
The Astrophysical Journal, 720:503–515, 2010 September 1 doi:10.1088/0004-637X/720/1/503
C© 2010. The American Astronomical Society. All rights reserved. Printed in the U.S.A.

PERPENDICULAR ION HEATING BY LOW-FREQUENCY ALFVÉN-WAVE TURBULENCE
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ABSTRACT

We consider ion heating by turbulent Alfvén waves (AWs) and kinetic Alfvén waves (KAWs) with wavelengths
(measured perpendicular to the magnetic field) that are comparable to the ion gyroradius and frequencies ω smaller
than the ion cyclotron frequency Ω. We focus on plasmas in which β � 1, where β is the ratio of plasma pressure to
magnetic pressure. As in previous studies, we find that when the turbulence amplitude exceeds a certain threshold,
an ion’s orbit becomes chaotic. The ion then interacts stochastically with the time-varying electrostatic potential, and
the ion’s energy undergoes a random walk. Using phenomenological arguments, we derive an analytic expression
for the rates at which different ion species are heated, which we test by simulating test particles interacting with a
spectrum of randomly phased AWs and KAWs. We find that the stochastic heating rate depends sensitively on the
quantity ε = δvρ/v⊥, where v⊥ (v‖) is the component of the ion velocity perpendicular (parallel) to the background
magnetic field B0, and δvρ (δBρ) is the rms amplitude of the velocity (magnetic-field) fluctuations at the gyroradius
scale. In the case of thermal protons, when ε � εcrit, where εcrit is a constant, a proton’s magnetic moment is nearly
conserved and stochastic heating is extremely weak. However, when ε > εcrit, the proton heating rate exceeds
half the cascade power that would be present in strong balanced KAW turbulence with the same value of δvρ , and
magnetic-moment conservation is violated even when ω � Ω. For the random-phase waves in our test-particle
simulations, εcrit = 0.19. For protons in low-β plasmas, ε � β−1/2δBρ/B0, and ε can exceed εcrit even when
δBρ/B0 � εcrit. The heating is anisotropic, increasing v2

⊥ much more than v2
‖ when β � 1. (In contrast, at β � 1

Landau damping and transit-time damping of KAWs lead to strong parallel heating of protons.) At comparable
temperatures, alpha particles and minor ions have larger values of ε than protons and are heated more efficiently as
a result. We discuss the implications of our results for ion heating in coronal holes and the solar wind.

Key words: magnetohydrodynamics (MHD) – solar wind – Sun: corona – turbulence – waves

1. INTRODUCTION

Beginning in the 1960s, a number of authors developed
steady-state hydrodynamic models of the solar wind in which
the temperature was fixed at the coronal base and the solar wind
was heated by thermal conduction (e.g., Parker 1965; Hartle
& Sturrock 1968; Durney 1972; Holzer & Leer 1980; Leer &
Holzer 1980). For realistic values of the coronal temperature
and density, these models were unable to reproduce the large
flow velocities of fast-solar-wind streams and large proton
temperatures observed at 1 AU, suggesting that the solar wind is
heated above the coronal base by some additional mechanism.
Further evidence for extended, non-conductive heating has been
provided by measurements from the Ultraviolet Coronagraph
Spectrometer (UVCS), which show radially increasing minor-
ion temperatures in coronal holes (the open-magnetic-field-line
regions from which the fast wind emanates) at heliocentric
distances r between 1.5 R� and 3.5 R� (Kohl et al. 1998;
Li et al. 1998; Esser et al. 1999; Antonucci et al. 2000).
Identifying the physical mechanisms responsible for this heating
and determining the heating rates of the different particle species
are among the major challenges in the study of the solar wind
at the present time.

One of the first mechanisms proposed to account for solar-
wind heating was Alfvén-wave (AW) turbulence (Coleman
1968). The importance of AW turbulent heating is suggested
by in situ measurements of ubiquitous, large-amplitude fluctua-

tions in the velocity, magnetic field, and electric field in the inter-
planetary medium with power spectra that vary approximately
as power laws over a broad range of length scales (Belcher &
Davis 1971; Goldstein et al. 1995; Tu & Marsch 1995; Bruno &
Carbone 2005; Bale et al. 2005). The amplitudes of the measured
fluctuations are positively correlated with solar-wind tempera-
ture (Grappin et al. 1990) and imply a turbulent heating rate
(based on phenomenological turbulence theories) that is com-
parable to the observationally inferred solar-wind heating rate
(Smith et al. 2001; Breech et al. 2009; Cranmer et al. 2009b;
Stawarz et al. 2009).

The in situ measurements on which the above studies
are based are limited to the locations where spacecraft have
flown—that is, to r � 0.3 AU. However, a number of consid-
erations suggest that AW turbulent heating is important closer
to the Sun as well. For example, the velocity and magnetic-
field fluctuations measured in situ are often correlated in the
sense of AWs propagating away from the Sun in the solar-wind
frame (Belcher & Davis 1971; Tu & Marsch 1995; Bavassano
et al. 2000), indicating that these waves originate at or near
the Sun. Throughout the chromosphere, filamentary structures
(spicules) undergo transverse motions consistent with outward-
propagating AWs carrying an energy flux sufficient to power
the solar wind (De Pontieu et al. 2007). The corona is also per-
vaded by transverse velocity patterns (seen in measurements of
the Doppler shift of an Fe+12 emission line), which propagate
along the local magnetic-field direction at speeds comparable
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to the local Alfvén speed vA = B/
√

4πμpnmp, where B is the
magnetic-field strength, n is the proton number density, and μp
is the mean molecular weight per proton (Tomczyk et al. 2007).

Radio observations are also consistent with AW turbulent
heating of the extended corona and inner solar wind. For
example, Faraday rotation measurements have been used to
probe magnetic fluctuations at 2 R� � r � 15 R� (Hollweg
1982; Sakurai & Spangler 1994; Mancuso & Spangler 2000).
If the measured magnetic fluctuations are AWs, then they
carry an energy flux that is sufficient to drive the solar wind
(Hollweg 1982; Andreev et al. 1997; Hollweg et al. 2010).
Coles & Harmon (1989) analyzed spectral-broadening and
phase-scintillation data to measure the power spectrum of
electron density fluctuations at radii as small as 5 R�. The
density fluctuations have significant amplitudes over a broad
range of spatial scales, consistent with passive-scalar mixing
of background density fluctuations or entropy modes by AW
turbulence (Harmon & Coles 2005). Because AWs become
compressive at small scales (when the wavelength is � the
proton inertial length; Hollweg 1999), the rms amplitude of
density fluctuations at small scales can be used to place an upper
limit on the turbulent heating rate, and this upper limit exceeds
the heating rates needed to produce the solar wind in theoretical
models (Harmon & Coles 2005; Chandran et al. 2009).

Further support for the importance of AW turbulence for
solar-wind heating is provided by several theoretical models
that describe the radial evolution of AW turbulence in the solar
wind, taking into account the cascade of wave energy from
large scales to small scales, the loss of wave energy due to
dissipation at small scales, and the wave-amplitude modulation
and wave reflection that are induced by large-scale variations
in the solar-wind velocity, density, and magnetic-field strength.
These models incorporate observational constraints on the wave
amplitudes at r < 3 R� and r > 0.3 AU, and lead either to
temperatures, densities, and wind speeds that are consistent
with observations (Cranmer et al. 2007; Verdini et al. 2010),
or to heating rates that are sufficient to reproduce the observed
temperature profiles (Cranmer & van Ballegooijen 2005; Verdini
& Velli 2007; Chandran & Hollweg 2009). Wave reflection plays
an important role in these models because the Sun launches
only outward-propagating waves, and AWs propagating in the
same direction in the plasma rest frame do not interact with one
another (Iroshnikov 1963; Kraichnan 1965).

Taken together, the observational evidence and theoretical
results described above suggest that AW turbulence plays an
important, and perhaps dominant, role in the heating of the
solar wind and coronal holes. However, there is another set
of observations that has proven difficult to reconcile with
heating by AW turbulence. In coronal holes at 1.6 R� < r �
3 R�, proton temperatures exceed electron temperatures, and
minor-ion temperatures greatly exceed electron temperatures,
indicating that ions are efficiently heated in the low-β conditions
found near the Sun (Cranmer 2009a), where β = 8πp/B2 is the
ratio of the plasma pressure to the magnetic pressure. In addition,
UVCS observations show that minor ions in coronal holes are
heated in such a way that thermal motions perpendicular to
the background magnetic field B0 are much more rapid than
thermal motions along B0 (i.e., T⊥ � T‖) (Kohl et al. 1998;
Li et al. 1998; Antonucci et al. 2000). A similar temperature
anisotropy is measured in situ at r > 0.3 AU for protons in fast-
solar-wind streams with β � 1, despite the fact that (double)
adiabatic expansion acts to decrease T⊥/T‖ (Marsch et al. 1982,
2004; Hellinger et al. 2006). Thus, in low-β conditions, ions are

heated efficiently, and ion heating is mostly “perpendicular to
the magnetic field.”

These observations present a challenge for solar-wind-heating
models based on AW turbulence for the following reasons. At
the comparatively large scales at which most of the AW energy
is concentrated (i.e., at the “outer scale” of the turbulence),
the wave frequencies are much less than the proton cyclotron
frequency Ωp. For example, most of the AW energy detected
remotely in the solar atmosphere is at periods ranging from
several minutes to a few hours (Chashei et al. 2000; De
Pontieu et al. 2007; Tomczyk et al. 2007). At r > 0.3 AU,
the bulk of the AW energy is at periods of hours and longer
(Tu & Marsch 1995; Bruno & Carbone 2005). By comparison,
Ω−1

p ∼ 10−4 s in coronal holes at r = 2 R� and Ω−1
p ∼ 1 s at

r = 1 AU. Moreover, in AW turbulence, the energy cascade
is anisotropic, transporting energy primarily to small scales
measured perpendicular to B0 rather than small scales along
B0 (Shebalin et al. 1983; Goldreich & Sridhar 1995; Ng &
Bhattacharjee 1996; Galtier et al. 2000; Cho et al. 2002). In
wavenumber space, energy cascades primarily to larger k⊥, and
only weakly to larger k‖, where k⊥ and k‖ are the components
of the wavevector k perpendicular and parallel to B0. Because
the frequency of an AW is given by ω = k‖vA, this anisotropic
energy cascade is inefficient at transporting wave energy to
higher frequencies. At perpendicular scales (λ⊥) of order the
proton gyroradius ρp, the AW cascade transitions to a kinetic-
Alfvén-wave (KAW) cascade (Bale et al. 2005; Howes et al.
2008b; Schekochihin et al. 2009; Sahraoui et al. 2009), and
at λ⊥ � ρp the fluctuations dissipate. The rms amplitude of
the magnetic-field fluctuations at λ⊥ � ρp is �B, and thus it
seems plausible to assume that the KAW fluctuations damp at
the same rate as linear KAWs at the same k. For the β values
found in coronal holes and the solar wind, linear KAWs undergo
significant electron Landau damping (Quataert 1998; Leamon
et al. 1999). However, when β � 1, ion thermal speeds are
� vA. Ions are thus unable to satisfy the resonance condition
ω − k‖v‖ = 0 for Landau damping or transit-time damping,
where v‖ is the velocity component parallel to B0, because
ω/k‖ � vA for KAWs (Quataert 1998; Hollweg 1999). In
addition, the KAWs produced by the anisotropic cascade do
not undergo ion cyclotron damping, because ω � Ωp for these
waves (and also |ω−k‖v‖| � Ωp) (Cranmer & van Ballegooijen
2003; Howes et al. 2008a). As a consequence, linear damping of
KAWs by ions is negligible when β � 1. Thus, if low-frequency
AW/KAW turbulence damps according to linear Vlasov theory,
then it is unable to explain the strong perpendicular ion heating
that is inferred from observations of coronal holes and low-β
fast-wind streams.

A number of studies have gone beyond linear Vlasov theory
to investigate the possibility of perpendicular ion heating by
low-frequency AW/KAW turbulence. Johnson & Cheng (2001),
Chen et al. (2001), White et al. (2002), Voitenko & Goossens
(2004), and Bourouaine et al. (2008) investigated the dissipation
of KAWs and AWs with ω < Ωp, finding that such waves
cause perpendicular ion heating if the wave amplitude exceeds a
minimum threshold. Dmitruk et al. (2004) and Lehe et al. (2009)
simulated test particles propagating in the electric and magnetic
fields resulting from direct numerical simulations of MHD
turbulence at 0.1 � β � 10. They both found perpendicular ion
heating under some conditions, but Lehe et al. (2009) argued that
the perpendicular heating seen in both studies is due to cyclotron
resonance and does not apply to the solar wind because it is an
artifact of limited numerical resolution. Parashar et al. (2009)
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found perpendicular ion heating in two-dimensional hybrid
simulations of a turbulent plasma, in which ions are treated
as particles and electrons are treated as a fluid. Servidio et al.
(2010) analyzed magnetic reconnection in simulations of MHD
turbulence, and Drake et al. (2009) found that reconnection
leads to perpendicular ion heating.4 In addition, Markovskii &
Hollweg (2002) and Markovskii et al. (2006) investigated high-
frequency secondary instabilities that are generated by KAWs
near the gyroradius scale, and argued that such instabilities may
be able to explain the observed perpendicular ion heating.

In this paper, we continue this general line of inquiry and
address an important open problem: determining the perpendic-
ular ion heating rate in anisotropic, low-frequency (ω < Ωp),
AW/KAW turbulence as a function of the amplitude of the
turbulent fluctuations at the gyroradius scale. In Section 2, we
develop a phenomenological theory of stochastic ion heating,
obtaining an approximate analytic expression for the heating
rates of different ion species in plasmas with β � 1. We also
present simulations of test particles propagating in a spectrum
of AWs and KAWs to test our phenomenological theory and to
determine the two dimensionless constants that appear in our
expression for the heating rate. In Section 3, we discuss the im-
plications of our results for perpendicular ion heating in coronal
holes and the fast solar wind.

2. STOCHASTIC ION HEATING BY ALFVÉNIC
TURBULENCE AT THE GYRORADIUS SCALE

We consider ion heating by AW/KAW fluctuations with
transverse length scales λ⊥ (measured perpendicular to B0) of
order the ion gyroradius ρ = v⊥/Ω (i.e., k⊥ρ ∼ 1), where
Ω = qB0/mc is the ion cyclotron frequency, and q and m are
the ion charge and mass. We assume that ρ � ρp, where

ρp = v⊥p

Ωp
(1)

is the rms proton gyroradius in the background magnetic field,

v⊥p =
√

2kBTp

mp
(2)

is the rms perpendicular velocity of protons, Tp is the (perpendic-
ular) proton temperature, and mp is the proton mass. If ρ � ρp,
then the gyro-scale fluctuations are AWs. If ρ ∼ ρp, then the
gyroscale fluctuations are KAWs. For simplicity, we neglect the
effects of fluctuations with either λ⊥ � ρ or λ⊥ � ρ. We also
assume that

β � 1. (3)

We define δvρ and δBρ to be the rms amplitudes of the
fluctuating velocity and magnetic-field vectors at k⊥ρ ∼ 1.
Similarly, δEρ and δΦρ are the rms amplitudes of the fluctuating
electric field and electrostatic potential at k⊥ρ ∼ 1. We assume
that δvρ , δBρ , δEρ , and δΦρ are related to one another in
the same way that the magnitudes of the fluctuating velocity,
magnetic field, electric field, and electrostatic potential are
related in a linear KAW. Thus, since k⊥ρp � 1,

δEρ � δvρB0

c
, (4)

δΦρ ∼ ρδEρ , and

4 Related studies have suggested that magnetic reconnection is responsible
for accelerating anomalous cosmic rays in the heliospheric boundary region
(Lazarian & Opher 2009; Drake et al. 2010).

q δΦρ ∼ mv⊥ δvρ. (5)

The fractional change in an ion’s perpendicular kinetic energy
mv2

⊥/2 induced by gyroscale fluctuations during a single gy-
roperiod is then approximately

2q δΦρ

mv2
⊥

∼ 2ε, (6)

where

ε = δvρ

v⊥
. (7)

When ε � 1, an ion’s kinetic energy is nearly constant dur-
ing a single gyroperiod. The inequality ε � 1 also implies
that δBρ � B0, because of Equation (3). Thus, if ε � 1, an
ion’s orbit in the plane perpendicular to B0 closely approxi-
mates a closed circle. In this case, the ion possesses an adi-
abatic invariant of the form J = ∮

pdq̃ that is conserved to
a high degree of accuracy, where q̃ is the angular coordinate
corresponding to the particle’s nearly periodic cyclotron gyra-
tion and p is the canonically conjugate momentum (Kruskal
1962). In the limit of small ε, J is approximately equal to the
magnetic moment μ = mv2

⊥/2B. The near conservation of J
implies that perpendicular ion heating is extremely weak. In
Appendix A, we present a calculation for electrostatic waves
with k⊥ρ ∼ 1 and ε � 1 that illustrates how the leading-order
terms in the time derivative of v2

⊥ are unable to cause secular
growth in T⊥.

On the other hand, as ε increases from 0 to 1, the fractional
change in an ion’s perpendicular kinetic energy during a single
gyroperiod grows to a value of order unity. We treat the spatial
variations in the electrostatic potential Φ at k⊥ρ ∼ 1 as random
or disordered, as is the case in turbulence or a spectrum of many
randomly phased waves. Thus, when ε exceeds some threshold
(whose value we investigate below), an ion’s orbit in the plane
perpendicular to B0 becomes chaotic. In this case, the ion’s orbit
does not satisfy the criteria for the approximate conservation of J
(Kruskal 1962), and perpendicular ion heating becomes possible
(Johnson & Cheng 2001; Chen et al. 2001; White et al. 2002).

To estimate the rate at which ions are heated, we begin by
considering the Hamiltonian of a particle of charge q and mass
m:

H = qΦ +
1

2m

(
p − q

c
A

)2
, (8)

where A is the vector potential, and p is the canonical momen-
tum. Hamilton’s equations imply that

dH

dt
= q

∂Φ
∂t

− qv
c

· ∂A
∂t

, (9)

where v = m−1(p−qA/c) is the particle’s velocity. The electric
field is given by E = −∇Φ − c−1∂A/∂t . The second term in
Equation (9) is qv ·Es, where Es = −c−1∂A/∂t is the part of the
electric field that has a nonzero curl. In AWs and KAWs with
ω < Ωp and k⊥ρp � 1, Es is negligible compared to the total
electric field in low-β plasmas (see Equation (46) of Hollweg
1999), which are our primary focus, and so from here on we
neglect the second term in Equation (9).

When ∂Φ/∂t > 0, a particle can gain potential energy,
kinetic energy, or both. For example, if an ion interacts with
an electrostatic wave with wavelength �ρ and frequency
� Ω, then the ion’s guiding-center drifts with velocity cE ×
B0/B

2
0 . The particle’s kinetic energy undergoes small-amplitude
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Figure 1. Potential Φ in the x1–x2 plane at some initial time (upper surface),
at a later time (lower surface), and along the trajectory of a particle moving in
a straight line in the x1–x2 plane (thick solid line). The “potential energy hill”
is shorter when the particle rolls to the top, and higher when the particle rolls
down, so the particle gains kinetic energy as it rolls over the hill.

oscillations due to its gyromotion. However, because its guiding
center moves perpendicular to ∇Φ, there is no significant secular
change in its kinetic energy. The ion’s magnetic moment μ is
almost exactly conserved, and the change in its total energy is
almost exactly equal to the change in its potential energy.

On the other hand, if a particle enters a region in which
∂Φ/∂t > 0 and then leaves this region, moving up and down the
potential gradient, then it can gain kinetic energy as illustrated
in Figure 1. The “wire-mesh” surface in the upper panel of
this figure represents Φ(x1, x2, x3, t) at x3 = 0 at some initial
time, and the lower panel shows Φ(x1, x2, x3, t) at x3 = 0 at
a later time. We take the maximum of Φ(x1, x2, 0, t) to be
located at σ = 0, where σ ≡

√
x2

1 + x2
2 . We have assumed that

∂Φ/∂t > 0 at σ � σ0 and ∂Φ/∂t = 0 at σ � σ0, where σ0 is the
approximate radius in the x1–x2 plane of the “potential-energy
hills” that appear in the figure. The thick solid line shows the
value of Φ along the trajectory of a particle moving in a straight
line in the x1–x2 plane. Because ∂Φ/∂t > 0, the potential-
energy hill is shorter when the particle is “climbing up” and
higher when the particle is “rolling down.” The particle thus
experiences a net gain of kinetic energy from “rolling over the
hill.”

We now estimate the rate at which ions are heated by AW
or KAW fluctuations with λ⊥ ∼ ρ. The condition λ⊥ ∼ ρ
is intended to encompass structures with λ⊥ = 0.5ρ, which
we invoke below when discussing Equation (24). However, we
neglect fluctuations with λ⊥ � ρ or λ⊥ � ρ, as noted above.
Although we are interested in stochastic ion orbits, we can still
define an effective guiding-center position,

R = r +
v × b̂

Ω
, (10)

where b̂ = B/B and r is the ion’s instantaneous position.
When ε � 1, the particle gyrates smoothly about position R.
As ε increases toward 1, the particle’s motion becomes more
complicated, but the particle remains within a distance ∼ρ of
position R. Taking the time derivative of Equation (10) and

using the equation dv/dt = (q/m)(E + v × B/c), we obtain the
equation

dR
dt

= v‖b̂ +
cE × B

B2
+ · · · , (11)

where the ellipsis (· · ·) represents terms proportional to deriva-
tives of B, which we ignore in our approximate treatment. Dur-
ing a single cyclotron period, an ion passes through a small
number of uncorrelated fluctuations or “structures” of transverse
scale ∼ρ. Within different structures, the vector cE × B/B2 has
a similar magnitude (∼δvρ) but points in different directions.
The time average of cE × B/B2 over a single cyclotron period
is thus somewhat smaller than, but of order, δvρ . The time Δt
required for an ion’s guiding center to move a distance ρ is thus
approximately

Δt ∼ ρ

δvρ

. (12)

In writing Equation (12), we have assumed that the gyroscale
fluctuations do not oscillate on a timescale � Δt , and we
continue to make this assumption in the analysis to follow.
Each time the particle moves a distance ρ perpendicular to B0, it
encounters different and uncorrelated gyroscale electromagnetic
fields. Thus, dR/dt decorrelates after a time Δt , and the
particle’s guiding center undergoes a random walk in space
with diffusion coefficient ∼ρ2/Δt .

Similarly, when ε is sufficiently large that the ion’s motion
becomes stochastic, the value of dH/dt decorrelates after a
time Δt , and the particle undergoes a random walk in energy.
In contrast, as shown in the Appendix, as ε → 0 the interaction
between ions and gyroscale electrostatic-potential structures is
not a Markov process; instead, changes in H are correlated over
long times and to leading order in ε are reversible and bounded.
Returning to the stochastic case, we define ∂Φ/∂t to be the rms
value of ∂Φ/∂t associated with fluctuations with λ⊥ ∼ ρ. The
rms change in H during a time Δt is then

ΔH ∼ q
∂Φ
∂t

Δt. (13)

An ion undergoing stochastic motion can gain kinetic energy in
the same way as the particle illustrated in Figure 1. If the ion
spends a time Δt localized within a flux tube of cross-sectional
area ∼ρ2 and length ∼|v‖|Δt , it exits this flux tube in a random
direction. Thus, if ∂Φ̃/∂t is on average positive during this time
interval within the flux tube, it does not follow that the ion will
move to a region of larger Φ̃ after a time Δt , where Φ̃ is the
electrostatic potential associated with fluctuations with λ⊥ ∼ ρ.
On the contrary, the change in Φ̃ along the ion’s path is only
loosely correlated with the average change in Φ̃ within the flux
tube. As a result, the change in the ion’s kinetic energy during
a time Δt is of the same order of magnitude as the change in
its total energy given in Equation (13).5 Because ∇Φ is nearly
perpendicular to B, and because the ion’s guiding center moves
perpendicular to B by a distance of order λ⊥ ∼ ρ during a
time Δt , the ion’s perpendicular kinetic energy K⊥ = mv2

⊥/2
changes by an amount of order

ΔK⊥ ∼ ΔH (14)

5 In contrast, in the small-ε limit addressed in the Appendix, the change in a
particle’s total energy is almost exactly equal to the change in the
gyro-averaged potential energy.
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during a time Δt . We discuss the parallel kinetic energy
following Equation (25) below. We define an effective frequency
ωeff for gyroscale fluctuations through the equation

∂Φ
∂t

= ωeff δΦρ. (15)

For example, if the gyroscale fluctuations consist of waves
with a single frequency ω, then ωeff = ω. With the use of
Equations (5) and (12), we can rewrite Equation (14) as

ΔK⊥ ∼ mv⊥ωeffρ. (16)

The kinetic-energy diffusion coefficient DK ∼ (ΔK⊥)2/Δt is
then given by

DK ∼ m2v2
⊥ω2

eff δvρ ρ. (17)

When a single ion undergoes kinetic-energy diffusion, the ion
has an equal likelihood of gaining or losing kinetic energy during
each “random-walk step” of duration Δt . On the other hand, if a
large population of ions undergoes kinetic-energy diffusion, and
if the phase-space density f of ions is a monotonically decreasing
function of K⊥, then the average value of K⊥ increases steadily
in time. To distinguish between properties of individual particles
and rms quantities within a distribution, we define v⊥i to be the
rms perpendicular velocity of the ions, which is related to the
perpendicular ion temperature T⊥ by the equation

v⊥i =
√

2kBT⊥
m

. (18)

We also define the rms ion gyroradius,

ρi = v⊥i

Ω
. (19)

We define δvi to be the rms amplitude of the fluctuating fluid
velocity at λ⊥ ∼ ρi, and we set

εi = δvi

v⊥i
. (20)

For protons, we define δvp (δBp) to be the fluctuating fluid
velocity (magnetic field) at λ⊥ ∼ ρp, and define

εp = δvp

v⊥p
. (21)

The timescale for the average value of K⊥ in a distribution of
ions to double is then roughly

ti ∼ m2v4
⊥i

DKi
, (22)

where DKi is the value of DK for ions with v⊥ = v⊥i and
ρ = ρi. The perpendicular ion heating rate per unit mass is then
Q⊥ ∼ v2

⊥i/ti, or
Q⊥ ∼ ω2

eff,i δvi ρi, (23)

where ωeff,i is the value of ωeff at ρ = ρi.
We now consider what determines the value of ωeff in

anisotropic AW or KAW turbulence. If the turbulence is driven
at an “outer scale” L0 that is �ρ, the advection or “sweeping”
of structures with λ⊥ ∼ ρ by the outer-scale velocity fluctu-
ations leads to rapid time variations in Φ at a fixed point in
space. On the other hand, these large-scale velocity fluctuations

advect both the ions and the small-scale structures in the electric
and magnetic fields. Thus, if one considers ions within a flux
tube of radius ∼ρ and length � L0, and if one transforms to a
frame of reference moving with the average velocity of that flux
tube, then the rapid time variations resulting from large-scale
advection disappear. This indicates that large-scale sweeping
does not control the rate of ion heating or the value of ωeff in
Equation (23). On the other hand, electrostatic-potential struc-
tures at scale λ⊥ � 0.5ρ are advected by velocity fluctuations at
the same scale, and there is no frame of reference in which the
velocities at λ⊥ � 0.5ρ vanish at all points along an ion’s gyro-
orbit. This advection by velocity fluctuations with λ⊥ � 0.5ρ

causes ∂Φ/∂t to have a value of ∼δΦρδvρ/ρ, which gives

ωeff ∼ δvρ

ρ
, (24)

where we have neglected factors of order unity, such as the ratio
between δvρ and the rms amplitude of the velocity fluctuation at
λ⊥ � 0.5ρ. Put another way, the advection of electrostatic-
potential structures at λ⊥ ∼ 0.5ρ, which are rooted in the
electron fluid, leads to a partial time derivative of Φ that ions can
feel, and which energizes ions through the process illustrated
in Figure 1. We note that in “imbalanced” (or cross-helical)
AW turbulence, in which the majority of the waves propagate
either parallel to B0 or anti-parallel to B0, the energy cascade
time for the majority waves can greatly exceed ω−1

eff , since the
majority waves are cascaded by the smaller-amplitude waves
propagating in the opposite direction. Nevertheless, even for
imbalanced turbulence, the arguments leading to Equation (24)
continue to hold.

As discussed following Equation (7) and in the Appendix,
when ε is sufficiently small, the changes in H remain correlated
(and largely reversible) over long times, so that the perpendicular
heating rate is strongly reduced relative to our estimate in
Equation (23). To account for this, we introduce a multiplicative
suppression factor onto the right-hand side of Equation (23)
of the form exp(−c2/εi). We also add an overall coefficient
c1 to the right-hand side of Equation (23) to account for the
various approximations we have made. Both c1 and c2 are
dimensionless constants whose values depend upon the nature
of the fluctuations (e.g., whether the fluctuations are waves
or turbulence, the type of turbulence, etc.) and the shape of
the ion velocity distribution. Substituting Equation (24) into
Equation (23), we obtain

Q⊥ = c1(δvi)3

ρi
exp

(
− c2

εi

)
. (25)

We emphasize that for protons in low-β plasmas εp �
β−1/2δBp/B0 and thus εp can approach unity even if δBp/B0
remains � 1.

We have restricted our analysis to AWs and KAWs with
λ⊥ ∼ ρ � ρp and ω−1 � Δt ∼ λ⊥/δvρ . This condition on
the wave frequency implies that the parallel wavelengths of
such fluctuations satisfy the inequality λ‖ � ρvA/δvρ � λ⊥.
If β < 1, then λ‖ > v‖Δt , and the change in an ion’s parallel
kinetic energy K‖ = mv2

‖/2 during a time Δt due to the parallel
electric field E‖ is ΔK‖ ∼ qE‖v‖Δt . When me/mp < β < 1
and λ⊥ > ρp, E‖/E⊥ ∼ ρ2

p/(λ⊥λ‖), where me is the electron
mass (Hollweg 1999) and E⊥ is the electric-field component
perpendicular to B. Thus, ΔK‖ is � v‖/vA times the value
of ΔK⊥ in Equation (16). For thermal ions in low-β plasmas,
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v‖ � vA. Thus, when εi is sufficiently large that stochastic
heating is important, stochastic heating leads primarily to
perpendicular ion heating rather than parallel heating. For
AWs/KAWs in low-β plasmas, the parallel component of the
magnetic mirror force is much less than qE‖ (Hollweg 1999)
and thus does not affect our conclusions regarding anisotropic
heating at β � 1.

2.1. Test-particle Simulations of Proton Heating

To test the above ideas, we have numerically simulated test-
particle protons interacting with a spectrum of randomly phased
KAWs. The protons’ initial locations are chosen randomly from
a uniform distribution within a volume encompassing many
wavelengths perpendicular and parallel to B0. The protons’ ini-
tial velocities are drawn randomly from an isotropic Maxwellian
distribution of temperature Tp. For each particle, we solve the
equations

dx
dt

= v (26)

and
dv
dt

= q

m

(
E +

v × B
c

)
(27)

using the Bulirsch–Stoer method (Press et al. 1992). We take
B = B0ẑ + B1, where B0 is constant. We take E and B1 to
be the sum of the electric and magnetic fields from 162 waves
with randomly chosen initial phases, with two waves at each
of 81 different wavevectors. At each wavevector, there is one
wave with ω/kz > 0 and a second wave with ω/kz < 0.
This second wave has the same amplitude as the first, so that
there are equal fluxes of waves propagating in the +z- and
−z-directions. The 81 different wavevectors consist of nine
wavevectors at each of nine different values of k⊥, denoted
k⊥j . The k⊥j can be expressed in terms of ρp. In particular, the
values ψj = ln(k⊥jρp) are uniformly spaced between −4/3 and
4/3; i.e., ψj = −4/3+j/3, with j = 0, 1, . . . , 8. We regard the
values ψj as corresponding to cell centers in a uniform grid in
ψ = ln(k⊥ρp), with grid spacing Δψ = 1/3. The middle three
grid cells, with j = 3, 4, and 5, thus correspond to an interval
of width unity in ln(k⊥) space centered on k⊥ρp = 1. We define
the rms amplitudes of the gyroscale velocity and magnetic-
field fluctuations δvp and δBp in our simulations by taking the
rms values of the E × B velocity and magnetic-field fluctuation
resulting from the KAWs in these middle three grid cells. At each
k⊥j we include nine different values of the azimuthal angle φ in
k space, φl = 2πl/9, where l = 0, 1, . . . , 8. At each k⊥j there
is only a single value of k‖, which we denote k‖j . We choose k‖4
so that the frequency at k⊥ = k⊥4 and k‖ = k‖4 equals k⊥4δvρ .
The linear frequency of our gyroscale KAWs is thus comparable
to the value of ωeff given in Equation (24) for KAW turbulence
at k⊥ρp ∼ 1. We then set

k‖j
k‖4

=
{

(k⊥j /k⊥4)2/3 if 0 � j < 4

(k⊥j /k⊥4)1/3 if 4 < j � 8
. (28)

Our formula for k‖j at j < 4 is chosen so that the wave periods
are comparable to the energy cascade timescales in the critical-
balance theory of Goldreich & Sridhar (1995), while the formula
for j > 4 is chosen so that the wave periods match the nonlinear
timescales in the critical-balance theory of Cho & Lazarian
(2004). All waves at the same k⊥ have the same amplitude, and
(since there are the same number of waves at each k⊥j ) we take
the amplitude of the magnetic-field fluctuation in each wave to

be ∝ k
−1/3
⊥ for k⊥ρp < 1 and ∝ k

−2/3
⊥ for k⊥ρp > 1, again

motivated by the theories of Goldreich & Sridhar (1995) and
Cho & Lazarian (2004).

The relative amplitudes of the different components of E and
B1 for each wave are taken from the two-fluid theory of Hollweg
(1999). To apply this theory, we choose plasma parameters
that are characteristic of coronal holes. In particular, we set
βe = 8πnkBTe/B

2
0 = 0.003, vA = 0.003c, and Te = 0.5Tp,

where n is the electron number density (equal to the proton
number density), and Te is the electron temperature.

Using the above procedures, we have carried out seven
simulations with different values for the overall normalization
of the wave amplitudes, with δBp/B0 ranging from 4.8×10−3 to
1.9 × 10−2. Given the polarization properties of KAWs and our
method for constructing the wave spectra, the value of δvp/vA

is 1.19 times the value of δBp/B0 in each simulation. The wave
frequencies reach their maximum values in the largest δBp/B0
simulation. In this simulation, ω = 0.29Ωp at k⊥ρp = 1, and
ω = 0.82Ωp at the maximum value of k⊥ρp, which is 3.79.
Although this maximum frequency is close to Ωp, the cyclotron
resonance condition ω − k‖v‖ = lΩp (where l is any integer)
is not satisfied by thermal protons, because the parallel thermal
speed of the protons is only 0.055vA and |k‖v‖/ω| � |v‖|/vA.
For most of the waves in these simulations, ω � Ωp.

We determine the perpendicular proton heating rate per unit
mass Q⊥p in the simulations by plotting 〈v2

⊥〉 versus time, fitting
this plot to a straight line to determine (d/dt)〈v2

⊥〉, and then
setting Q⊥p = 0.5(d/dt)〈v2

⊥〉, where 〈. . .〉 indicates an average
over the 103 particles in each simulation. When fitting the plot
of 〈v2

⊥〉 versus time, we ignore the first 10 cyclotron periods,
because during the first couple of gyroperiods the particles
undergo a modest apparent heating as they “pick up” some
portion of the E×B velocity of the waves. We find that after 〈v2

⊥〉
increases by between 20% and 40%, the heating rate starts to
decrease for two reasons. First, the small-v⊥ part of the velocity
distribution flattens, after which this part of the distribution is
no longer heated as effectively. Second, as 〈v2

⊥〉 increases, εp
decreases. We neglect this later stage of weaker heating when
constructing our fits to the 〈v2

⊥(t)〉 plots, so that the measured
heating rates correspond to Maxwellian distributions. (For the
smallest values of δvp, we do not observe a second stage of
weaker heating, because the test-particle velocity distributions
do not change very much during the simulations, which last
104Ω−1

p .) We illustrate this procedure in Figure 2 for a run with
δvp/v⊥p = 0.15. In this case, we determine Q⊥p from the slope
of the long-dashed line.

In Figure 3, we plot the values of Q⊥p for several different
values of εp. Each × in this figure corresponds to a separate
simulation with a different value of δvp but the same initial
proton temperature. The solid line is the proton heating rate
from Equation (25) with c1 = 0.75 and c2 = 0.34; that is,

Q⊥p = 0.75(δvp)3

ρp
exp

(
− 0.34

εp

)
. (29)

We expect the constants c1 and c2 to be fairly insensitive
to variations in βe, Tp/Te, and vA/c, at least within the
range of parameters relevant to low-β solar-wind streams, in
which case Q⊥p depends on the plasma parameters primarily
through the explicit ρp and εp terms in Equation (29). We have
partially tested this hypothesis by carrying out seven additional
simulations, corresponding to three additional choices of plasma
parameters, which we denote “cases 1, 2, and 3.” In case 1,
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Figure 2. v2
⊥ and v2

‖ averaged over the 103 particles in a simulation with
δvp/v⊥p = 0.15, βe = 0.003, vA = 0.003c, and Te = 0.5Tp. The two solid-line
curves correspond to our basic numerical method. We determine Q⊥p in this
simulation from the slope of the long-dashed line. The short-dashed line shows
〈v2

‖〉 in a modified simulation with the same parameters in which E is replaced

by E′ = E + b̂(Ez − b̂ · E).

Figure 3. Numerical results (×s) for the perpendicular heating rate Q⊥p when
test-particle protons interact with a spectrum of randomly phased KAWs, with
plasma parameters βe = 0.003, vA = 0.003c, and Te = 0.5Tp. The solid line is
Equation (29), and the dashed line is Equation (29) with the “μ conservation”
factor exp(−0.34/εp) replaced with unity.

vA = 0.003c and Te = 0.5Tp as in the original simulations,
but βe is increased by a factor of 5 to the value 1.5 × 10−2.
In case 2, vA = 0.003c as in the original simulations, but
βe is increased by a factor of 4 to the value 1.2 × 10−2, and
Tp/Te is reduced by a factor of 4 to the value 0.5. In case 3,
βe = 0.003 and Te = 0.5Tp as in the original simulations,
but vA/c is increased by a factor of 10 to the value 0.03.
In all of these additional simulations, the number of waves,
the values of ψj , the procedure for determining k‖j , and the
wavenumber scaling of the wave amplitudes are the same as in
the original simulations, and 500 test particles are used. Figure 4
shows the perpendicular proton heating rates in these additional
simulations, as well as the value of Q⊥p in Equation (29) for
the three choices of plasma parameters. Equation (29) agrees
reasonably well with the simulation results for all three cases.

The values of c1 and c2 in Equation (29) presuppose the
presence of a broad spectrum of AWs and KAWs bracketing

Figure 4. Dashed line gives the value of Q⊥p in Equation (29) for “case 1”
described in the text. The solid line gives the value of Q⊥p in Equation (29)
for “cases 2 and 3” described in the text. The ×s, open squares, and filled
circles are the proton heating rates in the test-particle simulations for cases 1,
2, and 3, respectively. The approximate agreement between Equation (29) and
the numerical results for different values of βe, Te/Tp, and vA/c indicates that
the values of c1 and c2 are relatively insensitive to moderate changes in plasma
parameters.

the perpendicular wavenumber k⊥ = (ρp)−1, encompassing at a
minimum the range 0.3 � k⊥ρp � 3. A spectrum of at least this
width is probably present in the solar wind, the only uncertainty
being the value of the dissipation wavenumber beyond which the
wave power spectrum decreases exponentially with increasing
k⊥. If the simulations described in this section are repeated
without the smallest three values of k⊥ and without the largest
three values of k⊥ (keeping the wave amplitudes fixed at the
middle three values of k⊥), then the proton orbits become less
stochastic, and Q⊥p decreases significantly. (The exact amount
by which Q⊥p decreases depends upon the value of εp.) We
have omitted waves at k⊥ρp < 0.26 and k⊥ρp > 3.8, but we
expect that waves at such scales do not have a strong effect
on perpendicular ion heating in the solar wind, provided ω is
sufficiently small that the cyclotron resonance condition can not
be satisfied. It is possible that in some cases strongly turbulent
fluctuations with k⊥ρp � 1 and nonlinear timescales ∼Ω−1

p
could heat ions through a broadened cyclotron resonance, but a
detailed investigation of this process is beyond the scope of this
study.

We reiterate that the values of c1 and c2 in Equation (29) are
not universal, but instead depend on the type of fluctuations that
are present. In strong turbulence (as opposed to randomly phased
waves), the value of c2 may be smaller than in our simulations
(indicating stronger heating), because a significant fraction of
the cascade power may be dissipated in coherent structures in
which the fluctuating fields are larger than their rms values
(Dmitruk et al. 2004). Other differences between AW turbulence
and the wave fields in our simulations may also affect the values
of c1 and c2. For example, in AW turbulence, the electric and
magnetic fields vary most rapidly in directions perpendicular
to the local magnetic field (Cho & Vishniac 2000). In contrast,
in our simulations, the wave fields vary most rapidly in the
direction perpendicular to the global mean field, which differs
from the local magnetic field. Also, in AW turbulence, the E×B
velocity associated with the large-scale fluctuations advects not
just the particles but also the small-scale AW fluctuations, an
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effect that is not captured in our simulations. Because of these
differences, the values of c1 and c2 that describe our test-particle
simulations provide only a preliminary estimate of the values
corresponding to solar-wind turbulence.

The lower solid-line curve in Figure 2 is a plot of 〈v2
‖〉 ver-

sus time in the simulation with εp = 0.15, βe = 0.003, vA =
0.003c, and Te = 0.5Tp. During the interval 10 < Ωpt < 2200,
the increase in 〈v2

‖〉 is about one-fourth the increase in 〈v2
⊥〉.

However, most of the increase in 〈v2
‖〉 is an artifact of our nu-

merical method, which equates the parallel electric fields of the
waves with the z-component of the electric field in the simula-
tion, and the perpendicular electric field of the waves with the
x- and y-components of the electric field in the simulation. The
local magnetic field in our simulations, however, is not parallel
to the z-axis, but instead has nonzero x- and y-components re-
sulting from the magnetic-field fluctuations. As a result, part of
the perpendicular wave electric field is converted into a parallel
electric field in the simulation, artificially enhancing the paral-
lel electric field seen by the particles. To eliminate this effect,
we have repeated this simulation replacing the local electric
field E seen by each particle with the adjusted electric field
E′ = E + b̂(Ez − b̂ · E), where b̂ = B/B and B is the local
value of the magnetic field. In this new simulation, the parallel
electric field b̂ · E′ is the sum of the parallel electric fields of the
individual waves in the simulation and does not include any con-
tribution from the perpendicular electric fields of the individual
waves. The value of 〈v2

‖〉 in this modified simulation, shown as
a dashed line in Figure 2, does not increase significantly during
the course of the simulation (in fact it decreases slightly), con-
sistent with our argument above that parallel heating is weak
when β � 1.

2.2. Proton Heating at k⊥ρp ∼ 1 as a Fraction
of the Turbulent Cascade Power

The cascade power per unit mass at k⊥ρp ∼ 1, which we
denote Γ, depends upon whether the turbulence is “balanced”
or “imbalanced,” where balanced (imbalanced) turbulence in-
volves equal (unequal) fluxes of waves propagating parallel to
B0 and anti-parallel to B0. In balanced KAW turbulence,

Γ = C
−3/2
K

(
δvp

ρp

) (
δBp

B0

)2

v2
A, (30)

where CK is a dimensionless constant (Howes et al. 2008a). It
can be inferred from the numerical simulations of Howes et al.
(2008b) that CK = 2.0 (G. Howes 2009, private communica-
tion). In the simulations of Section 2.1, δBp/B0 = 0.84δvp/vA,
and we make the approximation that this same ratio is character-
istic of KAW turbulence in general. Combining Equations (29)
and (30), we obtain

Q⊥p

Γ
= 3.0 exp

(
−0.34

εp

)
. (31)

We expect that CK depends only weakly on β, Tp/Te, and vA/c,
so that the numerical constants 3.0 and 0.34 in Equation (31) are
relatively insensitive to the plasma parameters, at least within
the range of parameters found in low-β solar-wind streams.
Equation (31) implies that perpendicular proton heating by
KAWs with k⊥ρp ∼ 1 absorbs �1/2 of the cascade power
at k⊥ρp ∼ 1 when εp exceeds

εcrit = 0.19 . (32)

The cascade power in imbalanced AW turbulence is smaller
than in balanced AW turbulence with the same total fluctua-
tion energy, because the AW energy cascade requires interac-
tions between oppositely propagating waves (Iroshnikov 1963;
Kraichnan 1965). At k⊥ρp ∼ 1, KAWs propagating in the same
direction can interact nonlinearly with one another, but the im-
portance of such interactions relative to interactions between
oppositely propagating waves is not well known. Despite this
uncertainty, we expect that if AW/KAW turbulence is imbal-
anced at k⊥ρp ∼ 1, then the cascade power at k⊥ρp ∼ 1 is
less than in Equation (30). On the other hand, it is unlikely that
imbalance strongly affects Q⊥p if δvp is held fixed (except for
particles with v‖ ∼ ±vA, as discussed in Section 2.4). We thus
expect perpendicular proton heating to absorb at least 50% of
the cascade power at k⊥ρp ∼ 1 in imbalanced turbulence when
εp exceeds a value that is smaller than 0.19.

2.3. Proton Heating versus Electron Heating
by KAWs with k⊥ρp ∼ 1

Stochastic proton heating removes energy from KAW fluctu-
ations with k⊥ρp ∼ 1, resulting in an effective damping rate for
these fluctuations, which we denote γp. The value of γp is given
by the relation

2γpEw = Q⊥p, (33)

where Ew is the energy per unit mass of the KAW fluctuations
at k⊥ρp ∼ 1. The factor 2 in Equation (33) is included to
make γp analogous to a linear wave damping rate, in the
sense that the rate at which linear waves lose energy is twice
the product of the damping rate and the wave energy. To
estimate the value of γp in AW/KAW turbulence, we use the test-
particle calculations in Section 2.1 for a spectrum of randomly
phased KAWs. We take Ew to be the energy per unit mass of
the full spectrum of waves in these simulations. (This choice
leads to a conservative estimate of γp, since the damping is
likely concentrated in the subset of the waves with k⊥ρp � 1.)
On the other hand, we continue to define (δvp)2 as the mean-
square E × B velocity associated with KAWs with values of
k⊥ lying within a logarithmic interval of width unity centered
on k⊥ρp = 1. With these definitions, Ew = 2.1(δvp)2 in all
of the simulations in Section 2.1. Combining Equations (29)
and (33), we obtain

γp = 0.18εpΩp exp

(
−0.34

εp

)
. (34)

In low-β plasmas, small-amplitude KAWs with k⊥ρp = 1
and ω � Ωp undergo electron Landau damping but negligible
linear proton damping (Quataert 1998; Gruzinov 1998; Gary
& Nishimura 2004). Using the numerical method described
by Quataert (1998) and Howes et al. (2008a), we numerically
solve the full hot-plasma dispersion relation to find the electron
damping rate γe of KAWs with k⊥ρp = 1 and ω � Ωp
for a range of values of k‖, Tp/Te, βp, and vA/c, where
βp = 8πnkBTp/B

2
0 . We find that if me/mp � βe � 1, vA � c,

and 0.1 � Tp/Te � 10, then the damping rate at k⊥ρp = 1 is
well fit by the formula γe = 9.5 × 10−3(Te/Tp)1/2β

−1/2
p |k‖vA|,

or equivalently

γe = 9.5 × 10−3εpχ
−1

(
Te

βpTp

)1/2

Ωp, (35)

where χ ≡ k⊥δvp/|k‖vA|. In some theories of strong MHD
turbulence χ ∼ 1 (Goldreich & Sridhar 1995; Boldyrev 2006).
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This condition, sometimes referred to as critical balance, may
characterize AW/KAW fluctuations in coronal holes and the
solar wind at k⊥ρp ∼ 1. On the other hand, if the frequencies of
the waves launched by photospheric motions are sufficiently
small, then AW/KAW turbulence at a heliocentric distance
of a few solar radii may be more “two-dimensional” than in
critical-balance models, with smaller values of k‖ and a larger
value of χ .

Combining Equations (34) and (35), we obtain

γp

γe
= 19 χ

(
βpTp

Te

)1/2

exp

(
− 0.34

εp

)
. (36)

The ratio γp/γe approximates the ratio of the proton heating rate
to the electron heating rate resulting from KAW fluctuations at
k⊥ρp ∼ 1 in the low-β conditions present in coronal holes and
the near-Sun solar wind. (At β � 1, linear KAW damping on
the protons becomes important, increasing the proton heating
rate.) We note that if the damping timescales γ −1

p and γ −1
e are

both much longer than the energy cascade time at k⊥ρp ∼ 1,
then most of the fluctuation energy will cascade past the proton-
gyroradius scale to smaller scales.

2.4. How the Heating Rate Depends on q, m, β, and v‖/vA

If we re-run our simulations, keeping only waves with
ω/kz > 0, and consider a thermal distribution of test-particle
protons with a nonzero average velocity equal to vAẑ, then the
perpendicular heating rate is strongly reduced. This is because
the electric field of an AW (or KAW with λ⊥ ∼ ρp) vanishes
(or is strongly reduced) in a reference frame moving at speed
vA in the same direction as the wave along the background
magnetic field. This effect may explain the observation that the
perpendicular heating of α particles in the solar wind is reduced
when the differential flow velocity of α particles relative to
protons (in the anti-Sunward direction) approaches vA (Kasper
et al. 2008), at least in regions where anti-Sunward propagating
KAWs dominate over Sunward-propagating KAWs.

If we hold δBp/B0 fixed but increase βp to 1, then the per-
pendicular proton heating rate is dramatically reduced, because
εp = δvp/v⊥ ∼ β−1/2δBp/B0 decreases by a large factor. On
the other hand, the protons in these βp ∼ 1 simulations undergo
significant parallel heating, consistent with results from lin-
ear theory (Quataert 1998) and recent test-particle simulations
of ions propagating in numerically simulated MHD turbulence
(Lehe et al. 2009).

If we re-run our simulations but use O+5 ions instead of
protons (but with the same temperature as the protons), then
the perpendicular heating rate is much larger. This is in large
part because ε is larger for O+5 (and other heavy ions) than for
protons at the same temperature, a point to which we return
in Section 3. Another reason for enhanced heavy-ion heating
can be seen from Equation (22). We rewrite this equation
with the aid of Equation (24), increasing ti by exp(c2/εi) for
the same reasons that we reduced Q⊥ by this same factor in
Equation (25), to obtain

ti ∼ v2
⊥iρi

(δvi)3
exp

(
c2

εi

)
. (37)

In a number of theories of MHD turbulence, the ratio (δvρi)3/ρi
is relatively (or completely) insensitive to the value of ρi,
provided ρi is in the inertial range of the turbulence. On
the other hand, for ion species at equal temperatures, v2

⊥i is

inversely proportional to the ion mass. Thus, even aside from
the exponential factor in Equation (37), the heating timescale
is shorter for heavier ions than for lighter ions at the same
temperature.

Finally, if we repeat the simulations of Section 2.1 for test-
particle ions with ρi � ρp, and with values of k⊥ρi centered on
1 so that the gyroscale fluctuations are now AWs, we recover
similar values for the perpendicular heating rate per unit mass.
Stochastic perpendicular ion heating thus does not require the
particular polarization properties of KAWs, but operates for both
KAWs and AWs, as we have argued in our heuristic derivation
of Equation (25).

2.5. Lack of Perpendicular Heating by AWs with k⊥ρ � 1

In turbulent flows, the rms variation in the velocity across
a perpendicular scale λ⊥, denoted δvλ⊥ , typically increases as
some positive power of λ⊥ when λ⊥ is in the inertial range.
As a result, the variation in the electrostatic potential across an
ion’s gyro-orbit is dominated by the fluctuations at the large-
scale end of the inertial range, suggesting that these large-
scale fluctuations might make an important contribution to
the perpendicular heating rate. This suggestion, however, is
incorrect, because AWs with k⊥ρ � 1 cause an ion’s guiding
center to drift smoothly at velocity cE × B/B2, but do not
cause an ion’s motion to become chaotic. If one transforms to a
reference frame that moves at the velocity cE×B/B2 evaluated
at the ion’s guiding-center position, then the variation in qΦ
across the ion’s gyroradius is dominated by AWs or KAWs with
k⊥ρ ∼ 1, not k⊥ρ � 1.

3. PERPENDICULAR ION HEATING IN CORONAL
HOLES AND THE FAST SOLAR WIND

As shown in the previous section, the stochastic ion heating
rate is a strongly increasing function of εi = δvi/v⊥i. For fixed
turbulence properties, the value of εi depends upon the ion
charge q = Ze, the ion mass m = Amp, and the perpendicular
ion temperature T⊥. For example, if we take the rms amplitude
of the turbulent velocity fluctuation at transverse scale λ⊥ to be
given by

δvλ⊥ = αvA

(
λ⊥
L0

)a

(38)

for ρi < λ⊥ < L0, where α and a are dimensionless constants
and L0 is the outer scale or driving scale of the turbulence, then

εi = α

(
Tp

T⊥μpβp

)(1−a)/2
A(1+a)/2

Za

(
dp

L0

)a

, (39)

where dp = vA/Ωp is the proton inertial length, βp =
8πnpkBTp/B

2, np is the proton density, Tp is the proton tem-
perature, and μp is the mean molecular weight per proton;
that is, the mass density is μpnpmp, and the Alfvén speed is
B/

√
4πμpnpmp. If the velocity power spectrum P

(v)
k is ∝ k

−c3
⊥

for L−1
0 < k⊥ < ρ−1

i , then

a = c3 − 1

2
. (40)

To investigate the possible role of stochastic ion heating in
coronal holes and the fast solar wind, we evaluate Equation (39)
as a function of heliocentric distance r using observationally
constrained profiles for the density, temperature, and field
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Figure 5. Values of εi = δvi/v⊥i from Equation (39) as a function of heliocentric distance for H+, He++, and O+5. For this figure, we assume that T⊥ = Tp for He++

and O+5 and that the one-dimensional velocity power spectrum P
(v)
k is ∝ k

−c3
⊥ . From bottom to top, the three curves in each plot correspond to c3 = 5/3, c3 = 3/2,

and c3 = 1.2.

strength. We take np to be given by Equation (4) of Feldman
et al. (1997), which describes coronal holes out to several solar
radii, plus an additional component proportional to r−2:

np(r) =
(

3.23 × 108

d15.6
+

2.51 × 106

d3.76
+

1.85 × 105

d2

)
cm−3,

(41)
where d = r/R�. Equation (41) gives np = 4 cm−3 at 1 AU.
We set

Tp = 3 × 106 K ·
[

1 − (2/3) exp(−d/1.5)

(1 + 0.1d)0.8

]
, (42)

which leads to a proton temperature that is ∼2 × 106 K at
r � 2 R�, and ∼2.5 × 105 K at 1 AU. We take the magnetic
field strength to be (Hollweg & Isenberg 2002)

B0 =
[

1.5(fmax − 1)

d6
+

1.5

d2

]
Gauss, (43)

with fmax (the super-radial expansion factor) equal to 5. We
determine the rms amplitude of the fluctuating wave velocity
at the outer scale, δvL0 = αvA, as a function of r using
the analytical model of Chandran & Hollweg (2009), which
describes the propagation of low-frequency AWs launched
outward from the Sun, taking into account both non-WKB
reflection and the cascade and dissipation of wave energy. In
particular, we set δvL0 equal to the value of δvrms plotted with a
solid line in Figure 6 of Chandran & Hollweg (2009; the curve
corresponding to their “extended model”). We take L0 to be
104 km at the coronal base (the limit d → 1 in Equation (43)),
and to be proportional to B−1/2.

We consider three different values for the spectral index c3:
5/3, 3/2, and 6/5. The value c3 = 5/3 is suggested by in situ
measurements of magnetic-field fluctuations in the solar wind
(Matthaeus & Goldstein 1982; Bruno & Carbone 2005), as well
as some theoretical and numerical studies of MHD turbulence
(Goldreich & Sridhar 1995; Cho & Vishniac 2000; Cho et al.
2002; Müller & Biskamp 2000; Haugen et al. 2004). The value
c3 = 3/2 is motivated by a different set of theoretical and
numerical studies (Maron & Goldreich 2001; Müller & Grappin
2005; Boldyrev 2006; Mason et al. 2008; Perez & Boldyrev
2009), as well as recent in situ observations of the velocity
power spectrum in the solar wind (Podesta et al. 2007; Podesta

& Bhattacharjee 2010). The third value, c3 = 1.2, follows from
recent numerical simulations of reflection-driven AW turbulence
in coronal holes and the fast solar wind (Verdini et al. 2009).
In these simulations, c3 = 1.2 at r < 1.2 R�, and c3 gradually
increases toward 5/3 with increasing r.

In Figure 5, we plot εi for H+, He++, and O+5 assuming
μp = 1.2. Although alpha particles and minor ions are observed
to be hotter than protons in the fast solar wind, we have set
all the ion temperatures equal to Tp to investigate the relative
heating rates of different ion species that start out at the same
temperature. Figure 5 illustrates the general point that εi depends
strongly on the spectral index c3. In particular, decreasing c3 by
28% from 5/3 to 1.2 increases εi by a factor of >10 at all radii
shown for all three ion species. Because Q⊥ depends strongly
on εi, Q⊥ is extremely sensitive to the value of c3. A second
general point illustrated by Figure 5 is that when c3 is fixed, εi
depends only weakly on r for 2 R� < r < 1 AU. As a result,
given our assumptions, a large radial variation in ε within this
range of r requires a radial variation in the spectral index c3. A
third point illustrated by Figure 5 is that εi is significantly larger
for He++ and O+5 than for protons at the same temperature.
For example, at equal temperatures, protons and alpha particles
have the same gyroradius, and εα = 2εp, where εα is the value
of εi for alpha particles. Because of the strong dependence of
Q⊥ on εi, the stochastic heating rate per unit volume for alpha
particles may in some cases be comparable to the corresponding
rate for protons, even though Helium comprises only ∼20% of
the mass in the solar wind. In addition, the comparatively large
value of εi for O+5 may explain why O+5 ions are observed to
be so much hotter than protons in the coronal holes (Kohl et al.
1998; Li et al. 1998; Esser et al. 1999; Antonucci et al. 2000),
and likewise for other minor ions.

4. CONCLUSION

When an ion interacts with turbulent AWs and/or KAWs, and
when the amplitudes of the fluctuating electromagnetic fields at
λ⊥ ∼ ρ are sufficiently large, the ion’s orbit becomes chaotic,
and the ion undergoes stochastic perpendicular heating. When
β � 1, the parameter that has the largest effect on the heating
rate is ε = δvρ/v⊥, where δvρ is the rms amplitude of the
velocity fluctuation at λ⊥ ∼ ρ. In the limit ε → 0, the ion’s
magnetic moment is nearly conserved, and perpendicular ion
heating is extremely weak. On the other hand, as ε increases
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toward unity, magnetic moment conservation is violated, and
stochastic perpendicular heating becomes increasingly strong.

Using phenomenological arguments, we derive an analytic
formula for the perpendicular heating rate Q⊥ for different ion
species in plasmas with β � 1. This formula (Equation (25))
contains two dimensionless constants, c1 and c2, whose values
depend on the nature of the fluctuations (e.g., waves versus
turbulence, the slope of the power spectrum) and the shape of
the ion velocity distribution. Using test-particle simulations, we
numerically evaluate these constants for the case in which a
Maxwellian distribution of protons interacts with a spectrum of
random-phase AWs and KAWs at perpendicular wavenumbers
in the range 0.264 < k⊥ρp < 3.79, where ρp is the rms
proton gyroradius in the background magnetic field B0. The
particular form of the wave power spectrum that we choose for
these simulations is motivated by the critical-balance theories
of Goldreich & Sridhar (1995) and Cho & Lazarian (2004). For
this case, c1 = 0.75 and c2 = 0.34. The proton heating rate Q⊥p
can be compared to the cascade power Γ that would be present
at k⊥ρp ∼ 1 in balanced (see Section 2.2) AW/KAW turbulence
with the same value of δvp. When c1 = 0.75 and c2 = 0.34, the
ratio Q⊥p/Γ exceeds 1/2 when εp > εcrit = 0.19, where εp is
the value of ε for thermal protons.

Our expression for Q⊥p/Γ (Equation (31)) may differ from
the value of Q⊥p/Γ in the solar wind for two main reasons. First,
in strong AW/KAW turbulence (as opposed to randomly phased
waves), a significant fraction of the cascade power may be dis-
sipated in coherent structures in which the fluctuating fields are
larger than their rms values (Dmitruk et al. 2004). Proton or-
bits in the vicinity of such structures are more stochastic than
in average regions, and thus c2 may be smaller in AW/KAW
turbulence than in our test-particle simulations, indicating
stronger heating. The perpendicular heating rate is very sensitive
to the value of c2/εp; our test-particle simulations are consistent
with Q⊥p/Γ being ∝ exp(−c2/εp). Thus, decreasing c2 leads
to a large increase in Q⊥p/Γ when εp < c2. Decreasing c2 also
decreases εcrit, the value of εp at which Q⊥p/Γ = 1/2 in bal-
anced turbulence; it follows from Equations (25) and (30) that if
CK � 2, δBp/B0 � 0.84δvp/vA, and c1 � 1, then εcrit � c2/2.
The second reason that our estimate of Q⊥p/Γ may differ from
the value in the solar wind is that our formula for Γ does not
take into account imbalance (see Section 2.2). If the turbulence
is imbalanced at k⊥ρp ∼ 1, then Γ is reduced relative to the
balanced case. Thus, in imbalanced turbulence, Q⊥p/Γ = 1/2
at a value of εp that is smaller than εcrit. We define ε∗ to be
the value of ε at which Q⊥p/Γ = 1/2 regardless of whether
the turbulence is balanced or not; thus, ε∗ = εcrit for balanced
turbulence, and ε∗ < εcrit for imbalanced turbulence.

When β � 1, stochastic proton heating by AW/KAW
turbulence at k⊥ρp ∼ 1 increases T⊥ much more than T‖. In
contrast, linear proton damping of KAWs with ω � Ωp and
k⊥ρp ∼ 1 leads almost entirely to parallel heating, and is only
significant when the proton thermal speed is � vA; i.e., when
βp � 1 (Quataert 1998). If we assume that (nonlinear) stochastic
heating and linear wave damping are the only dissipation
mechanisms for low-frequency AW/KAW turbulence, then we
arrive at the following conclusions about how the cascade power
in AW/KAW turbulence is partitioned between parallel and
perpendicular heating, and between protons and electrons.

1. If βp � 1 and εp � ε∗, then proton heating is negligible
and electrons absorb most of the cascade power.

2. If βp � 1 and εp � ε∗, then parallel proton heat-
ing is negligible, and AW/KAW turbulence leads to a

combination of electron heating and perpendicular proton
heating.

3. If βp ∼ 1 and εp � ε∗, then perpendicular proton
heating is negligible, and AW/KAW turbulence results in a
combination of electron heating and parallel proton heating.

4. If βp ∼ 1 and εp � ε∗, then perpendicular proton heating,
parallel proton heating, and electron heating each receives
an appreciable fraction of the cascade power.

To investigate the dependence of εi (the value of ε for thermal
ions) on heliocentric distance r for different ion species in the
fast solar wind, we adopt a simple analytic model for the radial
profiles of the solar-wind proton density, ion temperatures, and
magnetic field strength. We then apply the analytical model
of Chandran & Hollweg (2009), which describes the radial
dependence of the rms amplitudes of AWs at the outer scale
L0 of the turbulence, taking the velocity power spectrum P

(v)
k to

be ∝ k
−c3
⊥ for L−1

0 < k⊥ < ρ−1
i . The resulting values of εi for

protons, alpha particles, and minor ions depend strongly on c3.
However, for a fixed value of c3, εi is relatively insensitive to r
for 2 R� < r < 1 AU. At equal temperatures, alpha particles
and minor ions have larger values of εi than do protons, which
may help to explain why minor ions are much hotter than protons
in coronal holes. However, we are not yet able to determine with
precision the perpendicular heating rates of different ion species
as a function of r because of the uncertainties in the values of
c2 and c3 in the solar wind, and because of the large sensitivity
of the heating rates to these quantities. Future investigations
into the value of c2 for non-random-phase AW/KAW turbulence
and the value of c3 as a function of r will be particularly
important for developing a more complete picture of stochastic
ion heating in the solar wind.
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Note added in proof. A pioneering study of stochastic heat-
ing by drift Alfvén waves was recently brought to our atten-
tion (McChesney et al. 1987). These authors studied stochastic
heating numerically and in laboratory experiments, and discov-
ered a threshold wave amplitude for stochastic heating that is
equivalent to the condition ε � 1 when applied to gyro-scale
fluctuations.

APPENDIX

LEADING-ORDER CONSERVATION OF THE FIRST
ADIABATIC INVARIANT WHEN k⊥ρ ∼ 1 AND ε � 1

In this Appendix, we consider the interaction between ions
and low-frequency, two-dimensional (k‖ = 0) electrostatic
fluctuations with k⊥ρ ∼ 1. We assume that ε � 1, neglect
magnetic-field fluctuations, and show that the leading-order
non-vanishing terms in dH/dt are unable to cause secular
perpendicular ion heating. We set B = B0ẑ, where B0 is
a constant. The time derivative of the ion’s guiding-center
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Figure 6. In the small-ε limit, an ion’s trajectory in the xy plane is approximately
a circle centered on its guiding-center position R.

position, defined in Equation (10), is then given by

dR
dt

= vzẑ +
cE × ẑ

B0
. (A1)

Since ε � 1, the particle’s orbit in the xy plane during a single
gyroperiod is approximately a circle of radius ρ = v⊥/Ω. We
assume that Φ varies slowly in time, on a timescale of ∼ ε−1Ω−1,
with ∂Φ/∂z = 0. We introduce two related forms of “gyro-
averages.” First, if h is some physical property of a particle,
such as its energy or guiding-center velocity, then we define the
gyro-average of h to be

〈h(t)〉 = Ω
2π

∫ t+π/Ω

t−π/Ω
h(t1) dt1. (A2)

Second, for a general function of position and time g(r, t)
satisfying ∂g/∂z = 0, we define the gyro-average of g(r, t)
for particles with perpendicular velocity v⊥ and guiding center
R to be given by

〈g(r, t)〉R,v⊥ ≡ 1

2π

∫ 2π

0
g(R + s(θ ), t) dθ, (A3)

where s = x̂ρ cos(θ ) + ŷρ sin(θ ) is the vector illustrated in
Figure 6.

To simplify the notation, we define

g(R, t) ≡ 〈g(r, t)〉R,v⊥ , (A4)

where the dependence of g on v⊥ is not explicitly written.
If g varies slowly in time at a fixed point in space (e.g., on
the timescale ε−1Ω−1), then g(R, t) is (to leading order in
ε) equivalent to a time average over one cyclotron period of
g(r, t) evaluated at the position r(t) of a particle with guiding
center R:

g(R, t) = Ω
2π

∫ t+π/Ω

t−π/Ω
g(r(t1), t1) dt1. (A5)

Thus, if we take the gyro-average of the “particle property”
dR/dt in Equation (A1) using Equation (A2), we find that〈

dR
dt

〉
= vzẑ +

c

B0
〈E(r, t)〉R,v⊥ × ẑ. (A6)

We consider electrostatic fluctuations with ∂A/∂t = 0, and
thus, E = −∇Φ. Omitting the explicit time dependence of Φ
and Φ to simplify the notation, we can write the gyro-average
of ∂Φ/∂x as〈

∂Φ
∂x

〉
R,v⊥

= lim
δ→0

Φ(R + x̂δ) − Φ(R)

δ
= ∂Φ

∂x ′ , (A7)

where x̂ is a unit vector in the x-direction, and ∂/∂x ′ denotes a
partial derivative with respect to the x-component of the guiding-
center position R. Equation (A6) can thus be rewritten as〈

dR
dt

〉
= vzẑ − c

B0
∇′Φ × ẑ, (A8)

where ∇′ indicates a gradient with respect to the coordinates of
the guiding-center position R. Since we have assumed ∂/∂z = 0,
Equation (A8) implies that 〈dR/dt〉 · ∇′Φ = 0.

We now integrate Equation (9) for an integral number of
cyclotron periods, from ta to tb = ta + Nδt , where δt = 2π/Ω
and N � ε−1. We define t0 = ta +δt/2 and tj = tj−1 +δt for any
integer j. Since we have assumed that ∂A/∂t = 0, the integral
of Equation (9) can be written as

H (tb) − H (ta) = q

N−1∑
j=0

∫ tj +δt/2

tj −δt/2

∂Φ
∂t

dt. (A9)

In analogy to Equation (A7), it is straightforward to show that
∂Φ/∂t = (∂/∂t)Φ. We can thus rewrite Equation (A9) as

H (tb) − H (ta) = q

N−1∑
j=0

∂Φ
∂t

(R(tj ), tj ) δt. (A10)

The timescale on which Φ(R(t), t) changes by a factor of order
unity is ε−1δt . This is because Φ changes slowly in time at a
fixed point in space, k⊥ρ ∼ 1, and dR/dt ∼ εv⊥. As a result,
∂Φ/∂t is approximately constant within each time interval of
duration δt . The right-hand side of Equation (A10) is therefore
a discrete approximation of the integral of q∂Φ/∂t from ta to tb,
with a fractional error of order ε, so that

H (tb) − H (ta) = q

∫ tb

ta

∂

∂t
Φ(R(t), t) dt + · · · , (A11)

where the ellipsis (· · ·) represents corrections that are of higher
order in ε. The right-hand side of Equation (A11) can be
rewritten in terms of the total time derivative of Φ, yielding

H (tb) − H (ta) = q

∫ tb

ta

d

dt
Φ(R(t), t) dt

− q

∫ tb

ta

dR
dt

· ∇′Φ(R(t), t) dt + · · ·
(A12)

Since ∇′Φ is nearly constant during a single time interval
of duration δt , the second integral on the right-hand side of
Equation (A12) satisfies the relation∫ tb

ta

dR
dt

· ∇′Φ(R(t), t) dt =
N−1∑
j=0

(∫ tj +δt/2

tj −δt/2

dR
dt

dt

)

· ∇′Φ(R(tj ), tj ) + · · · (A13)
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The integral within parentheses on the right-hand side of
Equation (A13) is equivalent to 〈dR/dt〉 δt evaluated at t = tj .
From Equation (A8), 〈dR/dt〉 · ∇′Φ = 0. Thus, the right-
hand side of Equation (A13) and the second integral on the
right-hand side of Equation (A12) vanish to leading order in ε.
Equation (A12) thus becomes

H (tb) − H (ta) = qΦ(R(tb), tb) − qΦ(R(ta), ta) + · · · (A14)

The absolute value of the right-hand side of Equation (A14)
remains �qδΦρ , regardless of how large the interval (tb − ta)
becomes. Thus, to leading order in ε, there is no secular change
in the particle energy H, consistent with the near-conservation
of the first adiabatic invariant in the small-ε, small-ω/Ω limits.
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