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ABSTRACT

New statistical properties of dark matter halos in Lagrangian space are presented. Tracing back the dark matter parti-
cles constituting bound halos resolved in a series of N-body simulations, we measure quantitatively the correlations
of the proto-halo’s inertia tensors with the local tidal tensors and investigate how the correlation strength depends
on the proto-halo’s sphericity, local density, and filtering scale. It is shown that the majority of the proto-halos
exhibit strong correlations between the two tensors provided that the tidal field is smoothed on the proto-halo’s
mass scale. The correlation strength is found to increase as the proto-halo’s sphericity increases, as the proto-halo’s
mass increases, and as the local density becomes close to the critical value, δec. It is also found that those peculiar
proto-halos which exhibit exceptionally weak correlations between the two tensors tend to acquire higher specific an-
gular momentum in Eulerian space, which is consistent with the linear tidal torque theory. In the light of our results, it
is intriguing to speculate a hypothesis that the low surface brightness galaxies observed at present epoch correspond
to the peculiar proto-halos with extreme low sphericity whose inertia tensors are weakly correlated with the local tidal
tensors.
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1. INTRODUCTION

Galaxies are biased tracers of the underlying dark matter dis-
tribution. It has been well known that the two-point correlation
function of the observed galaxies follows a power law, different
from that of the dark matter determined in N-body simulations
(e.g., Maddox et al. 1990). To test theoretical predictions based
on the dark matter against real observations of galaxies, it is
required to determine a hidden connection between the galax-
ies and dark matter. The density peak formalism was the first
attempt to provide such a connection, according to which the
galaxies form in the high peaks (i.e., local maxima) of the ini-
tial smoothed density field (Davis et al. 1985; Bardeen et al.
1986; Kaiser 1986; Bond & Myers 1996). Fitting quite well into
the cold dark matter (CDM) paradigm and explaining success-
fully some observed properties of the galaxies, this density peak
formalism became the most prevalent model for biased galaxy
formation. Given that gravity is mainly responsible for the for-
mation and evolution of the galaxies, it was indeed reasonable,
appropriate, and natural to regard the initial density peaks as
good indicators of the sites of galaxy formation.

An uncomfortable truth, however, had to be faced when
Katz et al. (1993) reported the unexpected results derived from
N-body simulations that the dark matter particles of galactic
halos are not well overlapped with those from the high peaks
of the initial density field. They traced the trajectories of dark
matter particles that comprise the initial density peaks and found
that the particles from the initial peaks do not end up in real halos.
Furthermore, it was also shown that the correlation function of
high density peaks is different from that of galactic halos. These
disturbing results forced them to conclude that the high peaks
of the initial density field cannot be good indicators of the sites
of galaxy formation. In the same spirit, Porciani et al. (2002b)
have shown that only ∼40% of the proto-halos in a N-body
simulation contain a density peak within their Lagrangian
volume and that gravitational shear plays an important role in
shaping the proto-halos.

To find a good indicator of the initial sites of galaxy formation,
it is first necessary to understand the statistical properties that the
majority of the protogalactic sites possess in Lagrangian space.
Such a property was first found unwittingly by Lee & Pen (2000)
while studying the origin of the galaxy angular momentum.
According to the linear tidal torque theory (Doroshkevich
1970; White 1984), the angular momentum of a protogalaxy
is generated at first order only when the local tidal shear tensor
is not perfectly correlated with the inertia–momentum tensor of
the protogalaxy. In previous works dealing with the linear tidal
torque theory (e.g., Catelan & Theuns 1996), it was assumed that
the two tensors are generally uncorrelated. Lee & Pen (2000)
tested the validity of this assumption against the numerical
data from N-body simulations. They calculated the correlations
between the two tensors at proto-halo sites and found for the
first time that the two tensors are in fact quite strongly correlated
with each other in contrast to the general assumption. Their
result, however, was based on rather low-resolution N-body
simulations and thus failed to draw serious attentions.

Later, Porciani et al. (2002b) re-tested this assumption against
high-resolution simulations, confirming and extending the pre-
liminary results of Lee & Pen (2000). Noting that the existence
of strong correlations between the two tensors is such a common
phenomenon exhibited by most of the proto-halos they consid-
ered, Porciani et al. (2002b) have suggested that the boundaries
of the proto-halos are determined by the push and pull of the
external mass distribution. This is in some sense the opposite of
the common wisdom where the key factor is assumed to be the
self-gravity attraction.

In this paper, we want to further improve upon the previous
work by Lee & Pen (2000) and Porciani et al. (2002b) by using
a more detailed statistical treatment and simulations of better
quality. Our goal here is to quantify the correlations between
the two tensors as new Lagrangian statistics of dark halos and
investigate how the correlation strengths depend on proto-halo’s
shapes and local environments. The outline of this paper is as fol-
lows. In Section 2, a brief description of N-body data is provided
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and the statistical analysis of it is presented. In Section 3, new
Lagrangian statistics of dark halos related to the correlations of
the proto-halo’s inertia tensors with the local tidal tensors is pre-
sented. In Section 4, an implication of our result on the low sur-
face brightness galaxies (LSBGs) is explained. In Section 5, the
results are discussed and a final conclusion is drawn. Through-
out this paper, we assume a spatially flat ΛCDM cosmology.

2. DATA AND ANALYSIS

We use the samples of dark matter halos obtained from three
different N-body simulations conducted by Hahn et al. (2007)
in periodic boxes of linear size L1 = 45 h−1 Mpc, L2 =
90 h−1 Mpc, and L3 = 180 h−1 Mpc. All three simulations
assume a spatially flat ΛCDM cosmology with Ωm = 0.25,
ΩΛ = 0.75, Ωb = 0.045, σ8 = 0.9, H0 = 0.73, and ns = 1,
each following the evolution of 5123 particles to the present
epoch from a given initial redshift zi (L1, L2, and L3 have
zi = 79, zi = 65, and zi = 52, respectively). Bound halos were
resolved in each simulation by applying the standard friends-of-
friends algorithm with linking-length parameter of b = 0.2l,
where l denotes the mean inter-particle distance (Efstathiou
et al. 1985). Among them, only those halos comprising more
than 300 dark matter particles were selected to avoid possible
numerical artifacts. A total of 50,839 halos are selected (13,390,
16,339, and 21,110 halos from the L1, L2, and L3 simulations,
respectively), which span a wide mass range of [10.2, 15.3]
in units of h−1 M�. A full description of the simulations and
the process of the halo-identification is provided in Hahn et al.
(2007).

Tracing back to the initial conditions, the trajectories of dark
matter particles that constitute each selected halo, we locate
the proto-halo sites in the Lagrangian space corresponding to
the initial epoch zi. Then, we determine the center of mass
of each proto-halo site using the positions of its constituent
particles. At each halo’s center of mass, we measure the mean
density contrast δ in the initial density field smoothed with a
top-hat filter of scale radius Rs. Here, we consider four different
filtering scales: Rs = 0.5, 1, 2, and 5 h−1 Mpc. The initial
peculiar potential field φ was derived from the density field by
solving the Poisson equation (Hahn et al. 2007), and the tidal
shear tensor T ≡ (Tij ) was measured as the second derivative of
φ at the center of mass of each proto-halo. Diagonalizing T, we
determine the three eigenvectors {t1, t2, and t3} corresponding
to the three eigenvalues {λ1, λ2, and λ3} in a decreasing order.

The inertia momentum tensor I ≡ (Iij ) of each proto-halo site
is also determined using the positions of the constituent particles
in accordance with the formula given in Hahn et al. (2007):

Iij ≡ mα

∑
α

(
r2
αδij − xα,j xα,k

)
, (1)

where mα is the mass of αth particle, xαis the position vector of
the αth particle from the center of mass of the proto-halo site,
and δjk is the Kronecker symbol. When the correlations with the
tidal field smoothed on the scale Rs are calculated, we consider
only those halos whose mass M is in the range of 0.9Ms < M <
1.1Ms , where Ms is the top-hat mass enclosed by the radius
Rs, given the fact that a given proto-halo with mass M would
experience the strongest effect from the tidal field smoothed on
the same mass scale M = Ms (Lee & Pen 2000; see also the
Appendix in Hahn et al. 2009). Table 1 lists the number (Nh) and
mean mass (M̄) of halos considered for the correlations with the
tidal field smoothed on the four different filtering radii Rs.

Table 1
Filtering Radius (Rs), the Top-Hat Mass (Ms) Enclosed by Rs, the Number of

Halos (Nh) with Mass in Range of [0.9Ms, 1.1Ms ]

Rs Ms Nh

(h−1 Mpc) (h−1 M�)

0.5 3.6 × 1010 1049
1 2.9 × 1011 1472
2 2.3 × 1012 1835
5 3.6 × 1013 145

A similarity transformation is performed to reexpress I in the
principal frame of T. To quantify the degree of the correlations
between the two tensors, we define a parameter β as

β ≡ 1 −
(

�2
12 + �2

23 + �2
31

�2
11 + �2

22 + �2
33

)1/2

, (2)

where {�11, �22, and �33} and {�12, �23, and �31} represent the
three diagonal and off-diagonal elements of I in the principal
frame of T, respectively. If a proto-halo region has a perfectly
spherical shape, then the eigenvectors of its inertia tensor are
degenerate (i.e., any axis frame can be its eigenvector system)
and all of the off-diagonal elements of I are always zero
(�12 = �23 = �31 = 0). Thus, for the case of a perfectly
spherical proto-halo region, we always have β = 1. When a
proto-halo region is not perfectly spherical but its inertia tensor
I is perfectly correlated with the tidal shear tensor T measured
at its center of mass, then I should be completely diagonal in
the principal axis frame of T. Thus, for the case of a perfect
correlation between I and T, we will also have β = 1. On the
other hand, if the two tensors are uncorrelated, then I in the
principal axis frame of T is not diagonal and the off-diagonal
elements should be as large as the diagonal ones in magnitude
unless the eigenvectors of I are degenerate. As the strength of
the correlations between I and T decreases, the degree of the
deviation of β from the value of unity will increase.

In the following section, we determine the probability distri-
bution of β and investigate how the value of β depends on the
proto-halo’s shape, local density, and filtering radius.

3. CORRELATIONS BETWEEN INERTIA AND TIDAL
TENSORS

Using the numerical data described in Section 2, we first
determine the probability density distribution, p(β). Figure 1
shows p(β) for the four different cases of Rs = 0.5, 1, 2,
and 5 h−1 Mpc (top-left, top-right, bottom-left, and bottom-
right panel, respectively). It is worth mentioning again here
that when we calculate β based on the tidal field smoothed on
the scale Rs, we consider only those proto-halos whose masses
belong to the range (0.9Ms, 1.1Ms) with Ms ≡ (4π/3)ρ̄R3

s ,
where ρ̄ is the mean mass density of the universe. In each panel,
the error bars represent the Poissonian noise. In all cases, the
distribution p(β) is strongly biased toward the high-β section,
reaching a maximum at β � 0.9. It is now clear that at the
proto-halo sites the tidal shear and inertia momentum tensors are
strongly correlated with each other, regardless of the smoothing
scale, which confirms quantitatively the previous works (Lee
& Pen 2000; Porciani et al. 2002b). Note also that for the case
of Rs = 0.5 h−1 Mpc, a small number of proto-halos exhibit
exceptionally low values of β � 0.5, while for the cases of
Rs = 1, 2, and 5 h−1 Mpc all proto-halos have β � 0.5.
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Figure 1. Probability density distribution of β of the protogalactic sites with
Poissonian errors when the initial density field is smoothed on the scale of
0.5, 1, 2, and 5 h−1 Mpc (top-left, top-right, bottom-left, and bottom-right,
respectively).

This result also implies that a halo of mass M tends to be
made of those dark matter particles that accreted into the initial
sites along the principal axes of the local tidal field smoothed on
the same mass scale M, which is consistent with the Zel’dovich
approximation (Zel’dovich 1970).

3.1. Dependence on Proto-halo’s Sphericity and Linear
Density

We investigate how β varies with the shapes of the proto-
halos. Using the three eigenvalues of I, we measure the spheric-
ity S of each proto-halo as (Hahn et al. 2007)

S ≡
(

�3

�1

)1/2

, (3)

where �1 and �3 represent the largest and the smallest eigenvalue
of I, respectively. Binning the range of S, we measure the
mean of β averaged over a given differential bin, [S, S + dS].
Figure 2 shows the scatter plot of β versus S. The thick solid line
corresponds to the mean value 〈β〉 as a function of S. The errors
represent one standard deviation in the measurement of 〈β〉
calculated as 〈Δβ2〉/√(n − 1), where n represents the number of
the proto-halos belonging to a given differential bin [S, S +dS].
It can be noted that β increases almost monotonically with S. In
other words, the less spherical a proto-halo is, the weaker is the
correlation between the tidal shear and the inertia momentum
tensors. For those proto-halos with low sphericity (S � 0.4),
the mean value, 〈β〉, drops below 0.7.

We also investigate how β changes with the local density
field at the proto-halo sites. Let δi denote the initial density
contrast measured at the proto-halo’s center of mass. Since the
three simulations used here started at different initial redshifts
zi (see Section 2), we use the linearly extrapolated linear
density δ to z = 0 instead of δi itself, which is calculated
as δL ≡ [D(z)/D(0)]δi , where D(z) is the linear growth factor.
We bin the range of δ and calculate the mean of β averaged

Figure 2. Scatter plots of β vs. the sphericity S of the proto-halo sites when
the initial density field is smoothed on the scale of 0.5, 1, 2, and 5 h−1 Mpc
(top-left, top-right, bottom-left, and bottom-right, respectively). In each panel,
the solid line represents the mean values 〈β〉 and the error bars indicate the
standard deviation in the measurement of 〈β〉.

Figure 3. Scatter plots of β vs. the linearly extrapolated density δ of the proto-
halo sites when the initial density field is smoothed on the scale of 0.5, 1, 2,
and 5 h−1 Mpc (top-left, top-right, bottom-left, and bottom-right, respectively).
In each panel, the solid line represents the mean values 〈β〉 and the errors
correspond to the one standard deviation in the measurement of 〈β〉.

over a given differential bin, [δ, δ + dδ]. Figure 3 shows the
scatter plots of β versus δ. The thick solid line corresponds to
the mean value 〈β〉 as a function of δ. Note first that for the
case of the large filtering radius Rs = 5 h−1 Mpc all values of
δ lie in quite a narrow range converging to the critical density
value δec ≈ 2.5 for the ellipsoidal collapse (Sheth et al. 2001;
Desjacques 2008; Robertson et al. 2009). In contrast, for the
cases of smaller filtering radii Rs = 0.5, 1, and 2 h−1 Mpc, the
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Figure 4. Contour plots of β in the S–δ when the initial density field is smoothed
on the scale of 0.5, 1, 2, and 5 h−1 Mpc (top-left, top-right, bottom-left, and
bottom-right, respectively).

values of δ spread over quite a wide range from −1 to 10. The
value of β tends to be highest when δ becomes close to δec. As
δ deviates from δec, the value of β decreases both in the high-δ
and in the low-δ sections.

Since S and δ are not mutually independent but S tends to
decrease in the low-δ region, it may be interesting to see how
β varies as S and δ change simultaneously. Figure 4 shows
the contour plots of β in the S–δ plane. This plot clearly
demonstrates that those proto-halos with high S and δ ∼ δec

tend to have a high value of β.

3.2. Dependence on Filtering Scale

We now explore the dependence of β on the filtering radius.
Let us consider two different scales Rth and Rs. We first calculate
the inertia tensors of those halos whose masses lie in a fixed
range of (0.9Mth, 1.1Mth), where Mth denotes the top-hat masses
enclosed by the filtering scale Rth. Then, we calculate the mean
correlations 〈β〉 of these inertia tensors with the tidal tensors
smoothed on the different scale of Rs. For each given Rth, we
consider four different scales Rs for the smoothing of the tidal
tensors.

Figure 5 shows 〈β〉 as a function of the filtering scale Rs.
Each panel plots the mean values of β calculated using the
inertia tensors of the proto-halos with mass Mth enclosed by a
fixed radius Rth and the tidal tensors smoothed on four different
scales Rs. It can be seen that 〈β〉 increases monotonically when
Rs � 2Rth and decreases sharply when Rs > 2Rth. The value of
β reaches a maximum when Rth � Rs � 2Rth. In terms of mass,
it can be said that β becomes maximal at Mth � Ms � 8Mth. In
other words, the inertia tensors of the proto-halos with masses
Mth are strongly correlated with the local tidal fields smoothed
on the mass scales that have the same order of magnitude as
Mth. If the tidal fields are smoothed on the scales of order of
magnitude smaller or larger than Mth, the correlations between
the two tensors decrease. Thus, the correlation strength between
the two tensors depends on the scale on which the tidal field is
smoothed.

Figure 5. Mean values 〈β〉 as a function of the filtering radius Rs for four
different values of the proto-halo masses. The four masses are enclosed by
the four top-hat radii Rth as Mth = (4π/3)ρ̄R3

th, where Rth = 0.5, 1, 2, and
5 h−1 Mpc (top-left, top-right, bottom-left, and bottom-right, respectively).

Figure 6. Scatter plots of β vs. the specific angular momentum j of the proto-
halo sites when the initial density field is smoothed on the scale of 0.5, 1, 2,
and 5 h−1 Mpc (top-left, top-right, bottom-left, and bottom-right, respectively).
In each panel, the solid line represents the mean values 〈β〉(j ) and the errors
correspond to the one standard deviation in the measurement of 〈β〉(j ).

4. IMPLICATION ON THE LOW SURFACE BRIGHTNESS
GALAXIES

In the light of our results, it is time to recall the linear tidal
torque theory according to which the magnitude of the specific
angular momentum (angular momentum per unit mass) of a
proto-halo increases as the correlation of its inertia tensor with
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Figure 7. Particle distribution of a proto-halo with S = 0.24 in the x–y, y–z, and x–z plane in the top-left, top-right, and bottom-left panel, respectively.

the local tidal tensor increases (Doroshkevich 1970; White 1984;
Catelan & Theuns 1996; Lee & Pen 2000). In the context of the
linear tidal torque theory, those proto-halo sites which have
low values of β are likely to acquire higher specific angular
momentum (Porciani et al. 2002a). To test this core prediction
of the linear tidal torque theory, we explore the dependence of β
on the specific angular momentum measured in Eulerian space.
For each halo, we first measure the angular momentum vector
J in the Eulerian space as

J ≡
∑

α

mαrα × vα, (4)

where rα and vα represent the position and the velocity of the
αth particle in the halo’s center of mass frame, respectively.
The specific angular momentum vector j of each halo is then
calculated as j ≡ J/M . Binning the range of j, we calculate the

mean of β averaged over a given differential bin, [j, j + dj ].
Figure 6 shows the scatter plot of β versus j. The thick solid line
corresponds to the mean value 〈β〉(j ) and the errors represent
one standard deviation in the measurement of 〈β〉(j ). As can
be seen, there is a strong trend that β increases with j. In
other words, those proto-halos whose inertia tensors are less
correlated with the local tidal tensors are likely to acquire higher
specific angular momentum vectors in the subsequent evolution.

A crucial implication of our results is that the proto-halos
with the lowest S will thus acquire the highest specific angular
momentum since the proto-halos with the lowest S are found to
have the weakest correlations between the inertia and tidal shear
tensors (see Figure 2). It is very interesting to recall that the high-
specific angular momentum is the characteristic property of the
LSBGs (Boissier et al. 2003; Monnier Ragaigne et al. 2003, and
references therein). Our result leads to a speculation that the
LSBGs might originate from those peculiar proto-halos with
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Figure 8. Same as Figure 7 but for the case of a disconnected proto-halo with S = 0.25.

very low values of S whose inertia tensors are weakly correlated
with the local tidal tensors.

It is, however, worth mentioning here that the low values of S
do not necessarily correspond to elongated particle distribution
of proto-halo regions. A proto-halo region can have low values
of S if it consists of two disconnected patches with center
of mass located in the middle. To examine whether or not
the proto-halos with low values of S have connected particle
distribution, we inspect the particle distribution of those proto-
halos with S below the tenth percentile in the mass range
2 � M/[1011 h−1 M�] � 4. We consider only the low-mass
halos for this inspection since they exhibit the lowest values of S.
It is found that among the inspected proto-halos, approximately
two-thirds of them have connected particle distribution while
the other one-third consist of more than two patches.

Figure 7 shows an example of a connected proto-halo, plotting
its particle distribution in the z–y, x–y, and z–x plane in the

top-left, top-right, and bottom-left panel, respectively. The
sphericity of this example is as low as S = 0.24. As it can
be seen, the Lagrangian region is connected, having indeed
quite an elongated shape. Figure 8 shows an example of the
disconnected proto-halo regions. Its sphericity is found to be
S = 0.25. Strictly speaking, the first-order linear tidal torque
theory is not valid to explain the generation of the angular
momentum of such a disconnected proto-halo as shown in
Figure 8. In this case, it might be the gravitational merging
of the disconnected patches in the subsequent evolution rather
than the misalignments between the inertia and tidal tensors in
Lagrangian space that would contribute to the built-up of the
higher angular momentum (Vitvitska et al. 2002).

Whether or not a proto-halo region is connected, however, the
particles of a proto-halo region with lower value of β (and thus
lower values of S) will end up in a final halo with higher specific
angular momentum, as revealed in Figure 6. Therefore, it is
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still possible to postulate that the peculiar proto-halos with low
values of β correspond to the present LSBGs, no matter what
caused the built-up of high angular momentum of the LSBGs.

5. DISCUSSION AND CONCLUSION

In the classical Zel’dovich model (Zel’dovich 1970), the
inertia tensors of bound objects are perfectly correlated with
the local tidal tensors in Lagrangian space. In practice, the
two tensors are found to be indeed strongly but not perfectly
correlated (Lee & Pen 2000; Porciani et al. 2002b). Here,
we have determined quantitatively how the strengths of the
correlations between the two tensors depend on proto-halo’s
shape and mass, local density, and filtering scale. Since the
proto-halos form through the tidal flows of dark matter particles
along the principal axes of the local tidal fields from the
surrounding matter distribution, it is in fact natural to expect
strong correlations between the two tensors. Deviations from
the perfect correlations of the two tensors imply the existence of
higher order perturbations from the simple tidal flows of CDM
particles.

We have also found that for the peculiar proto-halos with
low-S the correlations between the two tensors tend to be weak
(i.e., having low value of β). Since those proto-halos which
exhibit lower value of β end up in halos with higher specific
angular momentum, it is intriguing to speculate a hypothesis
that those peculiar proto-halos with lowest values of S would
develop into the LSBGs at present epoch. Since the LSBGs
are believed to be dark matter dominated, their density profiles
are often directly compared with that of the dark halos (i.e.,
Navarro–Frenk–White (NFW) profile; Navarro et al. 1996), and
the shallow inner-core slope of the observed density profiles
of LSGBs has been used as a counterevidence for the CDM
paradigm (e.g., Moore 1994). For instance, Kuzio de Naray
et al. (2008) have recently studied the rotation curves of 17
LSBGs obtained from the high-resolution optical velocity fields
from DensePak spectroscopic observations and shown that
the observed LSBGs can be matched with the NFW halos
only if the LSBGs have 20 km s−1 non-circular motions. If
the LSBGs originate from the peculiar proto-halo sites with
exceptionally low value of β as in our hypothesis, then their
proto-halo sites may have had very low sphericity as our results
imply. Those peculiar proto-halo sites which have extremely low
sphericity at the initial stages might as well develop non-circular
motions.

It will be interesting to study numerically the density profiles
of those proto-halos with exceptionally low values of β and
compare them with the standard NFW ones. It will be also
interesting to compare the number density of those proto-halos
with low values of β with that of the observed LSBGs as a
function of mass. We plan to work on these two projects and
hope to report the results elsewhere in the future.
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