ρ)e

ikρ2

2F ρdρ. (24)

One then seeks a solution that satisfies Equation (7), such that

k

iF

∫ ∞

0
A(ρ)e

ikρ2

2F ρdρ = 1 (25)

because the phase is unimportant to the depth of the shadow and
the term eikF cancels out.
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To investigate an apodization function of the form of
Equation (2) again use the Fresnel integral as in Equation (8),

E = k

iF

∫ a

0
e

ikρ2

2F ρdρ +
k

iF

∫ ∞

a

e− (ρ−a)n

bn + ikρ2

2F ρdρ. (26)

To show this, first perform a change of variable to what turns
out to be a set of natural units. Multiplying each distance variable
by the same scaling factor gives

α = a

√
k

F
β = b

√
k

F
τ = ρ

√
k

F
σ = s

√
k

F
(27)

so that

E = 1

i

∫ α

0
e

iτ2

2 τdτ +
1

i

∫ ∞

α

e
iτ2

2 −( τ−α
β

)n
τdτ (28)

and

E = 1 − e
iα2

2 +
1

i

∫ ∞

α

e
ir2

2 −
(

τ−α
β

)n

τdτ. (29)

Integration by parts then gives us

E = 1 − e
iα2

2 − e
−

(
τ−α
β

)n

e
iτ2

2
∣∣∞
α

− n

β

∫ ∞

α

e
iτ2

2 e
−

(
τ−α
β

)n (
τ − α

β

)n−1

dτ (30)

or

R = n

β

∫ ∞

α

e
iτ2

2 e−( τ−α
b )n

(
τ − α

β

)n−1

dτ , (31)

where E is replaced by R to indicate that it is the residual field
inside the shadow.

To evaluate this integral once again integrate by parts:

R = e
iτ2

2 e
−

(
τ−α
β

)n (
τ − α

β

)n−1 (
n

iτβ

) ∣∣∞
α

+
∫ ∞

α

e
iτ2

2 e
−

(
τ−α
β

)n

f (τ )dτ, (32)

where

f (τ ) = n

β2

(
τ − α

β

)2n−2 (
1

iτ

)
− n

iτ 2β

(
τ − α

β

)n−1

+
n (n − 1)

iτβ2

(
τ − α

β

)n−2

. (33)

The first term of Equation (32) is identically zero when eval-
uated from α to ∞, as will be any term that contains both
the exponential and a term of positive power in (τ−α)/β.
Equation (33) has three terms, each of which must be inte-
grated in the second term of Equation (32). The first term of
Equation (33) has a higher power in (τ−α)/β and as such will
be a smaller term than the rest of R. The second term is sim-
ilarly related to R itself, but is smaller by a factor of n/τ 2.
Thus, if β2 is larger than n the third term will dominate. If β2

is not larger than n, then the transmission rises so quickly near
τ =α + β that the shade will start to resemble a disk, and Arago’s
Spot will re-emerge.

Proceeding to integrate by parts and take the dominant term
until a final term that does not evaluate to zero is reached, and
the result is

R = n!

βn

∫ ∞

α

e
iτ2

2 e
−

(
τ−α
β

)n

τ 1−ndτ. (34)

To approximate the value consider that cosine terms vary rapidly
and will integrate to a net of zero at some point in the first
half-cycle. That cycle will have a length of no more than 1/α.
During this half-cycle the second exponential term remains near
one and the term in powers of τ will never exceed α(1−n). So
it is expected that

R � n!

βn

1

α

(
1

α

)n−1

= n!

αnβn
, (35)

which gives the level to which the electric field can be sup-
pressed. The square of R is approximately the contrast ratio to
be expected in the deep shadow.

In order to achieve this simplification those terms in the
repeated integration by parts that were shown to be small
compared to the dominant terms were dropped. Yet in certain
parts of parameter space these very same terms can be dominant.
For example, as n becomes large, the shape of the occulter
approaches a circle and the spot of Arago becomes strong
again. The validity of this formulation has been checked
computationally and found to be reasonable when β2 > n. An
example of the comparison can be found in Figure 5.

It is clear from inspection of Equation (35) that the greatest
suppression of diffraction of an occulter of radius α + β (to its
inflection point) will occur when α is approximately equal to
β. Also, to achieve high contrast, αn must be quite large. This
is clearly easier to achieve as n increases, explaining why the
higher order curves give more compact solutions, just a few half-
zones wide. If n gets too high, there are diminishing returns as
n! rises and β approaches unity. Powers as high as n = 10 or
12 can be practical but n = 6 is usually close to providing the
widest shadow at a given level of suppression.

Equation (35) also shows that the depth of the central shadow
is proportional to λ2n, which is typically λ12 for a well-designed
starshade. So a practical design will usually be optimized at
the longest needed wavelength. Shortward, the performance
improves rapidly, while longward the performance very rapidly
degrades. This effect is shown numerically in Figure 6. The
effect is a property of the offset hyper-Gaussian apodization
function that not all other functions exhibit.

2.5. Off-axis Analysis

Consider Equation (34), which gives the dominant term of the
residual electric field in the center. The diffracted light which
reaches the center is mostly coming from the first half-cycle of
the first term in the integral and is thus coming from a narrow
ring just outside τ = α.

Then return to Equation (23), but this time include general
values of s. The J0 term does not vary significantly across
the narrow ring at the edge and may, therefore to excellent
approximation, be brought outside the integral, giving us

E = E0e
ikF e

iks2

2F

iλF
J0

(
kas

F

) ∫ ∞

0
e

ikρ2
2F

A (ρ) ρdρ, (36)

which leads through the same integration process to

R (σ ) = n!

βn
J0 (ασ )

∫ ∞

α

e
iτ2

2
e
−

(
τ−α
β

)n

τ 1−ndτ. (37)

What this shows is that, aside from a modulation introduced
by the angular integral, the residual electric field remains the
same. In other words, the field at any point off-axis is dominated
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by the diffraction at the nearest edge. Given how quickly the
diffraction rises off-axis, this is not unexpected.

Finally, consider that the integral is from α to ∞. There is
no contribution from closer to the center than α. So, until one
passes the center and starts approaching the other side, α is
simply the measure of how far underneath the opaque section
the point lies. Consequently, one can rewrite Equation (35) as

R � n!

(α − σ )n βn
. (38)

Or, redefining (α−σ ) as γ (the distance inward from the
effective edge at α) one finds

R � n!

γ nβn
, (39)

where γ is at least somewhat greater than unity.
So, the shadow can be understood (approximately) as starting

with intensity of β−2n just inside the opaque circle and then
falling as γ −2n down to the center.

3. TWO-DIMENSIONAL COMPUTER MODELING

The most obvious approach to the problem of com-
puter computation is simply to evaluate the Fresnel integral
(Equation (26)) directly at each point in the shadow. Unfortu-
nately, the number of points to be evaluated before the accuracy
of the net integral reaches the required suppression level of R2

is on the order of R−2. So a single point in the shadow plane
can require a trillion sine calculations at quadruple precision.
Because the direct approach becomes impractically slow, alter-
native, faster approaches are required.

At least three such codes have been developed by members
of the New Worlds team: the edge integral approach discussed
here, a code that performs a Fourier propagation of the Fresnel
diffraction (Glassman et al. 2009), and a Hankel Transform
(Vanderbei et al. 2007).

A physically oriented code is desirable, particularly for
tolerance simulations where a small deviation can be added
or subtracted on its own, without being convolved with the
rest of the system. Such an approach makes direct use of the
fundamentally binary nature of the starshades. All parts of the
starshade must be either fully opaque or fully transmitting.
Errors are thus related to errors in the projected shape as defined
by the outline of the occulter.

A solution that would operate in a manner similar to a Green’s
Theorem, in which a surface integral can be converted to a line
integral around the edge would be ideal. Dubra & Ferrari (1999)
published a paper entitled “Diffracted field by an arbitrary
aperture” in which they integrated the Kirchoff formulation of
diffraction theory by means of a Green’s function approach and
converted the two-dimensional integral to a one-dimensional
parametric integral. Their approach is adopted here, but only in
the simpler case of a plane wavefront.

In the case of a binary optic, the apodization is everywhere
unity across the aperture, so that Equation (22) becomes

E = E0e
ikF e

iks2

2F

iλF

∫ ∫
s

e
ikρs cos θ

F e
ikρ2

2F ρdθdρ, (40)

where S represents the surface of the aperture. But S is
a completely general surface and, specifically, there is no
requirement that the surface be centered or symmetrical about

the origin. So, if the source is at infinity, an off-axis point is
calculated by moving the aperture off center. That allows s to be
set to 0 for any point in the focal plane, by shifting the aperture
of integration.

So, setting E0 to unity

E = eikF

iλF

∫ ∫
s

e
ikρ2

2F dθρdρ (41)

and, integration over ρ in closed form yields

E = 1

2π

∫ 2π

0
e

ikρ2

2F dθ (42)

evaluated from the inner radius ρ i to the outer radius ρo at each
value of θ .

In the case where the area does not include the origin, and is
simple, in that any radial, non-osculating line cuts the surface
twice, the result is

E = 1

2π

∫ 2π

0
e

ikρ2
o

2F dθ − 1

2π

∫ 2π

0
e

ikρ2
i

2F dθ. (43)

In the case where the area is simple and the origin is inside,
then each radial line cuts the perimeter once at ρo and ρ i is
everywhere 0, so

E = 1

2π

∫ 2π

0
e

ikρ2
o

2F dθ − 1. (44)

In Equation (43) the first term is the line integral along the far
edge of the area, while the second term is the return on the near
side. Thus, the integral can be turned into a line integral around
the edge of the shape. So, in the case of a simple, convex shape
that excludes the origin (ρ = 0) within, the equation becomes

E = 1

2π

∫
s

e
ikρ2

2F
ρ̂ · d�s

ρ
, (45)

where ρ̂ is the unit vector in the radial direction and d�s is in the
direction of the normal to the edge element and has size equal
to length of the edge element. So one merely breaks the edge
into small elements and sums the phase factor around the edge.

In the case where the shape is simple, but includes the origin
inside

E = 1

2π

∫
s

e
ikρ2

2F
ρ̂ · d�s

ρ
− 1. (46)

From an algorithmic point of view, a simple prescription for
the electric field at the origin emerges. Create a set of points
that outline the starshade. At each point calculate the distance
between the adjacent points and create the vector ds, which is
the vector normal to the surface at that point, with a value equal
to the length of the edge element. For each element create the
dot product of the normal and the unit vector from the center.
Divide by distance from the center and multiply by the Fresnel
phase term. Sum this all the way around the edge, and the result
will be the desired value in the center. To find a point off-axis,
shift the shape terms and recalculate.

It should be noted that this works well for non-simple forms
as well. A complex shape may be broken into simple shapes
and each shape integrated separately. The borders between the
simple shapes are integrated in one direction for one shape and
in the other direction for the adjacent shape, so the net along
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Figure 4. Suppression caused by a starshade (a = b = 12.5 m, n = 6, F = 80,000 km, λ = 0.5 μm) is shown in the shadow plane. An array of points 128 square was
calculated across a 50 × 50 m square in the plane of the telescope. To the left is the intensity of the residual shadow on a linear scale, showing complicated diffraction
patterns near the edge and a fast fall-off to the center. To the right is the same shadow diagram plotted on logarithmic scale, showing more complex structure and a
very deep shadow toward the center.

the border is zero. In practice this means that one can follow the
algorithm described in the preceding paragraph around the edge
of any arbitrary shape. Holes may be calculated inside a mask
by integrating the edge in the opposite direction. Of course,
one must still calculate whether or not the origin falls inside
or outside the shape. If it is found to be inside, then one must
subtract it.

Such a code was built and it works very effectively, and very
quickly. It typically takes 0.1 s on today’s laptops to calculate
a single point in the shadow. About 40,000 points are needed
around the edge of a starshade to gain sufficient accuracy to
predict the residual field to the 10−12 level. At the start of the
algorithm the starshade is defined through four vectors. These
are the x and y values of the points around the edge and the x
and y values of the normal vectors.

The trickiest part of the algorithm is finding a way to
accurately check whether or not the origin is inside the shape.
This is difficult near the edges where there is a mathematical
discontinuity, and an incorrect value of inside/outside can lead
to a false value of E near unity, when the true value may be very
different. It is even more difficult near the corners and tips of
the shade. The vectors must be built with care there to ensure
that small, round-off errors do not create incorrect values for the
inside/outside determination.

In Figure 4, we show a map created with this code by
calculating the intensity in a 128 × 128 array of shadow
plane points for an offset hyper-Gaussian starshade with a =
b = 12.5 m, n = 6, at F = 80,000 km and λ = 0.5 μ.
With sixteen petals, this starshade creates complicated, two-
dimensional patterns but also creates the deep central shadow
desired.

In Figure 5, we plot the average radial intensity of the
same starshade, and compare it to the performance of a simple
disk and a simple Gaussian. We also show the prediction of
Equation (38) and see that the simple formulation tends to err
on the conservative side.

Figure 6 is the same hyper-Gaussian starshade evaluated
at four different wavelengths, showing that the performance
continues to improve as wavelength decreases. We can also
see some inaccuracy from numerical integration down near the
10−14 level.

Figure 5. Suppression caused by starshades is shown as a function of shadow
radius. All four curves feature a starshade of radius 25 m at 80,000 km operating
at a wavelength of 0.5 μm. The top line is for a simple disk and shows the spot
of Arago at the center where the suppression vanishes. The next curve down
is for a simple Gaussian shape with no offset and 16 petals. The bottom curve
is for an offset hyper-Gaussian with a = b = 12.5 m and n = 6, showing
suppression down to well below 10−10. The dashed line is the approximation of
Equation (38), which shows that it tends to err on the conservative side.

The code is versatile because it mimics reality rather closely.
A small deviation from the nominal value of the edge in reality
is reflected directly in the sum of the residual electric field.
The code sums the local behaviors to create a single global
value at a point. This makes the code ideal for modeling
tolerances and other real effects. In Figure 4, the code is used
to calculate the depth of the shadow as a function of radius for
a 16 petal starshade and compare it to the circularly symmetric
approximation. The results have been carefully cross-checked
with another code that has been reported upon elsewhere
(Glassman et al. 2009).

4. TOLERANCING

So far, the starshade concept has been treated as a mathe-
matical construct, without regard to its practical application.
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Figure 6. Suppression caused by a starshade (a = b = 12.5 m, n = 6, F =
80,000 km) is shown as a function of radius in the shadow plane. The curves are
for different wavelengths from the top down: 2 μm, 1μm, 0.5μm, and 0.25μm,
which correspond to α’s of 2.5, 3.5, 5.0 and 7.0, respectively. It is clear that
the suppression becomes continuously better as the wavelength is reduced. The
bottom curve inside 5 m shows the accuracy limits of the code with the shape
used in this particular calculation, where only 3000 points were used per petal
edge and approximations were used to the tips and valley shapes.

But if it is ever to be built, the tolerances for fabrication
must be investigated. Any device in which the tolerances are
impractically tight would not be achievable and thus would be of
little value. It is the purpose of engineering studies to determine
what is actually achievable and at what cost. Many such studies
(Shipley et al. 2007; Lyon et al. 2007; Arenberg et al. 2008;
Dumont et al. 2009; Kasdin et al. 2009; Shaklan et al. 2010)
have now been performed and the community has a rough idea
of where the boundaries of practicality and affordability lie. That
there is a general sense that the tolerances can be met in afford-
able programs is actually the greatest strength of starshades.

The tolerance discussion is started with an inspection of
Equation (42). While this equation was generated while search-
ing for a method of numerical simulation, it is very useful for
discussing tolerances. First convert the equation to dimension-
less, natural units using the definitions of Equation (27), so that

E = 1

2π

∫ 2π

0
e

iτ2

2 dθ, (47)

where it is understood that τ is given as a function of θ .
Through change of variable and use of the chain rule this

equation reads

E = 1

2π

∫ ∞

0
e

iτ2

2
dθ

dτ
dτ . (48)

So that now the outline of the shade is defined by radius as a
function of angle. τ (θ ) does not need to be single-valued. The
integral is simply executed over all values of τ at any θ .

The presence of the dθ/dτ term gives insight into the
tolerancing of a binary optic. Large leaps and discontinuities
in τ can be tolerated as long as dθ/dτ remains zero. But
a discontinuous change in τ means a linear edge that points
directly at the shadow point under evaluation.

If that edge is misaligned with the point of evaluation (e.g.,
an off-axis point) then large amounts of diffraction can rapidly
develop. For example, if the edge covers one half-zone, then the

change in electric field is

δE ≈ 1

2π
e

iτ2

2 δθ ≈ δθ

2π
, (49)

where δθ is the projected angle of the edge as viewed from the
center. If 10−10 contrast is desired, then δE must be held to 10−5

and δθ must then be below about 10−4. For a 50 m diameter
shade, the resultant shadow would be only 5 mm in diameter.
This effect is clearly seen as a reduction in the diameter of the
deepest part of the shadow as a function of petal number in
Figure 8.

It should be noted that in the starshade designs, the diameter
of the shadow is much larger than this. The perimeter of the
starshade is closest to radial at the tips and in the valleys near
the base. At each of these points there is a nearby matching edge
at the same angle and in the opposite direction. To first order
they cancel as δθ grows. To higher order, δθ is not linear and
the Fresnel phase is not exactly the same on either side and can
play a small role in the off-axis response.

Letting τ (θ ) be perturbed by a function ε(θ ):

E + Δ = 1

2π

∫ 2π

0
e

i(τ+ε)2

2 dθ, (50)

where Δ is now the change in the electric field in the shadow.
Expanding and dropping higher terms then gives

Δ = i

2π

∫ 2π

0
e

iτ2

2 τεdθ (51)

as a general measure of the effect of an error. It should also be
noted that this can be changed from an error function ε in the
radial direction to an error function δ in the azimuthal direction
yielding

Δ = i

2π

∫ ∞

0
e

iτ2

2 τδ (τ ) dτ . (52)

Inspection of Equation (52) shows that an error of the form

δ (τ ) = δ0e
− iτ2

2 (53)

is about as bad as possible, creating an effect of size Δ ∼ τδ0,
where τ is roughly the length of the error along the edge.
Similarly, an error that is localized within one Fresnel zone
will cause an error Δ ∼ τδ0, where τδ0 is the area of deformity
in outline.

4.1. Petal Number

It is remarkable (and not fully intuitive), but a circularly
symmetric apodization function may be well approximated by
petals (Figure 7), allowing the occulter to be binary (Marchal
1985). While strictly speaking the number of petals is a design
choice, not a tolerance, analysis of petal number follows in the
form of a simple tolerance analysis. In part II of this paper a
circularly symmetric formulation for the apodization function
was used, which would have required a partially transmitting
aperture. In practice, scattering from the transmitting material
would keep such designs from being easily built. A binary optic
with a finite number of petals is required. It has been established
through raytracing (as discussed in Section 3) that, for the design
range in use, 16 petals provides an approximation to circularly
symmetry with no major loss of performance (Glassman et al.
2009). Twelve petals can be used at the expense of some loss
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b
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a a
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a

Figure 7. Twelve petal version of the starshade is shown schematically with
Fresnel zones in the background.

of deep-shadow diameter. Below that the size of the shadow
shrinks rapidly with petal number.

The reason for this can be understood from examination of
Equation (47). Moving off-axis by a distance δτ toward a single
petal results in a very strong increase in diffraction as discussed
earlier, even in the case of an infinitely narrow petal. However,
moving a distance δτ perpendicular to a petal causes a much
smaller effect, creating an ε given by

ε = tan−1

(
δτ

τ

)
, (54)

which, when δτ/τ is small, gives us

Δ = i

2π

∫ 2π

0
e

iτ2

2 τ

(
δτ

τ

)
dθ = (δτ )E. (55)

So E becomes (1 + δτ )E, which is a small effect.
However, when the small angle approximation of the arctan in

Equation (54) starts to break, at values that become a significant
fraction of π/2, then the errors start to grow rapidly. At π/6
the approximation is quite good, indicating that 12 petals are
reasonable. Calculations were made with the code discussed
in Section 3 and are shown in Figure 8. They show that the
central spot and the areas near the edge of the shadow are not
significantly impacted by petal number, but below 12–16 petals
the size of the central dark shadow decreases rapidly.

An important point about petal-shaped shades can be easily
shown from these equations. Each petal operates independently.
In particular, the diffraction from one side of the shade is not
used to cancel the light from the other side. Similarly, there is
no need for uniformity of design from one petal to the next.

Consider rewriting Equation (47) to reflect its petal nature. If
the shade has P identical petals then

E = 1

2πP

∑P

i=1

∫ 2πi
P

2π(i−1)
P

e
iτ2

2 dθ. (56)

By symmetry each petal is the same so each element of the
sum is identical and thus Ei = E/P, where Ei is the contribution
for the ith petal. Each petal individually sums to zero.

Figure 8. Suppression caused by a starshade (a = b = 12.5 m, n = 6, F =
80,000 km, λ = 0.5 μm) is shown as a function of radius in the shadow plane.
The curves are calculated for different numbers of petals. From the top down
there are 4, 8, 12 and 16 petals, respectively. One sees that the edges and the
center of the shadow are not affected by petal number, but the size of the central
hole is significantly compromised below about 12 petals.

Thus, the parameters of each petal may vary. In particular,
its width and length may vary as long as each Ei still remains
acceptably small. Asymmetries, however, can have some effects
on tolerances and field of view, so breaking symmetry must be
done with care.

4.2. Alignment

Lateral position. This is the position of the detector perpen-
dicular to the line that extends from the source through the
center of the starshade. If the telescope drifts too far laterally,
it will start to leave the shadow. This distance is set by the
size of the shadow. The depth of the shadow increases as one
approaches the center, and the telescope must be smaller than
the diameter of the region with sufficient contrast. This region
becomes larger as the shade becomes larger and more distant.
Thus, an optimized starshade would fit the shadow size to the
telescope size. So, a margin of 20% on the starshade size appears
reasonable. Thus, simply choose ±0.1a as the constraint on
lateral position.

Depth of focus. This is the position of the detector along the
line from the star through the center of the starshade. There is
no focal plane for the telescope in the shadow as it is deep along
its entire length. However, as the telescope moves farther from
the starshade along the shadow, two things happen—the inner
working angle drops and the amount of diffracted light rises. So
the depth of focus is set by a trade between these two effects.
Equation (35) shows that the residual diffraction shadow scales
as F2n. Since n is typically 6, the residual diffraction will rise as
the 12th power of the distance. Even a 1% increase in distance
could lead to a detectable (12%) increase in diffraction. On the
other hand, a 1% change in inner working angle is usually not
serious. So the position of the telescope should be known to
1% in the beam (800 km in our standard case) and this position
tolerance does not present a serious difficulty.

Rotational. Because of the circular symmetry built into the
design, there is no constraint on θz, the rotation angle about
the line of sight. Sometimes it might be better to actually spin
the starshade about this axis to smooth out residual diffraction
effects.
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Pitch and Yaw. Because of the rotational symmetry the
constraint on errors in alignment about the pitch axis, θ x and
yaw axis, θ y, may be combined into a single pointing error. It
turns out that the design is highly forgiving of such errors, but
the proof takes some calculation.

Assume that the shade is out of alignment with the axis of
symmetry by an angle ϕ about the y-axis, such that the shade
appears foreshortened in the x-direction by a factor of cosϕ,
which is approximated by 1−ε. The net optical path difference
is small, about (a + b)θϕ2/2 for small θ and ϕ. As long as ϕ is

1 the net path delay is a small fraction of a wavelength and
may be ignored.

If this is not the case, then start by rewriting Equation (24)
for the on-axis (s = 0) case in Cartesian coordinates with the
integration now taking place over the projected area which is
foreshortened in one dimension

E = k

2πiF
eikF

⎡
⎢⎣

∫
e

ikx2

2F

∫
e

iky2

2F dxdy+

∫
e

ikx2

2F

∫
e

iky2

2F e
−

( √
x2+y2−a

b

)n

dxdy

⎤
⎥⎦ . (57)

By a change of coordinate to z = x/(1−ε)

E = k

2πiF
eikF

×

⎡
⎢⎣ (1 − ε)

∫
e

iky2

2F

∫
e

ikz2(1−ε)2

2F dydz+

(1 − ε)
∫

e
iky2

2F

∫
e

ikz2(1−ε)2

2F e
−

( √
y2+z2(1−ε)2−a

b

)n

dxdy

⎤
⎥⎦ , (58)

where the integration is now over a circularly symmetric shape
as before. Converting to polar coordinates

E = k

2πiF
eikF

×
⎡
⎣ (1 − ε)

∫ 2π
0

∫ a
0 e

ikρ2
2F e

− ikρ2 cos2 θ (2ε−ε2)
2F ρdρdθ+

(1 − ε)
∫ 2π

0
∫ ∞
a e

ikρ2
2F e

− ikρ2 cos2 θ (2ε−ε2)
2F e

−
⎛
⎝

√
ρ2+ρ2 cos2 θ (2ε−ε2)−a

b

⎞
⎠

n

ρdρdθ

⎤
⎦ . (59)

Expanding and ignoring terms in ε2 and higher, then differencing
from the unperturbed integral yields an expression for the
remainder caused by the misalignment:

R = k

2πiF

∫ 2π

0

∫ a

0
e

ikρ2

2F

[
1 − (1 − ε) e− ikερ2 cos2 θ

2F

]
ρdρdθ

+
k

2πiF

∫ 2π

0

∫ ∞

a

e
ikρ2

2F e−( ρ−a

b )n

×
[

1 − (1 − ε) e− ikερ2 cos2 ϑ

2F e
( ρ−a

b )n
(

1−
(

1− ρε cos2 θ

ρ−a

)n)]
ρdρdθ.

(60)

Approximation of the exponentials in the brackets and dropping
higher order terms reduces this to

R = εk

2πiF

∫ 2π

0

∫ a

0
e

ikρ2

2F

[
1 +

ikρ2 cos2 θ

F

]
ρdρdθ

+
εk

2πiF

∫ 2π

0

∫ ∞

a

e
ikρ2

2F e−( ρ−a

b )n

×
[

1 +
ikρ2 cos2 θ

F
−

(
ρ − a

b

)n (
nρ cos2 θ

ρ − a

)]
ρdρdθ.

(61)

The terms in higher order of ρ are smaller as before, leaving
an expression for the remainder. To first order, the remaining
electrics field Rθ is given by

Rθ = (1 − cos θ ) R ≈ θ2

2
R (62)

where R is the residual electric field in the original untilted case.
So misalignments of axis will not be severe and many degrees
of misalignment can be tolerated.

4.3. Tips and Valleys

Truncation of petals. Mathematically, the apodization carries
out to infinity. In the case of a binary mask, this means that petals
extend to infinity, something which clearly cannot be done in
practice. At what radius is it safe to truncate the petal? One can
write the remainder of the electric field created by truncating at
a radius T.

R =
∫ ∞

T

e
iτ2

2 e
−

(
τ−α
β

)n

τdτ, (63)

which is definitely less than

R = 1

P
e
−

(
T −α

β

)n

(64)

per petal. The remainder due to truncation can be safely ignored
in a typical case when the thickness of each petal has fallen
below about 0.1mm. Thus, the petals must be sharp at their tips,
but do not have to be controlled at a microscopic level.

4.4. Distortions

Area change. Consider the case where the shape changes in a
discontinuous manner. Since there are many possible classes of
such error, they can only be addressed as a generality. Consider
a petal that is missing a chunk along one edge. The missing part
can be contained within one half-zone or spread over several. To
the extent that the missing area is monotonic across the zones,
the net effect is less than the largest area within one half-zone.
So, the size of the missing area must be less than 10−5 of the
starshade area, but can be substantially larger if spread over
several zones.

4.5. Shape

Flatness. A starshade is not a mirror or a lens and does not
alter the phase of a wavefront as it passes by. As such, the
flatness requirements are very forgiving. The tolerances are set
by the projected shape of the starshade onto the sky. Inside the
edge of the frame, the flatness has no effect whatsoever.

Consider the case of an error in which parts of the frame
(outlining the sky) move toward or away from the telescope in
such a way that the projected shape remains unchanged. Then
the field in the shadow may be written as a modification of
Equation (42):

E = 1

2π

∫ 2π

0
e

ikρ2

2F
+ ikδ(θ )α2(θ )

2 dθ, (65)

where δ(θ ) is the deviation of the shade edge in the z-direction
as a function of azimuthal angle and α(θ ) is the angular radius of
the shade as viewed from the telescope as a function of azimuthal
angle.
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Assuming that kδα2 is much less than unity, the change to E
will be given by

δE = 1

2π

kδ0α
2
0

2

∫ 2π

0
e

ikρ2

2F Φ (θ ) dθ, (66)

where δ0α0
2 is the maximum amplitude of the phase delay and

Φ(θ ) is the phasing of the errors around the circumference.
Then, noting that the integral cannot exceed 2π in the worst
case, we have

δE <
kδ0α

2
0

2
(67)

creating a tolerance of

δ0 <
2R

kα2
0

. (68)

Which means δ0 < 2.5 m in the tightest case. The warp would
have to reach ±2.5 m excursions on a 1m radial distance to cause
detectable degradation. It would take applications in which
suppression below 10−16 is required to make warping a concern.

Azimuthal errors in petal shape. When the apodization
function was approximated with the petals to make the function
binary, the distribution of the electric field was significantly
perturbed in the azimuthal direction. The total, when integrated
over the circle at any given value of ρ, remained unchanged.
Thus, within the azimuthal sector of width 2π/N radians at any
fixed radius ρ, the obscuration may be freely moved. Essentially,
the starshade is insensitive to shear in the azimuthal direction.
Simply keep the shear from slipping into the region of the
adjacent petals.

Radial errors in petal shape. If the petal is stretched or com-
pressed such that the smoothness of the fall of the apodization is
maintained, then there is little impact on the performance. This
is reflected in the insensitivity to alignment, wherein the petals
in some directions are changed in projected length, but there
is no noticeable impact on performance. Similarly the petal
analysis shows that each petal independently creates its own
deep shadow zone. Hence, radial scaling of modest amounts
does not hurt the performance.

4.6. Holes

Opacity. The shade must be opaque to the needed level. If the
star is to be suppressed to better than a ratio S, then the shade
must transmit less than 1/S of the incident radiation.

Pinholes. The presence of pinholes can simulate a level of
transparency. By the Fresnel integral the area of the pinholes
must represent 1/S of the area of the starshade if uniformly
distributed. If contained in one zone, they must add up to less
than 1/

√
S of the area of that zone. This tolerance is typically

achieved in engineering designs by triple layering the opaque
sheet. See, for example, Cash ( 2009).

Large holes. A single large hole can be restricted to a single
zone. Since a zone has an area

Az = πλF (69)

the hole must have an area less than

AHole <
πλF√

S
(70)

which, for typical cases, translates to a hole area as large as a
square centimeter, well within a practical range.

4.7. Target Constraints

While not strictly a tolerance on the design of the starshade,
the properties of the target system can significantly affect the
design and operation of a starshade system.

Stellar diameter. The stars we wish to suppress have signif-
icant angular extent across the sky. Alpha Centauri’s disk is
7 milliarcseconds (mas) in diameter, and our typical target near
10 pc will subtend about 1 mas. The light from a stellar disk is
incoherent, meaning that the shadow will be the convolution of
the disk function with the intensity shape of the shadow from a
point source. Since the intensity rises so very steeply near the
edge it is the rim of the stellar disk that dominates the shadow
degradation. A star of diameter θ will cause a diameter loss of
Fθ at the telescope. 1 mas at 80,000 km creates a 40 cm loss in
shadow diameter, which should not be forgotten when designing
the shade. Essentially, the shade must be made 40 cm larger in
diameter.

Seeing. When light passes through non-uniform, transparent
media, phase delays can be introduced as a function of position.
When a star is viewed through the atmosphere, these time-
variable phase delays cause the image to move around, an
effect referred to as “seeing.” The phase delays can even split
the apparent image of a point into multiple points. Since the
phase delays are a coherent effect, the electric field in the
telescope plane will be the convolution of the point response
electric field with the amplitude of the incident electric field
as a function of position on the sky. Because the incident light
is coherent, the convolution will include phase effects, unlike
the convolution for a stellar disk. But, the electric field is also
very steep near the edge, rising typically as the sixth power of
radius. So phase effects are quickly overwhelmed by the outlier
(in radius) contributions. It is beyond the scope of this paper
to discuss the complicated response that is likely to ensue, but
the net global result will be similar to the incoherent case. The
shadow will be convolved with the seeing disk on the sky. As
long as the seeing disk remains within the central suppression
zone, the starshade will operate properly. Again, the size should
be adjusted in advance to allow for the expected seeing. But a
remarkable conclusion is reached: external occulters will work
within the atmosphere albeit with an inner working angle several
times larger than the seeing.

Binaries. Many stars, including our closest neighbor Alpha
Centauri, are in binary systems. If the two stars are very close,
such that both components lie in the central suppression zone,
then observation may proceed as normal. For a widely spaced
binary like Alpha Cen, which has zero and first magnitude
components separated by about 10 arcsec, suppression of just
one component is insufficient. Two independent starshades are
required. If the separation of the components is comparable to
the inner working angle, such that two occulters are required,
but their projected shapes overlap, then the resultant diffraction
would be serious and could destroy the suppression. A larger
or non-circular shade will be required. Of course, if the nearby
source is vastly fainter, like a brown dwarf or exozodiacal light,
then it may not pose a problem, depending on the details of the
telescope performance.

5. APODIZATION RIPPLES

In 2007, Vanderbei et al. (hereafter VCK) published the
results of a generalized search for the optimal starshade apodiza-
tion function. Working with circular symmetry only, they
found solutions that have proven to translate well to the petal
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approximation. Their solutions allow for shrinking the starshade
radius by about 25% relative to a hyper-Gaussian design. But the
decrease in size is not without cost. Herein is a simple analytic
discussion of these somewhat smaller starshades.

Inspection of the plot of the VCK apodization function shows
it to be highly similar to an offset hyper-Gaussian. It begins with
an opaque center and then falls exponentially to a short tail.
Only very close inspection reveals the differences. The biggest
difference is a series of ripples on top of the base function. There
are some ripples of wavelength comparable to the width of a
Fresnel zone that have amplitudes on the order of 1%. There are
also some shorter wavelength ripples of magnitude near 0.1%.
The other noticeable difference is that the ripples extend closer
to the center than in a comparable hyper-Gaussian. In a typical
hyper-Gaussian design a = b, and no light inside radius a is
passed.

Consider a hyper-Gaussian that is substantially similar to the
rippled function of VCK but fully envelops the bumps. Such a
function would give good performance on-axis, but would have
a smaller shadow than the VCK case. A large telescope would
encounter problems collecting too much diffracted starlight at
the edge of the mirror. The ripples can then be thought of as
extra apertures opened strategically along the radius to suppress
the light around the edge of the shadow. This must be done
in such a way that the center of the shadow is not degraded
beyond specification. It must also be done in such a way that the
broadband response is not lost.

To understand the function of these “apertures,” imagine
starting with the proximate hyper-Gaussian. In the plane of
the telescope mirror, the residual, diffracted electric field may
be mapped in strength and phase as a function of radius at any
wavelength. The strength increases at a very high rate with radius
and is always the worst at the longest wavelength. Thus, the
shadow size improvement starts with the longest wavelength,
just outside the radius where the diffracted intensity reaches
allowed maximum. Remember that its signal comes almost
exclusively from the starshade at a radius of a.

To suppress the electric field in the shadow-plane annulus,
coherent radiation 180 deg out of phase must be added. The
only source of such radiation is to open an extra aperture in the
shade one Fresnel half-zone away as viewed from the point in
the shadow plane. These points on the shade occur where

(τ − σ )2

2
− (α − σ )2

2
= π + 2πn (71)

or

τ = σ ±
√

2π (1 + 2n) + (α − σ )2. (72)

In a typical application α ∼ 3 and σ ∼ 1, so the apertures need
to be at τ = 4 and τ = −2. The positive solution is located on
the sloping edge of the petal, while the other aperture is inside
the opaque disk across the center of the starshade. This explains
the need to open an aperture inside α.

The rest of the apertures are then added to undo the col-
lateral damage from the first aperture. That first one created
a Bessel function in the electric field that offset the resid-
ual hyper-Gaussian field at α. But it also creates a substan-
tial new component of diffracted light near the middle. The
additional apertures create additional electric field components
designed to offset the new field in the center, but have minimal
effect at σ .

Note that the positioning of these apertures depends on the
square root of wavelength and it is thus not surprising that the

solution works over a fairly broadband shortward of the design
point, but fails eventually. It appears that the function of the
short wavelength ripples is to extend suppression further to the
blue without significantly impacting the red end. The overall
bandpass achieved through this means covers more than an
octave of spectrum, which is satisfactory for many applications.

However, the use of these discrete features changes the
tolerances and fabrication significantly. First, consider that the
smallest-radius perturbation on a petal is designed to create a
diffractive wave that crosses the axis of the starshade to improve
the performance in the shadow of the petal on the other side.
One of the highly desirable features of a hyper-Gaussian is that
each petal operates independently. The shape and positioning
of the petal on one side, does not affect the petal on the other
side. Loss of this feature makes fabrication significantly more
difficult.

These errors can come about in two ways. They can be the
result of a shape error or they can result from positioning errors.
Consider that each of these apertures is being convolved with
the Fresnel zones. A major ripple (1% of apodization) can move
out of position no more than 0.1% of a Fresnel half-zone (circa
1 mm) relative to the other ripples if 10−10 suppression is to be
maintained. On the other hand, hyper-Gaussians have a smooth
shape. Each Fresnel half-zone cancels against the next and thus
positioning of the shape is more forgiving.

Overall the rippled geometry offers features of interest
relative to the hyper-Gaussian. In particular, it allows the
diameter of the starshade to be reduced by about 25% without
loss of shadow size. Consequently, the inner working angle at
which planets are observable can be supported with the starshade
25% closer. A mission may be designed with a saving on both
launch mass and maneuvering fuel.

On the other hand, the ripples restrict the bandpass, allowing
unacceptable diffraction in the ultraviolet. They also make
the fabrication and stability tolerances much more difficult to
achieve.

It should be noted that adjustable apertures might be practical.
One could literally open or close apertures as needed in flight to
correct minor shape errors. They could also be used to optimize
the starshade performance for particularly difficult observations.

6. CONCLUSIONS

In this paper, a mathematical framework for understanding
and analyzing starshade designs has been developed.

It was shown that “Offset Hyper-Gaussians” provide an
apodization that enables practical sized starshades to be built
in support of direct observation of Earth-like planets. Formulae
for the central depth of the shadow and its off-axis degradation
have been derived.

It was shown how integration over radius can change the
two-dimensional Fresnel integral into a one-dimensional edge
integral in the case of binary optics. This is one approach to
making computer algorithms fast enough to perform detailed
analysis of the deep shadow.

It was shown how perturbation analysis can be used to
understand the basic tolerances of a starshade system and lead
to simple scaling relations for such tolerances.

An analytic explanation for the behavior of the generalized
apodization functions of VCK was developed and was used to
explain why some of the shape tolerances for their generalized
design can be much tighter than for the hyper-Gaussian case.

In general, the analytic approach gives insight into the design
and building of starshades that cannot be easily gained with

12



The Astrophysical Journal, 738:76 (13pp), 2011 September 1 Cash

computers alone. These results further support the sense of
confidence that they can be built and flown.

I thank the many colleagues who have worked with me in
the lengthy process of coming to an understanding of how star-
shades function. In particular, I am indebted to J. Arenberg,
T. Glassman, A. Lo, and R. Vanderbei. This work had been sup-
ported by grants from the NASA Institute for Advanced Con-
cepts and NASA’s Science Mission directorate. The engineering
support provided by Northrop Grumman Aerospace Systems has
been essential to the rapid development of starshades.
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