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ABSTRACT

Accurately determining the escape rate from a planet’s atmosphere is critical for determining its evolution.
A large amount of Cassini data is now available for Titan’s upper atmosphere and a wealth of data is
expected within the next decade on escape from Pluto, Mars, and extra-solar planets. Escape can be driven by
upward thermal conduction of energy deposited well below the exobase, as well as by nonthermal processes
produced by energy deposited in the exobase region. Recent applications of a model for escape driven by
upward thermal conduction, called the slow hydrodynamic escape model, have resulted in surprisingly large
loss rates for the atmosphere of Titan, Saturn’s largest moon. Based on a molecular kinetic simulation of the
exobase region, these rates appear to be orders of magnitude too large. Therefore, the slow hydrodynamic
model is evaluated here. It is shown that such a model cannot give a reliable description of the atmospheric
temperature profile unless it is coupled to a molecular kinetic description of the exobase region. Therefore,
the present escape rates for Titan and Pluto must be re-evaluated using the atmospheric model described here.
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1. INTRODUCTION

There is considerable interest in descriptions of atmospheric
escape due to the extensive Cassini measurements in Titan’s
thermosphere, the coming encounter of New Horizons with
Pluto, the MAVEN mission to study the thermosphere of Mars,
and the evolution of extrasolar planet atmospheres. For many
solar system bodies atmospheric escape is dominated by non-
thermal processes induced by energy directly deposited in the
exobase region, as discussed for Mars (e.g., Chaufray et al. 2007)
and Titan (e.g., Johnson 2009). Escape can also occur by en-
ergy deposited well below the exobase and transported upward
by thermal conduction, as described for Pluto (e.g., Hunten &
Watson 1982; McNutt 1989; Krasnopolsky 1999; Strobel
2008a). Surprisingly, analysis of the extensive Cassini–Huygens
data on the density profile in Titan’s upper atmosphere has lead
to huge differences in the estimates of the present escape rates
(e.g., Johnson et al. 2009 for a review). Prior to Cassini’s tour
of the Saturnian system, escape of nitrogen and methane from
Titan had been assumed to occur by nonthermal processes (e.g.,
Shematovich et al. 2003; Michael et al. 2005). However, the
density versus altitude profiles have been recently analyzed as-
suming that escape is driven by upward thermal conduction
of energy deposited well below the exobase (Strobel 2008b,
2009; Yelle et al. 2008). A model called the “slow hydrody-
namic escape” model, referred to here as the SHE model, was
applied to Titan by Strobel (2008b). This model was intended
to describe cases intermediate between Jeans escape and hydro-
dynamic escape (e.g., Hunten 1982). It is based on solving the
one-dimensional radial fluid dynamic equations when the net
upward flow velocity below the exobase is much less than the
speed of sound, hence the word “slow.”

The large escape rates derived from the SHE model were
suggested to be produced by distortion of the molecular velocity
distribution function (VDF) in the exobase region (Strobel
2009). However, recent kinetic Monte Carlo simulations suggest
that the nitrogen and methane escape from Titan’s atmosphere,
obtained using the SHE model, are much too large (Tucker
& Johnson 2009). Therefore, the SHE model is examined

below in order to determine its general applicability and, in
particular, its relevance to escape of nitrogen and methane from
Titan.

2. THERMAL ESCAPE

The Jeans parameter, λ, is typically used to determine the
importance of thermal models for escape. λ is the ratio between
the gravitational binding energy of a molecule in a planet’s
atmosphere, Φg(r), to its thermal energy, kT: λ = Φg(r)/kT.
Here k is the Boltzmann constant, T is the temperature, with
Φg(r) = GMm/r, where G is the gravitational constant, M is the
planet’s mass, m is the molecular mass, and r is the distance
from the center of the planet. The Jeans parameter can also be
written as λ = (vesc/c)2, where vesc is the escape speed at r and
c = (kT/m)1/2 is of the order of the speed of sound. When the
net heating at depth, after accounting for radiative cooling, is
high and neither downward nor horizontal heat transport can
remove energy fast enough, then the temperature and pressure
can increase until the gas flows outward into space removing
energy. This process, referred to as hydrodynamic escape, occurs
when the value of the Jeans parameter at the exobase, λx,
becomes small (e.g., Hunten 1982; Volkov et al. 2010). It is
often used to describe the evolution of young, hot atmospheres
having a large escaping hydrogen component that can entrain
and carry off heavier species. On the other hand when λx is large,
thermal escape occurs on a molecule by molecule basis, as in
an evaporative process, called Jeans escape. The SHE model,
meant to be intermediate between these, is described in a number
of publications (e.g., Johnson et al. 2008 for a summary).

The mass loss rate for a single species atmosphere in the
SHE model is obtained by solving one-dimensional radial
fluid dynamic equations, typically using scaled variables. These
equations were initially used to describe the escape of solar
wind ions assuming thermal conduction is maintained by the
electrons and occurs along the radial field lines (e.g., Parker
1964). The model was subsequently applied to atmospheres
containing only neutrals. It was used to estimate the outflow
from Pluto driven by thermal conduction (Watson et al. 1981;
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McNutt 1989; Krasnopolsky 1999; Strobel 2008a) and was
recently applied to Titan (Strobel 2008b, 2009).

From the one-dimensional continuity equation, atmospheric
escape requires a constant net flow of molecules from the lower
boundary to the upper boundary: i.e., 4πr2nv = ϕ, where v is
the radial flow velocity, r is the radial position from the center
of the body, n is the density at r, and ϕ is the escape rate. The
radial energy and momentum equations are solved in terms of
an escape rate, ϕ. The parameter ϕ is subsequently used to fit the
available density data. In this model, “slow” means that mv2/kT
is small below the exobase, so terms explicitly containing v2 are
dropped while keeping ϕ fixed. Therefore, SHE is suggested
to apply when λ = (vesc/c)2 > ∼10 and in regions where
v < ∼0.3c (e.g., Strobel 2008b; Watson et al. 1981). The net
heating rate, Q(r) (heating minus radiative cooling), is used in
the energy conservation equation. For a thermal conductivity K,
heat capacity per molecule Cp, and gravitational energy Φg(r),
the integrated energy equation gives the thermal flux:

[
φ(CpT − Φg(r)) − 4πr2

(
K

dT

dr

)]r

r0

=
∫ r

r0

4πr2Qdr,

(1)
where r0 is the lower boundary and the v2 terms have been
dropped.

For n and T specified at a lower boundary, Equation (1) is
solved along with the momentum equation in which the terms
v2 are also dropped and viscosity is typically ignored. The heat
flux through the lower boundary and ϕ are constrained in SHE
by assuming that T → 0 as r → ∞, and by the atmospheric
density profile, as described below. Solutions for the temperature
profile and escape flux have been obtained for Pluto and Titan
with heat supplied by upward conduction through the lower
boundary (Q(r) = 0 in Equation (1)) or with net solar heating
(Q(r) �= 0) in the integrated volume.

Since ϕ is constant, v increases as the density decreases,
eventually approaching the speed of sound. Therefore, the en-
ergy equation is, typically, not solved to infinity (e.g., McNutt
1989). Strobel (2008a, 2008b), for instance, solves these equa-
tions up to a region above the exobase where v < ∼0.3c and
then finds solutions for which the asymptotic behavior of n and
T are consistent with the boundary conditions at infinity.

Although ignoring the upward flow speed below the exobase
is reasonable for λ > ∼ 10, continuing the one-dimensional
radial energy equation into the region above the exobase is
not correct. That is, the probability of collisions decreases
exponentially with radial distance rapidly becoming negligible,
but the thermal conductivity used is independent of density.
However, it has been argued that distortions in the tail of
molecular velocity distribution near the exobase act to power the
heat transport and produce escape (Strobel 2009). These aspects
are examined below based on kinetic theory and simulations
of the Boltzmann equations, followed by a discussion of the
applicability of SHE.

3. KINETIC THEORY

The behavior of molecules in a planetary atmosphere can
be accurately described by the Boltzmann equations (e.g.,
Chamberlain & Hunten 1987) in which the spatial and temporal
gradients in the phase space densities are determined by the
collisions between the molecules and by the forces acting on the
molecules. Taking the five principal moments of these equations

for each species (e.g., Chapman & Cowling 1970) results in the
fluid dynamic equations: the continuity, energy, and momentum
equations for the molecular density, energy density, and mean
flow velocity of the molecules. It is the one-dimensional radial
versions of these equations that are used in SHE. These apply
in regions of the atmosphere in which the mean free path for
collisions, �c, is much less than the scale for significant changes
in atmospheric properties, typically described by the local scale
height of atmosphere, H. The ratio, �c/H = Kn, is called the
Knudsen number. Therefore, for Kn � 1, the VDF for the
molecules is well described by a Maxwell–Boltzmann (MB)
distribution and the fluid dynamic equations can accurately
describe the behavior of the gas.

Gradients in these moments, which are locally averaged quan-
tities, result in the thermal conduction, viscous, and diffusion
terms. These account for the flow of molecules between two ad-
jacent volumes of gas, both assumed to have MB VDF, but with
slightly different temperatures, flow speeds, or compositions.
The transport of energy and momentum between neighboring
volumes depends on the molecular speeds. Prior to making a
collision, more molecules will flow from the hotter region than
from the colder region, and those in the tail of the hotter region
will be lost to the neighboring volume faster. Therefore, in ad-
dition to the transfer of heat and momentum, the MB VDF is
distorted by an amount that depends on the size of the gradients
and on the mean free path, and this distortion is largest in the tail
of the distribution where the velocities are highest. When Kn �
1, the distortion of the VDF is typically ignored and considered
a second-order effect, and the transport of energy, momentum,
and mass is well described by the thermal conduction, viscous,
and diffusion terms. But the presence of such gradients implies
that the VDF has a slightly non-Maxwellian character even when
Kn is small.

The distortion of the VDF can become significant near the
exobase affecting the transport properties and estimates of the
escape flux. The effect of the distortion can be calculated using
higher order moments of the Boltzmann equations, such as
the 13 moment equations (e.g., Chapman & Cowling 1970;
Hirschfelder et al. 1964; Schunk & Nagy 2000). These are
used in Cui et al. (2008) for H2 escape from Titan’s upper
atmosphere. Since the first-order perturbations to the VDF
come from gradients in temperature and flow speed, the thermal
conductivity and viscosity determine the size of the distortion.
A simple estimate of the change in the VDF, f(w), in the
z-direction, with w being the z (upward) component of the
molecular velocity, due to a small vertical temperature gradient
is f (w) ∼ f (0)(w) – �c(dT/dz) df (0)/dT. Here f (0) is the MD VDF
for a temperature T (e.g., Chapman & Cowling 1970). Since the
viscous effects are typically assumed to be small in SHE, only
the temperature gradient is considered here. Writing df (0)/dT =
(f (0)/2T)[m w2/kT − 1], it is seen that for large w, f (w) can be
significantly affected, as discussed above.

If there is no external heat source for the exobase region,
but escape is occurring, then the heat removed by the exiting
molecules leads to a negative temperature gradient in the
exobase region, a process referred to as adiabatic cooling. In
this case the exobase temperature, Tx, is lower than T below
the exobase so that, in expression for f(w) above, molecules
with escape energies are replenished from below refilling and
adding to the tail of the VDF. Based on this, it is argued that the
presence of the temperature gradient “enhances” Jeans escape
for CH4 and N2 (Yelle et al. 2008; Strobel 2009). What is meant
is that the escape flux is enhanced over the Jeans rate calculated
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using the exobase temperature, Tx. Since Tx is lower than T
below the exobase due to escape, this is somewhat circular. But
a rough estimate of the enhancement is readily obtained. Since
the molecules which populate the hot tail in the exobase region
come from below, their contribution to escape can be estimated
using the VDF below that altitude from which hot molecules
can directly escape to space, a few mean free paths below the
exobase (see, e.g., Johnson et al. 2008). For λx > ∼10 the tail
of the distribution dominates escape, so that the ‘enhanced’
escape rate is, roughly, the Jeans rate calculated using the T a
few scale heights below the exobase. The Jeans expression for
the net escape in a one-dimensional atmosphere is ϕJ = 4πrx

2

(nxvx/4) (λx + 1) exp(−λx), with vx = (8kTx/mπ )1/2 and the
subscript x implies values at the nominal exobase. Replacing
their exobase temperatures, Tx, from Yelle et al. (2008) and
Strobel (2008b) by their values of T at a few scale heights below
the exobase, the “enhancement” in Jeans rate for escape of
N2(λx ∼ 40) or for CH4(λx ∼ 20) from Titan is small and is
orders of magnitude below the rates calculated by these authors.
This result is confirmed by direct simulations of the kinetics in
the exobase region as discussed below.

4. MONTE CARLO SIMULATIONS

Monte Carlo simulations can be used to describe the kinetic
behavior of a gas. Since such simulations are equivalent to solv-
ing the Boltzmann equations (e.g., Bird 1994), they can, in prin-
ciple, reproduce the results of the fluid dynamic equations well
below the exobase where Kn < 0.1. Such simulations are of-
ten more readily implemented than the Boltzmann equations. In
Monte Carlo simulations, the atmospheric density is described
by a large number of representative molecules. Collisions oc-
curring between these representative molecules are described by
the cross sections for real molecules and, hence, can in principle
be calculated as accurately as necessary. Between collisions, the
representative molecules move subject to the gravitational force
of the planet/satellite and any neighboring body. If ion motion
is considered then the electromagnetic forces can be included
(Tseng et al. 2010). Since a finite volume is simulated, ap-
propriate boundary conditions are applied: escape across some
upper boundary, absorption or supply of molecules at a lower
boundary, etc. (e.g., Volkov et al. 2010).

Starting with some initial distribution of molecular positions
and velocities, and prescribed boundary conditions, the evolu-
tion of an atmosphere is simulated. For fixed external condi-
tions, the simulations are run until the distributions of position
and velocities of the representative molecules yield steady-state
densities and temperatures. The number of molecules entering
and leaving the simulated volume is also recorded. From the po-
sition and velocities of the representative molecules, the steady
state spatial distributions and VDF are calculated. Because the
cross sections, forces, and boundary conditions can, in princi-
ple, be described as realistically as one likes, the accuracy is
usually determined by the number of representative particles,
the method for deciding when a collision occurs, and the com-
putational time available. One such model is the so-called direct
simulation Monte Carlo (DSMC) model (Bird 1994) which has
been applied extensively (e.g., Crifo et al. 2002; Shematovich
et al. 2003; Tenishev et al. 2008).

Unlike the fluid equations, such simulations can, in principle,
describe the behavior and escape of molecules in the exobase
region from Kn � 1 to Kn � 1. In practice, the practical region
of applicability is limited computationally and consideration
must be given to those aspects that have to be well described

(e.g., Bird 1994; Crifo et al. 2002; Prasanth & Kakkassery 2006;
Bird et al. 2009; Volkov et al. 2010). Since escape depends on
the tail of the VDF above the exobase, convergence is often
very slow and the accurate simulations of the flux require a
large number of representative molecules. Accuracy can be
increased by the use of adaptable grids and weights. Since
the molecules well above the exobase move in large ballistic
trajectories, an upper boundary is typically chosen for which
the collision probability drops below some prescribed level.
At this boundary, the representative molecules are tested to see
if they would escape or return to the atmosphere. Therefore,
the grid size, weights, upper boundary, and the number of
representative molecules must be optimized which can limit
the range of Knudsen numbers that are accurately described
(Volkov et al. 2010). These procedures are well understood,
and have been applied, for example, to cometary coma (e.g.,
Tenishev et al. 2008) and to escape from Titan induced by both
the incident plasma (e.g., Shematovich et al. 2003; Michael
et al. 2005; Michael & Johnson 2005) and thermal conduction
(Tucker & Johnson 2009).

Simulations for a pure N2 atmosphere and an N2 plus CH4
atmosphere were carried out to test the continuum models for
escape from Titan for a range of Knudsen numbers (Tucker
& Johnson 2009). Values of temperature, density, and heat flux
from Strobel (2008b) and Yelle et al. (2008) were used at a lower
boundary a few scale heights below the exobase. These simu-
lations were carried out in one dimension in both rectangular
and spherical coordinates to test escape driven by heat trans-
ported from below, ignoring nonthermal processes. For the one-
dimensional radial results, three-dimensional simulations were
performed for an isotropic atmosphere. Sensitivity tests were
made on the cross-section models, the upper and lower bound-
aries positions, and the number of representative molecules. The
simulations for an N2 atmosphere, as in Strobel (2008b, 2009),
and for a N2 + CH4 atmosphere, as in Yelle et al. (2008), were
reported. The range of Knudsen numbers versus altitude in these
simulations is shown in Figure 1(a). It was found that, due to the
large value of λx, the radial and rectangular simulation results
were not very different until well above Titan’s exobase. More
importantly, it was shown that the one-dimensional continuum
models, when extended above the exobase, overestimated the
escape rates by orders of magnitude, consistent with the dis-
cussion above. Therefore, the continuum estimates of escape at
Titan appear to be incorrect, so that the SHE model cannot be
reliably applied to other bodies.

5. APPLICABILITY OF SHE

The SHE model can be understood using an analytic solution
to Equation (1). For an assumed constant K with the heat
deposited below the lower boundary, r0, so that Q(r > r0) =
0, and applying the boundary condition (T → 0, r → ∞), one
obtains

CpT (r) = [1 − exp(−rϕ/r)][−Φg(rϕ) + Eϕ/ϕ] + Φg(r). (2a)

Here rϕ = [ϕCp/4πK] is a length scale indicating when energy
transport changes from pure thermal conduction, ϕ = 0, to heat
transport and escape by molecular flow. The quantity Eϕ is the
energy per unit time flowing through the system from the lower
boundary, so that the energy per escaping molecule transported
upward from below is Eϕ/ϕ. For transparency, the scaling of the
variables typically carried out in SHE is not used (the Appendix).
Setting T = T0 at the lower boundary r0, T(r) is obtained from
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(a)

(b)

Figure 1. Results from Tucker & Johnson (2009) for a nitrogen atmosphere. (a)
Kn vs. radial distance from surface in terms of Titan’s mean radius (RT =
2576 km); nominal exobase (Kn = 1) indicated by lines: dashed curve,
simulation normalized at the lower boundary to an SHE model from Strobel
(2009), Tx ∼ 141 K and λx ∼ 48.6; solid curve, artificially high T at lower
boundary to explore deviations from Jeans escape, Tx ∼ 600 K and λx ∼ 10.6 at
exobase. (b) Flux of upwardly moving molecules with escape energies vs. radial
distance from Titan for the solid curve in (a) (λx ∼ 10.6; straight line indicates
nominal exobase): solid curve, escape flux vs. R (total ∼1.5 Jeans rate); dashed
curve, flux of molecules with sufficient energy to escape; these results indicate
that lower boundary in a DSMC must be well below the exobase. Results were
tested using Kn down to 0.1 and upper boundaries up to ∼3RT .

Equation (2a):

[Φg(r) − CpT (r)]/[Φg(r0) − CpT0]
= [1 − exp(−rϕ/r)]/[1 − exp(−rϕ/r0)]. (2b)

In published applications of SHE, K is usually temperature
dependent, but the change in K is relatively small over the
exobase region. In addition, the solution is typically terminated
at some point above the exobase where v/c is still small, as
discussed earlier, but with the requirement that T(r) exhibits the
asymptotic behavior (T → 0, r → ∞). However, the analytic
expression in Equation (2b) is representative of the applications
of SHE to planetary escape.

It is seen in Equation (2b) that the escape rate, ϕ, is a free
parameter. It is not directly determined by the energy transport
unless there is direct measure of the temperature profile. As

the viscosity is typically estimated to be small, the hydrostatic
approximation is used in SHE to determine the density, n:
d(nkT)/dr = n d(Φg(r))/dr. Inserting the T(r) in Equation (2b),
and writing x = rϕ/r and x0 = rϕ/r0, one finds

n(r) = n0[T0/T ] exp

{
− (Cp/k)

×
∫ x0

x

dx ′/[x ′ − x0(1 − exp(−x ′))β0]

}
, (3)

where β0 = [1 – (Cp/k)/λ0]/[1 − exp(−x0)], with λ0 being
the value of the Jeans parameter at r0. Since the atmospheric
temperature is generally not directly measured, the hydrostatic
approximation is also used to extract the atmospheric tempera-
tures. Therefore, the value of ϕ can be determined by fitting n(r)
to available density data below the exobase or to the temperature
profile extracted from that density data.

Parameters at Titan’s exobase vary with solar conditions in
Strobel (2009). Representative exobase values are rx ∼ 4000 km;
Kx ∼ 1.4 × 103 erg cm−1 s−1 K−1; λx ∼ 40 for N2 or
∼ 20 for CH4; Tx ∼ 150 K; and nx ∼ 3 × 107 N2/cm3

with CH4 less than 10% of the total in the exobase region.
Using the above K, the length scale in Equation (2b) is rϕ ∼ ϕ
(3 × 10−24 km s). Substituting the Jeans value for ϕ based
on these parameters results in a negligible length scale: rϕ ∼
(3 × 10−11–10−3) km, depending on whether one assumes
nitrogen or the methane is the predominant escaping molecule.
For these very small values of rϕ , the temperature and density
profiles are determined only by the thermal conductivity and
the upper boundary condition: T(r) ∼ T0 (r0/r) and n(r) ∼
n0[r0/r]λ0−1. Such a profile is not representative of Titan’s
atmosphere. Using instead K ∝ Ts, then T(r) would decay
somewhat more slowly, T(r) ∼ T0(r0/r)−1/(1+s), but the resulting
radial profiles are still not characteristic.

Therefore, unless one assumes that ϕ is many orders of
magnitude larger than the Jeans rate for these λx, the SHE model
cannot give realistic density profiles. For example, Strobel
(2008b) finds a mass loss rate that is relatively large even for the
case Q = 0 above r0 = 3450 km: i.e., mϕ ∼ 2 × 1028 amu s−1.
The recommended value in Strobel (2009) is similar, mϕ ∼
3 × 1028 amu s−1, so that rϕ ∼ 200 km. These large rates are
required to give a realistic radial dependence for the atmosphere.
The corresponding large upward flux of heat is seen to cause
T(r) to decay more slowly over the exobase region than for the
small ϕ result above. This is the opposite to what is suggested
in discussions of the model. That large ϕ are favored in the SHE
model is also consistent with the scaling procedure typically
used, in which the energy equation (Equation (1)) is divided by
ϕ before solving (the Appendix).

As stated earlier, for λx >∼ 10, and/or in regions where v <
∼0.3c, Equation (1) can describe the temperature dependence
of the atmosphere up to a few scale heights below the exobase.
Therefore, rather than solving up to some region above the
exobase, and forcing the temperature to go to zero at very large
r, the region above Kn ∼ 0.1 should be described by a molecular
kinetic model. For this reason we developed an iterative hybrid
model in which the SHE equations are solved, using an estimate
of the escape rate up to a radial distance ru at which Kn ∼
0.1. These results are then used as a lower boundary condition
for a DSMC simulation describing the region from ru up to an
altitude well above the exobase where Kn � 1. The improved
estimate of the escape rate is then used to obtain a new solution
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of the radial one-dimensional SHE equations. This iterative
procedure was applied to the atmosphere of Pluto, a body much
smaller than Titan, for which the thermal escape flux is expected
to be significant. To avoid questions of the accuracy of the
description of Q(r), the model was applied to the case in which
all the solar energy is deposited below the lower boundary: i.e.,
Q = 0 in Equation (1). The T(r) profile was found to be very
different from that in Strobel (2008b) and the atmospheric loss
rate was orders of magnitude smaller (Tucker et al. 2010). Of
course, for very large heating rates, large escape rates driven by
upward thermal conduction are possible, as will be described in
subsequent work.

One reason the SHE model disagrees with the DSMC simula-
tions is that the form for the thermal conductivity, K, is kept the
same above the exobase. That is, in calculating K, the product
(n �c) is typically independent of density in the fluid regime.
The conductivity term in Equation (1) requires that collisional
energy transfer occurs over distances very small compared to
the scale of the density gradients: i.e., Kn � 1. This could be
roughly circumvented in an ad hoc manner by replacing (n�c)
by ∼ [n�c/(1+Kn)] in the transition region. Such a substitution
would allow the effective K to decrease with decreasing density
when the mean free path length for neutral–neutral collisions is
longer than the scale height.

The SHE model can also be applicable if thermal conduction
occurs by means other than by neutral–neutral collisions. If, for
example, ions are dragged out of an atmosphere along magnetic
field lines, which is in fact the case at Titan, then collisional
heat transport could persist well above the exobase defined by
the neutral–neutral collision cross section. This is a process we
have described as ‘back sputtering’ (see, e.g., Johnson et al.
2008; Johnson 2009).

In SHE, the requirement that T goes to zero at infinity is also
problematic as seen in the analytic model above. This requires
that the thermal energy of the escaping molecules is fully
converted into flow energy. This assumption is critical, since it
is the flow energy in SHE, and not the tail of the random thermal
motion, that carries the molecules over the gravitational barrier.
However, when significant escape occurs, DSMC simulations
show that the radial and horizontal temperatures can diverge
significantly with increasing altitude above the exobase (Tucker
et al. 2010).

If the rate of heat deposition in an atmosphere is very high,
and downward thermal conduction, radiation to space, and
horizontal transport are inefficient, then the atmospheric T will
increase until the upward flow is such that molecular escape
carries off the excess energy (e.g., Hunten 1982). But this does
not imply that the SHE model is required. In the absence of direct
energy deposition in the exobase region, DSMC simulations
were performed for thermal escape (Tucker & Johnson 2009).
The range of Kn covered is shown in Figure 1(a) and the escape
depths are indicated in Figure 1(b). Large deviations from the
Jeans rate were not found. This is the case even for an artificially
high Tx at Titan (λx ∼ 11) resulting in an escape rate ∼1.5
time the Jeans rate (Figure 1(b)). Such results are consistent
with the criterion suggested much earlier (e.g., Hunten 1982):
if λ approaches ∼2 above the exobase, then the escape rate
is not too different from the Jeans rate, but if λ approaches
∼2 near or below the exobase, then direct outflow can occur
and the atmosphere is highly extended approaching a cometary
description: i.e., �c ∼ rx (e.g., Volkov et al. 2010). The loss
from Titan of the trace species, H2, with λx ∼ 3 at the exobase,
is borderline (e.g., Volkov et al. 2010). However, the resulting

H2 flux is not sufficient to drive off the heavy species, but acts
to extract heat from the background of heavier molecules. For
the heavy species, N2 and CH4, with larger λx solutions to the
radial one-dimensional equations below the exobase should be
attached to a DSMC model of escape, as discussed above, or to
a value of the escape rate close to the Jeans rate.

6. SUMMARY

Detailed in situ data on the structure of atmospheres in the
exobase region from spacecraft are now available for some
solar system bodies, and will soon be for a number of others.
These results are also of considerable interest to modeling
the evolution of exoplanet atmospheres. In this region, also
called the transition region, it is critical to use models that
can accurately describe the molecular kinetics. Although escape
driven by thermal conduction can compete with nonthermal
escape processes (e.g., Johnson et al. 2008, 2009), it is shown
here that the one-dimensional, SHE model, as presently applied,
cannot be relied on to give accurate molecular escape rates.
Although the escape rates at Titan could be significantly
different from the Jeans rate due to nonthermal processes
(e.g., De La Haye et al. 2007; Johnson et al. 2009), extending
continuum models, such as the SHE model (Strobel 2008b,
2009) or a diffusive separation model (Yelle et al. 2008), above
the exobase can give escape rates for heavy species that are
orders of magnitude too large. That such escape rates for Titan
are incorrect is argued here based on kinetic theory and the
nature of the solutions to the SHE model. It has also been shown
by simulations of the gas kinetics (Tucker & Johnson 2009;
Tucker et al. 2010; Volkov et al. 2010). It is shown here that
the one-dimensional SHE model, as applied, appears to favor
large escape rates, and, therefore, it cannot be used to explore
the parameter space if the loss rates are unknown. This model
can, in principle, be used in an iterative procedure in which the
radial fluid equations are solved below the exobase and are used
with an estimate of the escape rate based on Jeans escape or
are attached to a molecular kinetic model, such as the DSMC
model (Tucker et al. 2010). In addition, if there is a significant
upward flux locally, a three-dimensional model that allows for
horizontal transport is likely required. However, whether one-
dimensional or three-dimensional continuum models are used
up to the exobase, obtaining the thermal and nonthermal escape
rates requires the use of a kinetic description of the gas in the
transition region.

This work is supported by a grant from NASA’s Planetary
Atmosphere’s Program and by a NASA Cassini Data Analysis
Grant.

APPENDIX

For clarity, a standard notation was used above. The notation
typically used in the SHE model: F = ϕ/4π is used instead
of the net escape rate ϕ and the variables in Equation (1) are
replaced by scaled variables: λ = Φg/kT = GMm/rkT, ζ = Fk/
K0r0λ0, ψ = mv2/kT0, τ = T/T0, and c = (kT0/m)1/2, where the
subscript 0 implies the value at the lower boundary. The thermal
conductivity K, often written as κ , can have a simple temperature
dependence, K = K0(T/T0)s, and the symbol U = (2kT/m)1/2

is often used as the most probable speed in a Maxwellian
distribution. Scaling is then carried out by essentially dividing
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Equation (1) by ϕ, replacing r by λ and using the variables above
in[

(CpT − U (r)) − 4πr2

(
K

dT

dr

) /
φ

]r

r0

= φ−1
∫ r

ro

4πr2Qdr.

This results in the thermal conduction term being very large if
ϕ approaches the Jeans rate and λo ∼ 20–40, as it is at Titan for
CH4 and N2.
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