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ABSTRACT

We investigate the transverse oscillations of a line-tied multi-stranded coronal loop composed of several parallel
cylindrical strands. First, the collective fast normal modes of the loop are found with the T-matrix theory. There is a
huge quantity of normal modes with very different frequencies and a complex structure of the associated magnetic
pressure perturbation and velocity field. The modes can be classified as bottom, middle, and top according to their
frequencies and spatial structure. Second, the temporal evolution of the velocity and magnetic pressure perturbation
after an initial disturbance are analyzed. We find complex motions of the strands. The frequency analysis reveals
that these motions are a combination of low and high frequency modes. The complexity of the strand motions
produces a strong modulation of the whole tube movement. We conclude that the presumed internal fine structure
of a loop influences its transverse oscillations and so its transverse dynamics cannot be properly described by those
of an equivalent monolithic loop.
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1. INTRODUCTION

Coronal loops are magnetic structures belonging to active
regions in the solar atmosphere. Observations with telescopes
on board the Solar and Heliospheric Observatory, the Transition
Region and Coronal Explorer (TRACE), and more recently
the Solar Terrestrial Relations Observatory and the HINODE
satellites show that such structures are flux tubes filled with
plasma hotter and denser than the surrounding corona. They
are arches rooted in the photosphere that outline the magnetic
field. Nowadays, it is debated whether coronal loops have an
internal fine structure below the spatial resolution of the current
telescopes. In the so-called multi-stranded loop model, it is
suggested that each observed loop is composed of a bundle
of several tens or hundreds of different strands (see, e.g.,
Litwin & Rosner 1993; Aschwanden et al. 2000; Klimchuk
2006). The internal fine structure of loops allows us to explain
some observational aspects of loops. For example, the uniform
emission measure along loops (Lenz et al. 1999) was explained
assuming a multithermal internal structure (Reale & Peres
2000); in addition, Schmelz et al. (2001) argued that the
broad differential emission measure is a clear evidence of the
multithermal structure of loops.

Transverse coronal loop oscillations, reported first in As-
chwanden et al. (1999), were interpreted in terms of the fun-
damental kink mode (Nakariakov et al. 1999) of a cylindrical
loop with a uniform internal structure in the so-called monolithic
model (Edwin & Roberts 1983). However, in the multi-stranded
model of a loop, the transverse motion of each strand can be
influenced by the displacements of its neighbors. Then, the in-
ternal fine structure can affect the oscillation period, damping
rate, and in general the dynamics of the whole loop. Thus, the
transverse oscillations of a multi-stranded loop can be differ-
ent from those of the monolithic tube model. Recently, Ofman
& Wang (2008) described the first indirect evidence of trans-
verse oscillations in a multi-stranded coronal loop. The authors
also considered the loop as a collection of independent flux
tubes.

Seismology of coronal loops (Uchida 1970; Roberts et al.
1984) relates the observed properties of loop oscillations with
theoretical models and derives local parameters that are difficult
to measure directly. This method was first applied to an
observation of transverse loop oscillations by Nakariakov &
Ofman (2001), who obtained an estimation of the magnetic field
strength. Similarly, Wang et al. (2007) reported an observation of
slow waves in coronal loops and used a seismological approach
to deduce the field strength. Both works compared observations
with the straight cylindrical model of Edwin & Roberts (1983).
However, De Moortel & Pascoe (2009) showed that local
parameter estimation strongly depends on the theoretical model
used to compare with the observed system. The authors found
discrepancies of up to 50% between the estimated and actual
magnetic field when the oscillatory parameters of a curved
three-dimensional loop are compared with those of a straight
cylindrical tube.

For these reasons, a theoretical study of the transverse
oscillations of a multi-stranded loop model is necessary. An
increasing number of publications have considered the dynamics
of flux tube ensembles. In Berton & Heyvaerts (1987), an
analytical investigation of the oscillations of a system of
magnetic slabs periodically distributed was made. In Murawski
(1993) and Murawski & Roberts (1994), a qualitative study of
the wave propagation in a system of two slabs was considered.
Dı́az et al. (2005) studied the oscillations of a prominence
multifibril system modeled as up to five non-identical slabs. In
a system of two identical fibrils, phase or antiphase oscillations
were found, although the antiphase motions rapidly leak their
energy into the coronal medium. Luna et al. (2006) studied
a system of two identical coronal slabs and found that the
antiphase oscillations can also be trapped. In addition, these
authors found that after an initial perturbation, the system
oscillates with a combination of the two collective normal modes
and a complex dynamics is produced. This study was extended
to cylindrical geometry by Luna et al. (2008), who considered
two identical flux tubes. Four trapped normal modes were found
with frequencies different from those of the individual tube.
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The time-dependent problem was numerically solved and again,
a very complex dynamics associated with the mutual interaction
of the tubes was found. These studies show that the flux tube
transverse oscillations are coupled in systems of two identical
loops. The dependence of the transverse oscillations on the
relative tube parameters, i.e., radii and densities, was first studied
in a system of two loops by Van Doorsselaere et al. (2008),
who computed the normal modes analytically with the long-
wavelength approximation. However, in Luna et al. (2009), the
normal modes of two and three loops were found analytically.
These authors found that the transverse oscillations of a set of
flux tubes are coupled if the kink frequency of the individual
tubes are similar, whereas the oscillations are uncoupled if they
have sufficiently different individual kink frequencies. Arregui
et al. (2007) studied the effects on the dynamics of the possibly
unresolved internal structure of a coronal loop composed of
two very close, parallel, identical coronal slabs in Cartesian
geometry with non-uniform density in the transverse direction.
They found small differences in the period and damping time
with respect to those of a single slab with the same density
contrast or a single slab with the same total mass. Ofman (2005)
investigated numerically the oscillations and damping time of
a nonlinear and highly resistive magnetohydrodynamic (MHD)
model of four cylindrical strands. This work was extended to
a system of four strands with twist in Ofman (2009). Terradas
et al. (2008) numerically investigated the temporal evolution
of a system of 10 strands with transverse non-uniform layers
and with smooth density profiles. They found that the system
oscillates with a global mode and that resonant absorption still
provides a rapid and effective damping of the loop transverse
displacement.

The purpose of this work is to study the influence of the
internal fine structure of a loop on its transverse dynamics. We
first compute analytically the normal modes of different strand
systems. We determine the different kinds of collective normal
modes and compare them with those of a monolithic flux tube.
We also study the temporal evolution of a system of 10 identical
strands after an initial perturbation by solving numerically the
initial value problem. The results obtained are compared with
those of the normal mode analysis.

The paper is arranged as follows. In Section 2, the multi-
stranded loop model is presented and the equivalent monolithic
loop is defined. We analytically find the normal modes of
10 identical strands in Section 3, 10 non-identical strands in
Section 4, and 40 identical strands in Section 5. In Section 6,
the initial value problem is numerically solved and the relation
between the temporal evolution with the normal modes is
discussed. Finally, in Section 7 the results of this investigation
are summarized and conclusions are drawn.

2. THEORETICAL MODEL

In this work, a coronal loop is assumed to have a composite
structure of several strands. Each coronal strand is modeled as
a straight cylinder with uniform density along the tube (gravity
is neglected) with the loop feet tied in the photosphere. Thus,
the multi-stranded loop equilibrium configuration consists of
a bundle of N cylindrical, parallel, homogeneous strands. The
z-axis points in the direction of the strand axes. All the strands
have the same length, L, and each individual strand, labeled as
j, is characterized by the position of its center in the xy-plane,
rj = xj ex + yj ey ; its radius, a; and its density, ρj . The position
of each strand is randomly generated within a hypothetical
unresolved loop of radius R (see Figure 1). The density of the

Figure 1. Sketch of the cross section of a multi-stranded loop model, which
consists of a loop of radius R (large dotted circle) filled with N homogeneous
strands of densities ρj and radii a (solid smaller circles). The external medium
to the loop and the medium between strands consists of coronal material with
density ρe. It is important to note that the large dotted circle is not real and
represents the external boundary of a hypothetical unresolved loop.

(A color version of this figure is available in the online journal.)

coronal environment is ρe. The uniform magnetic equilibrium
field is B0 = B0ez inside the strands and in the coronal medium.
We consider small-amplitude perturbations in this equilibrium
and use the linearized ideal MHD equations in the zero-β
limit. A harmonic time dependence of the perturbations e−iωt

is assumed and a z-dependence of the form eikzz is taken, with
kz = π/L to incorporate the line-tying effect. The governing
equations of our system reduce to a scalar Helmholtz equation
for the magnetic pressure. This is solved analytically with the
T-matrix theory (see, e.g., Bogdan & Cattaneo 1989; Keppens
et al. 1994; Luna et al. 2009).

In order to compare the dynamics of a multi-stranded loop
model with that of a monolithic tube, an equivalent flux tube
is defined. The flux tube radius, R, corresponds to that of
the cylinder that wraps the strand bundle (see Figure 1). The
equivalent uniform density is

ρeq =
N∑

j=1

ρj

( a

R

)2
+ ρe

[
1 − N

( a

R

)2
]

, (1)

where the mass of the strand set and the coronal medium inside
the hypothetical monolithic loop are considered. We have fixed
the radius of the cylinder envelop to R = 0.03 L, a typical
value for coronal loops (see Aschwanden et al. 2003). We have
assumed the volume filled by the strands to be 40% that of the
monolithic loop. In addition, all the strands have the same radius.
In this work, we have considered systems of 10 and 40 strands
with radii a = 0.2 R = 0.006 L and a = 0.1 R = 0.003 L,
respectively.

3. NORMAL MODES OF 10 IDENTICAL STRANDS

We first study a system of N = 10 identical strands, i.e.,
with identical densities and radii. From the results of Luna
et al. (2009), this is the situation for which the coupling
between strands is stronger because all the tubes have identical
individual kink frequencies, hereafter denoted by ωstrand. The
density of each strand is fixed to ρj = 7.5ρe, which yields
the equivalent density ρeq = 3.6ρe (see Equation (1)). The
equivalent monolithic loop has an individual kink frequency
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(a)

(b)

(c)

Figure 2. Frequency distribution of the collective normal modes associated with
the three systems considered in this work: (a) 10 identical strands, (b) 10 non-
identical strands with different densities, and (c) 40 identical strands. In all cases,
we clearly see that the frequencies are distributed at both sides of the individual
strand frequencies, ωstrand, (dotted line) in a broad band of frequencies and that
all modes have frequencies mainly below ωmono (dashed line). A shaded area is
plotted between the lowest and largest mid mode frequencies. Then, mid modes
lie within the shaded area, whereas low and high modes lie to its left and right,
respectively. The triangles mark the frequencies of the modes whose spatial
structure is displayed in the following plots and are labeled with integers.

ωmono = 2.067vAe/L computed with the fast wave dispersion
relation in a cylinder (Edwin & Roberts 1983), with vAe the
Alfvén speed in the coronal environment. Hereafter, all the
frequencies are expressed in terms of this frequency. The
individual kink frequency of each strand is then ωstrand =
0.737ωmono.

3.1. Frequency Analysis of the Collective Normal Modes

We have investigated the eigenfrequencies of the system
and have found that they are distributed at both sides of the
individual strand frequency and always below the frequency of

the equivalent monolithic loop (see Figure 2(a)). The lowest and
highest frequencies are ω = 0.612ωmono and ω = 0.993ωmono,
respectively. We see that the eigenfrequencies are in a broad
band of width approximately 0.38ωmono. According to their
spatial structure, we classify the normal modes in three groups.
Modes with frequencies below the central frequency (ω �
ωstrand) are called low modes (left-hand side of the shaded area
in Figure 2(a)). Mid modes are those with frequencies similar to
the central frequency (ω ≈ ωstrand; shaded area in Figure 2(a)),
and finally the solutions with ω � ωstrand are referred to as high
modes (right-hand side of the shaded area in Figure 2(a)). It is
important to note that in a system of non-interacting strands the
frequency of oscillation of each strand is ωstrand.

3.2. Velocity and Total Pressure Perturbation Analysis

The spatial structure of the three groups of modes is clearly
different. Low modes are kink-like modes in the sense that
at least one strand moves transversely as in a kink mode of
an individual loop. For these modes, the fluid between tubes
follows the strand motion (see Figure 3), producing chains
of loops in which one follows the next. In Figure 3, two
examples of low modes are plotted. Figure 3(a) corresponds to
the lowest frequency mode, in which only five strands oscillate,
producing some kind of global torsional motion of the strands.
In Figure 3(b), another example of low eigenfunction is plotted
and it shows that almost all the strands are excited. As in the
previous example, the fluid between strands moves with them.
In both modes, the maximum velocity takes place inside the
strands. These characteristics are shared by all the low modes.
The Sx and Ay modes of the system of two loops of Luna et al.
(2008) and the m1 to m4 modes of a system of three aligned
loops of Luna et al. (2009) can be classified in the low-mode
group because the spatial structure of the magnetic pressure
perturbation and velocity fields have the features previously
described and their frequencies are below the corresponding
individual kink frequency.

On the other hand, for the high modes (see Figure 4) the
intermediate fluid between tubes is compressed or rarefied

(a) (b)

Figure 3. Total pressure perturbation (color field) and velocity field (arrows) of the fast collective normal modes of the two low modes labeled as 1 and 2 in Figure 2(a).
(a) Lowest frequency mode labeled as 1. (b) Low mode labeled as 2.

(A color version of this figure is available in the online journal.)
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(a) (b)

Figure 4. Same as Figure 3 for two high modes. (a) Mode labeled as 3 in Figure 2(a). (b) Highest frequency mode labeled as 4.

(A color version of this figure is available in the online journal.)

(a) (b)

Figure 5. Same as Figure 3 for two mid modes. (a) Mode labeled as 5 in Figure 2(a). (b) Mode labeled as 6. In both cases, we see the complex structure of the mid
normal modes.

(A color version of this figure is available in the online journal.)

(which leads to a higher or lower total pressure perturbation)
or moves in the opposite direction to the strands, producing a
more forced motion than that of the low modes. High modes are
kink-like too, but in contrast to the low modes, the maximum
velocities take place in the intermediate fluid between strands.
This behavior is very clear in Figure 4(a), in which the strand
motions force the coronal fluid to pass through the narrow
channels between them or to compress the coronal medium.
Similarly, in the highest frequency mode (Figure 4(b)), high
velocity flows between the five excited strands take place. The
coronal medium within the excited strands is compressed and
rarefied, giving rise to some kind of sausage global motion of the
strands. All the modes that we have classified as high share these
characteristics. The Sy and Ax modes of two identical tubes of
Luna et al. (2008) and the m5 to m8 modes of a system of three

aligned loops of Luna et al. (2008) belong to the high-mode
group.

Finally, the mid modes have the most complex spatial
structure. They are fluting-like modes and have strand motions
similar to those of the fluting modes of an individual tube (see
Figure 5). The magnetic pressure perturbation and velocity are
concentrated mainly in the strand surface. There is an infinite
number of mid modes with frequencies concentrated around
ω ≈ ωstrand, and for this reason they are plotted as a shaded area
in Figure 2.

4. NORMAL MODES OF 10 NON-IDENTICAL STRANDS

In this section, we have considered the previous spatial
distribution of strands but with different densities. The strand
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(a) (b)

Figure 6. Same as Figure 3 for the collective normal modes of a system of 10 non-identical strands. (a) Lowest frequency mode labeled as 1 in Figure 2(b). (b) Highest
frequency mode labeled as 2.

(A color version of this figure is available in the online journal.)

densities have been distributed randomly around an average
density of 7.5ρe within a range of 3ρe. The equivalent monolithic
density has been kept equal to ρeq = 3.6ρe and the volume filled
by the strands to 40% that of the monolithic loop volume, as in
Section 3. The densities we use are ρj/ρe = {7.89, 7.61, 7.60,
8.97, 5.98, 8.73, 7.52, 8.62, 6.18, 5.80} following the ordination
of Figure 1. The considered range of strand densities implies that
the difference between the maximum and minimum values of
the individual kink frequencies is 0.13ωmono. This makes the
coupling between the strands weaker (see Luna et al. 2009) than
in the identical strand case discussed in Section 3. However,
the strands still interact and so it is not possible to consider the
multi-stranded system as a collection of individual tubes. The
band of collective frequencies now goes from ω = 0.602ωmono
to ω = 1.036ωmono, i.e., it has a width of 0.43ωmono, as we
see in Figure 2(b). This band is broader than in the identical
strand case (for which it is 0.38ωmono), but this does not mean
that the interaction between non-identical strands is stronger.
The reason is the additional broadening associated with the
spreading of the individual kink frequencies, which results in
the enlargement of the mid frequency band (see Figure 2(b)).
Roughly speaking, the broadening associated with the coupling
is then the total broadening minus the spreading of the individual
kink frequencies. In the case of an uncoupled system of non-
identical strands, the width of the band associated with the
coupling is zero. The individual kink frequencies of our system
are in a band of 0.13ωmono. This implies that the contribution
of the strand interaction is roughly 0.30ωmono, indicating less
interaction between the strands than for the identical strand
system of Section 3. As in Section 3, we can divide the collective
normal modes in three groups (low, mid, and high). However,
the spatial structure differs from those of the previous section.
The differences are clear, for example, in the lowest frequency
mode. Comparing Figure 6(a) with Figure 3(a), we see that the
global torsional oscillation of the five strands labeled as 2, 5, 6,
7, and 10 is avoided because their densities are very different,
but the oscillation of the strands labeled as 1, 2, 3, 4, 6, 7, and

8 with similar densities is favored. The highest frequency mode
plotted in Figure 6(b) is very similar to the corresponding mode
in the identical tube case (Figure 4(b)), although the amplitude
of the oscillations is concentrated in the rarest tubes, labeled
as 5 and 10. These results are general and so low modes have
the largest oscillatory amplitudes in the denser tubes. On the
contrary, for the high modes, the highest oscillatory amplitudes
are associated with the rarest strands. Mid modes have a complex
spatial structure but are similar to that of the identical strand case
and are not plotted for the sake of simplicity.

In Terradas et al. (2008), a system of 10 non-homogeneous
strands was considered. The authors studied the time-dependent
evolution of the system after an initial excitation. They found
a collective frequency 0.22/τA, where τA is defined as τA =
R/vAe. We have considered an equivalent system of homoge-
neous strands preserving the total mass and have found that
modes lie in a frequency band going from 0.182/τA to 0.23/τA
that agrees very well with the mentioned results.

5. NORMAL MODES OF FORTY IDENTICAL STRANDS

We have also investigated the normal modes of a much more
complex system of 40 identical strands. The strands fill 40% of
the equivalent loop volume, with a strand density ρj = 7.5ρe
and an equivalent density ρeq = 3.6ρe. The frequencies of the
normal modes lie in a band that goes from ω = 0.614ωmono to
ω = 0.987ωmono, so that its width is 0.37ωmono. This frequency
band is similar to that of the 10 identical strand case (see
Figures 2(a) and (c)). However, the system of 40 strands has
more collective normal modes than the system of 10 strands.
The classification in low, mid, and high modes is still valid
in this complex system of strands. In this section, we have
only considered the kink-like modes (low and high modes) and
the mid modes are not plotted for the sake of simplicity. In
Figures 7(a) and (b), two examples of low collective normal
modes are plotted. In the lowest frequency normal mode
(Figure 7(a)), a cluster of close strands is excited and the others
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(a) (b)

Figure 7. Same as Figure 3 for two low modes in a system of 40 identical strands. (a) Lowest frequency mode labeled as 1 in Figure 2(c). (b) Normal mode labeled
as 2.

(A color version of this figure is available in the online journal.)

(a)

(a) (b)

Figure 8. Same as Figure 3 for two high modes in a system of 40 identical strands. (a) Collective normal mode labeled as 3 in Figure 2(c). (b) Highest frequency mode
labeled as 4.

(A color version of this figure is available in the online journal.)

are at rest. In the second example (Figure 7(b)), a cluster of
distant strands participate in the motion. In Figures 8(a) and
(b), two examples of high modes are also plotted. As in the low
modes, in the high modes a cluster of several strands participates
in the motion whereas the others are at rest.

6. TIME-DEPENDENT ANALYSIS: NUMERICAL
SIMULATIONS

In the previous sections, we have considered the normal
modes of a multi-stranded loop. Normal mode analysis provides
information about the stationary state of the system or, ideally, at

an infinite time. However, loop oscillations are often produced
by an impulsive event like a flare and it is more suitable to
describe such events in terms of an initial value problem (see,
e.g., Terradas 2009). In addition, the time-dependent analysis
gives information on how the different collective normal modes
are excited and on how they are related with the temporal
evolution after the initial disturbance.

We shall consider here the temporal evolution of the multi-
stranded loop composed of 10 identical strands of Section 3.
The governing equations of the temporal evolution of the
velocity field, v = (vx, vy, 0), and magnetic field perturbation,
B = (Bx, By, Bz), are the linearized ideal MHD equations,
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(a) (b)

(c) (d)

Figure 9. Time evolution of the velocity field (arrows) and magnetic pressure perturbation (colored contours) for the system of 10 identical strands of Section 3.
The panels show different evolution times. In (a) the initial condition (Equation (7)) of the velocity field is plotted. In (b) the magnetic pressure and velocity fields are
shown shortly after the initial disturbance. The initial pulse has left the domain shown in this panel and the system oscillates coherently. In (c) and (d) the structure
of the fields indicates a complex motion of the strands. In (c) the direction of oscillation is completely different from that of the initial disturbance and in (d) the
transverse displacement of the strands is mainly in the direction perpendicular to that of the initial pulse.

(A color version of this figure is available in the online journal.)

namely,
∂vx

∂t
= v2

A

B0

(
kzB̃x − ∂Bz

∂x

)
, (2)

∂vy

∂t
= v2

A

B0

(
kzB̃y − ∂Bz

∂y

)
, (3)

∂B̃x

∂t
= −B0kzvx, (4)

∂B̃y

∂t
= −B0kzvy, (5)

∂Bz

∂t
= −B0

(
∂vx

∂x
+

∂vy

∂y

)
, (6)

where Bx = −iB̃x and By = −iB̃y are purely imaginary
variables. This fact indicates that the x- and y-components of

the magnetic field have a phase lag of ±π/2 with respect to the
temporal evolution of the other variables.

The initial perturbation is a planar pulse in the velocity field
of the form

v0 = V0e
−(y/w0)2

ey, (7)

(see arrows in Figure 9(a)), where w0 is the width of the Gaussian
profile and V0 is its amplitude. We have set the width of the
initial perturbation equal to the loop radius, w0 = R, to perturb
all the strands (see Figure 9(a)). In addition, we have chosen
an amplitude of the perturbation, V0 = 0.02 vAe, such that the
maximum displacement of each strand is equal to the radius,
a = 0.2 R. The initial value of the x-component of the velocity
and the magnetic field perturbation are zero. Thus, the magnetic
pressure is initially zero. We numerically solve the initial value
problem with a code developed by J. Terradas based on the
Osher–Chakrabarthy family of linear flux modification schemes
(see Bona et al. 2009). The size of the simulated domain is
2 R × 2 R and its boundaries are sufficiently far to neglect the
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Figure 10. Plot of the trajectories of the strand centers (blue solid line) and
the trajectory of the center of mass of the system (red solid lines). Time is
represented by the color lightness of the curves that start with dark color and
end with light color (see color bar). The color bar associated with the motion
of the center of mass is not plotted for the sake of simplicity. The strands and
the center of mass start moving roughly parallel to the y-axis, but after some
time the trajectories are ellipsis. To clarify the movements of the strands, the
displacements are multiplied by 2 in this plot.

effects of the reflections on the multi-stranded loop dynamics.
The numerical mesh has 1000 × 1000 grid points and has
enough resolution to resolve small scales and to avoid significant
numerical diffusion.

Figure 9 shows the temporal evolution of the magnetic pres-
sure and velocity fields. The initial disturbance excites the
vy-component and the pulse front is on the x-axis (see Fig-
ure 9(a)). All the strands are excited at the same time and
this produces the motion of the whole loop in the positive
y-direction. In Figure 9(b), part of the perturbation energy has
leaked from the system during the transient phase. The strands
oscillate in the negative y-direction and in phase, in some kind
of global-kink motion. The velocity field has a relatively simple
structure, having a uniform value inside the strands. After some

time, the spatial structure of the velocity and magnetic pres-
sure perturbation fields are more complex (see Figure 9(c)). The
polarization of the strand motion is no longer parallel to the y-
axis and each strand oscillates in its own direction. Similarly, in
Figure 9(d) the velocity and magnetic pressure fields also have
a complicated structure and the direction of oscillation of each
strand has changed from that of Figure 9(c). Then, the initial
value problem shows that the complexity of the magnetic pres-
sure and velocity fields increases in time and that the simple spa-
tial structure of Figure 9(b) is not recovered after the initial stage.

The temporal evolution of the velocity field indicates a
complex motion of the strands. To show this more clearly,
the trajectories of the strand centers are plotted with colored
blue lines in Figure 10. Initially, all the strands oscillate in the
y-direction, i.e., the direction of the initial disturbance. After
a short time, the direction of the transverse oscillation of each
strand changes and complicated trajectories arise. The motion
of each strand produces a strong modulation of the whole
loop transverse displacement. The trajectory of the center of
mass (defined as rCM = ∑N

j=1 rj /N ) is plotted in Figure 10
as a colored red line. This trajectory represents the whole
loop motion and it shows two effects. The first effect is that
the initial linear polarization of the loop oscillation changes
to a circular polarization in which the loop orbits around a
central position. The second effect is an attenuation of the
oscillation. The reason of this attenuation is that the non-
organized motions contribute less to the whole loop motion
than the initial organized motions. This behavior is even clearer
in Figure 11; the movie associated with this figure is available
in the electronic version of this journal. This figure shows the
temporal evolution of the displacements of the strands with
respect to their initial positions and also the displacement of the
hypothetical monolithic loop.

In Figure 12, we have plotted the power spectrum of the
magnetic pressure perturbation measured in a point located in
the fluid between the strands. This figure shows that all the
power is concentrated in the frequency band of the collective
normal modes (see Figure 2(a)). This indicates that the initial
disturbance excites a combination of collective normal modes
(see Section 3). In general, the particular combination of normal

(a) (b)

Figure 11. Time evolution of the displacement of the strands (solid circles) and monolithic loop (large dotted circle). The initial position of the strands is also plotted
as dashed circles. In (a) the maximum displacements of the strands exerted by the initial condition are plotted. All displacements are in the positive y-direction and in
phase, indicating a coherent motion of the strand set. In (b) there is no privileged direction of oscillation, and complex motions of the strands are shown. The time of
the two snapshots is displayed at the top of the figures.

(An animation of this figure is available in the online journal.)
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Figure 12. Power spectrum of the temporal evolution of the magnetic pressure
perturbation measured at the position (x/R, y/R) = (0.15, 0.31). The left and
right vertical dotted lines represent the frequencies of the lowest and highest
frequency modes of Figure 2(a), respectively. The vertical dashed line is the
kink frequency of the individual strands, ωstrand, while the shaded area, that
corresponds to the shaded area in Figure 2(a), marks the region where mid
modes reside. The power spectrum has two peaks in the low- and high-mode
frequency ranges, which implies that the initial disturbance mainly excites the
low and high frequency modes.

modes depends on the shape, position, and incidence angle of
the initial pulse (see Luna et al. 2008). With the particular initial
disturbance of Equation (7), the power spectrum has the form of
two peaks centered in the low and high frequency regions, while
the power in the mid frequency region is small. Then, the initial
disturbance largely excites the low and high frequency modes.

Ofman & Wang (2008) reported transverse oscillations of
a multi-stranded loop. The system is made up of several close
strands, and one may expect that the strands interact and oscillate
with a combination of collective normal modes. Assuming that
the system of strands is similar to that of Section 3, we can
estimate the range of periods of collective normal modes. We use
the mean values of the density and magnetic field of 3×109 cm−3

and 20 G, respectively, which were obtained by Ofman & Wang.
Also, by imposing a reasonable external density of 4×108 cm−3

(see Aschwanden et al. 2003), we keep the density contrast of our
model (ρj/ρe = 7.5). With these values, the estimated collective
periods range from 94 s to 152 s, in good agreement with the
113 s of the averaged oscillating periods of the strands measured
by the authors. On the contrary, if the same system is assumed
as a monolithic loop oscillating with a period of 113 s, the
estimated magnetic field is 15 G. This very preliminary result
shows that observations with poor spatial resolution tend to
underestimate the magnetic field.

7. DISCUSSION AND CONCLUSIONS

In this work, we have studied analytically the normal modes of
a multi-stranded coronal loop in the β = 0 limit with the help of
the T-matrix theory. We have also studied the temporal evolution
of the system after an initial disturbance and its relation with
the normal modes. The results of this work can be summarized
as follows.

1. We have considered a multi-stranded loop filled with 10
identical strands located at random positions. We have
found that the system supports a large quantity of normal
modes whose frequencies are in a broad band of width
approximately 0.38ωmono. All these frequencies are smaller
than the monolithic kink frequency. The collective normal
modes can be classified in three groups according to their
frequencies and spatial structures. Low modes have a
frequency ω � ωstrand and the spatial structure is kink-like
and characterized by strands moving in complex chains.
In these modes, the intermediate fluid between strands
follows their transverse displacement and this produces a
non-forced motion of the system. In the low modes, the
strands move faster than the surrounding medium, i.e., the
maximum velocities are within the strands. Mid modes have
a frequency ω ≈ ωstrand and the spatial structure is fluting-
like, by which the strands are essentially distorted and their
transverse displacements are small. Finally, high modes
(ω � ωstrand) are kink-like modes characterized by a forced
motion of the strands that move in the opposite direction
to the surrounding plasma or compress and rarefy their
intermediate fluid, producing high velocities in the coronal
medium. Then, the surrounding medium moves faster than
the strands.

2. We have also investigated a system of 10 non-identical
strands. The spatial distribution of the strands is the same
as in Section 3, but with different strand densities. As in
the identical strand case, we have found a large quantity of
collective normal modes, but now their frequencies lie in a
band of width 0.30ωmono. This band width is narrower than
that of the identical strand case of Section 3, indicating
a weaker interaction between the strands. The collective
normal modes can also be classified in low, mid, and high
modes. The largest oscillation amplitudes correspond to the
denser strands in the low modes and to the rarest strands in
the high modes.

3. The normal modes of a complex system of 40 identical
strands have also been computed. Their frequencies lie in
a band of width 0.37ωmono that coincides well with that of
the system of 10 identical strands. The classification of the
normal modes in low, mid, and high is still valid in this
complex system, although the number of normal modes is
larger than in the two systems with 10 strands. This indicates
that the number of collective normal modes increases with
the number of strands. In addition, these results indicate that
the width of the frequency band does not depend strongly
on the number of strands.

4. The temporal evolution of the system after an initial planar
disturbance is also studied in the system of 10 identical
strands. Initially, the system oscillates in phase in the
direction of the initial disturbance. After some time, this
organized motion disappears and the complexity of the
velocity and magnetic pressure perturbation fields increase.
This implies a complex motion of the strands and, as a
result, of the whole loop. In addition, we have found that
the system oscillates with a combination of low and high
collective normal modes.

In this investigation, we show that the transverse oscillation
of a multi-stranded loop cannot be described by an equivalent
monolithic loop. The reasons are that there is a huge quantity
of normal modes with very different frequencies and very
complex spatial structures. Their frequencies lie in a broad
band and cannot be accounted for by an average frequency,



1380 LUNA ET AL. Vol. 716

because after an initial disturbance most of the frequencies are
excited. Furthermore, there is no collective normal mode that
can be considered as a global-kink mode, in which all the strands
move in phase with the same direction and produce a transverse
displacement of the whole loop. Instead, the collective normal
modes that we have found displace the loop center but the
detailed motion of the strands is very complex.

Additionally, the internal fine structure influences the whole
loop dynamics. Complex motions of the strands are produced
and also complex movements of the whole loop. These motions
can be explained by the existence of a strong interaction be-
tween the strands and, consequently, the existence of a huge
quantity of collective normal modes with different frequen-
cies. The initial disturbance excites a particular combination
of modes that causes a coherent motion of the strands similar
to a global-kink transverse oscillation. After some time, each
collective normal mode oscillates with different phase due to
the frequency differences between them. As a consequence, the
coherent motion of the strands is lost and complex motions
appear. This behavior has already been shown by Luna et al.
(2008) in a system of two identical flux tubes. The change of
the initial linear polarization to a circular polarization of the
whole loop transverse oscillation may be a signature of its in-
ternal fine structure. Circular transverse motion of a loop has
been reported by Aschwanden (2009), who reconstructed the
three-dimensional motion by the curvature radius maximiza-
tion method from TRACE images taken in the loop oscillation
event of 1998 July 14. The author found that the horizontal and
vertical oscillations have similar period and a phase delay of a
quarter of a period. We suggest that the internal (thread) struc-
ture can contribute to the circular polarization and to the rapid
damping of the transverse oscillations of coronal loops. We also
show that the magnetic field strength tends to be underesti-
mated in an observation of a multi-stranded loop oscillation in
which the internal fine structure is not resolved. This result sup-
ports the findings of De Moortel & Pascoe (2009), who found
that the estimated local magnetic field strength strongly depends
on the theoretical model used to compare with the observations.
Better models of coronal loop oscillations will improve the ac-
curacy and reliability of the estimated magnetic fields obtained
with the coronal seismology method. However, this is a prelimi-
nary study and more observations of circular transverse motions,
a detailed study of the relation between the damping and the
internal fine structure, and more high-resolution measurements
are needed. The recently launched Solar Dynamics Observatory
will provide new data with high spatial and temporal resolution.
With these new observations, better models of multi-stranded
loops will be done.

In this work, we have made a number of simplifying as-
sumptions, neglecting gas pressure, considering only linear per-
turbations, and ignoring gravity. In order to have more real-
istic models, these effects need to be incorporated. Soler et al.
(2009) have studied a system of two prominence threads with gas

pressure and have found that transverse oscillations are coupled.
They have also shown that slow modes are essentially individ-
ual modes. Then, we expect that the results shown here are still
valid in a system with finite beta. Nevertheless, the addition of
nonlinear terms and gravity may introduce new effects that need
to be addressed in future research.
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