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ABSTRACT

Near-future cosmological observations targeted at investigations of dark energy pose stringent requirements on the
accuracy of theoretical predictions for the nonlinear clustering of matter. Currently, N-body simulations comprise
the only viable approach to this problem. In this paper, we study various sources of computational error and methods
to control them. By applying our methodology to a large suite of cosmological simulations we show that results
for the (gravity-only) nonlinear matter power spectrum can be obtained at 1% accuracy out to k ∼ 1 h Mpc−1. The
key components of these high accuracy simulations are precise initial conditions, very large simulation volumes,
sufficient mass resolution, and accurate time stepping. This paper is the first in a series of three; the final aim is a
high-accuracy prediction scheme for the nonlinear matter power spectrum that improves current fitting formulae
by an order of magnitude.
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1. INTRODUCTION

The nature of the dark energy believed to be causing the
current accelerated expansion of the universe is one of the
greatest puzzles in the physical sciences, with deep implications
for our understanding of the universe and fundamental physics.
The twin aims of better characterizing and further understanding
the nature of dark energy are widely recognized as key science
goals for the next decade. Although dark energy remains very
poorly understood, theory nevertheless plays an essential role
in furthering this enterprise.

The phenomenology of cosmological models is theory-driven
not only in terms of providing explanations for the diverse
phenomena that are observed, as well as promoting alterna-
tive explanations of existing measurements, but also due to the
increasing reliance on theorists to produce sophisticated numer-
ical models of the universe which can be used to refine and
calibrate experimental probes. Without a dedicated effort to de-
velop the tools and skill sets necessary for the interpretation
of the next generation of experiments, we risk being “theory
limited” in essentially all areas of dark energy studies.

As a concrete example of this general trend, forecasts for
determination of the dark energy equation of state and other
cosmological parameters from next-generation observations
of cosmological structure typically assume calibration against
simulations accurate to the level of 1% or better. This target
has rarely been met for simulations of complex nonlinear
phenomena such as the formation of large-scale structure in the
universe. However it is precisely these probes, which provide
information on both the geometry of space-time and the growth
of large-scale structure, which will be key to unraveling the
mystery of dark energy.

For upcoming measurements to be exploited to the full, the-
ory must reach not only the levels of accuracy justified by the
measurements but also cover a sufficiently wide range of cos-
mologies. The problem breaks down to two questions: (1) What

is a reasonable coverage of cosmological parameters, given the
expected set of observations? (2) What is the required accuracy
for theoretical predictions—over this range of parameters—for
the given set of observations? It is crucial to realize that the ul-
timate requirement is on controlling the absolute error—taking
into account all of the relevant physics: gravity, hydrodynam-
ics, and feedback mechanisms. This is much more difficult to
achieve than relative error control—e.g., asking what the relative
importance of baryonic physics is versus a baseline gravity-only
simulation. Most recent papers discuss the latter, implicitly as-
suming the existence of a reference spectrum. One aim of our
work is to provide just such a reference spectrum within the
boundaries outlined. We fully expect that the answers to both
(1) and (2) will evolve, requiring more accurate modeling of
a smaller range of models, so we are most interested here in
the near-term needs. Associated with the first problem is the
fact that, given the impossibility of running complex simula-
tions over the many thousands of cosmologies necessary for
grid-based or Markov chain Monte Carlo (MCMC) estima-
tion of cosmological parameters, one must develop efficient
interpolation methods for theoretical predictions. These meth-
ods must of course also satisfy the accuracy requirements of
question (2).

The control of errors in the underlying theory for the cosmic
microwave background (CMB) is adequate to analyze results
from Planck (Seljak et al. 2003; Wong et al. 2008). This is,
however, not the case for predictions of gravitational clustering
in the nonlinear regime, as is required for cluster counts, redshift
space distortions, baryon acoustic oscillations (BAO), and weak
lensing (WL) observations. In the case of BAO, the galaxy power
spectrum in the quasi-linear regime should be known to sub-
percent accuracy, and for WL the same is true for the mass power
spectrum to significantly smaller scales. Perturbation theory has
errors on the mass power spectrum currently estimated to be at
the percent level in the weakly nonlinear regime (see, e.g., Jeong
& Komatsu 2006 and Carlson et al. 2009 for recent treatments,
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Figure 1. Ratio of the E-mode correlation function with and without an assumed
suppression of the power spectrum mimicking a possible systematic error in the
matter power spectrum. This figure demonstrates that a gradual decrease in
the accuracy of the matter power spectrum on small scales will not lead to a
catastrophic error in the WL prediction. The green line with kF = 10 h Mpc−1

corresponds to error properties which will be close to the degradation we expect
for the matter power spectrum presented in this paper (see the text).

(A color version of this figure is available in the online journal.)

or Bernardeau et al. 2002 for an earlier review). To reduce
these errors, test the approximations, and model galaxy bias,
numerical simulations are unavoidable. Theoretical templates,
in terms of current power spectrum fits based on simulations
(with errors at the 5% level), are already a limiting factor for
WL observations at wavenumbers k ∼ 1 h Mpc−1. Huterer &
Takada (2005) show that in order to avoid errors from imprecise
theoretical templates mimicking the effect of cosmological
parameter variations, the power spectrum has to be calibrated at
about 0.5%–1% for 0.1 h Mpc−1 � k � 10 h Mpc−1. The scale
most sensitive for WL measurements is around k ∼ 1 h Mpc−1

and z ∼ 0.5 and the power spectrum therefore needs to be
calibrated the most accurately at that point (see, e.g., Huterer
& Takada 2005, Figure 1). In a very recent paper, Hilbert et al.
(2009) re-emphasize the need for very accurate predictions for
the theoretical power spectrum, pointing out that currently used
fitting functions such as the Peacock & Dodds (1996) formula or
the fit derived by Smith et al. (2003) underestimate the cosmic
shear-power spectra by >30% for k > 10 h Mpc−1.

We have independently assessed the impact a mis-modeled
power spectrum would have on the predictions of WL observ-
ables, including the fact that a wide range of spatial scales can
be mapped into a given angular scale. Assuming a distribution
of sources with 〈z〉 = 1, and using the Limber approximation,
we compute the observable shear–shear correlation function,
ξ (θ ) = 〈γ (0) · γ (θ )〉, given an estimate of the z-dependent
mass power spectrum, Δ2(k, z). To mimic the inaccuracy of
Δ2(k, z) on scales smaller than 1 h Mpc−1, we multiply it by a
z-independent filter of the form (1 + k2/k2

F )−1 for a variety of
kF. At � = 1000 the suppression is 2%–3% for kF = 1 0 h Mpc
(kF being the assumed suppression of the power spectrum) and
it drops to 1% at �500. Assuming that kF � 10 h Mpc−1 reflects
the error properties we are aiming at in this paper (i.e., Δ2 ∼ 1%
low at k � 1 h Mpc−1 and smoothly but increasingly low for
smaller scales) we expect our results could be used to predict
the shear correlation function at the percent level for separations
larger than 2′. Figure 1 shows the expected error for different
filter scales. Assuming sources at higher z shifts all of the curves

to larger scales, while a lower source redshift shifts the curves
to smaller scales.

In order to extract precise cosmological information from
WL measurements, additional physics beyond the gravitational
contribution must be taken into account. At length scales smaller
than k ∼ 1 h Mpc−1, baryonic effects are expected to be larger
than 1% (White 2004; Zhan & Knox 2004; Jing et al. 2006;
Rudd et al. 2008; Guillet et al. 2009) and will have to be treated
separately, either directly via hydrodynamic simulations or, as is
more likely, by a combination of simulations and self-calibration
techniques (e.g., constraining cluster profiles by cluster-galaxy
lensing at the same time as constraining the shear). In any case,
gravitational N-body simulations must remain the bedrock on
which all of these techniques are based.

Taking all of these considerations into account, the purpose of
this paper is to establish that gravitational N-body simulations
can produce power spectra accurate to 1% out to k ∼ 1 h Mpc−1

between z = 0–1 for a range of cosmological models. Given
the success of the CDM paradigm in explaining current obser-
vational data we shall consider cosmologies within that frame-
work. All of our models will assume a spatially flat universe
with purely adiabatic fluctuations and a power-law power spec-
trum. Since it is unlikely that near-term observations can place
meaningful constraints on the temporal variation of the equation
of state of the dark energy, we will restrict attention to cosmolo-
gies with a constant equation of state parameter w = −p/ρ
(where p is the pressure and ρ is the density of the dark energy
with w = −1 in a ΛCDM cosmology). Since ΛCDM is a good
fit to the data, the accuracy of simulations can be established
primarily around this point.

In this paper we will establish that gravitational N-body sim-
ulations can meet the above demands and derive a set of sim-
ulation criteria which balance the need for accuracy against
computational costs. The target regime covers the most impor-
tant range for current and near-future WL surveys and additional
physics is controllable at the required level of accuracy. Show-
ing that the required accuracy can be obtained from N-body
simulations is only the first step in setting up a power spec-
trum determination scheme useful for WL surveys. In order to
analyze observational data and infer cosmological parameters,
precise predictions for the power spectrum over a large range of
cosmologies are required. This paper—establishing that achiev-
ing the base accuracy is possible—is the first in a series of
three communications. In the second, we will demonstrate that
a relatively small number of numerically obtained power spec-
tra are sufficient to derive an accurate prediction scheme—or
emulator—for the power spectrum covering the full range of
desired cosmologies. The third paper of the series will present
results from the complete simulation suite, named the “Coyote
Universe” after the computing cluster on which it has been car-
ried out. The third paper will also contain a public release of a
precision power spectrum emulator.

In order to establish the accuracy over the required spatial
dynamic range, as well as over the redshifts probed, a vari-
ety of tests need to be conducted. These include studies of the
initial conditions (ICs), convergence to linear theory at very
large length scales, the mass resolution requirement, and other
evolution-specific requirements such as force resolution and
time-stepping errors. To establish robustness of the final re-
sults, codes based on different N-body algorithms should inde-
pendently converge to the same results (within error bounds).
While some of these studies have been conducted separately
and within the confines of the cosmic code verification project
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(Heitmann et al. 2007), this is the first time that the more or
less complete set of possible problems has been investigated in
realistic simulations.

We find that it is indeed possible to control the accuracy of
N-body simulations at 1% out to k ∼ 1 h Mpc−1. Even though
these scales are not very small, the simulation requirements
are rather demanding. First, the simulation volume needs to
be large enough to capture the linear regime accurately. Due
to mode–mode coupling, nonlinear effects influence scales as
large as 500 h−1 Mpc. Therefore, the simulation volume needs
to cover at least 1 (h−1 Gpc)3. Second, with this requirement
imposed, the number of particles necessary to avoid errors from
discreteness effects at the smallest length scales of interest,
also becomes substantial. As we discuss later, because we are
measuring the mass power spectrum (which is sensitive to near-
mean-density regions) numerical results aiming for accuracy at
the sub-percent level can only be trusted at scales below the
particle Nyquist wavenumber (see also Joyce et al. 2009). A
1 (h−1 Gpc)3 simulation volume requires a minimum particle
loading of a billion particles. Third, it is important to start
the simulation at a high enough redshift to allow enough
dynamic range (in time) for structures to evolve correctly and
for the initial perturbations to be captured accurately by the
Zel’dovich approximation (ZA). Lastly, the force resolution and
time stepping has to be accurate enough to ensure convergence
of the simulation results.

The paper is organized as follows. In Section 2, we use
a simple example to demonstrate the need for precision pre-
dictions from theory. Section 3 contains a description of the
N-body codes used in this paper and some basic information
about the simulations. In Section 4, we briefly describe the
power spectrum estimator. In Sections 5 and 6, investigations
of ICs and time evolution are reported, demonstrating that the
simulations can achieve the required accuracy levels. Finally,
we compare the numerical results to the commonly used semi-
analytic HaloFit approach (Smith et al. 2003) in Section 7,
finding a discrepancy of ∼5%–10% between the fit and the sim-
ulations. We provide a summary discussion of our results in
Section 8. Appendix A discusses errors in setting up the ICs,
comparing the Zel’dovich and second-order Lagrangian per-
turbation theory (2LPT) approximations. Appendix B provides
details of the Richardson extrapolation procedure used for some
of the convergence tests.

2. THE PRECISION COSMOLOGY CHALLENGE

Before discussing how to achieve 1% accuracy for the
nonlinear power spectrum, we will briefly demonstrate the
importance of accurately determining the power spectrum. In
our example, we assume the ability to measure the power
spectrum from observations at 1% accuracy in the quasi-linear
and nonlinear regimes. On larger scales, accounting for sample
variance (statistical limitations due to finite volume-sampling)
leads to an increase in the statistical error, of up to 10%. These
values are rough estimates, which are sufficient to make our
point in this simple example.

For our example, we use a halo model-inspired fitting formula
given by the code HaloFit as implemented in CAMB.6 Under
the assumptions going into HaloFit it can be straightforwardly
modified for wCDM cosmologies by simply adjusting the linear
power spectrum and the linear growth function to account for
w �= −1 (explicit tests for some cosmologies were presented in
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Figure 2. Upper panel: synthetic data from a HaloFit run. Lower panel:
synthetic data from a combination of several N-body runs. In both cases, the
black line shows the underlying power spectrum from which the data were
drawn and the red points show 34 data points with error bars. At small spatial
scales, the assumed error is 1%, rising to 10% at large scales due to increased
sample variance.

(A color version of this figure is available in the online journal.)

Ma 2007). Current WL analyses (see, e.g., Kilbinger et al. 2009)
rely on HaloFit to derive constraints for wCDM cosmologies
due to the lack of a better alternative. HaloFit is therefore the
natural choice for our example.

We generate two sets of mock measurements: one from a
power spectrum generated with HaloFit and another directly
from a set of high-precision simulations. We then move points
off the base power spectrum according to a Gaussian distribution
with variance specified by the error estimates given above. The
resulting mock data points and the underlying power spectra are
shown in Figure 2. On a logarithmic scale, the data points and
power spectra are almost indistinguishable. As we will show
later in Section 7, the difference between the HaloFit and
N-body power spectra is at the 5%–10% level: this difference is
enough to lead to significant biases in parameter estimation.

We determine the best-fit parameters from the two mock data
sets using the following parameter priors:

0.02 � ωb � 0.025,

0.11 � ωm � 0.15,

0.85 � ns � 1.05,

−1.3 � w � −0.7,

0.7 � σ8 � 0.9, (1)

where ωb = Ωbh
2 and ωm = Ωmh2. We do not treat h as an

independent variable but determine it via the CMB constraint
lA = πdlss/rs = 302.4 where dlss is the distance to the last
scattering surface and rs is the sound horizon (more details of
how we construct our model sampling space are provided in
Heitmann et al. 2009, Paper II).

The parameter estimation analysis then proceeds via a com-
bination of model interpolation and MCMC as implemented in
our recently introduced cosmic calibration framework (Habib
et al. 2007). We use HaloFit to generate the nonlinear power
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Figure 3. Posterior distributions for the five parameters under consideration.
Upper panel: results for the analysis of the HaloFit synthetic data set analyzed
with a set of HaloFit power spectra. The red dots indicate the true values. As
is to be expected, the constraints on the parameters are very good. Lower panel:
results for the HaloFit-based analysis of the N-body synthetic data set. Note
that the constraints for ωm and w are now incorrect at ∼20%.

(A color version of this figure is available in the online journal.)

spectra for the MCMC analysis. That is, we analyze a HaloFit

synthetic data set and one generated from numerical simula-
tions against a set of model predictions from HaloFit generated
power spectra. The results, which are all obtained from data at
z = 0, are shown in Figure 3. The upper panel shows the re-
sults from the analysis of the HaloFit synthetic data, where the
parameter estimation works extremely well, being essentially a
consistency check for the statistical framework. The result also
points to the constraining power of matter power spectrum data.
The lower panel in Figure 3 shows the corresponding result for
the synthetic data generated directly from the simulations. In
this case, the ∼5% errors in the HaloFit model predictions
are clearly seen to be problematic: most of the parameters are
significantly off, ωm and w being mis-estimated by ∼20%.

The example used here is certainly too simplified, relying only
on large-scale structure “observations” and making no attempt to
take into account covariance, degeneracies, other observations,

etc. For example, including a second observational probe such as
the CMB would provide a tighter constraint on σ8, reducing the
20% shift in w. Nevertheless, the example clearly illustrates
the general point that to perform an unbiased data analysis
the theory underlying the analysis framework must match or
preferably exceed the accuracy of the data.

3. N-BODY CODES AND SIMULATIONS

The numerical computations carried out and analyzed in this
paper are N-body simulations that model structure formation
in an expanding universe assuming that gravity dominates all
other forces. The phase space density field is sampled by
finite-mass particles and these particles are evolved using self-
consistent force evaluations. Although the effects of baryons
and neutrinos are taken into account while setting up ICs,
only their gravitational contribution to the ensuing nonlinear
dynamics of structure formation is kept (along with that of
the dark matter). Gas dynamics, feedback effects, etc. are all
neglected. At sufficiently small scales this neglect is clearly not
justified, but at the 1% level and for wavenumbers smaller than
k ∼ 1 h Mpc−1 this assumption is expected to hold.

In order to solve the N-body problem, we employ two
commonly used algorithms, the particle-mesh (PM) approach
and the tree-PM approach. The N-body methods model many-
body evolution problems by solving the equations of motion
of a set of tracer particles which represent a sampling of the
system phase space distribution. In PM codes, a computational
grid is used to increase the efficiency of the self-consistent
inter-particle force calculation. In the codes used in this paper,
the Vlasov–Poisson system of equations for an expanding
universe is solved using Cloud-in-Cell (CIC) mass deposition
and interpolation with second-order (global) symplectic time-
stepping and a fast Fourier transform (FFT)-based Poisson
solver. The advantage of the PM method is good error control
and speed, the major disadvantage is the restriction on force
resolution imposed by the biggest FFT that can be performed
(typical current limits being 20483 grids or 40963 grids). Two
independently written PM codes were checked against each
other in the low k regime, one being the PM code MC2 described
in Heitmann et al. (2005), with excellent agreement being
achieved. In addition, the publicly available code GADGET-2
(Springel 2005) was slightly modified to run in pure PM mode.
The agreement between these codes was excellent.

Tree-PM is a hybrid algorithm that combines a long-range
force computation using a grid-based technique, with shorter-
range force computation handled by a tree algorithm. The tree
algorithm is based on the idea that the gravitational potential of
a far-away group of particles is accurately given by a low-order
multipole expansion. Particles are first arranged in a hierarchical
system of groups in a tree structure. Computing the potential at
a point turns into a descent through the tree. For most of our
high-resolution runs we use the tree-PM code GADGET-2, for
some of the tests and comparison we also use the code Tree-PM
which is described in White (2002).

Several different N-body codes have been compared in
previous work (Heitmann et al. 2005, 2007), including PM, tree-
PM, adaptive-mesh-refinement, pure tree, and particle–particle
PM codes. The results of these code verification tests are
consistent with the idea that 1% error control is possible up
to k ∼ 1 h Mpc−1 (at z = 0), as shown in Figure 4. The
upper panel in the figure shows a comparison of the power
spectra from a subset of the codes used in Heitmann et al.
(2007) with respect to a GADGET-2 run. The simulations are
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Figure 4. Upper panel: comparison of dimensionless power spectra from a
handful of N-body codes, taken from the data of Heitmann et al. (2007) for the
“LCDMb” box: a ΛCDM model with Ωm = 0.314, h = 0.71, ns = 0.99, and
Lbox = 256 h−1Mpc with 2563 particles. The two PM codes, MC2 and PMM,
were run on a 10243 grid (with a grid-to-particle ratio of 4:1, a factor of 2 higher
than used for the PM runs in this paper). The FLASH run had a base grid of
2563 and a refinement level of two. Therefore, the force resolution of the purely
grid-based codes is roughly a factor of 10 lower than for the other codes (the
different force kernels make a precise comparison difficult). The dotted lines
show the 1% agreement limit. The high force-resolution codes agree to O(1%)
up to k ∼ 1 h Mpc−1 despite different choices for the force softening and other
numerical parameters. Lower panel: comparison of GADGET-2 and ART for
a simulation with 10243 particles and Lbox = 1h−1Gpc. The cosmological
parameters are very close to those for our major runs, the main difference being
the starting redshift of zin = 65.66. The agreement of the two codes is better than
1% over all scales. In addition, we compare one of the PM runs used in this paper
with respect to GADGET-2. The agreement is also at O(1%). We re-emphasize
that our goal is to derive simulation requirements for percent level accuracy and
finding a good balance between efficient computing and accuracy. By tuning
code parameters, the agreement between different codes may be improved, but
this would defeat the purpose of testing for robustness.

(A color version of this figure is available in the online journal.)

performed with 2563 particles in a 256 h−1Mpc box. We find
agreement at the 1% level between the high-resolution codes
despite the use of different choices for the force softening and
other numerical parameters. In a separate test, we compared
GADGET-2 with the Adaptive Refinement Tree (ART) code
(Kravtsov et al. 1997; Gottlöber & Klypin 2008). The simulation
encompassed a volume of (1 h−1Gpc)3 and 10243 particles. The
agreement between the two codes was again better than 1%
between z = 0 and z = 1 and out to k ∼ 1 h Mpc−1. The result
for z = 0 is shown in the lower panel of Figure 4. The excellent
and robust—w.r.t. numerical parameter choices—agreement
between different codes provides confidence that it is possible
to predict the matter power spectrum at the desired accuracy.

We use a combination of PM and tree-PM runs for this paper,
and in the follow-up work, to create an accurate prediction for the
matter power spectrum. At quasi-linear spatial scales—large, yet
not fully described by linear theory (k ∼ 0.1 h Mpc−1)—lower
resolution PM simulations are adequate. Furthermore, to reduce
the variance due to finite volume-sampling—a problem at low
values of k—simulations should be run with many realizations
of the same cosmology. We fulfill this requirement by running

a large number of PM simulations with either 5123 or 10243

particles. In order to resolve the high-k part of the power
spectrum, we use the GADGET-2 code.

The codes are run with different settings as explicitly dis-
cussed in the tests mentioned below. In the case of the
GADGET-2 runs, we use a PM grid twice as large, in each
dimension, as the number of particles, and a (Gaussian) smooth-
ing of 1.5 grid cells. The force matching is set to 6 times the
smoothing scale, the tree opening criterion being set to 0.5%.
The softening length is set to 50 kpc. For more general details on
the code settings in GADGET-2 and the code itself, see Springel
(2005).

The pure PM simulations have twice as many mesh points in
each dimension as there are particles. The integration variables
are the position and conjugate momentum, with time stepping
being in constant steps of Δ ln a = 0.02. The forces are obtained
using fourth-order differencing from a potential field computed
using Fourier transforms. The input density field is obtained
from the particle distribution using CIC charge assignment
(Hockney & Eastwood 1989) and the potential is computed
using a 1/k2 kernel.

If not stated otherwise, our fiducial ΛCDM model has the
following cosmological parameters: Ωm = 0.25 for the total
matter content, a cosmological constant contribution specified
by ΩΛ = 0.75, baryon density as set by ωb = Ωbh

2 = 0.024, a
dimensionless Hubble constant of h = 0.72, the normalization
specified by σ8 = 0.8, and a fixed spectral index, ns = 0.97.
These parameters are in accord with the latest WMAP results
(Dunkley et al. 2009). The model is run with box size of (936
h−1Mpc)3 and with 10243 particles. For some of the tests we
use a downscaled version of this simulation but keep the inter-
particle spacing approximately the same (1 h−1 Mpc).

4. POWER SPECTRUM ESTIMATION

The key statistical observable in this paper is the density
fluctuation power spectrum P (k), the Fourier transform of the
two-point density correlation function. In dimensionless form,
the power spectrum may be written as

Δ2(k) ≡ k3P (k)

2π2
, (2)

which is the contribution to the variance of the density pertur-
bations per ln k.

Because N-body simulations use particles, one does not
directly compute P (k) or equivalently, Δ2(k). Our procedure
is to first define a density field on a grid with a fine enough
resolution such that the grid filtering scale is much higher than
the k scale of interest. This particle deposition step is carried
out using CIC assignment. The application of a discrete Fourier
transform (FFT) then yields δ(k) from which we can compute
P (k) = |δ(k)|2, which in turn can be binned in amplitudes to
finally obtain P (k). Since the CIC assignment scheme is in effect
a spatial filter, the smoothing can be compensated by dividing
P (k) by W 2(k), where

W (k) = j 2
0

(
kxLg

2

)
j 2

0

(
kyLg

2

)
j 2

0

(
kyLg

2

)
, (3)

and Lg is the size of the grid cell. Typically the effect of
this correction is only felt close to the maximum (Nyquist)
wavenumber for the corresponding choice of grid size. One
should also keep in mind that particle noise and aliasing artifacts
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Figure 5. Top two panels: comparison of outputs at z = 10 using different starting redshifts. The particles are colored with respect to their velocities. The simulation
box is 8 h−1Mpc on a side. The simulation shown in the left panel was started at zin = 250, while for the other, zin = 50. In the simulation started at zin = 50,
structures formed by z = 10 are not as concentrated as in simulations with a high-z start, leading to the possible lowering of halo masses. The lower panel shows
differences along a filament. In this case a line was drawn between each particle position in the two different data sets. The longer the line, the larger the difference
due to the two different initial redshifts. For more details see Haroz et al. (2008), Haroz & Heitmann (2008), and Lukić et al. (2007).

(A color version of this figure is available in the online journal.)

can arise due to the finite number of particles used in N-body
simulations and due to the finite grid size which is used for
the power spectrum estimation. As explained further below,
convergence tests based on varying the number of sampling
particles can help establish the smallest length scales at which
accurate results can be obtained. The particle loading in our
simulations is sufficient to resolve the power spectrum at the
scales of interest, such that possible shot noise is at the sub-
percent level.

It is common to make a correction for finite particle number
by subtracting a Poisson “shot-noise” component from the bin-
corrected power spectrum:

Δ2
shot(k) = k3

2π2

(
L

Np

)3

, (4)

where Np is the cube-root of the number of particles and L is
the box length. We have not done this in this paper because our
particle loading is large enough to render it a small correction
on the scales of interest and it is not clear that this form
captures the nature of the correction correctly. Note that the
ICs have essentially no shot noise at all, and the evolution
prior to shell-crossing does not add any. Shot noise thus enters
through the high-k sector and filters back to lower k in a complex
manner.

We average P (k) in bins linearly spaced in k of width
Δk � 0.001 Mpc−1, and report this average for each bin
containing at least one grid point. We assign to each bin the
k associated with the unweighted average of the k’s for each
grid point in the bin. Note that this procedure introduces a bias
in principle, since for nonlinear functions 〈f (x)〉 �= f (〈x〉), but
our bins are small enough to render this bias negligible.

In a recent paper, Colombi et al. (2009) suggest an alternative
approach to accurately estimate power spectra from N-body
simulations. Their method is based on a Taylor expansion of
trigonometric functions as a replacement for large FFTs. The
idea is to estimate the power spectrum out to small scales with
minimal memory overhead, a major obstacle for the brute force
FFT approach. We have checked their method up to fifth order
against our results from the 20483 FFT and found excellent
agreement. Our FFT is clearly large enough to avoid any aliasing
at k ∼ 1 h Mpc−1.

5. INITIAL CONDITIONS

The ICs in N-body codes are often a source of systematic error
in ways that can sometimes be hard to detect. It is, therefore,
essential to ensure that the implementation of the ICs is not a
limiting factor in attaining the required accuracy of the power
spectrum over the redshift range of interest. An important aspect
here is the choice of starting redshift. There are two reasons for
this: (1) the Lagrangian perturbation theory used to generate
the initial particle distribution (usually the leading order ZA) is
more accurate at higher redshifts, and (2) for a given (nonlinear)
k scale of interest, enough time must have elapsed for the correct
nonlinear power spectrum to be established at that scale, at the
redshift of interest.

Due to a combination of the two effects mentioned above,
delayed starts typically lead to a suppression of structure
formation (including the halo mass function) as shown in
Figure 5. We now describe our basic methodology for generating
ICs and choosing the starting redshift.
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5.1. Initial Condition Generation

As is standard, we generate our ICs by displacing parti-
cles from a regular Cartesian grid (“quiet start”) using the ZA
(Zel’dovich 1970). In this approximation, the particle displace-
ment and velocity are given by

x(q) = q − D1∇qφ
(1), (5)

v = dx
dt

= −D1f1H∇qφ
(1). (6)

Here q is the initial (on-grid) position of the particle, x is the
final position, D1 is the linear growth factor defined below in
Equation (8) and φ(1) is the potential field. H is the Hubble
constant, fi is the logarithmic derivative of the growth function
fi = (d ln Di)/(d ln a), and the time-independent potential φ(1)

obeys the Poisson equation ∇2
qφ

(1)(q) = δ(q).
A recent suggestion is to determine the initial displacement

of the particles and their velocities via 2LPT instead of using the
(leading order) ZA approximation (Scoccimarro 1998; Crocce
et al. 2006). In principle, this could allow a later start of the
simulation (lower zin) without losing accuracy in the final
result. However, it does not address the problem of keeping
a sufficient number of expansion factors between the initial and
final redshifts. Additionally, error control of the perturbation
theory and its convergence properties need to be carefully
checked. We have therefore decided on a more conservative
approach: instead of using higher order schemes to generate
ICs, we choose a high enough starting redshift that higher order
effects are negligible (see Appendix A). Since most of the code’s
runtime is at low redshift, the additional overhead for starting
the simulation early is minimal.

The potential field is generated from a realization of a
Gaussian random density field δ(k) (with random phases). The
initial power spectrum is

P (k) = BknT 2(k), (7)

where B determines the normalization and T (k) is the matter
transfer function. We compute T (k) using the numerical code
CAMB. The results from CAMB were compared against those
generated by an independent code described in White & Scott
(1996), Hu & White (1997), and Hu et al. (1998). The results
from this code are known to agree well with CMBfast (Seljak
et al. 2003). The final level of agreement was at the ∼10−3 level
for the k modes of interest, comfortably below our 1% goal.

The displacement field is easily generated in Fourier space:
the Fourier transform of the displacement field is proportional to
(k/k2)δ(k) in the continuum, and we compute the displacements
using FFTs. The FFT grid is chosen to have twice as many points,
in each dimension, as there are particles.

The scale-independent linear growth factor, D1(z), satisfies
(e.g., Peacock 1999)

(
D1

a

)′′
+

(
4 +

1

2

ρ ′
c

ρc

) (
D1

a

)′

−
(

3

2

ρm

ρc

− 1

2

ρ ′
c

ρc

− 3

) (
D1

a

)
= 0. (8)

Here ρc ∝ H 2 is the critical density, ρm is the matter density,
and primes denote differentiation with respect to ln a. Our
convention has D1(z = 0) ≡ 1 and D1(z) ∝ (1 + z)−1 when

ρm � ρc. This procedure neglects the differential evolution of
the baryons and dark matter, but since we are simulating only
collisionless systems here this is the most appropriate choice.
Future simulations including baryons will have to deal with this
question in more detail.

5.2. The Initial Redshift

The choice of the starting redshift depends on three factors:
the simulation box size, the particle loading, and the first
redshift at which results are desired. The smaller the box and
the higher the first redshift of interest, the higher the initial
redshift must be. It is not easy to provide a universal “recipe” for
determining the optimal starting redshift. For each simulation
set-up, convergence tests must be performed for the quantities
of interest. Nevertheless, there are several guiding principles to
determine the starting redshift for a given problem. These are
the following:

1. Ensure that any unphysical transients from the ICs are
negligible at the redshift of interest.

2. Ensure a sufficient number of expansion factors to allow
structures to form correctly at the scales of interest.

3. Ensure that the initial particle move on average is much
smaller than the initial inter-particle spacing.

4. Ensure that Δ2(k) � 1 at the wavenumber of interest.

A more detailed description—from a mass function-centric
point of view—can be found in Lukić et al. (2007). The aim here
is to measure the power spectrum from a (936 h−1Mpc)3 box
between z = 1 and z = 0 at k = 1 h Mpc−1 at 1% level accuracy.
In order to fulfill the first and second criteria given above, we
generate the ICs at zin such that D(zin)/D(z = 1) = 0.01. With
D1(z) � a(z) = 1/(1 + z) this leads to a starting redshift of
approximately zin = 200 and 100 expansion factors between the
starting redshift and z = 1. Note that this criterion is completely
independent of the box size and particle loading, though it is
cosmology dependent via the growth rate.

For the (936 h−1Mpc)3 boxes we simulate, this starting
redshift leads to rms displacements between 3% and 5% of the
mean inter-particle spacing, satisfying the condition that the rms
displacement should be much less than the mean inter-particle
spacing. This measurement clearly depends on the box size. A
smaller box would have led to much bigger displacements with
respect to the mean inter-particle spacing. At zin = 200, the
dimensionless power at the fundamental mode is O(10−8) and
at the Nyquist frequency is O(10−4) which clearly satisfies the
last point of the list above. We show a series of convergence tests
including a higher order Lagrangian scheme in Appendix A.

6. RESOLUTION TESTS

In order to ensure that our results are properly converged for
k � 1 h Mpc−1 between z = 1 and z = 0 we need to understand
the impact of box size, particle loading, force softening, and
particle sampling on the numerically determined power spectra.

6.1. Box Size

The choice of the box size depends on several factors. In
principle, one should choose as large a volume as practicable,
to ensure that the largest scale modes are (accurately) linear at
the redshift of interest (in our case between z = 1 and z = 0),
improve the statistical sampling (especially for BAO), and to
obtain accurate tidal forces. If the box volume is too small, the
largest modes in the box may still appear linear at the redshift of
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below k ∼ 0.1 h Mpc−1 (the 1% limit is shown by the dotted lines). The small
box result displays an overall suppression of the power spectrum at low k (see
the text).

(A color version of this figure is available in the online journal.)

interest, even though they should have already gone nonlinear.
This leads to a delayed onset of the nonlinear turnover and the
quasi-linear regime is treated incorrectly.

Practical considerations, however, add two restrictions to
the box size arising from (1) the necessarily finite number of
particles, and for the PM simulations, (2) limitations on the
force resolution. The storage requirements and run time for the
N-body codes scale (close to) linearly with particle number, so
running many smaller boxes “costs” as much as running one
very large box with more particles. However the ability to move
jobs through the queue efficiently and post-process the data all
argue in favor of more smaller jobs than one very large job.

The CDM power spectrum peaks roughly at k ∼
0.01 h Mpc−1, determined by the horizon scale at the epoch of
matter-radiation equality. As the power falls relatively steeply
below this value of k, a box size of 1 (h−1Gpc)3, corresponding
to a fundamental mode of k ∼ 0.006 h Mpc−1, is a reasonable
candidate for comparing with linear theory on the largest scales
probed in the box. (These considerations are of course redshift
and σ8-dependent: at z = 0, small nonlinear mode-coupling
effects can be seen below k ∼ 0.1 h Mpc−1 (cf. Figure 6). At
higher redshifts, these effects move to higher k.) Of course,
bigger boxes are even better (especially for improved statistics,
although this is unrelated to linear theory considerations), and a
convergence test in box size is described below.

The particle loading is particularly significant as it sets the
maximum wavenumber below which the power spectrum can
be accurately determined. As discussed in Section 6.2, the
accuracy of the power spectrum degrades strongly beyond the
Nyquist wavenumber, which depends on both the box size and
particle number (see Equation (9)). Therefore, a compromise
has to be found between box size and particle loading. After
having decided the size of the smallest scale of interest and the
maximum number of particles that can be run, the box size is
basically fixed. In our case, the optimal solution (considering
computational resources) appears to be a box size of roughly
1 h−1 Gpc on a side and a particle loading of one billion

particles – covering a wavenumber range 0.0067 h Mpc−1 <
k < 3.4 h Mpc−1 with the upper limit given by the Nyquist
wavenumber.

The force resolution for PM codes is a direct function of the
box size, once the size of the density (or PM) grid is fixed. While
other codes do not have this restriction in principle, PM codes
are very fast, and have predictable error properties. In order to
obtain sufficient statistics and accuracy for determining P (k),
results from many large volume runs at modest resolution can be
“glued” to those from fewer high-resolution runs, providing an
optimal way to sample the quasi-linear and nonlinear regimes.
PM simulations are very well suited to handling the quasi-linear
regime; for a Gpc3 box, a 20483 grid provides enough resolution
to match the high-resolution runs out to k ∼ 0.5 h Mpc−1.

In order to ensure that a Gpc3 box is sufficient to obtain
accurate results on very large scales, we compare the results
from 8 realizations in a (936 h−1Mpc)3 box, 4 realizations in a
(2000 h−1Mpc)3 box, and 127 realizations in a (234 h−1Mpc)3

box. The large volume runs were run with 10243 particles on
a 20483 grid each, the smaller volumes were run with 5123

particles on a 10243 grid. We subtract the power spectrum from
the initial redshift scaled by the growth factor to z = 0 from the
final power spectrum, average over all realizations and divide by
the linear theory answer. The results are shown in Figure 6. The
agreement between the two sets of large volume simulations
is much better than 1%. The agreement with linear theory on
scales below k ∼ 0.1 h Mpc−1 is roughly at the percent level and
much better than this for k ∼ 0.01 h Mpc−1. We note that for the
cosmology used in our study, we do not observe a suppression
of the power spectrum with respect to linear theory by ∼5% on
scales of 0.05 h Mpc−1 < k < 0.075 h Mpc−1 as was reported
in, e.g., Smith et al. (2007). The results for the smaller boxes is
a few percent below linear theory at large scales and the onset
of the nonlinear regime is captured inaccurately. Thus, small
box simulations suffer from two defects: first, a large number
of simulations is required to overcome finite sampling scatter
at low k, and, second, all simulations are biased low due to the
unphysical suppression of the power spectrum amplitude.

In a recent paper, Takahashi et al. (2008) discuss finite volume
effects in detail and propose a way to use perturbation theory
to eliminate these effects. They have two concerns: (1) A small
simulation volume will lead to enhanced statistical scatter on
large scales, if only a few realizations are considered. (2) If
the simulation volume is too small and the linear regime is not
captured accurately, the result for the power spectrum will be
biased low. We overcome the first difficulty by running many
realizations of our cosmological model. In combination with our
large simulation volume, we are able to keep the statistical noise
below the percent level. The second concern is clearly valid if the
simulation box is too small. With the Gpc3 and larger volumes
we consider, no size-related bias is observed. The two different
box sizes we investigate are in good agreement as can be seen in
Figure 6. One concern with respect to the Takahashi et al. (2008)
results is that they start their simulations rather late (zin = 30)
and investigate the results starting at z = 3. As demonstrated
in Figure 17 such a late start suppresses the power spectrum at
quasi-linear and nonlinear scales.

6.2. Mass Resolution

We investigate the influence of the particle loading on the
accuracy of the power spectrum by first asking the following
question: how many particles are required to sufficiently sample
the density field when calculating the power spectrum? To
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(A color version of this figure is available in the online journal.)

answer this question we start from one of the GADGET-2
simulations run with a (936 h−1Mpc)3 box and with 10243

particles. We determine the power spectrum from this run at
z = 0. Next, we downsample the 10243 particles to 5123,
2563, and 1283 particles by taking the particles which belong to
every second (fourth, eight) grid point in each dimension. Since
the particles are downsampled from a fully evolved simulation,
evolution and sampling issues are separated.

In the upper panel of Figure 7 the resulting power spectra are
shown. The lower panel shows the ratio of the power spectra
from the downsampled distributions with respect to the 10243

particle distribution. In addition, we have marked the Nyquist
wavenumber divided by 2 for each power spectrum. The Nyquist
wavenumber is set by the inter-particle separation on the initial
grid:

kNy = π

Δp

= πNp

L
, (9)

with Δp being the inter-particle spacing, Np the cube-root of
the number of particles, and L, the box size (936 h−1 Mpc)3.
Values of kNy for the 10243, 5123, 2563, and 1283 particle
cases are 3.4, 1.71, 0.86, and 0.43 h Mpc−1, respectively. As
shown in Figure 7, all power spectra agree to better than 1%
for k < kNy/2. The undersampled particle distributions lead to
an overprediction of the power spectrum beyond this point due
to the increase in particle shot noise. As mentioned earlier,
a simple shot noise subtraction assuming Poisson noise as
given in Equation (4) does not compensate for this increase.
Detailed tests show that the shot noise which leads to the
overprediction is scale dependent and smaller than Poisson shot
noise on the scales of interest. (A naive Poisson shot noise
subtraction would alter the power spectrum at k = 1 h Mpc−1
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(A color version of this figure is available in the online journal.)

by 0.2% at z = 0 and by 1% at z = 1 for 10243 particles.)
Thus we are led to conclude that, in the absence of shot noise
modeling (a difficult and potentially uncontrolled procedure),
the 1% accuracy requirement on the power spectrum can
only be satisfied for wavenumbers, k < kNy/2. This quite
restrictive limit likely comes from the fact that the power
spectrum is sensitive to near-mean-density material which is
not well modeled on scales smaller than the mean inter-particle
separation.

The next step is to investigate how the error from an
“undersampled” initial particle distribution propagates through
the numerical evolution. For this test we first downsample
the initial particle distribution in the same way as before, at
zin = 211, from the original 10243 particles to 5123 particles
and 2563 particles. We then run the simulations to z = 0 with
the same settings in GADGET-2 as were used for the full run
(20483 PM grid and a softening length of 50 kpc). We do not
use the 1283 particle set for this test since the corresponding
sampling error is too large. Results are shown in Figure 8 for
outputs at z = 1 and z = 0. Ratios of the power spectra from
the downsampled ICs are shown with respect to (1) the power
spectrum from the full 10243 run, and (2) the power spectra
correspondingly downsampled at z = 1 and z = 0 as shown in
Figure 7.

There are two points to note here. First, restricting attention
to case (1) above, there is a noticeable loss of power below kNy,
and second, a steep rise beyond this point. The loss of power
is not due to the downsampling in the IC—as can be easily
checked by comparing the power spectrum from the particles
after the IC generation against the desired input power spectrum
for the given realization—but is due to a discreteness effect: a
reduction in the linear growth factor from its continuum value
as k → kNy. As the evolution proceeds, this suppression is
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Figure 8). The vertical lines are the same as in Figure 8.

(A color version of this figure is available in the online journal.)

reduced due to the addition of nonlinear power, as can be seen
by comparing the z = 1 and z = 0 results in Figure 8, and
also by noting the smaller suppression for the case with 5123

particles for which the larger kNy means an enhancement in
nonlinearity (cf. Figure 7). The steep rise is a manifestation of
particle shot noise as can be seen by looking at the results for
case (2). For wavenumbers up to kNy/2 there is no difference
between the two ratios (case (1) versus case (2)) but beyond that
point the results from case (2) show a marked reduction (z = 1)
to almost a removal (z = 0) of the enhancement, consistent with
the stated hypothesis. We would like to re-emphasize that our
convergence tests show that a Poisson shot noise subtraction
alters the power spectrum in the wrong way at the scales of
interest. It enhances the suppression of the power spectrum near
the Nyquist wavenumber and overcorrects the power spectrum
at higher wavenumbers.

The problem we now face is that the (IC downsampling) error
at k ∼ kNy/2 is large: for the 2563 particle run at z = 1 it is
∼20%, and for 5123 particles it is still ∼7%. At z = 0, the error
is ∼10% for the 2563 run and ∼3% for the 5123 run. Thus, one
may wonder if the fiducial 10243 particle run can itself yield
results at k = 1 h Mpc−1 accurate to 1%.

A brute force approach would be to run with 20483 particles
and check convergence with respect to that simulation. To
avoid the computational cost of the brute force approach, we
take a different tack: we extrapolate from the two low-mass
resolution runs to try and predict the results of the high-mass
resolution run (see Appendix B). The success of Richardson
extrapolation when applied to power spectra from different
force resolution runs has been demonstrated by Heitmann et al.
(2005). We now carry out a similar procedure, allowing for both
linear or quadratic convergence.
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(A color version of this figure is available in the online journal.)

Figure 9 shows the results for the extrapolation tests for
z = 1 and z = 0. Following Equations (B5) and (B7),
we assume linear and quadratic convergence respectively, and
predict the power spectrum for the 10243 particle run, displaying
the ratio of the prediction with respect to the full 10243 run.
The quadratic extrapolation scheme works much better than the
linear one—out to k � 0.8 h−1Mpc the prediction is accurate
to better than 1%. Obviously, the prediction will not work very
well beyond the scale set by the mass resolution of the 2563

simulation. Nevertheless, the test shows that at k = 1 h Mpc−1

(which is close to kNy/2 from the 5123 particle run and below
kNy/2 for the 10243 particle run), we should obtain a reasonably
accurate prediction for a 20483 particle run.

Figure 10 shows that the 10243 particle run is within 1% of
the prediction for a 20483 run to k � 1 h Mpc−1 at z = 0 and
within 2%–3% at z = 1 (but here the extrapolation scheme itself
is being stretched to its limit—the actual result is likely to be
better). This enables us to conclude that our mass resolution will
allow a 1% accurate calculation at the scale of interest, without
any need to extrapolate.

6.2.1. Aliasing Effects

To confirm the results of the tests in this section, we check here
for possible aliasing artifacts which might arise since Np �= Ng

in the ICs (Ng is the number of grid points per dimension). We
will show briefly in the following that such effects are negligible.

As explained in Section 5.1, the ICs in our simulations are
set in the following manner: (1) Implement a realization of a
Gaussian random field IC for the density field in k-space, and
also for the corresponding scalar potential and gradients of the
potential. (2) Using an inverse FFT, determine the gradient field
in real space, and use it to move particles from their initial on-
grid positions (where the potential gradient is exactly known)
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using the ZA. Aliasing cannot enter in the first inverse FFT, but
it can in the second, “particle move” step, since the particle grid
is not constrained to be the same as the field grid.

In most simulations, with some exceptions, the typical choice
for the IC is to take Δp = Δg or Δp = 2Δg (Δg is the grid
spacing) since there is not much point in adding field power
that cannot be represented by the particle distribution (beyond a
spatial frequency set by the particle Nyquist wavenumber kNy).
In addition, there is a question that doing this could be a problem
for simulations by leaking artificial “grid” power into the ICs.

In reality, the situation is relatively benign because of the
rapid fall-off of the initial P (k) at high k. This can be seen in
results from earlier papers, e.g., Baugh et al. (1995), Figure A.3.
Modern simulations have much higher mass and force resolu-
tion, so it is important to check each time one runs simulations
that there is no problem with aliased or some other artificial
power leaking back to lower k.

The central issue is the existence of the first particle grid peak
in the power spectrum at kp = 2π/Δp which influences the
computation of P (k) close to it in a way that is hard to correct
or compensate for, given that we are interested in percent level
accuracy. For a chosen k scale of interest, kI < kNy, one has to
make sure that kp is sufficiently greater than kI at the redshift of
interest (the lower the redshift the easier to satisfy this condition,
since evolution boosts P (kI ) significantly compared to P (kp)).

In the specific mass resolution tests carried out above we
investigate the case of a single realization with fixed Δg for
different choices of Δp. In order to show that potential aliasing
effects do not alter our results we carry out the following
additional test. We fix Ng = 1024 and consider two cases
with Np = 512 and Np = 256 (corresponding to Δp = 2Δg

and Δp = 4Δg). In addition to these runs we also run three
simulations all with Δp = Δg with Np = 1024, Np = 512, and
Np = 256, explicitly setting all the high-k modes to zero for
the latter two cases, for the same k space realization as in the
first. Thus we have essentially the same phases but no power
beyond kNy in all three cases. The results for P (k) are shown at
z = 0 as a ratio against the Ng = Np = 1024 case in Figure 11.
Note that the same suppression of power around kNy as noted in
the previous section is seen here, independent of whether high k
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Figure 12. Force resolution convergence study at z = 1 and z = 0 with
GADGET-2. The 5123 PM grid is the same in all five runs, and the force
resolution is varied between 25 kpc and 400 kpc. At k ∼ 1 h Mpc−1, a force
resolution of 100 kpc already leads to results converged well below 1% at both
redshifts with respect to the 25 kpc resolution run.

(A color version of this figure is available in the online journal.)

power is present in the ICs or not. Thus any effect due to aliasing
is negligible.

6.3. Force Resolution

As discussed in Section 3 we employ two N-body methods
in this paper: PM simulations with grid sizes of 10243 and
20483 and tree-PM simulations. The force resolution of the
PM runs is insufficient to resolve the power spectrum out to
k ∼ 1 h Mpc−1 (see, e.g., Figure 14 for the shortfall of power
in the PM runs). We therefore discuss only the convergence
properties of the tree-PM algorithm out to k ∼ 1 h Mpc−1. Since
the GADGET-2 runs with 10243 particles are computationally
expensive, and the force softening primarily affects small scales,
we chose to downscale the simulation box and the number of
particles for this test to 2563 particles in a 234 h−1Mpc box (a
reduction by a factor of 64 from the main runs). Following
the practice in the larger runs, the PM force grid is set to
twice the number of particles in one dimension, resulting in
a 5123 PM mesh. All the other code settings are the same
as for the large runs and we vary only the force softening
to test for the effects of finite force resolution. The effective
force resolution lengths range from 400 kpc to 25 kpc (50 kpc
is used in the large runs). The results for z = 0 and z = 1
are shown in Figure 12. At k ∼ 1 h Mpc−1, the difference
between 50 kpc and 25 kpc is well below 0.1% for both redshifts,
and therefore comfortably within our requirements. In fact,
meeting the force resolution requirements at k ∼ 1 h Mpc−1

with the tree-PM algorithm is computationally much less
demanding than meeting the mass resolution requirements. It
may be that for power spectrum simulations a hybrid or adaptive
PM code is the most computationally efficient route, though
other uses of the simulations may be more sensitive to resolution.

The size of the PM mesh is a separate issue, and significant
in its own right. If high accuracy is desired the mesh should not
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be chosen to be too small, as this increases the PM error and
pushes the handover between the tree and the mesh to larger
scales. In tests carried out to determine the size of the PM grid,
we observed an unphysical suppression of the early-time power
spectrum at quasi-linear scales for the smaller meshes.

6.4. Time Stepping

Most N-body codes use low-order—typically, second or-
der—symplectic time-stepping schemes. (Full symplecticity is
not achieved when adaptive time stepping is employed.) The
choice of the time variable itself can vary, although typically it
is some function of the scale factor a, e.g., a itself or the natural
logarithm of a. PM codes most often use constant time stepping
in a or ln a. Higher-resolution codes use adaptive, as well as
individual particle time stepping. Hybrid codes that mix grid
and particle forces, such as tree-PM, have different criteria for
time-stepping the long-range forces as compared to the short-
range forces, where individual particle time steps are often used.
Because of these complexities, it is important to check that the
time-stepping errors are sub-dominant at the length scales of
interest for computing the mass power spectrum.

The GADGET-2 runs in this paper use ln a as the time
variable. The PM calculations within GADGET-2 use a global
time step; we found 256 time steps sufficient for this part. The
tree algorithm for the short-range forces uses an adaptive time-
stepping scheme and our runs use a total of about 3000 time
steps. The criterion for the adaptive time stepping is coupled
to the softening length ε via: Δt = √

2ηε/|a| where η allows
adjustments in the time stepping; we use η = 1% (note that
here a is the acceleration). Detailed tests of the convergence
of the time stepping employed by GADGET-2 can be found in
Section 4 of Springel (2005).

We perform an additional test to verify the expected quadratic
convergence, considering the largest mode in the box (in this
case k = 6.7 × 10−3 h Mpc−1). We compare the numerical
results for P (k) with that expected from linear theory, which
should be reasonably accurate at these very large scales. By
using the largest mode, one is insulated from errors due to the
particle loading and small-scale force resolution.

We investigate both time variable choices, ln a and a. The
results are shown in Figure 13. All the test runs are in pure PM
mode on a 10243 grid, with the tree switched off in GADGET-2
(there is no need for high force resolution in this test) and using
global time stepping. For steps linear in a we show results for
roughly 600 and 1200 time steps, for the time stepper in ln a
we show results for Δ ln a ≈ 0.005, 0.01, 0.02, 0.04, and 0.08.
In addition, we fit two curves through the results assuming
linear and quadratic convergence. As expected from a second-
order integrator, the quadratic fit is in very good agreement
with the data points. Quadratic extrapolation of the results for
the two time-stepping schemes from finite k to zero is in very
good agreement with linear theory, to better than 0.2%—about
the deviation expected given the dimensionless power at the
fundamental mode of the box. If we take the adaptive time-step
run as the reference (rather than linear theory), the agreement
is better than 0.04%. Adaptive time stepping is expected to
yield results very close to ln a stepping on large scales, since
for the long-range force even the adaptive time-stepper run is
constant in ln a with Δ ln a = 0.02. The excellent agreement
with time stepping in a confirms the robustness of the different
schemes. Since our interest is in generating the power spectrum
at percent accuracy at minimal computing cost, we conclude
that the ln a time-stepping scheme with approximately 250 time
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Figure 13. Time-stepper convergence for Δ2(k) using linear (upper plot)
and logarithmic (lower plot) time stepping in a at z = 0, as a function of
number of time steps. The k value chosen is for the largest mode in the box,
k = 6.7 × 10−3 h Mpc−1 (black stars). The black triangle shows the result
from a GADGET-2 run with adaptive time stepping in ln a, the blue box is
the power spectrum from the IC scaled by the linear growth factor to z = 0,
the red circle the Δ2(k) value for time stepping linear in a extrapolated to zero
assuming quadratic convergence, and the turquoise cross the same quantity for
ln a. All (extrapolated) values from the simulations agree with linear theory to
0.2% or better, the simulations themselves agreeing to better than 0.04% taking
the GADGET-2 run as the reference. The pink line shows a quadratic fit to the
data points.

(A color version of this figure is available in the online journal.)

steps is a good compromise for the PM runs to obtain an accurate
power spectrum at quasi-linear scales (two orders of magnitude
removed from scale set by the force resolution).

7. MATCHING LOW AND HIGH RESOLUTION POWER
SPECTRA AND COMPARISON WITH HaloFit

Last, we compare our results with the standard fitting formula,
HaloFit (Smith et al. 2003), currently used for analysis of,
e.g., WL data (Jarvis et al. 2006; Massey et al. 2007; Benjamin
et al. 2007; Fu et al. 2008) or for forecasts on the improvement
of cosmological constraints from future surveys (Tang et al.
2008).7 HaloFit provides the nonlinear power spectrum over
a range of cosmologies in a semi-analytic form. It is based
on a combination of the halo model approach (for a review
of the halo model, see, e.g., Cooray & Sheth 2002) and an
analytic description of the evolution of clustering proposed
by Hamilton et al. (1991). In addition, the fit is tuned to
simulations by introducing two new parameters: an effective
spectral index on nonlinear scales, neff , and a spectral curvature
C. The combination of analytic arguments and tuning to results
from N-body simulations has led to the most accurate fit for the
nonlinear power spectrum to date (as we will show below, the
fit is accurate to ∼5%–10%). As mentioned above, we use here
the CAMB implementation of HaloFit.

7 While there are a large number of “forecast” papers, this is one of the most
recent.
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Figure 14. Matching of an ensemble of low-resolution runs with one realization
of a high-resolution GADGET-2 run. The upper panel shows the average from
16 realizations from the low-resolution PM runs (red) and the power spectrum
from the GADGET-2 run (black). The lower panel shows the ratio of the low-
resolution ensemble with respect to the GADGET-2 run. Out to k ∼ 0.5 h Mpc−1

the difference is less than 1% (disregarding the noise from the single realization).
We match the two power spectra at k ∼ 0.3 h Mpc−1, at which point the noise
in the single realization is small enough, yet the resolution of the PM runs is
sufficient to accurately resolve the power spectrum.

(A color version of this figure is available in the online journal.)

In order to compare simulation results to a smooth fit, we
first combine 16 realizations from the PM runs in the low-k
region with one high-resolution run, as shown in Figure 14.
At around k = 0.6 h Mpc−1 the lower resolution of the PM
runs begins to become apparent and the result falls below that
from GADGET-2. Conservatively, we match the two power
spectra at k = 0.3 h Mpc−1. At this point, the variance from
the single realization of the GADGET-2 run is small enough
that the matching leads to a smooth power spectrum. (A more
sophisticated matching procedure is described in Lawrence et al.
2010, Paper III.) One concern might be that a single realization
is insufficient to capture the behavior on small scales accurately:
because of mode coupling it is not obvious that fluctuations on
large scales do not also cause substantial effects on small scales.
In Figure 15 we show that, due to the large box size, this is not
a concern at least at the percent level of accuracy. The figure
shows the ratio of two different realizations at the initial and
final redshift. Both simulations are run with GADGET-2 at our
standard settings. The variations at high k (beyond the matching
point k = 0.3 h Mpc−1) are at the percent level and appear to be
free of systematic trends.

The ratio of the matched power spectrum to the prediction
from HaloFit is shown in Figure 16. In this case, the HaloFit

prediction falls roughly 5% below the simulation. The procedure
for combining the simulation results can be seen to work very
well, as there is no discontinuity at k = 0.3hMpc−1 from the
matching. Our result is in good agreement with, e.g., Smith et al.
(2008) as well as Ma (2007), who find a 5% suppression for
HaloFit at k ∼ 0.1hMpc−1. At larger k, however, the results in
Ma (2007) may not be very accurate, due to limitations in force
resolution in that work.
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Figure 15. Ratio of power spectra from two independent realizations at initial
and final redshifts. Both simulations are carried out with GADGET-2 at the
standard setting. Results as shown have been smoothed by averaging over
every five k-values. Beyond our matching point for low and high-resolution
simulations, k = 0.3 h Mpc−1, the results agree at the percent level, confirming
that one realization of an ∼h−1 Gpc high-resolution run is sufficient.

(A color version of this figure is available in the online journal.)
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Figure 16. Comparison of the simulation power spectrum to HaloFit. Shown
is the ratio of HaloFit with respect to the simulation result. The simulation
result has been obtained by combining the PM runs and the GADGET-2 run at
k = 0.3 h Mpc−1 and it has been smoothed by averaging over every five k-values
to reduce the noise for the comparison. The HaloFit result is approximately
5% lower than the result from simulations.

(A color version of this figure is available in the online journal.)

8. CONCLUSION AND OUTLOOK

The advent of precision cosmological observations poses a
major challenge to computational cosmology. With observa-
tional results accurate to the percent level a significant uncer-
tainty in extracting cosmological information from the data is
due to inaccuracies in theoretical templates. At the required
level of accuracy large-scale simulations are unavoidable, since
the nonlinear nature of the problem makes it impossible to de-
rive analytic or semi-analytic expressions for statistics such as
the matter power spectrum, at an accuracy better than ∼10%.
While simulations in principle should yield results at sub-
percent accuracy, in practice this is a non-trivial task due to
uncertainties in the numerical implementation and modeling of
relevant physical processes.

Motivated by this realization, we decided to carry out an end-
to-end calculation of one of the simplest non-trivial problems we
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could imagine: a percent level computation of the nonlinear mass
power spectrum to k ∼ 1 h Mpc−1 over the range 0 < z < 1.
This was a problem which appeared useful and timely as well
as tractable (if not straightforward) while still providing a
meaningful learning environment—by actually going through
all of the steps we would map out the necessary infrastructure
which would be required, find the most difficult pieces of the
problem and present a proof-of-principle demonstration that
meaningful, precision theoretical predictions could be used in
support of future cosmological measurements.

We have broken the problem into three steps, to be presented
in three publications. In this, first, paper we showed that it is
possible to obtain a calibration of the nonlinear matter power
spectrum at sub-percent/percent accuracy out to k ∼ 1 h Mpc−1

between z = 1 and z = 0. This wavelength regime is important
for ongoing and near-future WL surveys. The restriction to these
(large) length scales has two major advantages: baryonic effects
are subdominant on these scales (e.g., White 2004; Zhan &
Knox 2004; Jing et al. 2006; Rudd et al. 2008; Guillet et al.
2009) and the numerical requirements in this regime remain
rather modest. Each simulation can be carried out in a matter
of days on parallel computers with several hundred processors
and the data volume is manageable with arrays of inexpensive
disk. Pushing beyond k ∼ 1 h Mpc−1 will require advances in
our understanding of the implementation of baryonic physics,
or self-calibration techniques, as well as advances in algorithms
and computational power.

We derived a set of numerical requirements to obtain an accu-
rate power spectrum by performing a large suite of convergence
and comparison tests. The goal was a set of code settings which
balance the need for precision and the limitation of compu-
tational resources. As shown here, the simulation volume and,
especially, the particle loading are two major concerns in obtain-
ing an accurate matter power spectrum. The simulation volume
has to be in the ∼Gpc3 range, leading to a minimum require-
ment of ∼1 billion particles. Further increase in volume would
be helpful, but would require a concomitant increase in the num-
ber of particles, greatly adding to the computational burden. The
1 Gpc3/1 billion particle simulation is a good compromise be-
tween sufficient accuracy and computational cost.

Besides a large simulation volume and good particle sam-
pling, initialization of the simulation also plays an important
role. To guarantee converged results, the simulation must be
started at a high enough redshift. We found that a starting red-
shift of zin � 200 is sufficient to get accurate results between
z = 1 and z = 0.

The results for the power spectrum are rather stable to changes
in the number of time steps. This is clearly related to the fact that
our resolution demands are relatively modest. For the PM runs,
a few hundred time steps are sufficient, while for the tree-PM
runs the overall number of time steps is a factor of 10 larger. We
emphasize that the simulation settings discussed here will lead
to the required accuracy only up to k ∼ 1 h Mpc−1. While these
settings can be used as a guideline for other simulation aims,
they do not replace convergence tests that must be performed
for each new problem, if one desires high-precision results.

While WL was a primary motivation for this study, our efforts
are of wider interest as an exercise in precision “theoretical”
cosmology. We demonstrated that it is possible to achieve 1%
accuracy in the mass power spectrum in gravity only simulations
on relatively large scales for a limited range of cosmological
models. Had this not been the case the field would have needed
to rethink its demands on theory. The non-trivial computational

and human cost of even this “first step” argues for increased
efforts in these directions in order to satisfy the increasingly
stringent demands of future observations.

Having established the ability to generate power spectra with
sufficient accuracy from N-body simulations, the next major
question that arises is how to use these costly simulations
for parameter estimation, e.g., via MCMC. To address this
problem, we have recently introduced the cosmic calibration
framework (Heitmann et al. 2006; Habib et al. 2007; Schneider
et al. 2008) which is based on an interpolation scheme for the
power spectrum (or any other statistic of interest) derived from
a relatively small number of training runs.

The next step in generating precise predictions for the
matter power spectrum is to determine the minimum number
of cosmological models needed to build an accurate emulator
and then to construct the emulator from a set of high-precision
simulations. In the second paper of this series we establish
that 30–40 cosmological models are sufficient to explore the
parameter space for wCDM cosmologies (constant w) given
the current constraints on parameter values. The third and final
paper will present results from the simulation suite designed
and discussed in the second paper, and will include a power
spectrum emulator that will be publicly released.
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APPENDIX A

CONVERGENCE TESTS FOR INITIAL CONDITIONS

The ICs for N-body simulations are usually generated by
displacing particles from a regular grid using the ZA. This
amounts to a first-order expansion in Lagrangian perturbation
theory. In order to verify that our criteria for the initial redshift,
explained in Section 5, are sufficient to guarantee 1% accuracy
between z = 1 and z = 0 we carry out a convergence study.

The first step is indicated in Figure 17, which shows that the
power spectrum between z = 1 and 0 converges as we increase
zin and is well converged by z = 0 given zin satisfying our
criteria. Our results are in very good agreement with similar
tests carried out by, e.g., Ma (2007). We carried out numerous
other tests with very similar results including tests for different
cosmologies. By starting when D(zin)/D(z = 1) = 0.01 our
results are converged to better than 1% for all 0 � z � 1.

The second step is to show that the results as zin → ∞
are converging to the desired answer. One way to check this
is to compare the ZA scheme to a higher order Lagrangian
approximation, e.g., second-order Lagrangian perturbation the-
ory: 2LPT (The use of a higher order Lagrangian approxima-
tion scheme to set up ICs has been suggested recently, e.g.,
Crocce et al. 2006.). For small initial perturbations 2LPT should
be more accurate than ZA, and generates transients which de-
cay much faster with the expansion of the universe (a−2 rather
than a−1). In the 2LPT formalism, the particle displacement is
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Figure 17. Comparison of ratios of the dimensionless power spectra at z = 1
(upper panel) and z = 0 (lower panel) when evolved using a PM code from ICs
generated using the ZA at the starting redshifts indicated. The rms displacement
for the starts is 0.335, 0.168, 0.084, and 0.055 times the mean inter-particle
spacing (for zin = 52, 105, 211, and 317). The dotted lines mark the 1% limit.
If the code is started at zin = 52, we see a suppression of the power spectrum
by ∼3% at z = 1 and ∼2% at z = 0.

(A color version of this figure is available in the online journal.)

obtained in 2LPT, an additional contribution being added to that
from the ZA as given in Equation (5):

x(q) = q − D1∇qφ
(1) + D2∇qφ

(2), (A1)

v = dx
dt

= −D1f1H∇qφ
(1) + D2f2H∇qφ

(2), (A2)

where φ(2) is obtained from solving

∇2
qφ

(2)(q) =
∑
i>j

{
φ

(1)
,ij (q)φ(1)

,ij (q) − [
φ

(1)
,ij (q)

]2}
(A3)

and D2 is the second-order growth function. In the following,
we investigate the contributions from the second terms in the
positions and velocities of the particles at different redshifts.

Crocce et al. (2006) have made a serial 2LPT code publicly
available. Their code uses approximations for the growth func-
tions in first and second order. (In contrast, the ZA initialization
routine used for this paper solves the differential equation for
the linear growth function directly, without making approxima-
tions.) For a ΛCDM cosmology these approximations are given
by

D1 ≈ 5

2
aΩm

[
Ω4/7

m − ΩΛ +

(
1 +

Ωm

2

) (
1 +

ΩΛ

70

)]−1

, (A4)

D2(τ ) ≈ 3

7
D2

1(τ )Ω−1/143
m ≈ −3

7
D2

1(τ ), (A5)

with τ being conformal time. The approximation for D1 can
be found in Carroll et al. (1992). For f1 and f2 the following
approximations are made:

f1 ≈ Ω5/9
m , f2 ≈ 2Ω6/11

m . (A6)
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Figure 18. Upper panel: distribution of the initial displacements of all particles
at different starting redshifts (zin = 200, 100, 50, 25). The displacement is
measured with respect to the mean inter-particle spacing. For zin = 200, the
rms displacement is approximately 0.05, while for zin = 25 it increases by a
factor of 10. Lower plot: 2LPT correction. The distributions show the additional
contribution in the initial move to the ZA. For zin = 200, this additional move
is on average 4 ×10−5 and for zin = 25 it is 0.004 of the mean inter-particle
spacing. In both cases, this is a small fraction with respect to the Zel’dovich
move. In both plots, the y-axis is scaled with respect to all particles.

(A color version of this figure is available in the online journal.)

A detailed discussion of the exact differential equations for the
growth function up to third order and the reliability of these
approximations is given in Bouchet et al. (1995). In order to
limit computational expense, we restrict our tests using this
code to 2563 particles in a 256 h−1Mpc volume. This choice is
sufficient to study the general question, as the inter-particle
spacing is the same as in the main runs. In keeping with
our general philosophy of redundancy and cross-checking we
also independently implemented a 2LPT ICs generator (with
numerical computation of the growth functions, rather than
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Figure 19. Power spectrum ratios for four different initial redshifts. The initial
power spectrum obtained from Zel’dovich ICs is divided by the power spectrum
from the 2LPT ICs. Overall, the Zel’dovich ICs have slightly less power on the
smallest scales. Results are shown out to kNy/2 = πNp/2L = 1.57 h Mpc−1.
Remarkably, even if the ICs are generated as late as zin = 25, the difference
in the power spectra is below 1% at the smallest scales. For zin = 200, the
difference on all scales is far below 1%. Nishimichi et al. (2009) found a similar
result: sub-percent agreement between power spectra from the ZA and 2LPT
ICs at z = 127.

(A color version of this figure is available in the online journal.)

approximations) which gave essentially the same results as that
of Crocce et al. (2006).

We generate four sets of ICs at zin = 200, 100, 50, and
25. All of the ICs have the same phases and can therefore be
compared directly. First, we measure the displacement from
the ZA; results are shown in the upper panel of Figure 18.
For this one realization, the rms displacement at zin = 200,
which is the starting redshift for our main simulations, is
around 5% of the mean inter-particle spacing. By delaying
the start until zin = 25, the rms displacement grows by a
factor of 10. The 2LPT correction, given by the second term
in Equation (A1), is negligible at zin = 200, being smaller
than 10−4 on average. In fact at this point numerical accuracy
might be questioned, since the approximations for the growth
functions might not be accurate at this level. Figure 19 shows
the ratio of the initial power spectra from the Zel’dovich and the
2LPT approximations. As for the displacements, convergence
with increased redshift is very apparent. At a starting redshift
of zin = 200, both power spectra agree to better than 0.02%.
Even starting at very late times (zin = 25) only leads to a 1%
difference between the initial power spectra.

Next we measure the differences in the initial velocities from
the two approximations. The results are shown in Figure 20.
We display the three velocity components vx , vy , and vz

separately. The main difference occurs in the tails of the velocity
distributions. Independent of redshift a negligible number of
particles (fewer than 0.5%) live in these tails with absolute initial
velocities larger than 1000 km s−1. Ignoring these tails (see the
insets in Figure 20), the difference in the velocities between
2LPT and ZA starting at different redshifts is below 1%. At
zin = 200 the difference is less than 0.1%. At this precision,
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Figure 20. Ratio of histograms of the three velocity components from the ZA
and the 2LPT approach. The insets show the regimes between −1000 km s−1 and
1000 km s−1 where the large majority of the particles reside. Here the difference
is sub-percent. The different colors represent different starting redshifts, the
difference becoming smaller for higher redshift starts.

(A color version of this figure is available in the online journal.)

the inaccuracy from the approximations for the growth function
at first and second order is probably larger than the error from
the ZA.

The velocity differences are highly correlated with density
however (see also Figure 5), and to understand this effect we
evolve ICs created from the ZA and 2LPT forward to z = 0.
We use our parallel 2LPT code, which does not rely on an
approximation for the growth function, to generate ICs with
5123 particles in a 468 h−1Mpc box—downscaling our main
runs by a factor of 8. The ICs are generated at four different
redshifts, 1 + zin = 200, 100, 50, and 25 and evolved to z = 0
using a tree-PM code. We measure the power spectrum of the
evolved particles at z = 1 and z = 0. The results are shown in
Figure 21, where we see a shortfall in power at high k in the
ZA starts as compared to the 2LPT starts but convergence as
zin is increased. At k ∼ 1 h Mpc−1 the evolved power spectra
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Figure 21. Comparison of the power spectra from simulations started from
Zel’dovich ICs and 2LPT ICs at z = 1 (upper panel) and z = 0 (lower
panel). Shown are the ratios of power spectra from starts at redshift 1 + zin =
200, 100, 50, 25. The start at 1 + zin = 200 leads to an agreement of the power
spectra better than 0.5% at k ∼ 1h Mpc−1 and better than 0.2% at z = 0. At
larger scales, k < 0.1 h Mpc−1, the agreement is basically perfect. Therefore,
the Zel’dovich initialization scheme started at 1+zin = 200 fulfills our accuracy
requirements comfortably.

(A color version of this figure is available in the online journal.)

from both sets of ICs at 1+zin = 200 show excellent agreement,
better than 0.5% at z = 1 and 0.25% at z = 0. We therefore
conclude that our starting redshift, 1+zin = 200, is high enough
to avoid any problems arising from possible inadequacies of
the ZA.

An argument as to why 2LPT might be preferable over
the ZA is that it can capture the displacement curvature,
since it takes into account derivative terms (e.g., Bouchet
et al. 1995, Figure 1). In order to test this hypothesis we

measure the distribution of misalignment angles: cos(θ ) between
the Zel’dovich and 2LPT velocity and displacement vectors
(Figure 22). When starting at high redshift (z > 50) more than
∼99% of the particles have paths which differ in direction by
less than about 1◦. Hence the curvature in the path is a small
effect for the vast majority of particles.

A more intuitive understanding of the difference between the
ZA and 2LPT (in part motivated by Figure 5 of the velocity
field around massive halos in different z-start simulations) is
that 2LPT yields a slightly more convergent velocity toward
regions of higher density. This slightly accelerates massive halo
formation compared to the ZA, resulting in the change in the
mass function and power spectrum observed. This picture is
supported by the fact that the most massive halos form about
the largest density peaks where one might expect the assumption
of small δ to hold the least well.

APPENDIX B

RICHARDSON EXTRAPOLATION

Richardson extrapolation is a method to compute the limiting
value of a function that is assumed to have a smooth behavior
for small deviations around the evaluation point. Suppose we
have such a function f, then it is plausible to assume that

f (0 + Δ) = f (0) + c1Δ + c2Δ2 + c3Δ3 + · · · . (B1)

For many quantities derived from numerical simulations, it is
not often a priori obvious what the convergence structure, i.e.,
the values of the coefficients, ci, happens to be, even to the
extent of knowing which of the coefficients are zero or non-
zero. Nevertheless, for small enough values of the deviation, Δ,
one can numerically establish the values of the leading order
coefficients. This allows one to bound the error from a given
simulation, and could even (in principle) allow one to improve
estimates for the desired limiting value f (0) using Richardson
extrapolation.

As a simple example, consider the case of non-zero c1 (linear
convergence) for some quantity, say the power spectrum at a
given value of k, as a function of the mesh spacing in a PM
code. Then, if we write, for a 2563 mesh,

f (2Δ) � f (0) + 2c1Δ, (B2)
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Figure 22. Cumulative distribution of the alignment angles cos(θ ) between the Zel’dovich and 2LPT displacement vectors (upper panel) and the velocity vectors
(lower panel) at five different starting redshifts between z = 200 and z = 10. The test was carried out with 2563 particles in a (1h−1 Gpc)3 box. It is clear from these
plots that the curvature in the path is a sub-dominant effect.

(A color version of this figure is available in the online journal.)
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for 5123 and 10243 meshes we would have

f (Δ) � f (0) + c1Δ, (B3)

f

(
Δ
2

)
� f (0) + c1

Δ
2

, (B4)

where Δ has been taken to be the mesh spacing for the 5123 grid.
Equations (B2) and (B3) then predict an estimated value for the
10243 run

f

(
Δ
2

)
� 3

2
f (Δ) − 1

2
f (2Δ), (B5)

which can be used to test whether linear convergence is holding
for the particular range of values of Δ. If the test is successful,
one could then proceed to obtain an estimate for the continuum
prediction (Δ = 0) from the 5123 and the 10243 simulations, via

f (0) � 2f

(
Δ
2

)
− f (Δ). (B6)

We shall require simply that such a prediction differ from our
highest resolution estimate by a negligible amount, to avoid
explicit extrapolation.

For the case of quadratic convergence (c1 = 0, c2 �= 0), the
extrapolation from the 2563 and the 5123 mesh to the 10243

mesh reads

f

(
Δ2

4

)
� 5

4
f (Δ2) − 1

4
f (4Δ2), (B7)

and the estimate for the continuum from the 5123 simulation
and the 10243 simulation is given by

f (0) � 4

3
f

(
Δ2

4

)
− 1

3
f (Δ2). (B8)

Given 3 simulations one can choose to estimate two non-zero
coefficients, and test the assumed convergence model. As above,
we shall require that such a prediction differ from our highest
resolution estimate by a negligible amount, to avoid explicit
extrapolation.
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