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ABSTRACT

Recent observations support the hypothesis that a large fraction of “short-hard” gamma-ray bursts (SHBs) are
associated with the inspiral and merger of compact binaries. Since gravitational-wave (GW) measurements of
well-localized inspiraling binaries can measure absolute source distances, simultaneous observation of a binary’s
GWs and SHB would allow us to directly and independently determine both the binary’s luminosity distance and
its redshift. Such a “standard siren” (the GW analog of a standard candle) would provide an excellent probe of the
nearby (z � 0.3) universe’s expansion, independent of the cosmological distance ladder, thereby complementing
other standard candles. Previous work explored this idea using a simplified formalism to study measurement
by advanced GW detector networks, incorporating a high signal-to-noise ratio limit to describe the probability
distribution for measured parameters. In this paper, we eliminate this simplification, constructing distributions with
a Markov Chain Monte Carlo technique. We assume that each SHB observation gives source sky position and time
of coalescence, and we take non-spinning binary neutron star and black hole–neutron star coalescences as plausible
SHB progenitors. We examine how well parameters (particularly distance) can be measured from GW observations
of SHBs by a range of ground-based detector networks. We find that earlier estimates overstate how well distances
can be measured, even at fairly large signal-to-noise ratio. The fundamental limitation to determining distance
proves to be a degeneracy between distance and source inclination. Overcoming this limitation requires that we
either break this degeneracy, or measure enough sources to broadly sample the inclination distribution.
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1. INTRODUCTION

1.1. Overview

Two multi-kilometer interferometric gravitational-wave
(GW) detectors are presently in operation: LIGO4 and Virgo.5

They are sensitive to GWs produced by the coalescence of two
neutron stars to a distance of roughly 30 Mpc, and to the coa-
lescence of a neutron star with a 10 M� black hole to roughly
60 Mpc. Over the next several years, these detectors will un-
dergo upgrades which are expected to extend their range by a
factor ∼10. Most estimates suggest that detectors at advanced
sensitivity should measure at least a few, and possibly a few
dozen, binary coalescences every year (e.g., Kopparapu et al.
2008; Abadie et al. 2010).

It has long been argued that neutron star–neutron star
(NS–NS) and neutron star–black hole (NS–BH) mergers are
likely to be accompanied by a gamma-ray burst (Eichler et al.
1989). Recent evidence supports the hypothesis that many short-
hard gamma-ray bursts (SHBs) are indeed associated with such
mergers (Fox et al. 2005; Nakar et al. 2006; Berger et al. 2007;
Perley et al. 2009). This suggests that it may be possible to
simultaneously measure a binary coalescence in gamma rays
(and associated afterglow emission) and in GWs (Dietz 2009).
The combined electromagnetic and gravitational view of these
objects will teach us substantially more than what we learn from
either data channel alone. Because GWs track a system’s global
mass and energy dynamics, it has long been known that measur-
ing GWs from a coalescing binary allows us to determine, in the

4 http://www.ligo.caltech.edu
5 http://www.virgo.infn.it

ideal case, “intrinsic” binary properties such as the masses and
spins of its members with exquisite accuracy (Finn & Chernoff
1993; Cutler & Flanagan 1994). As we describe in the follow-
ing subsection, it has also long been appreciated that GWs can
determine a system’s “extrinsic” properties (Schutz 1986) such
as location on the sky and distance to the source. In particular,
the amplitude of a binary’s GWs directly encodes its luminosity
distance. Direct measurement of a coalescing binary could thus
be used as a cosmic distance measure: binary inspiral would
be a “standard siren” (the GW equivalent of a standard candle,
so-called due to the sound-like nature of GWs) whose calibra-
tion depends only on the validity of general relativity (Holz &
Hughes 2005; Dalal et al. 2006).

Unfortunately, GWs alone do not measure extrinsic parame-
ters as accurately as the intrinsic ones. As we describe in more
detail in the following section, GW observation of a binary
measures a complicated combination of its distance, its position
on the sky, and its orientation, with overall fractional accuracy
∼1/signal-to-noise. As distance is degenerate with these angles,
using GWs to measure absolute distance to a source requires a
mechanism to break the degeneracy. Associating the GW coa-
lescence waves with a short-hard gamma-ray burst (SHB) is a
near-perfect way to break some of these degeneracies.

In this paper, we explore the ability of the near-future
advanced LIGO–Virgo detector network to constrain binary
parameters (especially distance), when used in conjunction
with electromagnetic observations of the same event (such
as an associated SHB). We also examine how well these
measurements can be improved if planned detectors in Western
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Australia (AIGO6) and in Japan’s Kamioka mine (LCGT7)
are operational. This paper substantially updates and improves
upon earlier work (Dalal et al. 2006, hereafter DHHJ06), using
a more sophisticated parameter estimation technique. In the
next section, we review standard sirens, and in Section 1.3 we
briefly summarize DHHJ06. The next subsection describes the
organization and background relevant for the rest of the paper.

1.2. Standard Sirens

It has long been recognized that GW inspiral measurements
could be used as powerful tools for cosmology. Schutz (1986)
first demonstrated this by analyzing how binary coalescences
allow a direct measurement of the Hubble constant; Marković
(1993) and Finn & Chernoff (1993) subsequently generalized
this approach to include other cosmological parameters. More
recently, there has been much interest in the measurements
enabled when GWs from a merger are accompanied by a
counterpart in the electromagnetic spectrum (Bloom et al.
2009; Phinney 2009; Kulkarni & Kasliwal 2009). In this paper,
we focus exclusively on GW observations of binaries that
have an independent sky position furnished by electromagnetic
observations.

We begin by examining GWs from binary inspiral as mea-
sured in a single detector. We only present here the lowest order
contribution to the waves; in subsequent calculations our re-
sults are taken to higher order (see Section 2.1). The leading
waveform generated by a source at luminosity distance DL, cor-
responding to redshift z, is given by

h+ = 2(1 + z)M
DL

[π (1 + z)Mf ]2/3(1 + cos2 ι) cos 2ΦN (t),

h× = −4(1 + z)M
DL

[π (1 + z)Mf ]2/3 cos ι sin 2ΦN (t),

ΦN (t) = Φc −
[

tc − t

5(1 + z)M

]5/8

, f ≡ 1

π

dΦN

dt
. (1)

Here ΦN is the lowest order contribution to the orbital phase, f
is the GW frequency, and M = m

3/5
1 m

3/5
2 /(m1 + m2)1/5 is the

binary’s “chirp mass,” which sets the rate at which f changes. We
use units with G = c = 1; handy conversion factors are M� ≡
GM�/c2 = 1.47 km, and M� ≡ GM�/c3 = 4.92×10−6 s. The
angle ι describes the inclination of the binary’s orbital plane to
our line of sight: cos ι = L̂ · n̂, where L̂ is the unit vector normal
to the binary’s orbital plane, and n̂ is the unit vector along the
line of sight to the binary. The parameters tc and Φc are the
time and orbital phase when f diverges in this model. We expect
finite size effects to impact the waveform before this divergence
is reached.

A given detector measures a linear combination of the
polarizations:

hmeas = F+(θ, φ,ψ)h+ + F×(θ, φ,ψ)h×, (2)

where θ and φ describe the binary’s position on the sky, and the
“polarization angle” ψ sets the inclination of the components
of L̂ orthogonal to n̂. The angles ι and ψ fully specify the
orientation vector L̂. For a particular detector geometry, the
antenna functions F+ and F× can be found in Thorne (1987).
In Section 2.2, we give a general form for the gravitational

6 http://www.gravity.uwa.edu.au
7 http://gw.icrr.u-tokyo.ac.jp

waveform without appealing to a specific detector, following
the analysis of Cutler & Flanagan 1994 (hereafter abbreviated
CF94).

Several features of Equations (1) and (2) are worth comment-
ing upon. First, note that the phase depends on the redshifted
chirp mass. Measuring phase thus determines the combination
(1 + z)M (Finn & Chernoff 1993), not M or z independently.
To understand this, note that M controls how fast the frequency
evolves: using Equation (1), we find ḟ ∝ f 11/3M5/3. The chirp
mass enters the system’s dynamics as a timescale τc = GM/c3.
For a source at cosmological distance, this timescale is red-
shifted; the chirp mass we infer is likewise redshifted. Redshift
and chirp mass are inextricably degenerate. This remains true
even when higher order effects (see, e.g., Blanchet 2006) are
taken into account: parameters describing a binary impact its
dynamics as timescales which undergo cosmological redshift,
so we infer redshifted values for those parameters. GW ob-
servations on their own cannot directly determine a source’s
redshift.

Next, note that the amplitude depends on (1+z)M, the angles
(θ, φ, ι, ψ), and the luminosity distance DL. Measuring the
amplitude thus measures a combination of these parameters.
By measuring the phase, we measure the redshifted chirp mass
sufficiently well that (1 + z)M essentially decouples from
the amplitude. More concretely, matched filtering the data
with waveform templates should allow us to determine the
phase with fractional accuracy δΦ/Φ ∼ 1/[(signal-to-noise) ×
(number of measured cycles)]; (1 + z)M should be measured
with similar fractional accuracy. NS–NS binaries will radiate
roughly 104 cycles in the band of advanced LIGO, and NS–BH
binaries roughly 103 cycles, so the accuracy with which phase
and redshifted chirp mass can be determined should be exquisite
(Finn & Chernoff 1993, CF94).

Although (1 + z)M decouples from the amplitude, the dis-
tance, position, and orientation angles remain highly coupled.
To determine source distance we must break the degeneracy
that the amplitude’s functional form sets on these parameters.
One way to break these degeneracies is to measure the waves
with multiple detectors. Studies (Sylvestre 2004; Cavalier et al.
2006; Blair et al. 2008; Fairhurst 2009; Wen & Chen 2010) have
shown that doing so allows us to determine the source position to
within a few degrees in the best cases, giving some information
about the source’s distance and inclination.

Perhaps the best way to break some of these degeneracies
is to measure the event electromagnetically. An EM signature
will pin down the event’s position far more accurately than
GWs alone. The position angles then decouple, much as the
redshifted chirp mass decoupled. Using multiple detectors, we
can then determine the source’s orientation and its distance. This
gives us a direct, calibration-free measure of the distance to a
cosmic event. The EM signature may also provide us with the
event’s redshift, directly putting a point on the Hubble diagram.
In addition, if modeling or observation gives us evidence for
beaming of the SHB emission, this could strongly constrain the
source inclination.

1.3. This Work and Previous Analysis

Our goal is to assess how well we can determine the
luminosity distance DL to SHBs under the assumption that they
are associated with inspiral GWs. We consider both NS–NS and
NS–BH mergers as generators of SHBs, and consider several
plausible advanced detector networks: the current LIGO/Virgo
network, upgraded to advanced sensitivity; LIGO/Virgo plus

http://www.gravity.uwa.edu.au
http://gw.icrr.u-tokyo.ac.jp
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the proposed Australian AIGO; LIGO/Virgo plus the proposed
Japanese LCGT; and LIGO/Virgo plus AIGO plus LCGT.

The engine of our analysis is a probability function that
describes how inferred source parameters θ should be distributed
following GW measurement. (Components θa of the vector θ
are physical parameters such as a binary’s masses, distance, sky
position angles, etc.; our particular focus is on DL.) Consider
one detector which measures a datastream s(t), containing noise
n(t) and a GW signal h(t, θ̂), where θ̂ describes the source’s
“true” parameters. In the language of Finn (1992), we assume
“detection” has already occurred; our goal in this paper is to
focus on the complementary problem of “measurement.”

As shown by Finn (1992), given a model for our signal
h(t, θ), and assuming that the noise statistics are Gaussian, the
probability that the parameters θ describe the data s is

p(θ |s) = p0(θ) exp [− ((h(θ) − s)|(h(θ) − s)) /2] . (3)

The inner product (a|b) describes the noise weighted cross-
correlation of a(t) with b(t), and is defined precisely below. The
distribution p0(θ ) is a prior probability distribution; it encapsu-
lates what we know about our signal prior to measurement. We
define θ̃ to be the parameters that maximize Equation (3).

DHHJ06 did a first pass on the analysis we describe here.
They expanded the exponential to second order in the variables
(θ − θ̂ ); we will henceforth refer to this as the “Gaussian”
approximation (cf. Finn 1992):

exp[−(h(θ) − s|h(θ) − s)/2]

� exp

[
−1

2

(
∂h

∂θa

∣∣∣∣∣ ∂h

∂θb

)
δθaδθb

]
, (4)

where δθa = θa − θ̂ a . In this limit, θ̃ = θ̂ (at least for uniform
priors). The matrix

Γab ≡
(

∂h

∂θa

∣∣∣∣∣ ∂h

∂θb

)
(5)

is the Fisher information matrix. Its inverse Σab is the covariance
matrix. Diagonal entries Σaa are the variance of parameter θa;
off-diagonal entries describe correlations.

The Gaussian approximation to Equation (3) is known to be
accurate when the signal-to-noise ratio (S/N) is large. However,
it is not clear what “large” really means (Vallisneri 2008). Given
current binary coalescence rate estimates, it is expected that most
events will come from DL ∼ a few × 100 Mpc. In such cases,
we can expect an advanced detector S/N ∼10. It is likely that
this value is not high enough for the “large S/N” approximation
to be appropriate.

In this analysis we avoid the Gaussian approximation. We
instead use Markov Chain Monte Carlo (MCMC) techniques
(in particular, the Metropolis–Hastings algorithm) to explore
our parameter distributions. A brief description of this technique
is given in Section 3, and described in detail in Lewis & Bridle
(2002). We find that the Gaussian approximation to Equation (3)
is indeed failing in its estimate of extrinsic parameters (though
it appears to do well for intrinsic parameters such as mass).

1.4. Organization of This Paper

We begin in Section 2 by summarizing how GWs encode
the distance to a coalescing binary. We first describe the post-
Newtonian (PN) gravitational waveform we use in Section 2.1,

and then describe how that wave interacts with a network of
detectors in Section 2.2. Our discussion of the network–wave
interaction is heavily based on the notation and formalism used
in Section 4 of CF94, as well as the analysis of Anderson et al.
(2001). Section 2.2 is sufficiently dense that we summarize its
major points in Section 2.3 before concluding, in Section 2.4,
with a description of the GW detectors which we include in our
analysis.

We outline parameter estimation in Section 3. In Section 3.1,
we describe in more detail how to construct the probabil-
ity distributions describing parameter measurement. We then
give, in Section 3.2, a brief description of our selection pro-
cedure based on S/N detection thresholds. This procedure sets
physically motivated priors for some of our parameters. The
MCMC technique we use to explore this function is described in
Section 3.3. How to appropriately average this distribution to
give “noise averaged” results and to compare with previous lit-
erature is discussed in Section 3.4.

In Section 4, we discuss the validation of our code. We begin
by attempting to reproduce some of the key results on distance
measurement presented in CF94. Because of the rather different
techniques used by Cutler & Flanagan, we do not expect exact
agreement. It is reassuring to find, nonetheless, that we can
reconstruct with good accuracy all of the major features of their
analysis. We then examine how these results change as we vary
the amplitude (moving a fiducial test binary to smaller and larger
distances), as we vary the number of detectors in our network,
and as we vary the source’s inclination.

Our main results are given in Section 5. We consider several
different plausible detector networks and examine measurement
errors for two “fiducial” binary systems, comprising either two
neutron stars (NS–NS) with physical masses of m1 = m2 =
1.4 M�, or a neutron star and black hole (NS–BH) system with
physical masses m1 = 1.4 M� and m2 = 10 M�. Assuming a
constant comoving cosmological density, we distribute potential
GW-SHB events on the sky, and select from this distribution
using a detection threshold criterion set for the entire GW
detector network. We summarize some implications of our
results in Section 6. A more in-depth discussion of these
implications, particularly with regard to what they imply for
cosmological measurements, will be presented in a companion
paper.

Throughout this paper, we use units with G = c = 1. We
define the shorthand mz = (1 + z)m for any mass parameter m.

2. MEASURING GRAVITATIONAL WAVES
FROM INSPIRALING BINARIES

In this section, we review the GW description we use, the
formalism describing how these waves interact with a network
of detectors, and the properties of the detectors.

2.1. GWs from Inspiraling Binaries

The inspiral and merger of a compact binary’s members
can be divided into three consecutive phases. The first and
longest is a gradual adiabatic inspiral, when the members
slowly spiral together due to the radiative loss of orbital
energy and angular momentum. PN techniques (an expansion in
gravitational potential M/r , or equivalently for bound systems,
orbital speed v2) allow a binary’s evolution and its emitted GWs
to be modeled analytically to high order; see Blanchet (2006)
for a review. When the bodies come close together, the PN
expansion is no longer valid, and direct numerical calculation
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is required. Recent breakthroughs in numerical relativity now
make it possible to fully model the strong-field, dynamical
merger of two bodies into one; see Pretorius (2005), Shibata
& Uryū (2006), and Etienne et al. (2008) for discussion. If the
end state is a single black hole, the final waves from the system
should be described by a ringdown as the black hole settles
down to the Kerr solution.

In this work we are concerned solely with the inspiral, and
will accordingly use the PN waveform to describe our waves. In
particular, we use the so-called restricted PN waveform; follow-
ing CF94, the inspiral waveform may be written schematically

h(t) = Re

(∑
x,m

hx
m(t)eimΦorb(t)

)
. (6)

Here x indicates PN order (hx is computed to O(v2x) in orbital
speed), m denotes harmonic order (e.g., m = 2 is quadrupole),
and Φorb(t) = ∫ t Ω(t ′)dt ′ is orbital phase (with Ω(t) the orbital
angular frequency). The “restricted” waveform neglects all PN
amplitude terms beyond the leading one, and considers only
the dominant m = 2 contribution to the phase. The phase is
computed to high PN order.

Let the unit vector n̂ point to a binary on the sky (so that
the waves propagate to us along −n̂), and let the unit vector L̂
denote the normal along the binary’s orbital angular momentum.
The waveform is fully described by the two polarizations:

h+(t) = 2Mz

DL

[πMzf (t)]2/3[1 + (L̂ · n̂)2] cos[Φ(t)],

≡ 4Mz

DL

[πMzf (t)]2/3A+(n̂, L̂) cos[Φ(t)]; (7)

h×(t) = − 4Mz

DL

[πMzf (t)]2/3(L̂ · n̂) sin[Φ(t)] ,

≡ 4Mz

DL

[πMzf (t)]2/3A×(n̂, L̂) sin[Φ(t)]. (8)

Equations (7) and (8) are nearly identical to those given in
Equation (1); only the phase Φ(t) is different, as described
below. Mz is the binary’s redshifted chirp mass, DL is its
luminosity distance, and we have written the inclination angle
cos ι using the vectors n̂ and L̂. The functions A+,× compactly
gather all dependence on sky position and orientation. In
Section 2.2, we discuss how these polarizations interact with
our detectors.

In these forms of h+ and h×, the phase is computed to 2nd-
post-Newtonian (2PN) order (Blanchet et al. 1995):

Φ(t) = 2π

∫
f (t ′) dt ′ = 2π

∫
f

df/dt
df, (9)

df

dt
= 96

5
π8/3M5/3

z f 11/3

[
1 −

(
743

336
+

11

4
η

)
(πMzf )2/3

+ (4π )(πMzf ) +

(
34103

18144
+

13661

2016
η +

59

18
η2

)

× (πMzf )4/3

]
. (10)

Higher order results for df/dt are now known (Blanchet et al.
2002a, 2002b, 2004), but 2PN order will be adequate for our

purposes. Since distance measurements depend on accurate
amplitude determination, we do not need a highly refined model
of the wave’s phase. The rate of sweep is dominantly determined
by the chirp mass, but there is an important correction due to
η = μ/M = m1m2/(m1 + m2)2, the reduced mass ratio. Note
that η is not redshifted; both μ and M (the reduced mass and total
mass, respectively) acquire (1 + z) corrections, so their ratio is
the same at all z. Accurate measurement of the frequency sweep
can thus determine both Mz and η (or Mz and μz).

We will find it useful to work in the frequency domain, using
the Fourier transform h̃(f ) rather than h(t):

h̃(f ) ≡
∫ ∞

−∞
e2πif th(t) dt . (11)

An approximate result for h̃(f ) can be found using stationary
phase (Finn & Chernoff 1993), which describes the Fourier
transform when f changes slowly:

h̃+(f ) =
√

5

96

π−2/3M5/6
z

DL

A+f
−7/6eiΨ(f ) , (12)

h̃×(f ) =
√

5

96

π−2/3M5/6
z

DL

A×f −7/6eiΨ(f )−iπ/2 . (13)

“Slowly” means that f does not change very much over a single
wave period 1/f , so that (df/dt)/f 
 f . The validity of this
approximation for the waveforms we consider, at least until
the last moments before merger, has been demonstrated in
previous work (Droz et al. 1999). The phase function Ψ(f )
in Equations (12) and (13) is given by

Ψ(f ) = 2πf tc − Φc − π

4
+

3

128
(πMf )−5/3

×
[

1 +
20

9

(
743

336
+

11

4
η

)
(πMzf )2/3

− 16π (πMzf ) + 10

(
3058673

1016064
+

5429

1008
η +

617

144
η2

)

× (πMzf )4/3

]
. (14)

As in Equation (1), tc is called the “time of coalescence” and
defines the time at which f diverges within the PN framework;
Φc is similarly the “phase at coalescence.” We assume an abrupt
and unphysical transition between inspiral and merger at the
innermost stable circular orbit (ISCO), fISCO = (6

√
6πMz)−1.

For NS–NS, fISCO occurs at high frequencies where detectors
have poor sensitivity. As such, we are confident that this abrupt
transition has little impact on our results. For NS–BH, fISCO is
likely to be in a band with good sensitivity, and better modeling
of this transition will be important.

In this analysis we neglect effects which depend on spin. In
general relativity, spin drives precessions which can “color” the
waveform in important ways, and which can have important
observational effects (see, e.g., Vecchio 2004; Lang & Hughes
2006; van der Sluys et al. 2008). These effects are important
when the dimensionless spin parameter, a ≡ c|S|/GM2, is
fairly large. Neutron stars are unlikely to spin fast enough to
drive interesting precession during the time that they are in the
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band of GW detectors. To show this, write the moment of inertia
of a neutron star as

INS = 2

5
κMNSR

2
NS, (15)

where MNS and RNS are the star’s mass and radius, and
the parameter κ describes the extent to which its mass is
centrally condensed (compared to a uniform sphere). Detailed
calculations with different equations of state indicate κ ∼
0.7–1 (cf. Cook et al. 1994, especially the slowly rotating
configurations in their Tables 12, 15, 18, and 21). For a neutron
star whose spin period is PNS, the Kerr parameter is given by

aNS = c

G

INS

M2
NS

2π

PNS

� 0.06κ

(
RNS

12 km

)2 (
1.4 M�
MNS

) (
10 ms

PNS

)
. (16)

As long as the neutron star spin period is longer than ∼10 ms,
aNS is small enough that spin effects can be neglected in our
analysis. We should include spin in our models of BH–NS
binaries; we leave this to a later analysis. Van der Sluys et al.
(2008) included black hole spin effects in an analysis which
did not assume a known source position. They found that spin-
induced modulations could help GW detectors to localize a
source. This and companion works (Raymond et al. 2009;
van der Sluys et al. 2009) suggest that, if position is known,
spin modulations could improve our ability to measure source
inclination and distance.

Our GWs depend on nine parameters: two masses Mz

and μz, two sky position angles (which set n̂), two orienta-
tion angles (which set L̂), time at coalescence tc, phase at
coalescence Φc, and luminosity distance DL. When the sky
position is known, the parameter set is reduced to seven:
{Mz, μz,DL, tc, cos ι, ψ, Φc}.

2.2. Measurement of GWs by a Detector Network

We now examine how the waves described in Section 2.1
interact with a network of detectors. We begin by introducing
a geometric convention, which follows that introduced in CF94
and in Anderson et al. (2001). A source’s sky position is given
by a unit vector n̂ (which points from the center of the Earth
to the binary), and its orientation is given by a unit vector L̂
(which points along the binary’s orbital angular momentum).
We construct a pair of axes which describe the binary’s orbital
plane:

X̂ = n̂ × L̂

|n̂ × L̂|
, Ŷ = − n̂ × X̂

|n̂ × X̂|
. (17)

With these axes, we define the polarization basis tensors

e+ = X̂ ⊗ X̂ − Ŷ ⊗ Ŷ , (18)

e× = X̂ ⊗ Ŷ + Ŷ ⊗ X̂ . (19)

The transverse-traceless metric perturbation describing our
source’s GWs is then

hij = h+e
+
ij + h×e×

ij . (20)

We next characterize the GW detectors. Each detector is an
L-shaped interferometer whose arms define two-thirds of an

orthonormal triple. Denote by x̂a and ŷa the unit vectors along
the arms of the ath detector in our network; we call these the
x- and y-arms. (The vector ẑa = x̂a × ŷa points radially from
the center of the Earth to the detector’s vertex.) These vectors
define the response tensor for detector a:

Dij
a = 1

2
[(x̂a)i(x̂a)j − (ŷa)i(ŷa)j ]. (21)

The response of detector a to a GW is given by

ha = Dij
a hij

≡ e−2πi(n · ra )f (Fa,+h+ + Fa,×h×), (22)

where ra is the position of the detector a and the factor (n · ra)
measures the time of flight between it and the coordinate origin.
The second form of Equation (22) shows how the antenna
functions introduced in Equation (2) are built from the wave
tensor and the response tensor.

Our discussion has so far been frame independent, in that
we have defined all vectors and tensors without reference to
coordinates. We now introduce a coordinate system for our
detectors following Anderson et al. (2001) who in turn use
the WGS-84 Earth model (Althouse et al. 1998). The Earth
is taken to be an oblate ellipsoid with semi-major axis a =
6.378137×106 and semi-minor axis b = 6.356752314×106 m.
Our coordinates are fixed relative to the center of the Earth. The
x-axis (which points along i) pierces the Earth at latitude 0◦
north, longitude 0◦ east (normal to the equator at the prime
meridian); the y-axis (along j) pierces the Earth at 0◦ north, 90◦
east (normal to the equator in the Indian ocean somewhat west
of Indonesia); and the z-axis (along k) pierces the Earth at 90◦
north (the north geographic pole).

A GW source at (θ, φ) on the celestial sphere has sky position
vector n̂:

n̂ = sin θ cos φi + sin θ sin φj + cos θk . (23)

The polarization angle, ψ , is the angle (measured clockwise
about n̂) from the orbit’s line of nodes to the source’s X̂-axis.
In terms of these angles, the vectors X̂ and Ŷ are given by
(Anderson et al. 2001)

X̂ = (sin φ cos ψ − sin ψ cos φ cos θ )i
− (cos φ cos ψ + sin ψ sin φ cos θ )j
+ sin ψ sin θk, (24)

Ŷ = (− sin φ sin ψ − cos ψ cos φ cos θ )i
+ (cos φ sin ψ − cos ψ sin φ cos θ )j
+ cos ψ sin θk. (25)

The angle φ is related to right ascension α by α = φ + GMST
(where GMST is the Greenwich mean sidereal time at which
the signal arrives), and θ is related to declination δ by δ =
π/2 − θ (cf. Anderson et al. 2001, Appendix B). Combining
Equations (24) and (25) with Equations (18)–(20) allows us to
write hij for a source in coordinates adapted to this problem.

We now similarly describe our detectors using convenient
coordinates. Detector a is at east longitude λa and north latitude
ϕa (not to be confused with sky position angle φ). The unit
vectors pointing east, north, and up for this detector are

eE
a = − sin λai + cos λaj, (26)
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eN
a = − sin ϕa cos λai − sin ϕa sin λaj + cos ϕak , (27)

eU
a = cos ϕa cos λai + cos ϕa sin λaj − cos ϕak . (28)

The x-arm of detector a is oriented at angle ϒa north of east,
while its y-arm is at angle ϒa+π/2. Thanks to Earth’s oblateness,
the x- and y-arms are tilted at angles ω

x,y
a to the vertical. The

unit vectors x̂a , ŷa can thus be written as

x̂a = cos ωx
a cos ϒaeE

a + cos ωx
a sin ϒaeN

a + sin ωx
aeU, (29)

ŷa = − cos ωy
a sin ϒaeE

a + cos ωy
a cos ϒaeN

a + sin ωy
aeU. (30)

Combining Equations (29) and (30) with Equation (21) allows
us to write the response tensor for each detector in our network.

2.3. Summary of the Preceding Section

Section 2.2 is sufficiently dense that a brief summary may
clarify its key features, particularly with respect to the quantities
we hope to measure. From Equation (22), we find that each
detector in our network measures a weighted sum of the two
GW polarizations h+ and h×. Following Cutler (1998), we can
rewrite the waveform detector a measures as

ha = 4Mz

DL

Ap [πMzf (t)]2/3 cos[Φ(t) + Φp], (31)

where we have introduced detector a’s “polarization amplitude”

Ap =
√

(Fa,+A+)2 + (Fa,×A×)2, (32)

and its “polarization phase”

tan Φp = Fa,×A×
Fa,+A+

. (33)

The intrinsic GW phase, Φ(t), is a strong function of the
redshifted chirp mass, Mz, the redshifted reduced mass, μz,
the time of coalescence, tc, and the phase at coalescence, Φc.
Measuring the phase determines these four quantities, typically
with very good accuracy.

Consider for a moment measurements by a single detector.
The polarization amplitude and phase depend on the binary’s
sky position, (θ, φ) or n̂, and orientation, (ψ, ι) or L̂. (They also
depend on detector position, (λa, ϕa), orientation, ϒa , and tilt,
(ωx

a, ω
y
a ). These angles are known and fixed, so we ignore them

in this discussion.) If the angles (θ, φ,ψ, ι) are not known, a
single detector cannot separate them, nor can it separate the
distance DL.

Multiple detectors can, at least in principle, separately deter-
mine these parameters. Each detector measures its own ampli-
tude and polarization phase. Combining their outputs, we can
fit to the unknown angles and the distance. Various works have
analyzed how well this can be done assuming that the position
and orientation are completely unknown (Sylvestre 2004; Cav-
alier et al. 2006; Blair et al. 2008). Van der Sluys et al. (2008)
performed such an analysis for measurements of NS–BH bina-
ries, including the effect of orbital precession induced by the
black hole. This precession effectively makes the angles ι and
ψ time dependent, breaking the degeneracy among these angles
and DL.

In what follows, we assume that an electromagnetic identi-
fication pins down the angles (θ, φ), so that they do not need

Figure 1. Anticipated noise spectrum for Advanced LIGO (Harry & LIGO
Scientific Collaboration 2010; cf. their Figure 3). Our calculations assume no
astrophysically interesting sensitivity below a low-frequency cutoff of 10 Hz.
The features at f � 10 Hz and a few hundred Hz are resonant modes of the
mirror suspensions driven by thermal noise.

to be determined from the GW data. We then face the substan-
tially less challenging problem of determining ψ , ι, and DL. We
will also examine the impact of a constraint on the inclination, ι.
Long bursts are believed to be strongly collimated, emitting into
jets with opening angles of just a few degrees. Less is known
about the collimation of SHBs, but it is plausible that their emis-
sion may be primarily along a preferred axis (presumably the
progenitor binary’s orbital angular momentum axis).

2.4. GW Detectors Used in Our Analysis

Here we briefly summarize the properties of the GW detectors
that we consider.

LIGO. The Laser Interferometer Gravitational-wave Obser-
vatory consists of two 4 km interferometers located in Hanford,
Washington (US) and Livingston, Louisiana (US). These instru-
ments have achieved their initial sensitivity goals. An upgrade to
“advanced” configuration is expected to be completed around
2014, with tuning for best sensitivity to be undertaken in the
years following.8 We show the anticipated noise limits from
fundamental noise sources in Figure 1 for a broadband tuning
(Harry & LIGO Scientific Collaboration 2010). This spectrum
is expected to be dominated by quantum sensing noise above a
cutoff at f < 10 Hz, with a contribution from thermal noise in
the test mass coatings in the band from 30 to 200 Hz.

Virgo. The Virgo detector (Acernese & Virgo Scientific
Collaboration 2008) near Pisa, Italy has slightly shorter arms
than LIGO (3 km), but should achieve similar advanced sen-
sitivity on roughly the same timescale as the LIGO detectors.9

For simplicity, we will take Virgo’s sensitivity to be the same as
LIGO’s.

Our baseline detector network consists of the LIGO Hanford
and Livingston sites, and Virgo; these are instruments which are
running today, and will be upgraded over the next decade. We
also examine the impact of adding two proposed interferometers
to this network.

AIGO. The Australian International Gravitational Obser-
vatory (Barriga et al. 2010) is a proposed multi-kilometer

8 http://www.ligo.caltech.edu/advLIGO/scripts/summary.shtml
9 http://www.ego-gw.it/public/virgo/virgo.aspx

http://www.ligo.caltech.edu/advLIGO/scripts/summary.shtml
http://www.ego-gw.it/public/virgo/virgo.aspx
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Table 1
GW Detectors (Positions and Orientations)

Detector East Long. λ North Lat. ϕ Orientation ϒ x-arm Tilt ωx y-arm Tilt ωy

LIGO-Han −119.◦4 46.◦5 126◦ (−6.20 × 10−4)◦ (1.25 × 10−5)◦
LIGO-Liv −90.◦8 30.◦6 198◦ (−3.12 × 10−4)◦ (−6.11 × 10−4)◦
Virgo 10.◦5 43.◦6 70◦ 0.◦0 0.◦0
AIGO 115.◦7 −31.◦4 0◦ 0.◦0 0.◦0
LCGT 137.◦3 36.◦4 25◦ 0.◦0 0.◦0

interferometer that would be located in Gingin, Western
Australia. AIGO’s proposed site in Western Australia is par-
ticularly favorable due to low seismic and human activity.

LCGT. The Large-scale Cryogenic Gravitational-wave Tele-
scope (Kuroda & LCGT Collaboration 2010) is a proposed
multi-kilometer interferometer that would be located in the
Kamioka observatory, 1 km underground. This location takes
advantage of the fact that local ground motions tend to decay
rapidly as we move away from Earth’s surface. They also plan
to use cryogenic cooling to reduce thermal noise.

As with Virgo, we will take the sensitivity of AIGO and
LCGT to be the same as LIGO for our analysis. Table 1 gives
the location and orientation of these detectors, needed to com-
pute each detector’s response function. It is worth mention-
ing that more advanced detectors are in the early planning
stages. Particularly noteworthy is the European proposal for the
“Einstein Telescope,” currently undergoing design studies. It
is being designed to study binary coalescence to high redshift
(z � 5) (Sathyaprakash et al. 2009).

3. ESTIMATION OF BINARY PARAMETERS

3.1. Overview of Formalism

We now give a brief summary of the parameter estimation
formalism we use. Further details can be found in Finn (1992),
Królak et al. (1993), and CF94.

Assuming detection has occurred, the datastream of detector
a, sa(t), has two contributions: the true GW signal ha(t; θ̂ )
(constructed by contracting the GW tensor hij with detector
a’s response tensor D

ij
a ; cf. Section 2.2), and a realization of

detector noise na(t),

sa(t) = ha(t; θ̂ ) + na(t) . (34)

The incident GW strain depends on (unknown) true parameters
θ̂ . As in Section 1.3, θ̂ is a vector whose components are binary
parameters. Below we use a vector s whose components sa
are the datastreams of each detector. Likewise, h and n are
vectors whose components are the GW and noise content of
each detector.

We assume the noise to be stationary, zero mean, and
Gaussian. This lets us categorize it using the spectral density
as follows. First, define the noise correlation matrix:

Cn(τ )ab = 〈na(t + τ )nb(t)〉 − 〈na(t + τ )〉 〈nb(t)〉
= 〈na(t + τ )nb(t)〉 , (35)

where the angle brackets are ensemble averages over noise real-
izations, and the zero mean assumption gives us the simplified
form on the second line. For a = b, this is the auto-correlation
of detector a’s noise; otherwise, it describes the correlation be-
tween detectors a and b. The (one-sided) power spectral density

matrix is the Fourier transform of this:

Sn(f )ab = 2
∫ ∞

−∞
dτ e2πif τCn(τ )ab . (36)

This is defined for f > 0 only. For a = b, it is the spectral
density of noise power in detector a; for a �= b, it again describes
correlations between detectors. From these definitions, one can
show that

〈ña(f ) ñb(f ′)∗〉 = 1

2
δ(f − f ′)Sn(f )ab. (37)

For Gaussian noise, this statistic completely characterizes our
detector noise. No real detector is completely Gaussian, but by
using multiple, widely separated detectors non-Gaussian events
can be rejected. For this analysis, we assume that the detectors’
noises are uncorrelated such that Equation (37) becomes

〈ña(f ) ñb(f ′)∗〉 = 1

2
δabδ(f − f ′)Sn(f )a. (38)

Finally, for simplicity we assume that Sn(f )a has the universal
shape Sn(f ) projected for advanced LIGO, as shown in Figure 1.

Many of our assumptions are idealized (Gaussian noise; iden-
tical noise spectra; no correlated noise between interferometers),
and will certainly not be achieved in practice. These idealiza-
tions greatly simplify our analysis, however, and are a useful
baseline. It would be useful to revisit these assumptions and
understand the quantitative impact that they have on our anal-
ysis, but we do not expect a major qualitative change in our
conclusions.

The central quantity of interest in parameter estimation is
the posterior probability distribution function (PDF) for θ given
detector output s, which is defined as

p(θ | s) = N p(0)(θ)LTOT(s | θ) . (39)

N is a normalization constant, p(0)(θ ) is the PDF that represents
the prior probability that a measured GW is described by the
parameters θ , and LTOT(s | θ ) is the total likelihood function
(e.g., MacKay 2003). The likelihood function measures the
relative conditional probability of observing a particular data
set s given a measured signal h depending on some unknown
set of parameters θ and given noise n. Because we assume that
the noise is independent and uncorrelated at each detector site,
we may take the total likelihood function to be the product of
the individual likelihoods at each detector:

LTOT(s | θ) = ΠaLa(sa | θ ) , (40)

where La , the likelihood for detector a, is given by (Finn 1992)

La (s | θ ) = e
−(ha (θ )−sa

∣∣ha (θ )−sa )/2
. (41)
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The inner product (. . . | . . .) on the vector space of signals is
defined as

(g|h) = 2
∫ ∞

0
df

g̃∗(f )h̃(f ) + g̃(f )h̃∗(f )

Sn(f )
. (42)

This definition means that the probability of the noise n(t) taking
some realization n0(t) is

p(n = n0) ∝ e−(n0|n0)/2. (43)

For clarity, we distinguish between various definitions of S/N.
The true S/N at detector a, associated with a given instance of
noise for a measurement at a particular detector, is defined as
(CF94) (

S

N

)
a,true

= (ha | sa)√
(ha | ha)

. (44)

This is a random variable with Gaussian PDF of unit variance.
For an ensemble of realizations of the detector noise na, the
average S/N at detector a is given by(

S

N

)
a,ave

= (ha|ha)

rms (ha|na)
= (ha|ha)1/2. (45)

Consequently, we can define the combined true and average
S/Ns of a coherent network of detectors:

(
S

N

)
true

=
√√√√∑

a

(
S

N

)2

a,true

(46)

and

(
S

N

)
ave

=
√√√√∑

a

(
S

N

)2

a,ave

. (47)

Estimating the parameter set θ is often done using a
“maximum-likelihood” method following either a Bayesian
(Loredo 1989; Finn 1992; CF94, Poisson & Will 1995) or
frequentist point of view (Królak et al. 1993, CF94). We do
not attempt to review these philosophies, and instead refer to
Appendix A2 of CF94 for detailed discussion. It is worth not-
ing that, in the GW literature, the “maximum likelihood” or
“maximum a posterior” are often interchangeably referred to as
“best-fit” parameters. The maximum a posterior is the param-
eter set θ̃MAP which maximizes the full posterior probability,
Equation (39); likewise, the maximum likelihood is the pa-
rameter set θ̃ML which maximizes the likelihood function,
Equation (40).

Following the approach advocated by CF94, we introduce the
Bayes estimator θ̃ i

BAYES(s),

θ̃ i
BAYES(s) ≡

∫
θ i p(θ | s)dθ . (48)

The integral is performed over the whole parameter set θ ; dθ =
dθ1dθ2 . . . dθn. Similarly, we define the rms measurement
errors Σij

BAYES

Σij

BAYES =
∫ (

θ i − θ̃ i
BAYES

)
(θj − θ̃

j

BAYES

)
p(θ | s)dθ . (49)

To understand the meaning of θ̃ i
BAYES(s), consider a single detec-

tor which records an arbitrarily large ensemble of signals. This
ensemble will contain a sub-ensemble in which the various s(t)
are identical to one another. Each member of the sub-ensemble
corresponds to GW signals with different true parameters θ̂ ,
but have noise realizations n(t) that conspire to produce the
same s(t). In this case, θ̃ i

BAYES(s) is the expectation of θ i av-
eraged over the sub-ensemble. The principal disadvantage of
the Bayes estimator is the computational cost to evaluate the
multi-dimensional integrals in Equations (48) and (49).

For large S/N it can be shown that the estimators θ̃ML, θ̃MAP,
and θ̃BAYES agree with one another (CF94), and that Equa-
tion (39) is well described by a Gaussian form (cf. Equation (4)).
However, as illustrated in Section IVD of CF94, effects due to
prior information and which scale nonlinearly with 1/S/N con-
tribute significantly at low S/N. The Gaussian approximation
then tends to underestimate measurement errors by missing tails
or multimodal structure in posterior distributions.

We emphasize that in this analysis we do not consider
systematic errors that occur due to limitations in our source
model or to gravitational lensing effects. A framework for
analyzing systematic errors in GW measurements has recently
been presented by Cutler & Vallisneri (2007). An important
follow-on to this work will be to estimate systematic effects and
determine whether they significantly change our conclusions.

3.2. Binary Selection and Priors

We now describe how we generate a sample of detectable
GW-SHB events. We assume a constant comoving density
(Peebles 1993; Hogg 1999) of GW-SHB events, in a ΛCDM
universe with H0 = 70.5 kms−1Mpc−1, ΩΛ = 0.726, and
Ωm = 0.2732 (Komatsu et al. 2009). We distribute 106 binaries
uniformly in volume with random sky positions and orientations
to redshift z = 1 (DL � 6.6 Gpc). We then compute the average
S/N, Equation (45), for each binary at each detector, and use
Equation (47) to compute the average total S/N for each network
we consider. We assume prior knowledge of the merger time
(since we have assumed that the inspiral is correlated with an
SHB), so we set a threshold S/N for the total detector network,
S/Ntotal = 7.5 (see discussion in DHHJ06). This is somewhat
reduced from the threshold we would set in the absence of a
counterpart, since prior knowledge of merger time and source
position reduces the number of search templates we need by a
factor ∼105 (Kochanek & Piran 1993; Owen 1996). Using the
average S/N to set our threshold introduces a slight error into
our analysis, since the true S/N will differ from the average.
Some events which we identify as above threshold could be
moved below threshold due to a measurement’s particular noise
realization. However, some sub-threshold events will likewise
be moved above threshold, and the net effect is not expected to
be significant.

Our threshold selects detectable GW-SHB events for each de-
tector network. We define “total detected binaries” to mean bina-
ries which are detected by a network of all five detectors—both
LIGO sites, Virgo, AIGO, and LCGT. Including AIGO and
LCGT substantially improves the number detected, as compared
to just using the two LIGO detectors and Virgo. Assuming that
all binary orientations are equally likely given an SHB (i.e.,
no beaming), we find that a LIGO–Virgo network detects 50%
of the total detected binaries; LIGO–Virgo–AIGO detects 74%
of the total; and LIGO–Virgo–LCGT detects 72% of the total.
Figure 2 shows the sky distribution of detected binaries for
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Figure 2. Detected NS–NS binaries for our various detector networks as a function of sky position (cos θ, φ). The lower right panel shows the binaries detected by a
five-detector network (both LIGO sites, Virgo, AIGO, and LCGT). We find that LIGO plus Virgo (our “base” network) only detects 50% of the five-detector events;
LIGO, Virgo, and AIGO detect 74% of these events; and LIGO, Virgo, and LCGT, detect 72% of these events. Detections are more uniformly distributed on the sky
in networks that include LCGT; AIGO improves coverage in two of the sky’s quadrants. Our coordinate φ is related to right ascension α by φ = α−GMST, where
GMST is Greenwich Mean Sidereal Time; θ is related to declination δ by θ = π/2 − δ.

various detector combinations. Networks which include LCGT
tend to have rather uniform sky coverage. Those with AIGO
cover the quadrants cos θ > 0, φ > π and cos θ < 0, φ < π
particularly well.

Our selection method implicitly sets a prior distribution
on our parameters. For example, the thresholding procedure
results in a significant bias in detected events toward face-on
binaries, with L̂ · n̂ → ±1. Figure 3 shows the distribution
of detectable NS–NS binaries for the parameters (cos ι,DL).
Since we use an unrealistic mass distribution (1.4 M�–1.4 M�
NS–NS and 1.4 M�–10 M� NS–BH binaries), instead of a more
astrophysically realistic distribution, the implicit mass prior is
uninteresting. Figure 4 shows the average total S/N versus
the true DL of our sample of detectable NS–NS and NS–BH
binaries for our “full” network (LIGO, Virgo, AIGO, LCGT).
Very few detected binaries have S/N above 30 for NS–NS,
and above 70 for NS–BH. It is interesting to note the different
detectable ranges between the two populations: NS–BH binaries
are detectable to over twice the distance of NS–NS binaries.

We are also interested in seeing the impact that prior knowl-
edge of SHB collimation may have on our ability to measure
these events. To date there exist only two tentative observa-
tions which suggest that SHBs may be collimated (Grupe et al.
2006; Burrows et al. 2006; Soderberg et al. 2006); we there-
fore present results for moderate collimation and for isotropic
SHB emission. To obtain a sample of beamed SHBs, we as-
sume that the burst emission is collimated along the orbital
angular momentum axis, where baryon loading is minimized.
Following DHHJ06, we use a distribution for cos ι ≡ v of
dP/dv ∝ exp[−(1 − v)2/2σ 2

v ], with σv = 0.05. This corre-
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Figure 3. 2-D marginalized prior distribution in luminosity distance DL and
cosine inclination cos ι. Each point represents a detected NS–NS binary for a
network comprising all five detectors. Note the bias toward detecting face-on
binaries (cos ι → ±1)—they are detected to much larger distances than edge-on
(cos ι → 0).

sponds to a beamed population with 68% of its distribution
having an opening jet angle within roughly 25◦. We construct
a beamed subsample by selecting events from the total sample
of detected events such that the final distribution in inclination
angle follows dP/dv. Joint measurements of SHBs and GW-
driven inspirals should enable us to constrain beaming angles
by comparing the measured rates for these two populations.
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Figure 4. Average network S/N vs. luminosity distance of the total detected
NS–NS and NS–BH binaries. This assumes an idealized network consisting of
both LIGO detectors, Virgo, AIGO, and LCGT. Left panel shows all detected
NS–NS binaries (one point with S/N above 100 is omitted); right panel shows
all detected NS–BH binaries (one point with S/N above 350 is omitted). Note
the different axis scales: NS–BH binaries are detected to more than twice the
distance of NS–NS. The threshold S/N for the total detector network is 7.5,
S/Ntotal = 7.5.

3.3. Markov Chain Monte Carlo Approach

The principal disadvantage of the Bayes estimators θ̃ i
BAYES

and Σij

BAYES is the high computational cost of evaluat-
ing the multi-dimensional integrals which define them,
Equations (48) and (49). To get around this problem, we use
MCMC methods to explore the PDFs describing the seven
parameters {Mc, μ,DL, cos ι, ψ, tc, Φc}. MCMC methods are
widely used in diverse astrophysical applications, ranging from
high-precision cosmology (e.g., Dunkley et al. 2009; Sievers
et al. 2009) to extra-solar planet studies (e.g., Ford 2005; Winn
et al. 2007). They have seen increased use in GW measurement
and parameter estimation studies in recent years (e.g., Stroeer
et al. 2006; Wickham et al. 2006; Cornish & Porter 2007; Porter
& Cornish 2008; Röver et al. 2007; van der Sluys et al. 2008).

MCMC generates a random sequence of parameter states that
sample the posterior distribution, p(θ |s). Let the nth sample in
the sequence be θ (n). If one draws a total of N random samples,
Equations (48) and (49) can then be approximated as sample
averages:

θ̃ i
BAYES � 1

N

N∑
n=1

(θ i)(n) , (50)

Σij

BAYES � 1

N

N∑
n=1

(
θ̃ i

BAYES − (θ i)(n)
)(

θ̃
j

BAYES − (θj )(n)
)
. (51)

The key to making this technique work is drawing a
sequence that represents the posterior PDF. We use the
Metropolis–Hastings algorithm to do this (Metropolis et al.
1953; Hastings 1970); see Neal (1993), Gilks et al. (1996),
MacKay (2003), and Christensen et al. (2004) for in-depth dis-
cussion. The MCMC algorithm we use is based on a generic
version of CosmoMC,10 described in Lewis & Bridle (2002).

Appropriate priors are crucial to any MCMC analysis. We
take the prior distributions in chirp mass Mz, reduced mass
μz, polarization angle ψ , coalescence time tc, and coalescence

10 See http://cosmologist.info/cosmomc/.

phase Φc to be flat over the region of sample space where the
binary is detectable according to our selection procedure. More
specifically, we choose the following.

1. p(0)(Mz) = constant over the range [1 M�, 2 M�] for
NS–NS and over the range [2.5 M�, 4.9 M�] for NS–BH.
(The true chirp masses in the binaries’ rest frames are
1.2 M� for NS–NS and 3.0 M� for NS–BH.)

2. p(0)(μz) = constant over the range [0.3 M�, 2 M�] for
NS–NS and over the range [0.5 M�, 3.5 M�] for NS–BH.
(The true reduced masses in the binaries’ rest frames are
0.7 M� for NS–NS and 1.2 M� for NS–BH.)

3. p(0)(ψ) = constant over the range [0, π ].
4. p(0)(tc) = constant over the range [−100 s, 100 s]. Since

we assume that tc is close to the time of the SHB event, it is
essentially the time offset between the system’s final GWs
and its SHB photons. We find that the range in tc we choose
is almost irrelevant, as long as the prior is flat and includes
the true value. No matter how broad we choose the prior in
tc, our posterior PDF ends up narrowly peaked around t̂c.

5. p(0)(Φc) = constant over the range [0, 2π ].

The prior distribution for DL is inferred by taking the
density of SHBs to be uniform per unit comoving volume
over the luminosity distance range [0, 2 Gpc] for NS–NS
binaries, and over the range [0, 5 Gpc] for NS–BH binaries.
For our sample with isotropic inclination distribution, we put
p(0)(cos ι) = constant over the range [−1, 1]. When we assume
SHB collimation, our prior in cos ι ≡ v is the same as the one
that we used in our selection procedure discussed previously:

dp(0)

dv
(v) ∝ e−(1−v)2/2σ 2

v , (52)

with σv = 0.05.
We then map out full distributions for each of our seven

parameters, assessing the mean values (Equation (48)) and the
standard deviations (Equation (49)). We generate four chains
which run in parallel on the CITA “Sunnyvale” Cluster. Each
chain runs for a maximum of 107 steps; we find that the mean
and median number of steps are ∼105 and ∼104, respectively.
Each evaluation of the likelihood function takes ∼0.3 s. We use
the first 30% of a chain’s sample states for “burn in,” and discard
that data. Our chains start at random offset parameter values,
drawn from Gaussians centered on the true parameter values. We
assess convergence by testing whether the multiple chains have
produced consistent parameter distributions. Following standard
practice, we use the Gelman–Rubin convergence criterion,
defining a sequence as “converged” if the statistic R < 1.1
on the last half of our samples; see Gelman & Rubin (1992)
for more details. We use convergence as our stopping criterion.
Each simulation for every binary runs for 1–48 hr; the mean and
median runtime are 8 hr and 3 hr, respectively.

3.4. The “Averaged” Posterior PDF

Central to the procedure outlined above is the use of the
datastream s = h(θ ) + n which enters the likelihood function
LTOT(s|θ). The resulting posterior PDF, and the parameters one
infers, thus depends on the noise n which one uses. One may
want to evaluate statistics that are in a well-defined sense “typ-
ical” given the average noise properties, rather than depending
on a particular noise instance. Such averaging is appropriate, for
example, when forecasting how well an instrument should be
able to measure the properties of a source or a process. We have

http://cosmologist.info/cosmomc/
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also found it is necessary to average when trying to compare our
MCMC code’s output with previous work.

As derived below, the averaged posterior PDF takes a remark-
ably simple form: it is the “usual” posterior PDF, Equation (39)
with the noise n set to zero. This does not mean that one ig-
nores noise when constructing the averaged PDF; one still re-
lates the signal amplitude to typical noise by the average S/N,
Equation (45). As such, the averaged statistics will show an
improvement in measurement accuracy as S/N is increased.

To develop a useful notion of averaged posterior PDF,
consider the hypothetical (and wholly unrealistic) case in which
we measure a signal using M different noise realizations for the
same event. The joint likelihood for these measurements is

Ljoint
TOT(s1, s2, . . . sM |θ ) =

M∏
i=1

LTOT(si |θ ) . (53)

Let us define the “average” PDF as the product of the prior
distribution of the parameters multiplied by the geometric mean
of the likelihoods which describe these measurements:

pave(θ |s) ≡ N p(0)Ljoint
TOT(s1, s2, . . . , sM |θ)1/M . (54)

Expanding this definition, we find

pave(θ |s) ≡ N p(0)
M∏
i=1

[LTOT(si |θ)]1/M , (55)

where the subscript i denotes the ith noise realization in our set
of M observations. The “ensemble average likelihood function”
can in turn be expanded as

M∏
i=1

[LTOT(si |θ )]1/M =
∏
a

M∏
i=1

[La(sa,i | θ )]1/M

=
∏
a

M∏
i=1

e−(ha (θ )−sa,i |ha (θ)−sa,i )/2M

=
∏
a

e−(ha (θ)−ha (θ̂ ) | ha (θ )−ha (θ̂))/2

×
M∏
i=1

exp

[
1

M
(na,i |ha(θ) − ha(θ̂ ))

]

×
M∏
i=1

exp

[
− 1

2M
(na,i |na,i)

]
. (56)

By taking M to be large, the last two lines of Equation (56) can
be evaluated as follows:

M∏
i=1

exp

[
1

M
(na,i |ha(θ) − ha(θ̂ ))

]

= exp

[
1

M

M∑
i=1

(na,i |ha(θ) − ha(θ̂))

]

� exp[〈(na |ha(θ ) − ha(θ̂))〉] = 1. (57)

Here, 〈. . .〉 denotes an ensemble average over noise realizations
(cf. Section 3.1), and we have used the fact that our noise has

zero mean. Similarly, we find

M∏
i=1

exp

[
− 1

2M
(na,i |na,i)

]
= exp

[
− 1

2M

M∑
i=1

(na,i |na,i)

]

� exp

[
−1

2
〈(na |na)〉

]
= e−1 . (58)

This uses 〈(na|na)〉 = 2, which can be proved using the noise
properties (35), (36), and (37).

Putting all this together, we finally find

pave(θ |s) = Np0(θ )
∏
a

e−(ha (θ)−ha (θ̂ ) |ha (θ )−ha (θ̂))/2 , (59)

where we have absorbed e−1 into the normalization N . The
posterior PDF, averaged over noise realizations, is simply
obtained by evaluating Equation (39) with the noise n set to
zero.

4. RESULTS I: VALIDATION AND TESTING

We now validate and test our MCMC code against results
from CF94. In particular, we examine the posterior PDF for the
NS–NS binary which was studied in detail in CF94. We also
explore the dependence of distance measurement accuracies on
the detector network and luminosity distance, focusing on the
strong degeneracy that exists between cos ι and DL.

4.1. Comparison with CF94

Validation of our MCMC results requires comparing to work
which goes beyond the Gaussian approximation and Fisher
matrix estimators. In Section IVD of CF94, Cutler & Flanagan
investigate effects that are nonlinear in 1/S/N. They show that
such effects have a significant impact on distance measurement
accuracies for low S/N. In particular, they find that Fisher-based
estimates understate distance measurement errors for a network
of two LIGO detectors and Virgo.

Because they go beyond a Fisher matrix analysis, the results
of CF94 are useful for comparing with our results. Their paper
is also useful in that they take source position to be known.
Our approach is sufficiently different from CF94 that we do not
expect perfect agreement, however. The most important differ-
ence is that we directly map out the posterior PDF and compute
sample averages using Equations (48) and (49), for the full
parameter set {Mz, μz,DL, cos ι, ψ, tc, Φc}. In contrast, CF94
estimate measurement errors only for DL, using an approxi-
mation on an analytic Bayesian derivation of the marginalized
PDF for DL. Specifically, Cutler & Flanagan expand the expo-
nential factor in Equation (39) beyond second order in terms
of some “best-fit” maximum-likelihood parameters. Their ap-
proximation treats strong correlations between the parameters
DL and cos ι that are nonlinear in 1/S/N. However, other cor-
relations between DL and (ψ, φc) are only considered to lin-
ear order. They obtain an analytic expression for the posterior
PDF of the variables DL and cos ι in terms of their “best-fit”
maximum-likelihood values D̃L and cos ι̃ (see Equation (4.57)
of CF94). The marginalized 1-D posterior PDFs for DL are
then computed by numerically integrating over cos ι. The one-
dimensional marginalized PDF we compute in parameter θi is

pmarg(θi |s) =
∫

. . .

∫
p(θ |s)dθ1 . . . dθi−1 dθi+1 . . . dθN ,

(60)
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where p(θ |s) is the posterior PDF given by Equation (39) and
N is the number of dimensions of our parameter set.

In addition to this rather significant difference in techniques,
there are some minor differences which also affect our compar-
ison.

1. We use the restricted 2PN waveform; CF94 use the leading
“Newtonian, quadrupole” waveform that we used for peda-
gogical purposes in Section 1.2. Since distance is encoded
in the waveform’s amplitude, we do not expect that our use
of a higher-order phase function will have a large impact.
However, to avoid any easily circumvented mismatch, we
adopt the Newtonian-quadrupole waveform for these com-
parisons. This waveform does not depend on reduced mass
μ, so for the purpose of this comparison only, our parameter
space is reduced from 7 to 6 dimensions.

2. We use the projected advanced sensitivity noise curve
shown in Figure 1; CF94 use an analytical form (their
Equation (2.1)11) based on the best-guess for what ad-
vanced sensitivity would achieve at the time of their analy-
sis. Compared to the most recent projected sensitivity, their
curve underestimates the noise at middle frequencies (∼40–
150 Hz) and overestimates it at high frequencies (�200 Hz).
We adopt their noise curve for this comparison. Because of
these differences, CF94 rather seriously overestimates the
S/N for NS–NS inspiral. Using their noise curve, the aver-
age S/N for the binary analyzed in their Figure 10 is 12.412;
using our up-to-date model for advanced LIGO, it is 5.8.
As such, the reader should view the numbers in this section
of our analysis as useful only for validation purposes.

3. The two analyses use different priors. As extensively
discussed in Section 3.3, we set uniform priors on the chirp
mass Mz, on the time tc and phase Φc at coalescence,
and on the polarization phase ψ . For this comparison, we
assume isotropic emission and set a flat prior on cos ι.
We assume that our sources are uniformly distributed
in constant comoving volume. However, our detection
threshold depends on the total network S/N, and effectively
sets a joint prior on source inclination and distance. CF94
use a prior distribution only for the set {DL, cos ι, ψ, Φc}
that is flat in polarization phase, coalescence phase, and
inclination. They assume a prior that is uniform in volume,
but that cuts off the distribution at a distance DL,max �
6.5 Gpc.

Our goal here is to reproduce the 1-D marginalized poste-
rior PDF in DL for the binary shown in Figure 10 of CF94.
We call this system the “CF binary.” Each NS in the CF binary
has mz = 1.4 M� and sky position (θ, φ) = (50◦, 276◦); the
detector network comprises LIGO Hanford, LIGO Livingston,
and Virgo. CF94 report the “best-fit” maximum-likelihood
values (D̃L, cos ι̃, Ψ̃) to be (432 Mpc, 0.31, 101.◦5), where
Ψ = ψ + Δψ(n), and where Δψ(n) depends on the pre-
ferred basis of e× and e× set by the detector network (see
Equations (4.23)–(4.25) of CF9413). To compare our distribu-

11 Note that it is missing an overall factor of 1/5 (E. E. Flanagan 1994, private
communication).
12 CF94 actually report an S/N of 12.8. The discrepancy is due to rounding
the parameter r0 in their Equation (4.28). Adjusting to their preferred value
(rather than computing r0) gives perfect agreement.
13 Note that Equation (4.25) of CF94 should read
tan(4Δψ) = 2Θ+×/(Θ++ − Θ××). In addition, Ψ̃ = 56.◦5 should read
Ψ̃ = 101.◦5 in the caption to Figure 10. (We have changed notation from ψ̄ in
CF94 to Ψ to avoid multiple accents on the best-fit value.) We thank Éanna
Flanagan for confirming these corrections.

tion with theirs, we assume that θ̂ = θ̃ML for the purpose of
computing the likelihood function L(θ |s). This is a reasonable
assumption when the priors are uniform over the relevant pa-
rameter space. As already mentioned, for this comparison we
use their advanced detector noise curve and the Newtonian-
quadrupole waveform. Finally, we interpret the solid curve in
Figure 10 of CF94 as the marginalized 1-D posterior PDF in
DL for an average of posterior PDF of parameters (given an en-
semble of many noisy observations for a particular event). We
compute the average PDF as described in Section 3.4, and then
marginalize over all parameters except DL, using Equation (60).

The left-hand panels of Figure 5 show the resulting one-
dimensional marginalized PDF in DL and cos ι. Its shape has
a broad structure not dissimilar to the solid curve shown in
Figure 10 of CF94: The distribution has a small bump near
DL ≈ 460 Mpc, a main peak at DL ≈ 700 Mpc, and extends
out to roughly 1 Gpc. Because of the broad shape, the Bayes
mean (D̃L,BAYES = 694 Mpc) is significantly different from
both the true value (D̂L = 432 Mpc in our calculation) and
from the maximum likelihood (D̃L,ML = 495 Mpc). Thanks to
the marginalization, the peak of this curve does not coincide
with the maximum likelihood.

We further determine the 2-D marginalized posterior PDFs in
DL and cos ι for the CF binary. Figure 5 illustrates directly the
very strong degeneracy between these parameters, as expected
from the form of Equations (7) and (8), as well as from earlier
works (e.g., Marković 1993, CF94). It is worth noting that,
as CF94 comment, this binary is measured particularly poorly.
This is largely due to the fact that one polarization is measured
far better than the other, so that the DL–cos ι degeneracy is
essentially unbroken. This degeneracy is responsible for the
characteristic tail to large DL we find in the 1-D marginalized
posterior PDF in DL, p(DL|s), which we investigate further in
the following section.

4.2. Test 1: Varying Luminosity Distance
and Number of Detectors

We now examine how well we measure DL as a function
of distance to the CF binary and the properties of the GW
detector network. Figures 6 and 7 show the 1-D and 2-D
marginalized posterior PDFs in DL and cos ι for the CF binary at
D̂L = {100, 200, 300, 400, 500, 600} Mpc. For all these cases,
we keep the binary’s sky position, inclination, and polarization
angle fixed as in Section 4.1. The average network S/Ns we
find for these six cases are (going from D̂L = 100 Mpc to
600 Mpc) 53.6, 26.8, 17.9, 13.4, 10.7, and 8.9 (scaling as 1/D̂L).
Interestingly, the marginalized PDFs for both distance and cos ι
shown in Figures 6 and 7 have fairly Gaussian shapes for
D̂L = 100 and 200 Mpc, but have very non-Gaussian shapes for
D̂L � 300 Mpc. This can be considered “anecdotal” evidence
that the Gaussian approximation for the posterior PDF breaks
down at S/N � 25 or so, at least for this case. For lower S/N,
the degeneracy between cos ι and DL becomes so severe that the
1-D errors on these parameters become quite large.

Next, we examine measurement accuracy versus detector net-
work. For the CF binary, adding detectors does not substantially
increase the total S/N. We increase the average total S/N from
12.4 to 14.6 (adding only AIGO), to 12.4 (adding only LCGT;
its contribution is so small that the change is insignificant to the
stated precision), or to 14.7 (adding both AIGO and LCGT).
The average S/N in our detectors is 8.23 for LIGO-Hanford,
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Figure 5. 1-D and 2-D marginalized posterior PDFs for DL and cos ι averaged over noise (as described in Section 3.4) for the “CF binary.” Our goal is to reproduce,
as closely as possible, the non-Gaussian limit summarized in Figure 10 of CF94. The top left panel shows the 1-D marginalized posterior PDF in DL (the true value
D̂L = 432 Mpc is marked with a solid black line); the bottom left panel illustrates the 1-D marginalized posterior PDF in cos ι (true value cos ι̂ = 0.31 likewise
marked). The right-hand panel shows the 2-D marginalized posterior PDF for DL and cos ι; the true values (D̂L = 432 Mpc, cos ι̂ = 0.31) are marked with a cross.
The contours around the dark and light areas indicate the 68% and 95% interval levels, respectively. The true values lie within the 68% interval. The Bayes mean and
rms measurement accuracies are (694.4 Mpc, 0.70) and (162 Mpc, 0.229) for (DL, cos ι), respectively.

(A color version of this figure is available in the online journal.)

8.84 for LIGO-Livingston, 2.91 for Virgo, 8.71 for AIGO, and
1.1 for LCGT. This pathology is an example of a fairly general
trend that we see; it is common for the S/N to be quite low in
one or more detectors.

In the case of the CF binary, we find that adding detectors
does not improve the measurement enough to break the DL–cos ι
degeneracy. The marginalized PDFs as functions of DL and cos ι
remain very similar to Figure 5, so we do not show them. As a
consequence, even with additional detectors, the distance errors
remain large and biased. The bias is because we tend to find
cos ι to be larger than the true (relatively edge-on) value (cf.
the lower left-hand panel of Figure 5). Thanks to the DL–cos ι
degeneracy, we likewise overestimate distance.

4.3. Test 2: Varying Source Inclination

One of the primary results from the CF binary analysis
is a strong degeneracy between cos ι and DL. As Figure 5
shows, this results in a tail to large distance in the one-
dimensional marginalized posterior PDF p(DL|s), with a Bayes
mean D̃L = 694 Mpc (compared to D̂L = 432 Mpc). Such a
bias is of great concern for using binary sources as standard
sirens.

The CF binary has cos ι̂ = 0.31, meaning that it is nearly
edge-on to the line of sight. Hypothesizing that the large
tails may be due to its nearly edge-on nature, we consider
a complementary binary that is nearly face on: we fix all of
the parameters to those used for the CF binary, except for the
inclination, which we take to be cos ι̂ = 0.98. We call this test
case the “face-on” CF binary. Changing to a more nearly face-on
situation substantially augments the measured S/N; the average
S/N for the face-on CF binary measured by the LIGO/Virgo

base network is 24.3 (versus 12.4 for the CF binary). We thus
expect some improvement simply owing to the stronger signal.

Figure 8 shows the 1-D and 2-D marginalized posterior PDFs
in DL and cos ι. As expected, these distributions are complemen-
tary to those we found for the CF binary. In particular, the peak
of the 1-D marginalized posterior PDF in DL is shifted to lower
values in DL, and the Bayes mean is much closer to the true
value: D̃L = 376.3 Mpc. The shape of the 1-D marginalized
posterior PDF in cos ι is abruptly cut off by the upper bound
of the physical prior cos ι � 1, and the tail extends to lower
distances (the opposite of the CF binary). The Bayes mean for
the inclination is cos ι̃ = 0.83.

Just as we varied distance and detector network for the CF
binary, we also do so for the face-on CF binary, with very similar
results. In particular, varying network has little impact on the
marginalized 1-D PDFs in DL and cos ι. Varying distance, we
find that the marginalized 1-D PDFs are nearly Gaussian in shape
for small distances, but become significantly skewed (similar to
the left-hand panels of Figure 8) when D̂L > 200 Mpc. The
distributions in cos ι are particularly skewed thanks to the hard
cutoff at cos ι = 1. Interestingly, in this case we tend to infer
a value of cos ι that is smaller than the true value. We likewise
find a Bayes mean D̃L that is smaller than D̂L.

4.4. Summary of Validation Tests

The main result from our testing is that the posterior PDFs
we find have rather long tails, with strong correlations between
cos ι and DL. Except for cases with very high S/N, the one-
dimensional marginalized posterior PDF in cos ι tends to be
rather broad. The Bayes mean for cos ι thus typically suggests
that a binary is at intermediate inclination. As such, we tend
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Figure 6. 1-D and 2-D marginalized PDFs for DL and cos ι, averaged (as described in Section 3.4) over noise ensembles for the “CF binary” at different values of true
luminosity distance D̂L: [100 Mpc, 200 Mpc, 300 Mpc] (top to bottom). True parameter values are marked with a solid black line or a black cross. The Bayes means
and rms errors on luminosity distance are [101.0 Mpc, 212.1 Mpc, 411.2 Mpc] and [3.6 Mpc, 21.4 Mpc, 110.0 Mpc], respectively. The corresponding means and
errors for cos ι are [0.317, 0.357, 0.562] and [0.033, 0.089, 0.247]. The dark and light contours in the 2-D marginalized PDF plots indicate the 68% and 95% interval
levels, respectively. The true value always lies within the 68% contour region of the 2-D marginalized area at these distances.

(A color version of this figure is available in the online journal.)

to underestimate cos ι for nearly face-on binaries, and to
overestimate it for nearly edge-on binaries. Overcoming this
limitation requires us to either break the DL–cos ι degeneracy
(such as by setting a prior on binary inclination), or by measuring
a population of coalescences. Measuring a population will make
it possible to sample a wide range of the cos ι distribution, so
that the event-by-event bias is averaged away in the sample.

5. RESULTS II: SURVEY OF STANDARD SIRENS

We now examine how well various detector networks can
measure an ensemble of canonical GW-SHB events. We ran-
domly choose events from our sample of detected NS–NS and
NS–BH binaries (where the selection is detailed in Section 3.2).
We set a total detector network threshold of 7.5. Crudely speak-
ing, one might imagine that this implies, on average, a threshold
per detector of 7.5/

√
5 = 3.4 for a five-detector network. Such

a crude “per detector threshold” is useful for getting a rough
idea of the range to which our network can measure events.
Averaging Equation (45) over all sky positions and orientations
yields (DHHJ06)

(
S

N

)
a, sky−ave

= 8

5

√
5

96

c

DL

1

π2/3

(
GMz

c3

)5/6∫ fISCO

flow

f −7/3

Sh(f )
df .

(61)
For total detector network threshold of 7.5, a five-detector
network has an average range of about 600 Mpc for NS–NS
events, and about 1200 Mpc for NS–BH events. If SHBs are
associated with face-on binary inspiral, these numbers are

increased by a factor
√

5/2 � 1.58. (This factor is incorrectly
stated to be

√
5/4 � 1.12 in DHHJ06.)

Let us assume a constant comoving rate of 10 SHBs Gpc3

yr−1 (Nakar et al. 2006). If these events are all NS–NS binary
mergers, and they are isotropically oriented, we expect the
full LIGO-Virgo-AIGO-LCGT network to measure six GW-
SHB events per year. If these events are instead all NS–BH
binaries, the full network is expected to measure 44 events per
year. If these events are beamed, the factor 1.58 increases the
expected rate to 9 NS–NS or 70 NS–BH GW-SHB events per
year. We stress that these numbers should be taken as rough
indicators of what the network may be able to measure. Not
all SHBs will be associated with binary inspiral. The SHBs
which are associated with binary inspiral will likely include
both NS–NS and NS–BH events, with parameters differing
from our canonical choices. We also do not account for the
fraction of SHBs which will be missed due to incomplete sky
coverage.

In all cases, we build our results by constructing the posterior
distribution for an event given a unique noise realization at each
detector. We keep the noise realization in a given detector and for
a specific binary constant as we add other detectors. This allows
us to make meaningful comparisons between the performance
of different detector networks.

5.1. NS–NS Binaries

We begin by imagining a population of 600 detected NS–NS
binaries, either isotropically distributed in inclination angle
or from our beamed subsample, using a network with all
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Figure 7. Same as Figure 6, but for true luminosity distance D̂L = [400 Mpc, 500 Mpc, 600 Mpc] (top to bottom). True parameter values are marked with a solid
black line or a black cross. In this case, the Bayes means and rms errors for luminosity distance are [627.17 Mpc, 857.3 Mpc, 1068 Mpc] and [148.8 Mpc, 198.1 Mpc,
262.2 Mpc], respectively. The means and errors for cos ι are [0.686, 0.745, 0.746] and [0.237, 0.209, 0.218]. The dark and light contours in the 2-D marginalized PDF
plots indicate the 68% and 95% interval levels, respectively. The true value lies within the 68% contour region for DL = 400 Mpc, but moves outside this region for
larger values.

(A color version of this figure is available in the online journal.)

five detectors. Figure 9 shows scatter plots of the distance
measurement accuracies for our unbeamed (blue crosses) and
beamed events (black dots), with each panel corresponding to
a different detector network. The distance measurement error is
defined as the ratio of the rms measurement error with the true
value14D̂L:

ΔDL

D̂L

=
√

ΣDLDL

D̂L

. (62)

ΣDLDL is computed using Equation (51). We emphasize some
general trends in Figure 9 which are particularly relevant to
standard sirens.

1. The unbeamed total sample and the beamed subsample
separate into two distinct distributions. As anticipated,
the beamed subsample improves measurement errors in
DL significantly, by greater than a factor of two or more.
This is due to the beaming prior, which constrains the
inclination angle, cos ι, to ∼3%, thereby breaking the strong
DL–cos ι degeneracy. By contrast, when no beaming prior
is assumed, we find absolute errors of 0.1–0.3 in cos ι for

14 Our definition differs from that given in CF94, their Equation (4.62). Their
distance measurement error is described as the ratio of the rms measurement
error with the Bayes mean. We prefer to use Equation (62) as we are interested
primarily in the measurement error given a binary at its true luminosity
distance.

the majority of events. The strong DL–cos ι degeneracy
then increases the distance errors. A significant fraction of
binaries randomly selected from our sample have 0.5 �
| cos ι̂| < 1. As discussed in Section 3.2, this is due to the
S/N selection criterion: at fixed distance, face-on binaries
are louder and tend to be preferred.

2. Beamed subsample scalings. We fit linear scalings to our
beamed subsample:
ΔDL/D̂L � D̂L/(2.15 Gpc) for LIGO + Virgo
ΔDL/D̂L � D̂L/(2.71 Gpc) for LIGO + Virgo + AIGO
ΔDL/D̂L � D̂L/(2.38 Gpc) for LIGO + Virgo + LCGT
ΔDL/D̂L � D̂L/(2.82 Gpc) for LIGO + Virgo + AIGO +
LCGT.

3. When isotropic emission is assumed, we find a large scatter
in distance measurement errors for all events, irrespective
of network and true distance. We find much less scatter
when we assume a beaming prior. This is illustrated
very clearly by the upper-right panel of Figure 9. In that
panel, we show the scatter of distance measurement error
versus true distance for the LIGO, Virgo, AIGO detector
network, comparing to the Fisher-matrix-derived linear
scaling trend found in DHHJ06. For the unbeamed case,
our current results scatter around the linear trend; for the
beamed case, most events lie fairly close to the trend.
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Figure 8. Same as Figure 5, but for the “face-on” CF binary. The Bayes mean and rms errors are (376.3 Mpc, 0.83) and (51.3 Mpc, 0.12) for (DL, cos ι), respectively.
Top left shows the 1-D marginalized posterior PDF in DL (D̂L = 432 Mpc is marked with a solid black line); bottom left shows the marginalized PDF in cos ι (solid
black line marks cos ι̂ = 0.98). The right panel shows the 2-D marginalized posterior PDF; the cross marks the true source parameters (D̂L = 432 Mpc, cos ι̂ = 0.98).
As with the CF binary, the true values lie within the 68% region.

(A color version of this figure is available in the online journal.)

This demonstrates starkly the failure of Fisher methods
to estimate distance accuracy, especially when we cannot
set a beaming prior.

4. Adding detectors to the network considerably increases the
number of detected binaries, but does not significantly im-
prove the accuracy with which those binaries are measured.
The increase we see in the number of detected binaries is
particularly significant for GW-SHB standard sirens. For
instance, an important application is mapping out the pos-
terior PDF for the Hubble constant, H0. As the number of
events increases, the resulting joint posterior PDF in H0 will
become increasingly well constrained. Additional detectors
also increase the distance to which binaries can be detected.
This can be seen in Figure 9: for the LIGO and Virgo net-
work, our detected events extend to D̂L ∼ 600 Mpc; the
larger networks all go somewhat beyond this. Interestingly,
networks which include the AIGO detector seem to reach
somewhat farther out.

It is perhaps disappointing that increasing the number of
detectors does not greatly improve measurement accuracy.
We believe this is due to two effects. First, a larger network
tends to detect more weak signals. These additional binaries
are poorly constrained. Second, the principal limitation to
distance measurement is the DL–cos ι degeneracy. A substantial
improvement in distance accuracy on individual events would
require breaking this degeneracy. We find that adding detectors
does not do this, but the beaming prior does.

5.2. NS–BH Binaries

We now repeat the preceding analysis for 600 detected
NS–BH binaries. Figure 10 shows scatter plots of measurement

accuracies for unbeamed and beamed NS–BH binaries. We find
similar trends in the NS–NS case.

1. The unbeamed and beamed samples separate into two
distinct distributions. Note, however, that outliers exist in
measurement errors at high DL for several beamed events
for all networks. This is not too surprising, given that we
expect beamed sources at higher luminosity distances and
lower S/N. Such events are more likely to deviate from the
linear relationship predicted by the Fisher matrix.

2. We see substantial scatter in distance measurement, par-
ticularly when isotropic emission is assumed. As with the
NS–NS case, the scatter is not as severe when we assume
beaming, and in that case lies fairly close to a linear trend,
as would be predicted by a Fisher matrix. This trend is shal-
lower in slope than for NS–NS binaries, thanks to the larger
mass of the system.

3. We do not see substantial improvement in distance measure-
ment as we increase the detector network. As with NS–NS
binaries, adding detectors increases the range of the net-
work; AIGO appears to particularly add events at large
D̂L (for both the isotropic and beamed samples). However,
adding detectors does not break the fundamental DL–cos ι
degeneracy, and does not improve errors. From our full
posterior PDFs, we find absolute errors of 0.1–0.3 in cos ι,
which is very similar to the NS–NS case.

4. Beamed subsample scalings. The linear scalings for our
beamed subsample are

ΔDL/D̂L � D̂L/(4.83 Gpc) for LIGO + Virgo

ΔDL/D̂L � D̂L/(6.14 Gpc) for LIGO + Virgo + AIGO

ΔDL/D̂L � D̂L/(5.20 Gpc) for LIGO + Virgo + LCGT
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Figure 9. Distance measurement errors vs. true luminosity distance for our sample of NS–NS binaries. Colored crosses assume isotropic emission; black points assume
our beaming prior. The dashed lines show the linear best fit to the beamed sample (see the text for expressions). In the LIGO + Virgo + AIGO panel, we also show the
Fisher-matrix-derived linear scaling given in DHHJ06: ΔDL/D̂L � D̂L/(4.4 Gpc) assuming beaming (solid), and ΔDL/D̂L � D̂L/(1.7 Gpc) for isotropic emission
(dotted).
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Figure 10. Distance measurement errors vs. true luminosity distance for our sample of NS–BH binaries. Colored crosses assume isotropic emission; black points use
our beaming prior. The lower right-hand panel shows the sample detected by our “full” network (LIGO + Virgo + AIGO + LCGT). Upper left is LIGO + Virgo; upper
right is LIGO + Virgo + AIGO; and lower left is LIGO + Virgo + LCGT. The dashed lines show the linear best fit to the beamed sample (see the text for expressions).

ΔDL/D̂L � D̂L/(6.76 Gpc) for LIGO + Virgo + AIGO +
LCGT.

6. SUMMARY DISCUSSION

In this analysis, we have studied how well GWs can be used
to measure the luminosity distance, under the assumption that
binary inspiral is associated with (at least some) SHBs. We
examine two plausible compact binary SHB progenitors, and a
variety of plausible detector networks. We emphasize that we

assume sky position is known. We build on the previous study
of DHHJ06, which used the so-called Gaussian approximation
of the posterior PDF. This approximation works well for large
S/N, but the limits of its validity are poorly understood. In
particular, since the S/N of events measured by ground-based
detectors is likely to be of order 10, the Gaussian limit may be
inapplicable. We examine the posterior PDF for the parameters
of observed events using MCMC techniques, which do not
rely on this approximation. We also introduce a well-defined
noise-averaged posterior PDF that does not depend solely on
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a particular noise instance. Such a quantity is useful to predict
how well a detector should be able to measure the properties of
a source.

We find that the Gaussian approximation substantially un-
derestimates distance measurement errors. We also find that
the main limitation for individual standard siren measurements
is the strong degeneracy between distance to the binary and
the binary’s inclination to the line of sight; similar discussion
of this issue is given in a recent analysis by Ajith & Bose
(2009). Adding detectors to a network only slightly improves
distance measurement for a given single event. When we as-
sume that the SHB is isotropic (so that we cannot infer any-
thing about the source’s inclination from the burst), we find
that Fisher matrix estimates of distance errors are very inaccu-
rate. Our distributions show large scatter about the Fisher-based
predictions.

The situation improves dramatically if we assume that SHBs
are collimated, thereby giving us a prior on the orientation of
the progenitor binary. By assuming that SHBs are preferentially
emitted into an opening angle of roughly 25◦, we find that
the distance–inclination correlation is substantially broken. The
Fisher matrix estimates are then much more reasonable, giving
a good sense of the trend with which distances are determined
(albeit with a moderate scatter about that trend). This illustrates
the importance of incorporating prior knowledge, at least for
individual measurements.

Our distance measurement results are summarized in Figure 9
(for NS–NS SHB progenitors) and Figure 10 (for NS–BH). As-
suming isotropy, we find that the distance to NS–NS binaries
is measured with a fractional error of roughly 20%–60%, with
most events in our distribution clustered near 20%–30%. Beam-
ing improves this by roughly a factor of two, and eliminates
much of the high error tail from our sample. NS–BH events are
measured somewhat more accurately: the distribution of frac-
tional distance errors runs from roughly 15%–50%, with most
events clustered near 15%–25%. Beaming again gives roughly
a factor of two improvement, eliminating most of the high error
tail.

It is worth emphasizing that these results describe the outcome
of individual siren measurements. When these measurements
are used as cosmological probes, we will be interested in
constructing the joint distribution, following the observation of
N GW-SHB events. Indeed, preliminary studies show that our
ability to constrain H0 improves dramatically as the number
of measured binaries is increased. In our most pessimistic
scenario (the SHB is assumed to be an NS–NS binary, with no
prior on inclination, and measured by the baseline LIGO–Virgo
network), we find that H0 can be measured with ∼13% fractional
error with N = 4, improving to ∼5% for N = 15. This is because
multiple measurements allow us to sample the inclination
distribution, and thus average out the bias introduced by the
tendency to overestimate distance for edge-on binaries, and
underestimate it for face-on binaries. Details of this analysis
will be presented in a follow-up paper.

Increasing the number of measured events will thus be crucial
for making cosmologically interesting measurements. To this
end, it is important to note that increasing the number of
detectors in our network enables a considerable increase in the
number of detected binaries. This is due to increases in both the
sky coverage and in the total detection volume. Going from a
network which includes all four detectors (LIGO, Virgo, AIGO,
and LCGT) to our baseline network of just LIGO and Virgo
entails a ∼ 50% reduction in the number of detected binaries.

Eliminating just one of the proposed detectors (AIGO or LCGT)
leaves us with ∼ 75% of the original detected sample.

Aside from exploring the cosmological consequences, several
other issues merit careful future analysis. One general result is
the importance that priors have on the posterior PDF. We plan
to examine this in some detail, identifying the parameters which
particularly influence the final result, and which uncertainties
can be ascribed to an inability to set relevant priors. Another
issue is the importance of systematic errors in these models. We
have used the 2PN description of a binary’s GWs in this analysis,
and have ignored all but the leading quadrupole harmonic of the
waves (the “restricted” PN waveform). Our suspicion is that a
more complete PN description of the phase would have little
impact on our results, since such effects will not impact the
DL–cos ι degeneracy. In principle, including additional (non-
quadrupole) harmonics could have an impact, since these other
harmonics encode different information about the inclination
angle ι. In practice, we expect that they will not have much
effect on GW-SHB measurements, since these harmonics are
measured with very low S/N (the next strongest harmonic is
roughly a factor of 10 smaller in amplitude than the quadrupole).

As discussed previously, we confine our analysis to the
inspiral. Inspiral waves are terminated at the innermost stable
circular orbit frequency, fISCO = (63/2πMz). For NS–NS
binaries, fISCO � 1600 Hz. At this frequency, detectors have
fairly poor sensitivity, so we are confident that terminating the
waves has little impact on our NS–NS results. However, for
our assumed NS–BH binaries, fISCO � 400 Hz. Detectors have
good sensitivity in this band, so it may be quite important to
improve our model for the waves’ termination in this case.

Perhaps the most important follow-up would be to include the
impact of spin. Although the impact of neutron star spin is likely
to be small, it may not be negligible; and, for NS–BH systems,
the impact of the black hole’s spin is likely to be significant.
Spin induces precession which makes the orbit’s orientation,
L̂, dynamical. That makes the observed inclination dynamical,
which can break the DL–cos ι degeneracy. In other words, with
spin precession the source’s orbital dynamics may break this
degeneracy. Van der Sluys et al. (2008) have already shown
that spin precession physics can improve the ability of ground-
based detectors to determine a source’s position on the sky. We
are confident that a similar analysis which assumes a known
sky position will find that measurements of source distance and
inclination can likewise be improved.

It is a pleasure to acknowledge useful discussions with
K. G. Arun, Yoicho Aso, Duncan Brown, Curt Cutler, Jean-
Michel Désert, Alexander Dietz, L. Samuel Finn, Derek Fox,
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Cutler, C., & Flanagan, É. E. 1994, Phys. Rev. D, 49, 2658 (CF94)
Cutler, C., & Vallisneri, M. 2007, Phys. Rev. D, 76, 104018
Dalal, N., Holz, D. E., Hughes, S. A., & Jain, B. 2006, Phys. Rev. D, 74, 063006

(DHHJ06)
Dietz, A. 2009, arXiv:0904.0347
Droz, S., Knapp, D. J., Poisson, E., & Owen, B. J. 1999, Phys. Rev. D, 59,

124016
Dunkley, J., et al. 2009, ApJS, 180, 306
Eichler, D., Livio, M., Piran, T., & Schramm, D. N. 1989, Nature, 340, 126
Etienne, Z. B., Faber, J. A., Liu, Y. T., Shapiro, S. L., Taniguchi, K., &

Baumgarte, T. W. 2008, Phys. Rev. D, 77, 084002
Fairhurst, S. 2009, New J. Phys., 11, 123006
Finn, L. S. 1992, Phys. Rev. D, 46, 5236
Finn, L. S., & Chernoff, D. F. 1993, Phys. Rev. D, 47, 2198
Ford, E. B. 2005, AJ, 129, 1706
Fox, D. B., et al. 2005, Nature, 437, 845
Gelman, A., & Rubin, D. B. 1992, Stat. Sci., 4, 457
Gilks, W. R., Richardson, S., & Spiegelhalter, D. J. (ed.) 1996, Markov Chain

Monte Carlo in Practice (London: Chapman and Hall), 486
Grupe, D., Burrows, D. N., Patel, S. K., Kouveliotou, C., Zhang, B., Mészáros,
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Christensen, N. 2009, Class. Quantum Grav., 26, 204010
van der Sluys, M. V., et al. 2008, ApJ, 688, L61
Vecchio, A. 2004, Phys. Rev. D, 70, 042001
Wen, L., & Chen, Y. 2010, Phys. Rev. D, 81, 082001
Wickham, E. D. L., Stroeer, A., & Vecchio, A. 2006, Class. Quantum Grav., 23,

819
Winn, J. N., et al. 2007, AJ, 134, 1707

http://dx.doi.org/10.1088/0264-9381/27/17/173001
http://adsabs.harvard.edu/abs/2010CQGra..27q3001A
http://adsabs.harvard.edu/abs/2010CQGra..27q3001A
http://dx.doi.org/10.1088/0264-9381/25/18/184001
http://adsabs.harvard.edu/abs/2008CQGra..25r4001A
http://adsabs.harvard.edu/abs/2008CQGra..25r4001A
http://dx.doi.org/10.1103/PhysRevD.79.084032
http://adsabs.harvard.edu/abs/2009PhRvD..79h4032A
http://adsabs.harvard.edu/abs/2009PhRvD..79h4032A
http://dx.doi.org/10.1103/PhysRevD.63.042003
http://adsabs.harvard.edu/abs/2001PhRvD..63d2003A
http://adsabs.harvard.edu/abs/2001PhRvD..63d2003A
http://dx.doi.org/10.1088/0264-9381/27/8/084005
http://adsabs.harvard.edu/abs/2010CQGra..27h4005B
http://adsabs.harvard.edu/abs/2010CQGra..27h4005B
http://dx.doi.org/10.1086/518762
http://adsabs.harvard.edu/abs/2007ApJ...664.1000B
http://adsabs.harvard.edu/abs/2007ApJ...664.1000B
http://dx.doi.org/10.1088/1742-6596/122/1/012001
http://adsabs.harvard.edu/abs/2008JPhCS.122a2001B
http://adsabs.harvard.edu/abs/2008JPhCS.122a2001B
http://dx.doi.org/10.1103/PhysRevLett.93.091101
http://dx.doi.org/10.1103/PhysRevLett.93.091101
http://adsabs.harvard.edu/abs/2004PhRvL..93i1101B
http://adsabs.harvard.edu/abs/2004PhRvL..93i1101B
http://dx.doi.org/10.1103/PhysRevLett.74.3515
http://dx.doi.org/10.1103/PhysRevLett.74.3515
http://adsabs.harvard.edu/abs/1995PhRvL..74.3515B
http://adsabs.harvard.edu/abs/1995PhRvL..74.3515B
http://dx.doi.org/10.1103/PhysRevD.65.061501
http://adsabs.harvard.edu/abs/2002PhRvD..65f1501B
http://adsabs.harvard.edu/abs/2002PhRvD..65f1501B
http://dx.doi.org/10.1103/PhysRevD.65.064005
http://adsabs.harvard.edu/abs/2002PhRvD..65f4005B
http://adsabs.harvard.edu/abs/2002PhRvD..65f4005B
http://www.arxiv.org/abs/0902.1527
http://dx.doi.org/10.1086/508740
http://adsabs.harvard.edu/abs/2006ApJ...653..468B
http://adsabs.harvard.edu/abs/2006ApJ...653..468B
http://dx.doi.org/10.1103/PhysRevD.74.082004
http://adsabs.harvard.edu/abs/2006PhRvD..74h2004C
http://adsabs.harvard.edu/abs/2006PhRvD..74h2004C
http://dx.doi.org/10.1088/0264-9381/21/1/023
http://adsabs.harvard.edu/abs/2004CQGra..21..317C
http://adsabs.harvard.edu/abs/2004CQGra..21..317C
http://dx.doi.org/10.1086/173934
http://adsabs.harvard.edu/abs/1994ApJ...424..823C
http://adsabs.harvard.edu/abs/1994ApJ...424..823C
http://dx.doi.org/10.1088/0264-9381/24/23/001
http://adsabs.harvard.edu/abs/2007CQGra..24.5729C
http://adsabs.harvard.edu/abs/2007CQGra..24.5729C
http://dx.doi.org/10.1103/PhysRevD.57.7089
http://adsabs.harvard.edu/abs/1998PhRvD..57.7089C
http://adsabs.harvard.edu/abs/1998PhRvD..57.7089C
http://dx.doi.org/10.1103/PhysRevD.49.2658
http://adsabs.harvard.edu/abs/1994PhRvD..49.2658C
http://adsabs.harvard.edu/abs/1994PhRvD..49.2658C
http://dx.doi.org/10.1103/PhysRevD.76.104018
http://adsabs.harvard.edu/abs/2007PhRvD..76j4018C
http://adsabs.harvard.edu/abs/2007PhRvD..76j4018C
http://dx.doi.org/10.1103/PhysRevD.74.063006
http://adsabs.harvard.edu/abs/2006PhRvD..74f3006D
http://adsabs.harvard.edu/abs/2006PhRvD..74f3006D
http://www.arxiv.org/abs/0904.0347
http://dx.doi.org/10.1103/PhysRevD.59.124016
http://adsabs.harvard.edu/abs/1999PhRvD..59l4016D
http://adsabs.harvard.edu/abs/1999PhRvD..59l4016D
http://dx.doi.org/10.1088/0067-0049/180/2/306
http://adsabs.harvard.edu/abs/2009ApJS..180..306D
http://adsabs.harvard.edu/abs/2009ApJS..180..306D
http://dx.doi.org/10.1038/340126a0
http://adsabs.harvard.edu/abs/1989Natur.340..126E
http://adsabs.harvard.edu/abs/1989Natur.340..126E
http://dx.doi.org/10.1103/PhysRevD.77.084002
http://adsabs.harvard.edu/abs/2008PhRvD..77h4002E
http://adsabs.harvard.edu/abs/2008PhRvD..77h4002E
http://dx.doi.org/10.1088/1367-2630/11/12/123006
http://adsabs.harvard.edu/abs/2009NJPh...11l3006F
http://adsabs.harvard.edu/abs/2009NJPh...11l3006F
http://dx.doi.org/10.1103/PhysRevD.46.5236
http://adsabs.harvard.edu/abs/1992PhRvD..46.5236F
http://adsabs.harvard.edu/abs/1992PhRvD..46.5236F
http://dx.doi.org/10.1103/PhysRevD.47.2198
http://adsabs.harvard.edu/abs/1993PhRvD..47.2198F
http://adsabs.harvard.edu/abs/1993PhRvD..47.2198F
http://dx.doi.org/10.1086/427962
http://adsabs.harvard.edu/abs/2005AJ....129.1706F
http://adsabs.harvard.edu/abs/2005AJ....129.1706F
http://dx.doi.org/10.1038/nature04189
http://adsabs.harvard.edu/abs/2005Natur.437..845F
http://adsabs.harvard.edu/abs/2005Natur.437..845F
http://dx.doi.org/10.1214/ss/1177011136
http://dx.doi.org/10.1086/508739
http://adsabs.harvard.edu/abs/2006ApJ...653..462G
http://adsabs.harvard.edu/abs/2006ApJ...653..462G
http://dx.doi.org/10.1088/0264-9381/27/8/084006
http://adsabs.harvard.edu/abs/2010CQGra..27h4006H
http://adsabs.harvard.edu/abs/2010CQGra..27h4006H
http://dx.doi.org/10.1093/biomet/57.1.97
http://www.arxiv.org/abs/astro-ph/9905116
http://dx.doi.org/10.1086/431341
http://adsabs.harvard.edu/abs/2005ApJ...629...15H
http://adsabs.harvard.edu/abs/2005ApJ...629...15H
http://dx.doi.org/10.1086/187083
http://adsabs.harvard.edu/abs/1993ApJ...417L..17K
http://adsabs.harvard.edu/abs/1993ApJ...417L..17K
http://dx.doi.org/10.1088/0067-0049/180/2/330
http://adsabs.harvard.edu/abs/2009ApJS..180..330K
http://adsabs.harvard.edu/abs/2009ApJS..180..330K
http://dx.doi.org/10.1086/527348
http://adsabs.harvard.edu/abs/2008ApJ...675.1459K
http://adsabs.harvard.edu/abs/2008ApJ...675.1459K
http://dx.doi.org/10.1103/PhysRevD.48.3451
http://adsabs.harvard.edu/abs/1993PhRvD..48.3451K
http://adsabs.harvard.edu/abs/1993PhRvD..48.3451K
http://www.arxiv.org/abs/0903.0218
http://dx.doi.org/10.1088/0264-9381/27/8/084004
http://adsabs.harvard.edu/abs/2010CQGra..27h4004K
http://adsabs.harvard.edu/abs/2010CQGra..27h4004K
http://dx.doi.org/10.1103/PhysRevD.74.122001
http://adsabs.harvard.edu/abs/2006PhRvD..74l2001L
http://adsabs.harvard.edu/abs/2006PhRvD..74l2001L
http://dx.doi.org/10.1103/PhysRevD.66.103511
http://adsabs.harvard.edu/abs/2002PhRvD..66j3511L
http://adsabs.harvard.edu/abs/2002PhRvD..66j3511L
http://adsabs.harvard.edu/abs/1989BAAS...21.1136L
http://adsabs.harvard.edu/abs/1989BAAS...21.1136L
http://adsabs.harvard.edu/abs/2003itil.book.....M
http://dx.doi.org/10.1103/PhysRevD.48.4738
http://adsabs.harvard.edu/abs/1993PhRvD..48.4738M
http://adsabs.harvard.edu/abs/1993PhRvD..48.4738M
http://dx.doi.org/10.1063/1.1699114
http://adsabs.harvard.edu/abs/1953JChPh..21.1087M
http://adsabs.harvard.edu/abs/1953JChPh..21.1087M
http://dx.doi.org/10.1086/505855
http://adsabs.harvard.edu/abs/2006ApJ...650..281N
http://adsabs.harvard.edu/abs/2006ApJ...650..281N
http://dx.doi.org/10.1103/PhysRevD.53.6749
http://adsabs.harvard.edu/abs/1996PhRvD..53.6749O
http://adsabs.harvard.edu/abs/1996PhRvD..53.6749O
http://dx.doi.org/10.1088/0004-637X/696/2/1871
http://adsabs.harvard.edu/abs/2009ApJ...696.1871P
http://adsabs.harvard.edu/abs/2009ApJ...696.1871P
http://www.arxiv.org/abs/0903.0098
http://dx.doi.org/10.1103/PhysRevD.52.848
http://adsabs.harvard.edu/abs/1995PhRvD..52..848P
http://adsabs.harvard.edu/abs/1995PhRvD..52..848P
http://dx.doi.org/10.1103/PhysRevD.78.064005
http://adsabs.harvard.edu/abs/2008PhRvD..78f4005P
http://adsabs.harvard.edu/abs/2008PhRvD..78f4005P
http://dx.doi.org/10.1103/PhysRevLett.95.121101
http://adsabs.harvard.edu/abs/2005PhRvL..95l1101P
http://adsabs.harvard.edu/abs/2005PhRvL..95l1101P
http://dx.doi.org/10.1088/0264-9381/26/11/114007
http://adsabs.harvard.edu/abs/2009CQGra..26k4007R
http://adsabs.harvard.edu/abs/2009CQGra..26k4007R
http://dx.doi.org/10.1103/PhysRevD.75.062004
http://adsabs.harvard.edu/abs/2007PhRvD..75f2004R
http://adsabs.harvard.edu/abs/2007PhRvD..75f2004R
http://www.arxiv.org/abs/0906.4151
http://dx.doi.org/10.1038/323310a0
http://adsabs.harvard.edu/abs/1986Natur.323..310S
http://adsabs.harvard.edu/abs/1986Natur.323..310S
http://dx.doi.org/10.1103/PhysRevD.74.121503
http://adsabs.harvard.edu/abs/2006PhRvD..74l1503S
http://adsabs.harvard.edu/abs/2006PhRvD..74l1503S
http://www.arxiv.org/abs/0901.4540
http://dx.doi.org/10.1086/506429
http://adsabs.harvard.edu/abs/2006ApJ...650..261S
http://adsabs.harvard.edu/abs/2006ApJ...650..261S
http://adsabs.harvard.edu/abs/2006AIPC..873..444S
http://dx.doi.org/10.1088/0264-9381/21/5/056
http://adsabs.harvard.edu/abs/2004CQGra..21S.775S
http://adsabs.harvard.edu/abs/2004CQGra..21S.775S
http://dx.doi.org/10.1103/PhysRevD.77.042001
http://adsabs.harvard.edu/abs/2008PhRvD..77d2001V
http://adsabs.harvard.edu/abs/2008PhRvD..77d2001V
http://dx.doi.org/10.1088/0264-9381/26/20/204010
http://adsabs.harvard.edu/abs/2009CQGra..26t4010V
http://adsabs.harvard.edu/abs/2009CQGra..26t4010V
http://dx.doi.org/10.1086/595279
http://adsabs.harvard.edu/abs/2008ApJ...688L..61V
http://adsabs.harvard.edu/abs/2008ApJ...688L..61V
http://dx.doi.org/10.1103/PhysRevD.70.042001
http://adsabs.harvard.edu/abs/2004PhRvD..70d2001V
http://adsabs.harvard.edu/abs/2004PhRvD..70d2001V
http://dx.doi.org/10.1103/PhysRevD.81.082001
http://adsabs.harvard.edu/abs/2010PhRvD..81h2001W
http://adsabs.harvard.edu/abs/2010PhRvD..81h2001W
http://dx.doi.org/10.1088/0264-9381/23/19/S20
http://adsabs.harvard.edu/abs/2006CQGra..23S.819W
http://adsabs.harvard.edu/abs/2006CQGra..23S.819W
http://dx.doi.org/10.1086/521599
http://adsabs.harvard.edu/abs/2007AJ....134.1707W
http://adsabs.harvard.edu/abs/2007AJ....134.1707W

	1. INTRODUCTION
	1.1. Overview
	1.2. Standard Sirens
	1.3. This Work and Previous Analysis
	1.4. Organization of This Paper

	2. MEASURING GRAVITATIONAL WAVES FROM INSPIRALING BINARIES
	2.1. GWs from Inspiraling Binaries
	2.2. Measurement of GWs by a Detector Network
	2.3. Summary of the Preceding Section
	2.4. GW Detectors Used in Our Analysis

	3. ESTIMATION OF BINARY PARAMETERS
	3.1. Overview of Formalism
	3.2. Binary Selection and Priors
	3.3. Markov Chain Monte Carlo Approach
	3.4. The “Averaged” Posterior PDF

	4. RESULTS I: VALIDATION AND TESTING
	4.1. Comparison with CF94
	4.2. Test 1: Varying Luminosity Distance and Number of Detectors
	4.3. Test 2: Varying Source Inclination
	4.4. Summary of Validation Tests

	5. RESULTS II: SURVEY OF STANDARD SIRENS
	5.1. NS–NS Binaries
	5.2. NS–BH Binaries

	6. SUMMARY DISCUSSION
	REFERENCES

