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ABSTRACT

We present a linear analysis of inviscid, incompressible, magnetohydrodynamic (MHD) shallow water systems. In
spherical geometry, a generic property of such systems is the existence of five wave modes. Three of them (two
magneto-Poincaré modes and one magneto-Rossby mode) are previously known. The other two wave modes are
strongly influenced by the magnetic field and rotation, and have substantially lower angular frequencies; as such,
we term them “magnetostrophic modes.” We obtain analytical functions for the velocity, height, and magnetic field
perturbations in the limit that the magnitude of the MHD analogue of Lamb’s parameter is large. On a sphere, the
magnetostrophic modes reside near the poles, while the other modes are equatorially confined. Magnetostrophic
modes may be an ingredient in explaining the frequency drifts observed in Type I X-ray bursts from neutron stars.
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1. INTRODUCTION

Shallow water wave systems are those in which the trans-
verse length scales considered are much larger than the water
height. They have been extensively studied, have a wide range of
physical applications, and have been used to understand terres-
trial and planetary systems (Matsuno 1966; Gill 1982, hereafter
G82; Pedlosky 1987; Braginsky 1998; Holton 2004; and Kundu
& Cohen 2004, hereafter KC04). Shallow water equations cap-
ture the large-scale dynamics of thinly stratified atmospheres
under the influence of rotation and thermal forcing.

In astrophysical settings, shallow water models were used to
study the spread of accreted matter onto neutron stars (Inogamov
& Sunyaev 1999), and the ignition and propagation of Type I X-
ray bursts in neutron star atmospheres (Spitkovsky et al. 2002).
In addition to fast rotation and strong gravity, many neutron
stars in accreting systems also possess appreciable (�109 G)
magnetic fields. Tension in the fields induced by horizontal
motions in the atmosphere can affect the dynamics, and thus it
is interesting to study the effect of frozen-in magnetic fields on
the behavior of the atmosphere.

Gilman (2000) pioneered the use of magnetohydrodynamic
(MHD) shallow water systems for studying the solar tachocline,
which inspired several follow-up studies (e.g., Schecter et al.
2001; Zaqarashvili et al. 2007, 2009). Most works on MHD
shallow water systems consider initially toroidal magnetic fields
and/or slow rotators, as is applicable for tachocline research.
In neutron star-related applications, however, it makes sense
to consider initially vertical (or radial) magnetic fields in the
presence of fast rotation. We study this case in the present paper.

The fundamental governing equation for shallow water waves
on a sphere is known as Laplace’s tidal equation. By linearizing
this equation, one can obtain solutions to the water height and
velocity perturbations, as well as dispersion relations for the
angular frequencies of the waves. In rotating systems, it was
realized (Longuet-Higgins 1965) that an important quantity in
such studies is Lamb’s parameter,

ε ≡ 1

R2
, (1)

where R is the Rossby number.3 Physically, shallow water sys-
tems with large values of ε are “fast rotators.” In a seminal
paper, Longuet-Higgins (1968, hereafter LH68) explored solu-
tions to Laplace’s tidal equation for a wide range of values for
ε and demonstrated that analytical forms exist for ε → 0 and
|ε| → ∞. While ε < 0 solutions may appear unphysical, LH68
realized that they are relevant to the study of forced oscillations.

When magnetic fields are considered, one needs to instead
examine the MHD Lamb’s parameter,

ε̃ = I (Bz, Ω) ε. (2)

The function I = I(Bz, Ω), which we will define later, depends
on the rotation frequency of the system Ω and the magnetic
field strength Bz; for hydrodynamic waves, I = 1. Unlike in
the case of hydrodynamic systems, ε̃ < 0 waves are directly
relevant in MHD—for −ε̃ � 1, they reside near the poles on
a spherical surface. By contrast, ε̃ � 1 waves reside near the
equator. Figure 1 shows a schematic demarcating the asymptotic
behavior of the wave solutions and the limiting equation that
governs the latitudinal velocity perturbation.

In this paper, our goal is to demonstrate that the methods of
LH68 can be generalized to obtain analytical, asymptotic (|ε̃| �
1) solutions to the MHD analogue of Laplace’s tidal equation.
These solutions can then be used as a guide toward obtaining
|ε̃| ∼ 1 solutions, which must be numerically computed.
Throughout the study, we shall adopt a radial magnetic field
for simplicity (and algebraic amenability). Our results can
be straightforwardly generalized for arbitrary magnetic field
configurations.

Readers unfamiliar with the classical shallow water analysis
are referred to Appendices A and B, where the hydrodynamic
treatment is presented in Cartesian and spherical geometry,
respectively. In Section 2, we add magnetic fields to the
Cartesian analysis. Our efforts culminate in Section 3, where we
explore MHD solutions on a sphere. We discuss the implications
of our results in Section 4. A concise summary of the paper is
presented in Section 5.

3 Defined as the ratio of inertia to Coriolis forces on the scale of the planet or
star.
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Figure 1. Qualitative behavior of the wave modes, as controlled by the
MHD Lamb’s parameter. The governing equation for the latitudinal velocity
perturbation, in the respective limits, is given in parentheses.

2. MHD SHALLOW WATER WAVES: CARTESIAN
COORDINATES

Consider a Cartesian coordinate system in which a shallow
layer of water of height h = h(x, y, t) resides at z � 0 on an
infinite plane. The fluid moves with a velocity �v = (vx, vy, vz)
such that

vx = vx(x, y, t),

vy = vy(x, y, t). (3)

The fluid is assumed to be inviscid and incompressible.

2.1. f-Plane Treatment (Magneto-Poincaré and Geostrophic
Waves)

2.1.1. Equations

Consider the Euler equation with the Coriolis force and
magnetic tension terms (e.g., Draine 1986):

∂ �v
∂t

+ �v.∇�v = − 1

ρ
∇P − 2( �Ω × �v) +

1

4πρ
�B.∇ �B. (4)

Incompressibility implies (see Appendix A.1)

∂h

∂t
+ ∇.(h�v) = 0. (5)

The induction equation, in the ideal MHD limit, provides an
additional equation of motion:

∂ �B
∂t

= ∇ × (�v × �B). (6)

We consider small perturbations to the water height, as well
as to the x- and y-components of the velocity and magnetic field:

vx = Vx + v′
x,

vy = Vy + v′
y,

h = H + h′, (7)

Bx = Bx0 + bx,

By = By0 + by.

The field is initially vertical (we will set Bx0 = By0 = 0 later)
and is frozen at the bottom of the atmosphere. The largest
gradient of the field is due to the vertical shear in the layer,
which we approximate as

∂Bj

∂z
= −Bj

H
, (8)

where the index j represents the set j = {x, y}; Bz is taken
to be constant. The net effect of these approximations is to
introduce restoring tension forces that pull the fluid elements
back into their original horizontal position. In the shallow water
formalism, one deals with height-averaged horizontal velocities
and accelerations. Collectively, it is then reasonable to take the
restoring force (per unit volume) to have a magnitude B2

z /4πH
and a direction opposite to that of the horizontal displacement.

The following wave solutions are sought:

v′
x = vx0 exp i

(
kxx + kyy − ωt

)
,

v′
y = vy0 exp i

(
kxx + kyy − ωt

)
,

h′ = h0 exp i
(
kxx + kyy − ωt

)
, (9)

bx = bx0 exp i
(
kxx + kyy − ωt

)
,

by = by0 exp i
(
kxx + kyy − ωt

)
,

where the wave vector is �k = (kx, ky, 0). Linearization of the
equations of motion yields a 5 × 5 matrix (see Appendix A.1):

Â =

⎛
⎜⎜⎜⎝

kxH kyH A0 0 0
iA0 −2Ω igkx A2− 0
2Ω iA0 igky 0 A2−
A3 iBx0ky 0 i

(
ω − kyVy

)
ikyVx

iBy0kx A4 0 ikxVy i (ω − kxVx)

⎞
⎟⎟⎟⎠ ,

where

A0 ≡ − ω + kxVx + kyVy,

A1 ≡ Bz

4πρH
,

A2± ≡ A1 ± i

4πρ

(
Bx0kx + By0ky

)
, (10)

A3 ≡ 4πρA2+ + iBx0kx,

A4 ≡ 4πρA2+ + iBy0ky.

A practical note about evaluating detÂ is that one is free to
permute the rows of Â, and they should be arranged in a way
so as to minimize the number of sub-determinant (i.e., of 4 ×
4 matrices) evaluations.

2.1.2. Dispersion Relation

Evaluating detÂ = 0, setting Vx = Vy = Bx0 = By0 = 0 and
collecting terms yields the dispersion relation:

ω4 − ω2
[
gHk2 + 4Ω2 + 2(vA/H )2

]
+ (vA/H )2

[
gHk2 + (vA/H )2

] = 0, (11)

where vA ≡ Bz/2
√

πρ is the Alfvén speed. Its solution is

ω2 = gHk2

2
+ 2Ω2 +

B2
z

4πρH 2

± 1

2

√
gHk2(gHk2 + 8Ω2) + 16Ω2

(
Ω2 +

B2
z

4πρH 2

)
.

(12)

Some intuition can be developed by examining the solutions
in Ω = 0 limit:

ω2 =
{
gHk2 + (vA/H )2,

(vA/H )2.
(13)
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The first mode is the longitudinal “magnetogravity wave”
(Schecter et al. 2001), where the restoring force is a combination
of the rising fluid height and magnetic pressure increase due to
the compressive motion of the gravity wave. The second mode,
which is non-dispersive, represents the Alfvén wave with no
height perturbation and torsional oscillation in the transverse
direction, whose restoring force is magnetic tension.

When we revert to rotating systems, both modes begin to
couple longitudinal and transverse velocities through the Corio-
lis force, but have different polarizations. The higher frequency
mode in Equation (12) is the rotationally modified magnetograv-
ity wave, or “magneto-Poincaré” wave—the magnetic tension
term in Equation (4) adds in phase with the Coriolis force, thus
enhancing the restoring force and speeding up the oscillation. In
the lower frequency mode from Equation (12), magnetic tension
tries to balance the Coriolis force. To emphasize this balance,
we call this the “magnetostrophic mode.”

Both magneto-Poincaré and magnetostrophic modes come
in eastward- and westward-propagating varieties, giving the
four modes as required by Equation (11). The eastward- and
westward-propagating waves of each branch have the same
frequency by absolute value. As the magnetic field is turned off,
the magnetostrophic mode disappears, while the Poincaré mode
(or rotationally modified gravity wave) survives as expected.

2.1.3. Length Scales

In hydrodynamic systems, rotational effects become impor-
tant at wavelengths of λ ≡ 1/k � λR, where k ≡ |�k| =√

k2
x + k2

y and

λR ≡
√

gH

2Ω
(14)

is the “Rossby radius of deformation” (e.g., chapter 7 of G82).
The Rossby radius can also be obtained by arguing that there
exists a radius at which the radial fluid flow is diverted by the
Coriolis force, i.e., λRΩ ∼ c0, where

c0 ≡
√

gH (15)

is the shallow water wave speed. Physically, an adjustment to
“geostrophic balance” occurs at the Rossby radius on a timescale
∼ 1/Ω (G82, page 201).

In MHD systems, even without explicitly calculating the
group velocity, one can see from Equation (11) that if vA ∼ ΩH ,
we have

λRB ≡
√

gH

4Ω2 + 2(vA/H )2
. (16)

The quantity λRB can be understood in the following manner:
if the forces due to rotation and magnetic tension are equally
important, then at wavelengths of λ ∼ λRB they balance out the
effect of gravity.

A somewhat more relevant quantity to define is the Alfvén
radius, λB. In the absence of rotation, the forces due to magnetic
tension and gravity balance at λ ∼ λB, where

λB ≡ λRB (Ω = 0) =
√

gH

(
Bz√
2πρ

)−1

H. (17)

The preceding expression can be approximately obtained by
arguing that λB ∼ c0H/vA. The relative importance of rotation
and magnetic tension can be judged from the ratio λR/λB.

2.2. β-Plane Treatment (Magneto-Poincaré and
Magneto-Rossby Waves)

By analogy with hydrodynamic systems, we term the very
slow waves with large-wavelength “magneto-Rossby waves.”
Generalizing the analysis in Appendix A.3, we set Vx = Vy =
Bx0 = By0 = 0 and consider the following set of linearized
equations:

∂v′
x

∂t
+ g

∂h′

∂x
− f v′

y + A1bx = 0,

∂v′
y

∂t
+ g

∂h′

∂y
+ f v′

x + A1by = 0,

∂h′

∂t
+

(
∂v′

x

∂x
+

∂v′
y

∂y

)
H = 0, (18)

∂bx

∂t
= v′

xBz

H
,

∂by

∂t
= v′

yBz

H
,

where f = 2Ω sin Θ + βy is the Coriolis parameter and Θ
denotes the latitude. We differentiate the first equation in (18)
with respect to y and seek wave solutions from the entire set
of equations.4 We keep only first order terms in the Coriolis
parameter, eliminate bx0 and by0 , and construct the Â matrix:

Â =

⎛
⎜⎜⎝

ky

[
ω − 1

ω

(
vA

H

)2] − (β + ikyf0
) −gkxky

f0 i
[(

vA

H

)2 1
ω

− ω
]

igky

kxH kyH −ω

⎞
⎟⎟⎠ .

As before, setting detÂ = 0 yields the dispersion relation,

ω4 − ω2
[
gHk2 + f 2

0 + 2 (vA/H )2
]

− gHkxβω + (vA/H )2
[
gHk2 + (vA/H )2

] = 0, (19)

which reduces to Equation (11) when β = 0 as expected, i.e.,
the β-plane approximation reduces to the f-plane one at the
poles. For very slow waves (ω � f ) with large wavelengths
(kH � 1), i.e., magneto-Rossby waves, the phase speed is

cR ≈ −1

2

⎡
⎣C1 +

√
C2

1 +

(
λR

λB

)2 (
λx

λB

)2

c2
0C

−1
2

⎤
⎦ , (20)

where

C1 ≡ βλ2
R/C2,

C2 ≡ sin2 Θ + (λR/λB)2 , (21)

λx ≡ 1/kx.

The negative sign implies that the phase propagation is west-
ward. The root of the dispersion relation with the slowest angular
frequency has the phase speed:

cpx
≈ 1

2

⎡
⎣
√
C2

1 +

(
λR

λB

)2 (
λx

λB

)2

c2
0C

−1
2 − C1

⎤
⎦ . (22)

4 As a check, we are able to reproduce Equation (15) of Zaqarashvili et al.
(2007) using our approach.
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When Bz → 0 (λB → ∞), we have cpx
→ 0. When

β = 0 and λR/λB � 1, we have cpx
� c0. This root can

plausibly be associated with the east magnetostrophic mode.
However, when considering the equatorially confined, non-
planar eigenfunctions on the β-plane (see Appendix D), we do
not find this mode, yet do recover the two magneto-Poincaré and
magneto-Rossby modes. This suggests that the magnetostrophic
modes do not reside near the equator on the sphere, and the β-
plane treatment may be inconclusive for these modes. We will
confirm this in the next section.

3. MHD SHALLOW WATER WAVES: SPHERICAL
COORDINATES

3.1. Equations

By analogy with Equation (8), we specify a radial magnetic
field and allow for perturbations in the θ - and φ-directions
(bθ and bφ , respectively). The linearized equations of motion
become

∂v̂θ

∂t
− 2Ωv̂φ cos θ +

g

R
sin θ

∂h′

∂θ
+

Brb̂θ

4πρH
= 0,

∂v̂φ

∂t
+ 2Ωv̂θ cos θ +

g

R

∂h′

∂φ
+

Brb̂φ

4πρH
= 0,

(1 − μ2)
∂h′

∂t
+

H sin θ

R

∂v̂θ

∂θ
+

H

R

∂v̂φ

∂φ
= 0, (23)

∂b̂θ

∂t
= v̂θBr

H
,

∂b̂φ

∂t
= v̂φBr

H
,

where R is the radius of the sphere and θ = 90◦ − Θ is the
co-latitude. We define the following quantities:5

μ ≡ cos θ,

D̂ ≡ − sin θ
∂

∂θ
= (1 − μ2)

∂

∂μ
,

� ≡ ω

2Ω
,

ε ≡ 4Ω2R2

gH
=
(

R

λR

)2

, (24)

v̂θ ≡ v′
θ sin θ,

v̂φ ≡ v′
φ sin θ,

b̂θ ≡ bθ sin θ,

b̂φ ≡ bφ sin θ.

The introduction of v̂θ and v̂φ allows one to avoid singularities
associated with θ = 0◦.

We seek the wave solutions,

v̂θ = vθ0 exp i (sφ − ωt),

v̂φ = vφ0 exp i (sφ − ωt), (25)

h′ = h0 exp i (sφ − ωt),

5 One of the earliest papers to use at least some of these transformations is
Margules (1893).

and eliminate the amplitudes for b̂θ and b̂φ to obtain

χṽθ0 + μvφ0 + D̂η0 = 0,

μṽθ0 + χvφ0 − sη0 = 0, (26)

�ε
(
1 − μ2) η0 − D̂ṽθ0 − svφ0 = 0,

where s is the toroidal wavenumber, ṽθ0 ≡ ivθ0 and η0 ≡
gh0/2ΩR. Notice that the spherical hydrodynamic amplitude
equations (Equation (B2)) and Equation (26) have identical
structures, except that

χ ≡ � − � 2
A

�
(27)

takes the place of � in a couple of places, with vA ≡ Br/2
√

πρ
being the Alfvén speed and

�A ≡ vA

2ΩH
= λR√

2λB

. (28)

The equation for ṽθ0 , obtained from the set of equations in
(26), has the form

L̂s ṽθ0 = 0, (29)

where the operator is

L̂s ≡ d

dμ

[
(1 − μ2)

d

dμ

]
− s2

1 − μ2
− s

χ
+ ε̃(χ2 − μ2)

− 2ε̃μχ (χD̂ − sμ)

s2 − ε̃χ2(1 − μ2)
. (30)

In the place of ε, we now have ε̃ ≡ �ε/χ in the MHD case.

3.2. Near-equator Solutions (ε̃ � 1)

When ε̃ � 1, the governing equation for ṽθ0 reduces to the
spheroidal wave equation with the separation constant,

Λsn (q̃) = ε̃χ2 − s

χ
, (31)

where q̃ = √
ε̃. The dispersion relation is

� 8 − 4� 2
A� 6 −

(
2s

ε

)
� 5 +

[
6� 4

A − (2l + 1)2

ε

]
� 4

+

(
4s� 2

A

ε

)
� 3 +

[
� 2

A (2l + 1)2

ε
− 4� 6

A +
( s

ε

)2
]

� 2

−
(

2s� 4
A

ε

)
� + � 8

A = 0. (32)

Eight roots exist for Equation (32), but only three of these
correspond to the angular frequencies for the magneto-Rossby
and magneto-Poincaré modes. We checked this by requiring the
eigenfrequencies and their corresponding eigenfunctions, which
will be derived shortly, to satisfy the set of equations in (23) in
the appropriate limits.

We define

X̃ ≡ ε̃1/4μ,

Ψ̃ ≡ exp

(
− X̃2

2

)
exp i (sφ − ωt). (33)



No. 2, 2009 MHD SHALLOW WATER WAVES 1823

Notice that as the magnetic field strength increases, the waves are
“pinched” closer to the equator because of the the exp (−X̃2/2)
term.

Near the equator (|μ| � 1), the spheroidal wave equation
reduces to the parabolic cylinder equation. Its solution is

v′
θ ≈ −iη̃0H̃lΨ̃, (34)

where H̃l ≡ Hl(X̃), Hl(X̃) is the Hermite polynomial, l ≡ n−s
and n plays the role of the poloidal wave number. The quantity
η̃0 = gh̃0/2ΩR is determined once the normalization h̃0 is
specified. Using the amplitude equations in (26), we have:

η0 ≈ (χD̂ − sμ)ṽθ0

ε̃χ2 − s2
,

vφ0 =
(
sη0 − μṽθ0

)
χ

. (35)

Also,

D̂ṽθ0 ≈ η̃0ε̃
1/4

(
lH̃l−1 − 1

2
H̃l+1

)
Ψ̃. (36)

The west magneto-Poincaré and magneto-Rossby modes
share the same eigenfunctions:

bθ ≈ Br

ωH
η̃0H̃lΨ̃,

v′
φ ≈ − sη̃0

(ε̃χ2 − s2)χ

(
lH̃l−1B+ +

1

2
H̃l+1B−

)
Ψ̃,

bφ ≈ − i
Br

ωH

sη̃0

(ε̃χ2 − s2)χ

(
lH̃l−1B+ +

1

2
H̃l+1B−

)
Ψ̃,

h′ ≈ − h̃0

ε̃χ2 − s2

(
lH̃l−1A+ +

1

2
H̃l+1A−

)
Ψ̃, (37)

where we have

A± ≡ sε̃−1/4 ± ε̃1/4χ,

B± ≡ A± +
χ2ε̃ − s2

s
ε̃−1/4. (38)

The east magneto-Poincaré mode is described by the solu-
tions:

bθ ≈ Br

ωH
η̃0H̃lΨ̃,

v′
φ ≈ − sη̃0

(ε̃χ2 − s2)χ

(
lH̃l−1B− +

1

2
H̃l+1B+

)
Ψ̃,

bφ ≈ − i
Br

ωH

sη̃0

(ε̃χ2 − s2)χ

(
lH̃l−1B− +

1

2
H̃l+1B+

)
Ψ̃,

h′ ≈ − h̃0

ε̃χ2 − s2

(
lH̃l−1A− +

1

2
H̃l+1A+

)
Ψ̃. (39)

It is worth noting that the equatorial eigenfunctions can be
obtained in the β-plane approximation as well (see Appendix D).

3.3. Near-pole Solutions (−ε̃ � 1)

Near the poles, the governing equation for the latitudinal ve-
locity perturbation is Whittaker’s equation (see Appendix B.3).

The L̂s operator in the hydrodynamic (Equation (B3)) and MHD
(Equation (30)) cases are mathematically identical, except that
ε̃ and χ take the places of ε and � , respectively. Therefore, the
analysis performed in Appendix B.3 can be identically applied
here. However, the χ ≈ −1 solution yields the east magne-
tostrophic mode, because

χ ≈ −1 �⇒ � ≈ 1

2

(− 1 +
√

1 + 4� 2
A

)
. (40)

Likewise, the χ ≈ +1 solution yields the west magnetostrophic
mode. We assume the form

χ = ±1 +
Q√−ε̃

, (41)

from which the dispersion relation for the slow modes is

� 4 ∓ 2� 3 + � 2

(
1 +

Q2

ε
− 2� 2

A

)

± 2� 2
A� + � 2

A

(
� 2

A − Q2

ε

)
= 0, (42)

where Q = 2m + 2l + 1; for χ ≈ ±1, we have m = |s ± 1|.
The solution to Equation (29) is

ṽθ0 ≈ V0 exp

(
− Ỹ

2

)
Ỹ (m+1)/2L(m)

l (Ỹ ), (43)

where V0 is an arbitrary normalization constant, L(m)
l (Ỹ ) is the

associated Laguerre polynomial and

Ỹ ≡
√

−ε̃
(
1 − μ2

)
. (44)

The other amplitudes can be computed using

η0 = (χD̂ − sμ)ṽθ0

ε̃χ2(1 − μ2) − s2
,

vφ0 =
(
sη0 − μṽθ0

)
χ

. (45)

Knowledge of the amplitudes allows one to compute the
magnetic field perturbations by taking the real parts of the
following expressions:

bθ = iBrv
′
θ

ωH
,

bφ = iBrv
′
φ

ωH
. (46)

Only two of the roots in Equation (42) are physical; we checked
this by again requiring the eigenfunctions to satisfy the set of
equations in (23) in the appropriate limits.

4. DISCUSSION

4.1. Existence of Wave Modes

Our analyses in the previous sections have shown that five
wave modes exist in MHD shallow water systems. We now
discuss a more intuitive way of understanding why they exist.
Firstly, consider fluid flow on the surface of a non-rotating, non-
magnetized cylinder with gravity. Only gravity waves exist and



1824 HENG & SPITKOVSKY Vol. 703

Figure 2. Solutions to the dispersion relations for MHD shallow water wave systems in spherical geometry (s = 1 and n = 2). Note that for the magneto-Poincaré
modes, the curves for the three different values of λR/λB = 0.01, 0.05, and 0.1 overlap.

(A color version of this figure is available in the online journal.)

the flow can generally be eastward- or westward-propagating.
The Rossby mode does not exist even if we rotate the cylinder
(hence producing the Poincaré modes), because it requires the
presence of a latitudinally varying Coriolis force.

If we now allow for the presence of a magnetic field,
the magnetostrophic modes appear alongside the magneto-
Poincaré modes. A magnetized, self-gravitating cylinder—
regardless of whether it is rotating—possesses four shallow
water wave modes. If we replace the cylinder with a sphere,
the magneto-Rossby mode appears. Shallow water systems on
a non-magnetized sphere only have three modes: the Poincaré
and Rossby modes.

Note that unlike on the β-plane, there are both eastward- and
westward-propagating magnetostrophic waves on a magnetized
sphere. As these waves are more concentrated toward the poles,
they are less susceptible to the effects of varying the Coriolis
parameter over the sphere. Furthermore—unlike in the case of
the hydrodynamic Rossby mode—the magneto-Rossby mode
exists even for β → 0, where it then reduces to the west
magnetostrophic mode.

4.2. Angular Frequencies

The dispersion relations for the MHD modes on a sphere,
described by Equations (32) and (42), are parameterized by the
ratio of Rossby (λR) to Alfvén (λB) radii,

λR

λB
= 0.02B8ρ

−1/2
6 H−1

3 Ω−1
3 , (47)

where for illustration, we have adopted B8 = Br/108 G,
ρ6 = ρ/106 g cm−3, H3 = H/103 cm, Ω3 = Ω/103 rad s−1,
g = 2 × 1014 cm s−2 and R = 10 km, following Spitkovsky
et al. (2002) in the context of neutron stars. For these values, we
have λR ≈ 2 km and λB ≈ 100 km (vA ≈ 0.3 km s−1).

In Figure 2, we calculate the angular frequencies of the
wave modes for various values of λR/λB. Three features are
apparent. Firstly, the magneto-Rossby mode has an angular
frequency intermediate between those of the magnetostrophic

and magneto-Poincaré modes. The magneto-Poincaré modes are
insensitive to λR/λB. However, the magnetostrophic modes are
sensitive to λR/λB, because |� | ∼ � 2

A. Since �A ∝ Br , such a
property can conceivably be used as a magnetometer, provided
the other quantities are known.

4.3. Visualization of Wave Modes

In Figures 3 and 4, we show two-dimensional plots of
the MHD wave solutions for the magneto-Poincaré, magneto-
Rossby, and magnetostrophic modes. We adopt s = 1 and n = 2
for illustration, but note that the toroidal (s) and poloidal (n)
wave numbers have geometrical interpretations, corresponding
to n − |s| + 1 and 2|s| wave nodes (i.e., “zero crossings”) in the
latitudinal and longitudinal directions, respectively.

The qualitative behavior of the modes agrees with the de-
scription of Matsuno (1966). In particular, the magneto-Rossby
mode can be understood in the following manner: the height
gradient—and therefore the pressure gradient—is positive from
the low pressure region in the middle (φ = 180◦) to the high
pressure region on the right (Figure 3). Since v′

y ∝ ∂h′/∂x, we
get v′

y > 0 and fluid flowing away from the equator. The reverse
argument holds for the height gradient (because dh′ > 0 and
dx < 0) between the low pressure region and the high pressure
region on the left (φ = 0◦), resulting in v′

y < 0 and fluid flowing
toward the equator.

A feature that is absent from hydrodynamic systems is the
magnetic pinching of the waves. Increasing Br concentrates
the magneto-Rossby and magneto-Poincaré waves closer to the
equator; the magnetostrophic waves are concentrated closer to
the poles. Although our solutions formally hold only in the
large magnetic field limit, we verified the concentration of
eigenfunctions and the values of eigenfrequencies for different
modes by direct numerical integration of the spherical equations
in (23). We used the method of Ivanov (2007) to find the regular
solutions at the poles by series expansion and then applied the
shooting method to determine the eigenfrequencies of the odd
and even modes.
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Figure 3. Wave solutions (s = 1 and n = 2) for the magneto-Poincaré and magneto-Rossby modes. For illustration, we have adopted Br = 108 G, H = 102 cm,
ρ = 106 g cm−3, Ω = 103 rad s−1, g = 2 × 1014 cm s−2, and R = 10 km. The contours represent the ocean height with light and dark colours corresponding to
positive and negative perturbations, respectively; the height normalization is arbitrary. The arrows represent the velocity field.

(A color version of this figure is available in the online journal.)

Figure 4. Same as Figure 3, but for the magnetostrophic modes with Br = 109 G.

(A color version of this figure is available in the online journal.)

4.4. Type I X-ray Bursts from Neutron Stars

Type I X-ray bursts are non-catastrophic, thermonuclear
explosions occurring on accreting neutron stars in low-mass
X-ray binaries. They have typical rise and decay times ∼1 s and
∼10–100 s, respectively (e.g., Strohmayer & Bildsten 2006),
and are often accompanied by millisecond (∼300–600 Hz)
oscillations (see van der Klis 2000 for a review). As the X-
ray burst reaches its peak luminosity and fades off, oscillations
with frequency drifts ∼1 to 5 Hz, relative to some asymptotic

frequency, persist for a time ∼10 s. The asymptotic frequency
is usually identified with the rotational frequency of the neutron
star (e.g., Strohmayer et al. 1998).

A popular interpretation is that these oscillations are caused
by the rotational modulation of a growing “hot spot” on the
surface of the neutron star. The timescale for thermonuclear
burning is much shorter than the time needed to accumulate
enough fuel to trigger thermal instabilities, allowing localized
ignitions on the stellar surface. Initially, the hot spot moves
backward against the sense of rotation due to the (approximate)
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conservation of potential vorticity, much like westward-moving
storms on Earth; it then spreads and engulfs the entire star
(Spitkovsky et al. 2002). Transverse pressure gradients cannot
be ignored because the ignited ocean of material is not fully
degenerate (Cumming & Bildsten 2000), implying that an
important characteristic velocity is the shallow water wave
speed.

Previous studies (e.g., Heyl 2004; Berkhout & Levin 2008)
have dealt with purely hydrodynamic shallow water systems
and have focused on the Rossby mode (“r-mode”). It has been
proposed that the frequency drift is caused by the Rossby mode,
but it was quickly realized that the computed drifts are somewhat
larger than what is observed. Our results in Figure 2 are
consistent with this view: for λR/λB ∼ 0.01, the drift frequency
is about ν = −ω/2π ∼ 100 Hz (adopting the Spitkovsky et al.
2002 parameter values). By contrast, the west magnetostrophic
mode has the frequency (in the limit that ε � 1)

ν ∼ Ω
4π

(
λR

λB

)2

∝ B2
r

ρΩH 2
, (48)

which is of the correct order of magnitude (i.e., ∼ 1 Hz) if
λR/λB ∼ 0.1 and Ω ∼ 103 rad s−1. However, if we assume Br
and ρ to be constant with time, then as the accreted material
cools and H decreases, ν increases, contrary to what is required
for explaining the temporal behavior of the frequency drifts.
Clearly, a full explanation of the frequency drifts also involves
understanding the physics of accreting material onto the surface
of a neutron star (Inogamov & Sunyaev 1999).

It is not the intention of our present study to compute detailed
models for the frequency drift. Rather, it is to point out that
the west magnetostrophic mode is a promising candidate that
deserves further attention. Note that the analytical eigenfunc-
tions derived in Section 3.3 are good approximations only for
Br � 109 G (with H ∼ 102–103 cm), whereas Type I X-ray
bursters are believed to be ∼107–108 G systems.

4.5. Future Work

Our study of MHD shallow water waves is generic enough
that it is readily amenable to various improvements. Natural
extensions will consider viscous fluids with more general mag-
netic field configurations. The linear analysis can be generalized
to a nonlinear one via study of the Korteweg-deVries equation
(e.g., KC04).

5. SUMMARY

The salient points of our study are summarized as follows.
1. We have performed a linear analysis of inviscid, incom-

pressible MHD waves in the shallow water approximation.
A generic feature of such systems is the existence of five
wave modes: east and west magneto-Poincaré; east and
west magnetostrophic; and magneto-Rossby.

2. Analytical functions for the velocity, height, and magnetic
field perturbations are obtained in the limit |ε̃| � 1. These
functions are useful as a guide toward obtaining numerical
solutions or performing simulations.

3. For reasonable values of the parameters, the magneto-
Rossby and magneto-Poincaré modes belong to the ε̃ �
1 family of solutions and reside near the equator. The
magnetostrophic modes belong to the −ε̃ � 1 family
of solutions and reside near the poles. Increasing the
magnetic field strength further concentrates the waves near
the equator and poles, respectively.

4. The west magnetostrophic mode is a potential candidate
for explaining the observed frequency drifts in Type I X-
ray bursts from neutron stars.
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APPENDIX A

CLASSICAL SHALLOW WATER WAVES: CARTESIAN
COORDINATES

A.1. Without Rotation (Gravity Waves)

Hydrodynamic shallow water waves are described by Euler’s
equation:

∂ �v
∂t

+ �v.∇�v = − 1

ρ
∇P. (A1)

The fluid pressure is

P = P0 + ρg(h − z), (A2)

where P0 is constant, such that the x- and y-components of the
Euler equations are

∂vx

∂t
+ vx

∂vx

∂x
+ vy

∂vx

∂y
= − g

∂h

∂x
,

∂vy

∂t
+ vx

∂vy

∂x
+ vy

∂vy

∂y
= − g

∂h

∂y
. (A3)

An additional equation of motion comes from the incom-
pressibility condition:

vz = −
∫ h

0

(
∂vx

∂x
+

∂vy

∂y

)
dz = −

(
∂vx

∂x
+

∂vy

∂y

)
h. (A4)

But we also have

vz = Dh

Dt
= ∂h

∂t
+ vx

∂h

∂x
+ vy

∂h

∂y
. (A5)

It follows that

∂h

∂t
+ vx

∂h

∂x
+ vy

∂h

∂y
+

(
∂vx

∂x
+

∂vy

∂y

)
h = 0, (A6)

or, more compactly,

∂h

∂t
+ ∇. (h�v) = 0. (A7)

One can easily check that the derived equations in (A3) and
(A6) satisfy “state of calm” conditions,

vx = vy = 0, h = H0, (A8)

where H0 is a constant.
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Considering small perturbations to the velocity and height of
the water waves yield the following linearized equations:

∂v′
x

∂t
+ Vx

∂v′
x

∂x
+ Vy

∂v′
x

∂y
+ g

∂h′

∂x
= 0,

∂v′
y

∂t
+ Vx

∂v′
y

∂x
+ Vy

∂v′
y

∂y
+ g

∂h′

∂y
= 0, (A9)

∂h′

∂t
+ Vx

∂h′

∂x
+ Vy

∂h′

∂y
+

(
∂v′

x

∂x
+

∂v′
y

∂y

)
H = 0.

Seeking wave solutions to Equation (A9) yields

vx0A0 + h0gkx = 0,

vy0A0 + h0gky = 0, (A10)

vx0kxH + vy0kyH + h0A0 = 0.

The linear, simultaneous equations in (A10) can be arranged
in the form (i.e., “Cramer’s Rule;” e.g., Arfken & Weber 1995):

Â

(
vx0

vy0

h0

)
= 0,

where

Â =
(

A0 0 gkx

0 A0 gky

kxH kyH A0

)
.

The solutions for vx0 , vy0 , and h0 are non-trivial only if

detÂ = 0. (A11)

It follows that

A0
[
A2

0 − gH
(
k2
x + k2

y

)] = 0, (A12)

which yields the following dispersion relations:

ω =
{

kxVx + kyVy,

kxVx + kyVy ±
√

gH
(
k2
x + k2

y

)
.

(A13)

The first of these dispersion relations is trivial; it simply
describes an advection wave. Setting Vx = Vy = 0 and
analyzing the ω � 0 solutions, we obtain the x- and y-
components of the phase velocity:

cpx
= ω/kx = c0

√
1 + k2

y/k2
x,

cpy
= ω/ky = c0

√
1 + k2

x/k2
y, (A14)

such that

cp =
√

c2
px

+ c2
py

= c0

√
2 + k2

x/k2
y + k2

y/k2
x. (A15)

Similarly, the x- and y-components of the group velocity are

cgx
= ∂ω

∂kx

= kxc0√
k2
x + k2

y

,

cgy
= ∂ω

∂ky

= kyc0√
k2
x + k2

y

, (A16)

and
cg =

√
c2
gx

+ c2
gy

= c0. (A17)

Note that cg < cp and the amplitudes vx0 , vy0 , and h0 are always
in phase.

A.2. With Constant Rotation: f-Plane Treatment (Poincaré
Waves)

In the case of non-zero rotation, the Euler equation in the
rotating frame has a Coriolis force term:

∂ �v
∂t

+ �v.∇�v = − 1

ρ
∇P − 2( �Ω × �v). (A18)

Assuming that �Ω = (0, 0, Ω), the equations of motion become

∂vx

∂t
+ vx

∂vx

∂x
+ vy

∂vx

∂y
= − g

∂h

∂x
+ f vy,

∂vy

∂t
+ vx

∂vy

∂x
+ vy

∂vy

∂y
= − g

∂h

∂y
− f vx, (A19)

with Equation (A6) remaining unchanged. Such a treatment
with the Coriolis parameter, f = 2Ω, held constant is called the
“f-plane approximation” (see G82 and KC04). It is possible to
Taylor-expand f and keep the first order term, which will have a
spatial dependence. Such a treatment is known as the “β-plane
approximation” and is examined in Appendix A.3.

We again consider small perturbations to the physical quan-
tities and linearize the equations:

∂v′
x

∂t
+ Vx

∂v′
x

∂x
+ Vy

∂v′
x

∂y
+ g

∂h′

∂x
− 2Ωv′

y = 0,

∂v′
y

∂t
+ Vx

∂v′
y

∂x
+ Vy

∂v′
y

∂y
+ g

∂h′

∂y
+ 2Ωv′

x = 0, (A20)

where the linearized equation of motion for h′ remains un-
changed (see Equation (A9)).

The matrix Â now becomes

Â =
(

iA0 −2Ω igkx

2Ω iA0 igky

kxH kyH A0

)
,

and the non-trivial dispersion relation is

ω = kxVx + kyVy ±
√

gH
(
k2
x + k2

y

)
+ 4Ω2. (A21)

Such a dispersion relation agrees with that described by Holton
(2004, page 208). Waves with this dispersion relation are often
called “Poincaré waves” (G82, page 196), while Poincaré waves
with a finite horizontal boundary are termed “Kelvin waves”
(KC04, page 615).6

Setting Vx = Vy = 0 (i.e., solid body rotation), the phase
velocity is

cp =
√

gH
(
2 + k2

x/k2
y + k2

y/k2
x

)
+ 4Ω2

(
1/k2

x + 1/k2
y

)
,

(A22)
while the group velocity is

cg = c0

[
k2

k2 + 4Ω2/gH

]1/2

. (A23)

6 Poincaré waves are often referred to as “gravity waves” or “g-modes” with
rotational effects implied.
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A.3. With Constant Rotation: β-Plane Treatment (Poincaré
and Rossby Waves)

Consider the Coriolis parameter to be

f = f0 + βy, (A24)

where f0 = 2Ω sin Θ and Θ denotes the latitude on a sphere.
The parameter β is given by

β = 2Ω
R

cos Θ, (A25)

with R being the radius of the sphere. Such a treatment is known
as the “β-plane approximation” (e.g., KC04), and it is the first
step toward considering curvature effects on a sphere.

The set of linearized equations in the β-plane approximation
is:

∂v′
x

∂t
+ g

∂h′

∂x
− f v′

y = 0,

∂v′
y

∂t
+ g

∂h′

∂y
+ f v′

x = 0, (A26)

∂h′

∂t
+

(
∂v′

x

∂x
+

∂v′
y

∂y

)
H = 0.

Differentiating the second equation in (A26) twice with respect
to t yields:

∂3v′
y

∂t3
+ f 2

∂v′
y

∂t
+ fgH

∂

∂x

(
∂v′

x

∂x
+

∂v′
y

∂y

)
=

gH
∂2

∂y∂t

(
∂v′

x

∂x
+

∂v′
y

∂y

)
. (A27)

Differentiating the first and second equations in (A26) with
respect to y and x, respectively, and subtracting them from one
another gives

∂

∂t

(
∂v′

x

∂y
− ∂v′

y

∂x

)
− f

(
∂v′

x

∂x
+

∂v′
y

∂y

)
− βv′

y = 0. (A28)

Adding Equations (A27) and (A28), with the latter operated on
by gH ∂

∂x
, eliminates v′

x :

∂3v′
y

∂t3
+ f 2

∂v′
y

∂t
− gH

∂

∂t

(
∂2v′

y

∂x2
+

∂2v′
y

∂y2

)
− βgH

∂v′
y

∂x
= 0.

(A29)
Such an approach is described in KC04 (page 610); a generalized
version of it was applied to MHD systems by Zaqarashvili et al.
(2007). From Equation (A29), one can seek wave solutions as
usual and obtain the dispersion relation.

There is a more convenient approach one can adopt to obtain
the dispersion relation. Instead of juggling differential operators,
one differentiates the first equation in (A26) with respect to y;
the purpose of this step is to extract the first order terms in f.
Together with the other two equations in (A26), wave solutions
are then sought and the matrix Â is once again constructed,

Â =
⎛
⎝ωky − (β + ikyf0

) −gkxky

f0 −iω igky

kxH kyH −ω

⎞
⎠ .

Setting detÂ = 0 yields the dispersion relation:

ω3 − ω
(
gHk2 + f 2

0

)− gHkxβ = 0. (A30)

Notice that Equation (A30) is asymmetric with respect to kx and
ky, implying that wave motion is not isotropic in the horizontal
direction. Very slow (ω � f ), large-wavelength (kH � 1)
waves are called “Rossby waves.” They are sometimes called
“planetary waves,” and have an angular frequency of (see also
KC04, page 634)

ω ≈ − βkx

k2 + (f0/c0)2 . (A31)

For very large wavelengths, the eastward phase speed is

cR ≈ −β (c0/f0)2 . (A32)

The negative sign shows that phase propagation is always
westward.

APPENDIX B

CLASSICAL SHALLOW WATER WAVES: SPHERICAL
COORDINATES

We revisit the classic work of LH68 as a prelude to Section 3.

B.1. Equations

Consider waves with a velocity �v = (vr, vθ , vφ). The lin-
earized equations of motion have the form:

∂v′
θ

∂t
− 2Ωv′

φ cos θ +
g

R

∂h′

∂θ
= 0,

∂v′
φ

∂t
+ 2Ωv′

θ cos θ +
g

R sin θ

∂h′

∂φ
= 0, (B1)

∂h′

∂t
+

H

R sin θ

[
∂

∂θ
(v′

θ sin θ ) +
∂v′

φ

∂φ

]
= 0.

The amplitude equations become

�ṽθ0 + μvφ0 + D̂η0 = 0,

μṽθ0 + �vφ0 − sη0 = 0, (B2)

�ε(1 − μ2)η0 − D̂ṽθ0 − svφ0 = 0.

The second equation in the preceding set can be used to eliminate
vφ0 and obtain L̂s ṽθ0 = 0, where the operator is

L̂s ≡ d

dμ

[
(1 − μ2)

d

dμ

]
− s2

1 − μ2
− s

�

+ ε(� 2 − μ2) − 2εμ� (�D̂ − sμ)

s2 − ε� 2(1 − μ2)
, (B3)

in agreement with Equation (7.8) of LH68 (see Appendix C).

B.2. Near-equator Solutions (ε � 1)

When ε � 1, the last term in Equation (B3) is small compared
to the other terms. The first and second terms cannot be dropped
because the boundary conditions at μ = ±1 have to be satisfied
(LH68).7 In this approximation, one may recognize L̂s ṽθ0 = 0 as

7 Specifically, the spheroidal wave functions need to be finite at the poles
(Abramowitz & Stegun 1970).
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the “spheroidal wave equation” with the solutions Ssn

(√
ε, μ

)
(Abramowitz & Stegun 1970), where the “separation constant”
is

Λsn (q) = ε� 2 − s

�
(B4)

and q = √
ε. Note that for l ≡ n − s,

Λsn (q)

q
→ 2l + 1 (B5)

for q � 4 (Abramowitz & Stegun 1970). When ε = 0, L̂s

becomes the operator for the associated Legendre equation; the
corresponding solution is P (s)

n (μ) and the separation constant
is Λsn = n(n + 1) (Arfken & Weber 1995). In this case, only
the eastward-propagating Poincaré mode exists. When ε �= 0,
a westward-propagating Poincaré mode appears in addition to
the Rossby mode. The dispersion relation is extracted from
Equation (B4):

� 3 − �Λsn

(
λR

R

)2

− s

(
λR

R

)2

= 0. (B6)

The Poincaré and Rossby waves are described by the so-called
“Type 1” and “Type 2” solutions of LH68, respectively. The
azimuthal velocity perturbation in both cases has the functional
form,

v′
θ ≈ −iη̃0HlΨ, (B7)

where Hl(X) is the Hermite polynomial and

X ≡ ε1/4μ,

Ψ ≡ exp

(
−X2

2

)
exp i (sφ − ωt). (B8)

We first focus on the Type 1 solutions, where

� ∼ ±
√

2l + 1

ε1/4
. (B9)

Making use of the second and third equations in the set (B2)
leads to

η0 = (�D̂ − sμ)ṽθ0

� 2ε(1 − μ2) − s2
≈ D̂ṽθ0

�ε
. (B10)

The preceding approximation is justified because sμṽθ0 �
�D̂ṽθ0 and � 2ε ∝ ε1/2 � s2. As we will see later, these
approximations are inviable for the Type 2 solutions. It follows
that

h′ ≈ ± h̃0√
2l + 1

ε−1/2

(
lHl−1 − 1

2
Hl+1

)
Ψ. (B11)

Notice that we have the “±” instead of the “∓” sign in Equation
(8.32) of LH68, because we are defining θ as the co-latitude.

To obtain v′
φ , we use the second equation in the set (B2),

vφ0 ≈ −μṽθ0

�
. (B12)

The preceding approximation is valid because μṽθ0 ∝ ε−1/4 �
sη ∝ ε−1/2. It follows that

v′
φ ≈ ∓ η̃0√

2l + 1

(
lHl−1 +

1

2
Hl+1

)
Ψ. (B13)

Obtaining the Type 2 solutions, where

� ∼ − s

(2l + 1)
√

ε
, (B14)

involves realizing that the approximations made to obtain the
Type 1 solutions do not hold, because

sμṽθ0 ∝ ε−1/4 ∼ �D̂ṽθ0 ∝ ε−1/4,

� 2ε ∼ s2, (B15)
μṽθ0

�
∝ ε1/4 ∼ sη0

�
∝ ε1/4,

and therefore the previously dropped terms need to be retained.
Making use of the recursion relations for Hermite polynomials,
we arrive at

h′ ≈ h̃0
2l + 1

2s
ε−1/4

(
Hl−1 +

1

2l + 2
Hl+1

)
Ψ,

v′
φ ≈ − η̃0

2l + 1

2s
ε1/4

(
Hl−1 − 1

2l + 2
Hl+1

)
Ψ. (B16)

Again, notice that the plus and minus signs are switched
compared to LH68. Note that we require l � 0 and l � 1
for Type 1 and 2 solutions, respectively.

B.3. Near-pole Solutions (−ε � 1)

LH68 showed that � → ±1 as −ε increases. He reasoned
that for the penultimate term in Equation (B3) to not dominate
the other terms, we must have −ε(� 2−μ2) ∼ 1. When −ε � 1,
one gets (1 − μ2) � 1, and therefore μ2 ∼ 1. Therefore, the
solutions to L̂s ṽθ0 = 0 are concentrated near the poles for large
values of −ε.

To proceed, one assumes � to have the form,

� = ±1 +
Q√−ε

. (B17)

Using the substitution,

Y ≡ √−ε(1 − μ2), (B18)

the equation L̂s ṽθ0 = 0 becomes

[
d2

dY 2
− 1

4
+

Q

2Y
− s2 ± 2s

4Y 2

]
ṽθ0 = 0, (B19)

readily recognized as Whittaker’s equation (Abramowitz &
Stegun 1970). The solutions are

ṽθ0 ≈ V0 exp

(
−Y

2

)
Y (m+1)/2L(m)

l (Y ) , (B20)

where L(m)
l (Y ) is the associated Laguerre polynomial (Arfken

& Weber 1995). For � ≈ ±1, we have m = |s ± 1|; also,
Q = 2m+2l +1. � ≈ −1 and +1 cases correspond to the “Type
4” and “Type 5” solutions of LH68, respectively. The quantities
h′ and v′

φ can be calculated using the procedure described in
Appendix B.2 to compute the Type 2 solutions.
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APPENDIX C

GENERALIZED IDENTITY OF LONGUET-HIGGINS
(1968)

We provide a proof for the identity used to go from Equation
(7.5) to (7.8) of LH68 and generalize it for MHD systems. Using
the test functions F = F(μ) and G = G(μ), one show can that

(χD̂ + μs)[G(χD̂ − μs)]F = G(χD̂ + μs)(χD̂ − μs)F
+ χ (D̂G)[χ (D̂F) − μsF],

(C1)

since

(χD̂ + μs)(χD̂ − μs)F = χ2D̂(D̂F) − χD̂(μsF)

+ μsχ (D̂F) − (μs)2F . (C2)

Now, we consider

G = [�χε(1 − μ2) − s2]−1, (C3)

such that

(
χ∇2

LH − s
)
F +

2�χεμ

�χε(1 − μ2) − s2
(χD̂ − μs)F

+ �ε(χ2 − μ2)F = 0. (C4)

The operator used in Longuet-Higgins (1965) and LH68, origi-
nally denoted by ∇2, is defined by us as

∇2
LH ≡ d

dμ

[(
1 − μ2) d

dμ

]
− s2

1 − μ2
. (C5)

To use these identities for non-magnetized systems, simply set
χ = � .

APPENDIX D

β-PLANE TREATMENT FOR MHD EQUATORIAL
EIGENFUNCTIONS

The equatorial eigenfunctions can be obtained in the β-
plane approximation, an analysis first performed by Matsuno
(1966), who recognized it as an eigenvalue problem. The β-
plane analysis is algebraically more tractable and provides
a consistency check on the results in Section 3.2. We first
normalize the equations using the length and timescales:

L =
√

c0

β
, T = 1√

c0β
. (D1)

We also let γ̃0 ≡ gh̃0/c
3/2β1/2, where h̃0 ≡ h0/L. Subse-

quently, quantities in this section marked with a “tilde” are
normalized by L and/or T, unless otherwise specified.

Seeking exp i(kxx − ωt) wave solutions, the amplitude equa-
tions become

ỹṽx0 − iχ̃ ṽy0 +
dγ̃0

dỹ
= 0,

−iχ̃ ṽx0 − ỹṽy0 + ik̃x γ̃0 = 0, (D2)

ik̃x ṽx0 +
dṽy0

dỹ
− iω̃γ̃0 = 0,

where

χ̃ ≡ ω̃ − B̃2
z

ω̃
,

B̃z ≡ Bz√
4πρβc0H

. (D3)

Manipulating the second and third equations in (D2) yields:

ṽx0 = 1

i
(
ω̃χ̃ − k̃2

x

) (k̃x

dṽy0

dỹ
− ω̃ỹṽy0

)
,

γ̃0 = − 1

i
(
ω̃χ̃ − k̃2

x

) (−χ̃
dṽy0

dỹ
+ k̃x ỹṽy0

)
. (D4)

Substituting the preceding expressions into the first equation of
(D2) gives

[
d2

dỸ 2
− α1/2ỹ2 + Λsnα

−1/2

]
ṽy0 = 0. (D5)

As expected, the governing equation for ṽy0 is the parabolic
cylinder equation, where α ≡ ω̃/χ̃ and Ỹ ≡ α1/4ỹ. It has the
solution:

ṽy = V0H̃lΨ̃,

Ψ̃ ≡ exp

(
− Ỹ 2

2

)
exp i(kxx − ωt). (D6)

Here, H̃l ≡ Hl(Ỹ ) and V0 is an arbitrary normalization constant.
The dispersion relation is

ω̃8 − 2
(
2B̃2

z + k̃2
x

)
ω̃6 − 2k̃xω̃

5

+
[
6B̃2

z

(
B̃2

z + k̃2
x

)
+ k̃4

x − (2l + 1)2
]
ω̃4

+
[− 2B̃2

z

(
2B̃4

z + k̃4
x

)
+ k̃2

x

(
1 − 6B̃4

z

)
+ B̃2

z (2l + 1)2
]
ω̃2

+ 2k̃x

(
2B̃2

z + k̃2
x

)
ω̃3 − 2k̃xB̃

2
z

(
B̃2

z + k̃2
x

)
ω̃

+ B̃4
z

(
B̃4

z + 2B̃2
z k̃

2
x + k̃4

x

) = 0. (D7)

For the magneto-Rossby and west magneto-Poincaré modes,
the other eigenfunction solutions are

ṽ′
x = V0

i
(
ω̃χ̃ − k̃2

x

) [lH̃l−1B+ − 1

2
H̃l+1B−

]
Ψ̃,

γ̃ ′ = − V0

i
(
ω̃χ̃ − k̃2

x

) [lH̃l−1A+ +
1

2
H̃l+1A−

]
Ψ̃, (D8)

where γ̃ ′ ≡ gh̃′/c3/2β1/2. For the east magneto-Poincaré mode,
we have

ṽ′
x = V0

i
(
ω̃χ̃ − k̃2

x

) [lH̃l−1B− − 1

2
H̃l+1B+

]
Ψ̃,

γ̃ ′ = − V0

i
(
ω̃χ̃ − k̃2

x

) [lH̃l−1A− +
1

2
H̃l+1A+

]
Ψ̃. (D9)
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Analogous to the case of spherical geometry, we have

A± ≡ k̃x

(
χ̃

ω̃

)1/4

± |χ̃ |3/4 |ω̃|1/4
,

B± ≡ k̃x

(
ω̃

χ̃

)1/4

± |χ̃ |1/4 |ω̃|3/4
. (D10)

The (normalized) magnetic field perturbations are obtained from
b̃x,y = iB̃zṽ

′
x,y/ω.
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