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ABSTRACT

With the development of one-dimensional stellar evolution codes including rotation and the increasing number
of observational data for stars of various evolutionary stages, it becomes more and more possible to follow
the evolution of the rotation profile and angular momentum distribution in stars. In this context, understanding
the interplay between rotation and convection in the very extended envelopes of giant stars is very important
considering that all low- and intermediate-mass stars become red giants after the central hydrogen burning phase.
In this paper, we analyze the interplay between rotation and convection in the envelope of red giant stars using
three-dimensional numerical experiments. We make use of the Anelastic Spherical Harmonics code to simulate the
inner 50% of the envelope of a low-mass star on the red giant branch. We discuss the organization and dynamics
of convection, and put a special emphasis on the distribution of angular momentum in such a rotating extended
envelope. To do so, we explore two directions of the parameter space, namely, the bulk rotation rate and the Reynolds
number with a series of four simulations. We find that turbulent convection in red giant stars is dynamically rich,
and that it is particularly sensitive to the rotation rate of the star. Reynolds stresses and meridional circulation
establish various differential rotation profiles (either cylindrical or shellular) depending on the convective Rossby
number of the simulations, but they all agree that the radial shear is large. Temperature fluctuations are found
to be large and in the slowly rotating cases, a dominant � = 1 temperature dipole influences the convective
motions. Both baroclinic effects and turbulent advection are strong in all cases and mostly oppose one another.
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1. OBSERVATIONS AND MODELS OF RGB STARS

1.1. What are Observations and Stellar Evolution Models
Telling Us?

Almost all, if not all stars rotate, and the distribution of their
angular momentum appears to change along the course of their
evolution as can be seen from the υ sin i data collected during
the last decades for stars all over the HR diagram (e.g., see
for instance Pilachowski & Milkey 1984, 1987; de Medeiros &
Mayor 1999; Glebocki & Stawikowski 2000; Royer et al. 2002a,
2002b; Barnes et al. 2005; Karl et al. 2005; Carney et al. 2008).

To constrain the internal angular momentum profile at each
evolutionary phase, the easiest approach would be to probe
stellar interiors in order to derive the angular velocity profile.
Helioseismology allows us to invert the inner solar rotation
profile down to r = 0.25R� (Schou et al. 1998; Antia & Basu
2000; Antia et al. 2008; Garcı́a et al. 2008). Asteroseismology
should soon offer similar opportunities for other stellar spectral
types thanks to the CoROT (Goupil et al. 2006; Baglin et al.
2007) and Kepler satellites. In the meantime, however, we are
left with indirect probes of the internal angular momentum
distribution in all stars: (1) the surface velocity measurements
for stars of similar initial mass at different evolutionary stages;
(2) the surface abundance anomalies resulting from the action
of internal transport processes, in part due to rotation, that
connect the stellar envelopes to the nuclearly processed internal
regions. These indirect probes can be compared to the results of
one-dimensional rotating stellar evolution models (Pinsonneault
et al. 1989; Fliegner & Langer 1994; Meynet & Maeder 1997;

Talon et al. 1997; Maeder & Meynet 2000; Heger et al. 2000,
2005; Palacios et al. 2003, 2006; Chanamé et al. 2005; Suijs
et al. 2008) in order to guess the angular velocity profile
evolution. The introduction of rotation and associated transport
processes in one-dimensional stellar evolution models leads
indeed to a clear improvement of the comparison between
theoretical predictions and observations, in particular from the
point of view of chemical abundances. However, a number of
points, in particular concerning the evolution of the surface
rotation velocities, remain to be elucidated. It is the case for
the differences between predicted and observed spin rates for
white dwarfs and neutron stars (Heger et al. 2005; Suijs et al.
2008), or the interpretation of the surface velocities distribution
of horizontal branch stars (Sills & Pinsonneault 2000; Recio-
Blanco et al. 2002, 2004).

While important theoretical developments have been devoted
to the description of the one-dimensional angular momentum
transport in the radiative stellar interiors (Zahn 1992; Maeder
& Zahn 1998; Mathis & Zahn 2004), the transport of angular
momentum in convective regions, and in particular in extended
convective envelopes, is poorly described in one-dimensional
models. This is of particular importance for the case of giant stars
that possess very extended convective envelopes, occupying up
to 80% and more of the total stellar radius. These stars are
expected to have very slow surface rotation due to their large
radius, which is confirmed by observations (de Medeiros &
Mayor 1999; Carney et al. 2008), but may also have a rapidly
rotating core (Sills & Pinsonneault 2000).

Understanding the angular momentum distribution during the
giant evolutionary phases is crucial to understand the subsequent
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evolutionary phases, and the spin rates of compact stellar
remnants. It relies on the understanding of the interplay between
convection and rotation in these very large convective envelopes.
Few observational constraints are available though, due to the
difficulty to measure rotation velocities for cool and slowly
rotating stars exhibiting broadened spectral lines. For the case of
active giants exhibiting spots at their surface, we may mention
the possibility to reconstruct their latitudinal surface rotation
from spectropolarimetric data (Petit et al. 2002). These type
of data are however limited, and three-dimensional numerical
experiments appear to be the best start to ascertain the behavior
of rotating extended convective envelopes of red giant stars.

1.2. Present Status of Three-dimensional Simulations

The study of turbulent convection in rotating media requires
global three-dimensional simulations of convection in spherical
geometry, which is both computationally very demanding and
difficult to achieve due to the large number of scales that
have to be represented. It is only in the last two decades that
such an approach was made possible, in particular thanks to
the development of massively parallel computer architectures.
Most of the simulations of convection in astrophysics have been
obtained in the context of the Sun (e.g., Stein & Nordlund 1998;
Brun & Toomre 2002; Miesch et al. 2006, 2008), and led to a
great improvement of our understanding of the solar convection.
Concerning the convection realized in extended envelopes of
red giant stars, three-dimensional hydrodynamical simulations
of the convection in a red supergiant star (Freytag et al. 2002,
hereafter FSD02; “star-in-a-box” experiment) and in asymptotic
giant branch (AGB) stars (e.g., FSD02; Woodward et al. 2003,
hereafter WPJ03) have been performed using fully compressible
codes. These simulations do not include rotation and present as
a common feature of the development of pulsations without any
κ-mechanism. In the AGB star by WPJ02, the convective pattern
appears to have a dipolar nature, which is also found by Kuhlen
et al. (2006) in their simulation of nonrotating fully convective
spheres in carbon–oxygen white dwarfs, and by Steffen &
Freytag (2007, hereafter SF07) in their nonrotating “star-in-
a-box” mini-sun experiment. In the FSD02 simulations of both
the red supergaint and the AGB star, the convective pattern
achieved consists in a small number of large cells covering the
surface, the number of which increases with resolution. The
surface patterns obtained by WPJ03 in their higher resolution
simulations are more complex, yet resembling that found by
FSD02: large warm upgoing flows surrounded by narrow cooler
downgoing structures.

Recently, SF07 presented rotating “star-in-a-box” experi-
ments. They find no striking difference in the convective pattern
compared to their nonrotating case. Concerning rotation, they
find a strong differential rotation, which is anti-solar in lati-
tude, and very strong meridional circulation flows, comparable
to typical convective velocities.

Other three-dimensional simulations of the convection in the
upper envelope and the atmosphere of red giants have been
performed in a more local approach, within the framework of
realistic simulation of spectral lines formation in these stars
(e.g., Chiavassa et al. 2006; Collet et al. 2007; Robinson
et al. 2004). In these works, the hydrodynamical simulation
of convection itself is not discussed in details. Let us finally
mention the work by Herwig et al. (2007), who investigated the
convection in the thermal pulses of an AGB star.

In order to further study the heat, energy, and angular
momentum redistribution occurring in the extended convective

envelope of slowly rotating red giant branch (RGB) stars,
we have started a series of three-dimensional hydrodynamical
simulations with the Anelastic Spherical Harmonics (ASH)
code (Palacios & Brun 2007). In the present paper, we explore
the parameter space by varying the rotation rate and the
turbulence level of our RGB models and discuss in length
the dynamics of such complex systems. More specifically, in
Section 2 we describe our numerical approach and the three-
dimensional ASH code as well as specify the one-dimensional
stellar evolution model used to set our background reference
state. Then, in Section 3 we discuss the properties of the
turbulent convection achieved in our simulations. Large-scale
flows are discussed in Section 4, with a particular emphasis on
the internal rotation profile. We finally analyze and describe
in Section 5 the transport of heat and angular momentum in
our simulations, before summarizing the overall results and
concluding in Section 6.

2. EQUATIONS, BOUNDARY CONDITIONS, AND
PARAMETER VALUES

2.1. Anelastic Equations

The simulations described here were performed using our
ASH code. ASH solves the three-dimensional anelastic equa-
tions of motion in a rotating spherical geometry using a pseu-
dospectral semi-implicit approach (e.g., Clune et al. 1999;
Miesch et al. 2000; Brun et al. 2004). These equations are fully
nonlinear in velocity variables and linearized in thermodynamic
variables with respect to a spherically symmetric mean state.
This mean state is taken to have density ρ̄, pressure P̄ , temper-
ature T̄ , specific entropy S̄; perturbations about this mean state
are written as ρ, P, T, and S. Conservation of mass, momentum,
and energy in the rotating reference frame are therefore written
as

∇ · (ρ̄v) = 0, (1)

ρ̄

(
∂v

∂t
+ (v · ∇)v + 2Ωo × v

)
(2)

= −∇P + ρg − ∇ · D − [∇P̄ − ρ̄g],

ρ̄T̄
∂S

∂t
= ∇ · [κr ρ̄cp∇(T̄ + T ) + κρ̄T̄ ∇(S̄ + S)] (3)

− ρ̄T̄ v · ∇(S̄ + S) + 2ρ̄ν
[
eij eij − 1/3(∇ · v)2] ,

where cp is the specific heat at constant pressure, v = (vr, vθ , vφ)
is the local velocity in spherical geometry in the rotating frame
of constant angular velocity Ωo = Ω0êz, g is the gravitational
acceleration, κr is the radiative diffusivity, and D is the viscous
stress tensor, with components

Dij = −2ρ̄ν[eij − 1/3(∇ · v)δij ], (4)

where eij is the strain rate tensor. Here, ν and κ are effective eddy
diffusivities for vorticity and entropy. To close the set of equa-
tions, linearized relations for the thermodynamic fluctuations
are taken as

ρ

ρ̄
= P

P̄
− T

T̄
= P

γ P̄
− S

cp

, (5)

assuming the ideal gas law

P̄ = Rρ̄T̄ , (6)
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where R is the gas constant. The effects of compressibility
on the convection are taken into account by means of the
anelastic approximation, which filters out sound waves that
would otherwise severely limit the time steps allowed by the
simulation.

For boundary conditions at the top and bottom of the domain,
we impose

1. impenetrable walls:

vr = 0|r=rbot,rtop ,

2. stress free conditions:

∂

∂r

(vθ

r

)
= ∂

∂r

(vφ

r

)
= 0|r=rbot,rtop ,

3. and constant entropy gradient:

∂S̄

∂r
= cst |r=rbot,rtop .

Convection in stellar environments occurs over a large range
of scales. Numerical simulations cannot, with present comput-
ing technology, consider all these scales simultaneously. We
therefore seek to resolve the largest scales of the nonlinear flow,
which we think are likely to be the dominant players in establish-
ing differential rotation and other mean properties in convective
envelopes. We do so within a large-eddy simulation (LES) for-
mulation, which explicitly follows larger scale flows while em-
ploying subgrid-scale (SGS) descriptions for the effects of the
unresolved motions. Here, those unresolved motions are treated
as enhancements to the viscosity and thermal diffusivity (ν and
κ), which are thus effective eddy viscosities and diffusivities.
For simplicity, we have taken these to be functions of radius
alone, and to scale as the inverse of the square root of the mean
density. We emphasize that currently tractable simulations are
still many orders of magnitude away in parameter space from
the highly turbulent conditions likely to be found in real stellar
convection zones. These LESs should therefore be viewed only
as indicators of the properties of the real flows. We are how-
ever encouraged by the success that similar simulations (e.g.,
Miesch et al. 2000; Elliott et al. 2000; Brun & Toomre 2002;
Miesch et al. 2006) have enjoyed in matching the detailed obser-
vational constraints for the differential rotation within the solar
convection zone provided by helioseismology.

2.2. Brief Summary of the Numerical Method

Thermodynamic variables within ASH are expanded in spher-
ical harmonics Ym

� (θ, φ) in the horizontal directions and in
Chebyshev polynomials Tn(r) in the radial direction. Spatial
resolution is thus uniform everywhere on a sphere when a com-
plete set of spherical harmonics of degree � is used, retaining
all azimuthal orders m. We truncate our expansion at degree
� = �max, which is related to the number of latitudinal mesh
points Nθ (here �max = (2Nθ −1)/3), take Nφ = 2Nθ azimuthal
mesh points, and utilize Nr collocation points for the projection
onto the Chebyshev polynomials. We have considered various
grid resolutions Nr × Nθ × Nφ depending on the degree of
turbulence of the model (see Table 1). A semi-implicit, second-
order Crank-Nicolson scheme is used in determining the time
evolution of the linear terms, whereas an explicit second-order
Adams-Bashforth scheme is employed for the advective and
Coriolis terms. The ASH code has been optimized to run effi-
ciently on massively parallel supercomputers such as the IBM

Table 1
Parameters for the Four Simulations

Case RG1 RG1t RG2 RG2t

Nr, Nθ ,Nφ 257, 256, 512 257, 512, 1024 257, 256, 512 257, 768, 1536
Ra . . . 8.25 × 105 3.18 × 106 7.45 ×105 2.69 × 106

Ta . . . 1.32 × 106 4.89 × 106 5.44 × 104 1.96 × 105

Pr . . . 1 1 1 1
Roc . . . 0.791 0.806 3.703 3.703
νtop . . . 1.2 × 1015 5 × 1014 1.2 × 1015 5 × 1014

κtop . . . 1.2 × 1015 5 ×1014 1.2 × 1015 5 × 1014

R̃e′ . . . 256 623 372 882
˜Pe′ . . . 256 623 372 882

R̃o′ . . . 0.281 0.284 2.03 2.01

Notes. All simulations have an inner radius rbot = 1.36 × 1011 cm, an outer
radius rtop = 1.36 × 1012 cm, with L = 1.22 × 1012 cm (�17.6 R�). The
number of radial, latitudinal, and longitudinal mesh points are Nr , Nθ , and
Nφ , respectively. The higher degree of turbulence in cases RG1t and RG2t was
obtained by maintaining the Prandtl number at 1 and lowering both the eddy
viscosity ν and eddy diffusivity κ at the top edge of the domain. ν and κ are
given in units of cm s−2. The characteristic numbers evaluated at mid-layer
depth are the Rayleigh number Ra = (∂ρ/∂S)ΔSgL3/ρνκ , the Taylor number
Ta = 4Ω2

0L
4/ν2, the Prandtl number Pr = ν/κ , the convective Rossby number

Roc = √
Ra/TaPr , the rms Reynolds number R̃′

e = υ̃ ′L/ν, the rms Péclet
nulber P̃ ′

e = R̃′
ePr , and the rms Rossby number R̃′

o = ω̃′/2ΩO ≈ υ̃ ′/2Ω0L.
We use the rms convective velocity υ̃ ′ at mid-depth given in Table 2 to compute
these quantities and the following mid-depth viscosity of 8.481014 (3.531014)
cm s−2 for, respectively, the laminar (turbulent) cases.

SP-6 or SGI Altix, and has demonstrated excellent scalability
on such machines (see Clune et al. 1999 and Brun et al. 2004
for more details).

2.3. Computing a RGB Star with ASH

The models considered here are intended to be simplified
descriptions of the bulk of the deep extended convective enve-
lope of an evolved (RGB phase) 0.8 M� star. We do not con-
sider in this study the presence of an overshooting layer (com-
pare Miesch et al. 2000; Browning et al. 2006; Brun 2009).
Contact is made with a one-dimensional stellar model (at an
age of 11 Gyr) for the initial conditions, which adopts real-
istic values for the radiative opacity, density, and temperature
Palacios et al. (2006). This one-dimensional model was com-
puted with the STAREVOL stellar evolution code (see Siess
et al. (2000) and Siess (2006) for more details on the numer-
ical methods and physical ingredients adopted). Convection is
computed within STAREVOL using a classical mixing length
treatment with a parameter αMLT = 1.75, and the convective
limits are determined according to the Schwarzschild criterion
for the convective instability. The luminosity of the modeled
star L∗ is 425 L�, its radius R∗ is about 40 R�. Our simpli-
fied three-dimensional simulations were initialized using the
radial profiles of gravity g, radiative diffusivity κrad, and the
mean density ρ̄ of the one-dimensional model along with a pre-
scribed mean entropy gradient dS̄/dr as the starting points for
an iterative Newton–Raphson solution for the hydrostatic bal-
ance and for the gradients of the thermodynamic variables. The
mean temperature T̄ is then deduced from Equation (6). This
technique yields background reference profiles in reasonable
agreement with the thermally relaxed one-dimensional stellar
model as can be seen in Figure 1, and we are thus confident that
the background state of our simulations is close to their final
relaxed state. We have built four different models that all share
this one-dimensional structure, and list their most important
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Figure 1. Profiles of the temperature, density, pressure, and convective velocity as a function of the radius in the one-dimensional model (solid lines) that were used as
a background for the three-dimensional simulations, and the actual profiles used in the ASH simulations (dashed lines). The hatched regions show the computational
domain considered in the three-dimensional model.

parameters in Table 1. Cases RG1 and RG1t are computed with
an initial bulk rotation rate Ω0 = Ω�/10 = 2.6 × 10−7 rad s−1

(or a rotation period Prot of ∼280 days), while we have used
Ω0 = Ω�/50 = 5.2 × 10−8 rad s−1 (or Prot ∼1400 days) for
cases RG2 and RG2t. Cases RG1t and RG2t are more turbu-
lent versions of cases RG1 and RG2, respectively (that have
been published in Palacios & Brun 2007). Case RG2 has been
evolved from scratch, but we have also checked that reducing
the rotation rate of case RG1 down to the value adopted for
case RG2 leads to the same configuration in terms of convection
and rotation. For this reason, cases RG1t and RG2t have been,
respectively, evolved from cases RG1 and RG2 by progressively
reducing the effective values of κtop and νtop.

Although the large rotation adopted for cases RG1 (and
RG1t) corresponds to a surface equatorial velocity much larger
than that inferred from observations, these two cases could be
viewed as less evolved counterparts of cases RG2 and RG2t,
respectively, since the surface rotation will decrease as the
radius increases during the ascent of the RGB due to angular
momentum conservation.4

All the models presented here have been computed over
several rotation periods and about one hundred convective
overturning times (or about 20–30 years of physical temporal
evolution). This long temporal evolution is required in order to
reach a statistically stationary state and equilibrated balances of
energy, heat, and angular momentum within the convective shell.
Even though the Kelvin–Helmotz time τKH ∼ GM2

∗/R∗L∗ is
about 1200 years for our RGB models, we believe that the
properties of the models discussed in the subsequent sections
correspond to a mature and well equilibrated state. Of course,
we cannot rule out a very slow evolution of the model when
integrated over “very long period of time” (as done in Chan
2007), but given the realistic one-dimensional structure used for
the background state and the small Mach number (i.e., small
temperature and density fluctuations with respect to the mean

4 Even though stars lose mass as they ascend the RGB, the rate of mass loss
remains very small up to the He flash, and should thus not lead to a large
variation of the angular momentum that we will assume conserved.

background values) realized in our simulations we are convinced
that our results are robust and a fair description of the nonlinear
dynamics present inside a rotating convective envelope. In order
to reach such an equilibrated state, we have use a large amount
of CPU-time on massively parallel computers (of order 600,000
hr and more per simulation), in particular with cases RG2 and
RG2t, due to their long rotation period.

Given reasonable computing resources, the ASH code does
not allow at present to compute the full convective envelope
of a RGB star, in which the density varies by more than 4
orders of magnitude, but only a portion of it (see Figure 1).
We will thus assume in all the cases presented in this paper a
density variation of 2 orders of magnitude. This choice translates
into computing the inner half (e.g., from rbot = 0.05 R∗ up to
rtop = 0.5 R∗) of the extended convective envelope of a 0.8 M�
RGB star. We concentrate on the inner part of the convective
envelope, since near the surface the Mach number would be too
large for the anelastic formalism to remain valid. Moreover, this
deeper part of the extended convective envelope is particularly
interesting from the point of view of one-dimensional stellar
evolution models, because it is the region that may gradually
be incorporated into the underlying radiative zone, and thus
establish the link between nuclearly processed regions and the
chemically homogeneous convective envelope. Indeed, during
the RGB ascent, the angular momentum of the innermost part
of the convective envelope will be transferred to the underlying
radiative interior as the convective envelope retreats in mass
after the first dredge-up Clayton (1968). This will influence
the rotation-induced transport of both angular momentum and
chemicals in the radiative zone.

3. PROPERTIES OF TURBULENT CONVECTION IN
THREE-DIMENSIONAL RGB STAR MODELS

The convective envelope occupies more than 80% of the
stellar radius in red giants, thus making the understanding of
the physical processes acting in this region very important in
order to get a complete description of these stars. The turbulent
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Figure 2. Temporal evolution of the volume averaged total kinetic energy
density (KE) and of its components from convection (CKE), differential rotation
(DRKE), and meridional circulation (MKE) for case RG1t.

convection in the outer envelope of giants is expected to be
large scale and time dependent from nonrotating simulations
(FDS02). In this section, we will start by describing in details
the convective patterns achieved in our simulations and their
temporal evolution.

Figure 2 presents for case RG1t the temporal evolution
of the volume averaged total kinetic energy density and of
its components split into differential rotation kinetic energy
(DRKE), meridional circulation kinetic energy (MCKE), and
nonaxisymmetric convective kinetic energy (CKE; see Brun &
Toomre 2002 for their analytical expression). By assuming an
initial negative mean entropy gradient dS̄/dr = −10−7 and a
supercritical Rayleigh number, we trigger the development of
the convective instability from the quiescent state by introducing
in the model three-dimensional random perturbations of the
entropy and velocity fields. After a phase of exponential growth
of the convective instability lasting less than 200 days, the
simulation reaches a nonlinear saturation phase after 300 days,
leading to a statistically stationary state of the convective
motions over more than ten rotation periods (several thousands
of days). This behavior is found in all of our four cases but
RG1 and RG1t possess a more stable long-term behavior (see
below). In the example presented in Figure 2 for RG1t, the
kinetic energy in convective motions dominates the energy
in differential rotation and that in meridional flows (CKE >
DRKE > MCKE). This hierarchy is maintained ever since
the simulation reaches the statistically stationary state in both
models RG1 and RG1t. In models RG2 and RG2t, due to their
slower rotation, the kinetic energy distribution is different as
will be discussed in more details together with cases RG1 and
RG1t in Section 5.1.

Once the stationary state realized, the radial energy flux
balance reaches equilibrium (i.e., energy input = energy output
= L∗) as can be seen in Figure 3. This figure represents the
radial transport of energy in case RG1t achieved by the radiative
flux Fr, the enthalpy flux Fe, the kinetic energy flux Fk, the
viscous flux Fν , and the unresolved flux Fu, all converted to
luminosity and normalized to the stellar luminosity L∗. We note
that the enthalpy flux is dominant over most of the domain
and reaches values (when converted to luminosity) representing
140% of the total stellar luminosity. This very large flux arises

Figure 3. Energy flux balance as a function of radius, averaged over horizontal
surfaces and in time over the last 10 rotation periods for case RG1t. The net flux
is separated into five components: enthalpy flux Fe , radiative flux Fr , unresolved
eddy Fu, kinetic energy flux Fk , and viscous flux Fv . The fluxes and radius are
normalized with respect to the stellar luminosity and radius, respectively.

to compensate the inward directed (negative) kinetic energy
flux. At the domain’s bottom and top edges, the diffusive flux
(radiative and unresolved) carry the energy. The viscous flux is
negligible. As already mentioned in Palacios & Brun (2007),
the strong inward directed kinetic energy flux found in this
simulation is in contradiction with one of the basic hypothesis
of the Mixing Length Theory (MLT) used in most of one-
dimensional stellar evolution codes to model convection, e.g.,
that Lconv ≡ Le = L∗. This result has also been found by
WPJ03 in their three-dimensional simulation of the convective
envelope of a 3 M� AGB star. In a forthcoming paper, we plan to
test a more realistic formulation of the MLT in one-dimensional
stellar evolution models based on the results of the present study.

3.1. Organization of Convection

The strong radial enthalpy flux found in our simulations re-
sults from the correlation between radial velocity and temper-
ature fluctuations shown for RG1t in Figure 4 (left and middle
panels), where we display horizontal maps of vr and T (and
enstrophy).

The convective patterns realized in our four models vary sig-
nificantly depending on the adopted reference rotation frame
Ω0. Cases RG1 and RG1t rotating at one tenth the solar rate
possess about 10 downflow lanes over the uppermost layers.
These relatively cool downflow lanes are interconnected, form-
ing an intricate network surrounding warm broad upflows. They
appear respectively in blue (cool downflows) and reddish (warm
upflows) in Figure 5, where we present a three-dimensional ren-
dering of the temperature and velocity in the model RG1t. They
present some systematic alignment with the north–south direc-
tion, such property being quite obvious for the least turbulent
case RG1. Large velocity and temperature fluctuations are ob-
served throughout the domain (as also evident in Figure 8 for
the velocity where we plot the radial profile of the rms velocity
components), a direct consequence of the high luminosity of
the modeled star. Typical values for these quantities are ±300 K
and ±1000 m s−1 in most of the computational domain, in keep-
ing with the necessity of convection to carry outward the large
imposed radiative flux. Comparatively to the simulations of the
solar convection envelope, these values are at least 1 order of
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Figure 4. Convection at the top edge of the computational domain of case RG1 after 3845 days (first row), case RG1t after 4637 days (second row), case RG2 after
7212 days (third row), and case RG2t (forth row) 6353 days. The radial velocity, temperature, and enstrophy are represented at r = 19 R�.

(A color version of this figure is available in the online journal.)

magnitude larger (Brun & Toomre 2002). The patterns described
for the velocity fluctuations are also visible in the temperature
fluctuations. The contrast between hotter and cooler parts is
however weaker than that existing between upflows and down-
flows in the velocity maps. Nonetheless, due to our choice of a
Prandtl number Pr = 1, they exhibit the same fine structures.
Those structures are particularly obvious in the enstrophy map
(right panel of Figure 4), with downflow lanes being part of
an intricate network and possessing the highest enstrophy con-
centration near the interstices. This is a direct consequence of
the fact that as flows converge toward the downdraft they ac-
quire intense cyclonicity, whereas upflows expand as they rise
and lose their cyclonic character. The vortex tubes seen in the
enstrophy map actually come by pair of opposite gyres. They
are the weaker and broader equivalent to the intense “cold spin-
ners,” seen in solar convection simulations (Miesch et al. 2008).
In Figure 6, we plot the radial vorticity map at the same radius as
in Figure 4 for cases RG1t and RG2t. For case RG1t, the radial
vorticity presents near the top of the domain a clear dominant
negative (positive) value in the northern (southern) hemisphere,
respectively, a direct consequence of the action of the stronger
Coriolis force in this more rapidly rotating model.

Turning to the slowly rotating cases RG2 and RG2t in
Figure 4, we clearly note a pattern change. This is mostly due
to a weaker influence of rotation on convection (as illustrated in
Table 1 by their larger convective Rossby number with respect
to cases RG1 and RG1t) leading to more vigorous and isotropic
flow. The downflow lanes show much less systematic alignment
with respect to the north–south direction. The weaker influence
of rotation also leads to a shift toward a smaller number of
downflow lanes over the surface, with here only between 4 and
6 lanes covering the top of the computational domain. Further a
strong dipole in temperature is observed, with two separate large
regions of the surface being respectively predominantly cool and
warm (cf. Section 5.1 for more details). As a consequence of this
thermal structuration of the convective flow, a large coherent
circulation sets in between these two regions, yielding two
zones that are respectively filled mostly with converging narrow
downflows on the one hand and diverging broad upflows on
the other hand. This dipole in temperature and velocity persists
in depth as can be seen from the equatorial slices presented in
Figure 7 for case RG2t. We clearly note the large inflow in the
top part of the figure with the corresponding outflow on the other
side of the central region. This large-scale flow goes through the
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Figure 5. Three-dimensional rendering of the convective radial velocity (a, c) and of the temperature (b, d) in our simulations RG1t and RG2t. In panels (a, b), a global
view from which we have extracted an octant is shown. We can thus see the equatorial and meridional planes and have a sense of the flow convergence. In panels (c, d),
a global view from which we have extracted a quadrant is shown. This helps seeing the dipolar nature of the convection. In all panels, the blue (red) parts correspond
to downward (upward) flows and cool (warm) temperature fluctuations. The three-dimensional rendering has been done with the SDvision software (Pomarede et al.
2008).

(A color version of this figure is available in the online journal.)

Figure 6. Radial vorticity maps for cases RG1t and RG2t represented at
r = 19 R�, after 4637 and 6353 days, respectively.

(A color version of this figure is available in the online journal.)

central part without any difficulty connecting efficiently regions
of the domain that are far apart. The temperature patterns are
more finely structured but overall there is good correlation
between respectively the cold (warm) and inflow (upflow)
regions. This bipolar structure of convection is a very interesting
property of our slowly rotating case and points toward the results
previously obtained by Porter & Woodward (2000), WPJ03, and
SF07 in nonrotating hydrodynamical simulations. Indeed these
authors report in their nonrotating giant stars the presence of
dominant large-scale convective cells over the star’s top domain
embedded in a dipolar flow crossing the whole convection
domain. It is interesting to note that Chandrasekhar (1961) in
his linear axisymmetric study of the onset of convection in

Figure 7. Equatorial slices for the radial velocity and the temperature in model
RG2t. The bipolar structure of the convective flow appears clearly in both maps.
The dotted, dashed, and dashed-dotted circles indicate the depths at R = 19 R�,
11 R�, and 3 R�, respectively, also used in Figures.

(A color version of this figure is available in the online journal.)

a spherical shell, has demonstrated that the � = 1 mode is for
small aspect ratio, one of the most unstable modes to excite. This
is mostly due to a geometrical effect with convection rolls having
more space to develop for low-aspect ratio (or full sphere) than
for large-aspect ratio (thin shell), thus leading to larger physical
structures and favoring the low � modes. We have also run a
nonrotating simulation for the very same initial structure as that
used for the four cases discussed in the present paper, and this
dipolar structure also shows up clearly in that simulation (which
is not presented here). This dipole can only be guessed in the
three-dimensional equatorial cut presented in Figure 5 for model
RG1t.

As for cases RG1 and RG1t, the more slowly rotating models
possess some enstrophy, with the downflows having the largest
values due to their cyclonic character. The radial vorticity
map for case RG2t shown in Figure 6 does not possess a
dominant sign per hemisphere, contrary to case RG1t even
though there seems to be some weak tendency for a negative/
positive orientation (sign) to dominate near respectively the
warm/cool regions. The less systematic orientation in each
hemisphere of the radial vorticity, again, is a consequence of
the larger convective Rossby number of this slowly rotating
model, and of the weaker hemispherical anisotropy imposed by
the Coriolis force of the flows.

We display on Figure 8 the radial profile of the total rms
velocity and its radial, latitudinal and longitudinal components
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Figure 8. Profiles of the rms radial (ṽr : dashed), latitudinal (ṽθ : dotted dashed), longitudinal (ṽφ : dotted), and total (ṽ: solid) velocities in the computational domain
obtained for cases RG1, RG1t, RG2, and RG2t after 12, 6, 10, and 1/2 rotation periods, respectively. Also plotted is the rms temperature profile (cross symbols) with
the corresponding scale given on the right y-axis.

for cases RG1, RG1t, RG2, and RG2t. Typical values are of
1–3 km s−1 to be compared with a sound speed evolving
in the range 25–80 km s−1 in the models, thus a posteriori
confirming the validity of the anelastic approximation (see also
Figure 1). We note that the radial velocity dominates in the bulk
of the computational domain roughly between r = 0.07 R∗
and r = 0.3 R∗. This is due to the continuous acceleration
of the convective plumes over the whole domain depth, with
ṽr becoming maximal near the bottom. In the more slowly
rotating cases RG2 and RG2t, ṽr is even faster due again to
the reduced influence of rotation on the vigor of the convective
motions and possess a pronounced bell-like profile. It is indeed
known since (Chandrasekhar 1961) that rotation tends to inhibit
convection by increasing the critical Rayleigh number, thus
leading to a decrease of the supercriticality of the models
for a given Ra. Due to our rigid (impenetrable) boundary
conditions, the radial velocity is forced to vanish at the domain’s
edges explaining its peculiar shape. Independent of the adopted
Reynolds number, the horizontal rms velocity components have
very similar amplitudes. ṽφ profiles slightly differ between the
slow and faster models, with the slower models having a steeper
profile in the outer parts of the computational domain. This
is due to the shellular rotation existing in the slowly rotating
models as will be discussed in the following sections. In all
our four cases, the horizontal components dominate toward the
top of domain. At the bottom boundary, the horizontal flow
amplitudes increase significantly possibly due to local angular
momentum conservation as the flow converge toward the center.
This is even more evident for cases RG2 and RG2t, where the
inner shells have much faster horizontal velocities due to the
shellular rotation.

3.2. Temporal Evolution of Convective Patterns

The temporal evolution of the convective patterns for case
RG1t is shown in Figure 9, which displays four sequences of
images of the radial velocity at three different depths over a
period of about 96 days. The first row shows the equatorial
plane at each timeshot, and the different depths represented in
Mollweide projections are indicated with dotted, dashed, and
dashed-dotted black circles for 19 R� (second row), 11 R�
(third row), and 3 R� (forth row), respectively. As can be
seen from the equatorial cuts and the first row of Mollweide
projections at 19 R�, the convective structures at the top of the
computational domain move from east to west (retrograde, i.e.,
clockwise). Deeper in the convective region, structures have a
prograde (counterclockwise) displacement. The equatorial cuts
indicate that the up and downflows maintain their coherence over
most of the computational domain. This is far less evident from
the Mollweide projections due to the large geometrical factor
between both edges of the domain, as well as to the intrinsic tilt
of the structures.

The evolution presented here corresponds to about a third
of the rotation period of case RG1t (see Table 1). The global
convective overturn given by

τc ≈
∫ Rt

Rb

dr

υrms

is of 75 days in this case, which is much shorter than the
rotation period. For this reason, we completely lose track of
the structures when considering a complete rotation. This is
also the case for our model RG1. For the slowly rotating cases
RG2 and RG2t, this is even more striking, since the convective
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Figure 9. Evolution of the convection over 96 days in case RG1t. The first row displays the radial velocity in equatorial slices at the four time steps selected. The
dotted (dashed, dashed-dotted) black ring indicates the depth r = 19 R� (r = 11 R�, r = 3 R�), at which the projection shown in the second (third, fourth) row is
drawn. The time interval between each successive image is about 24 days (the global rotation rate of case RG1t is a tenth the solar value). The color coding adopted
for the equatorial slices is the same as that used at r = 11 R� (third row). The black lines indicate the correspondence of the patterns between the equatorial and
Mollweide representations.

(A color version of this figure is available in the online journal.)

overturn is again of about 80 days, while the rotation period is
1398 days.

4. ASSOCIATED LARGE-SCALE FLOWS

As we have seen above, the influence of rotation on convection
is strong and leads to significant change in the overall dynamics
of our extended convective envelope. It is of fundamental
interest to assess how such convection zone redistributes angular
momentum, energy, and heat leading to large-scale horizontal
flows such as differential rotation or meridional circulation. It
has also a potential impact on how these stars evolve on the
giant branch and process nuclides in their radiative interior. In
this section, we report on the various profiles achieved by our
four models deferring to Section 5 the detailed analysis of their
physical origin.

4.1. Internal Rotation Profile

As discussed in the introduction, the rotation profile estab-
lished in the convective envelope of RGB stars is particularly
important to the understanding of their global evolution. We

believe that our models can give us a good hint of such profiles
as a function of depth and latitude.

In Figure 10, we display contours of the longitudinal and
temporal average of the angular velocity realized in our four
models over a rotation period (cf. Table 1) along with radial
cuts at indicated latitudes. For the cases rotating at a tenth of the
solar rate, we note a large angular velocity contrast both in radius
and latitude, with similar amplitudes in both directions. The
central regions are found to rotate extremely fast in a prograde
sense, whereas the uppermost layers have a retrograde rotation
(but remain prograde when considering the bulk rotation Ω0).
The differential rotation is slower at the equator than in the
polar regions, thus yielding an anti-solar rotation profile. Such
a profile has also been found by SF07 in their simulation of
rotating convection as mentioned in Section 1. Let us also
note that anti-solar differential rotation has also been reported
at the surface of giant stars (e.g., Weber et al. 2005; Weber
2007). The most striking properties of the differential rotation
achieved in these models is that it is almost invariant along the
z-axis (i.e., which coincides with the rotation axis). This is a
well-known dynamical property of rotating fluids, in which the
fluid velocity tends to be uniform along lines parallel to the
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rotation axis (Pedlosky 1987). The Taylor–Proudman constrain
on rotating flows and the way of potentially braking it have been
extensively studied in the context of the conical rotation profile
of the Sun (e.g., Kitchatinov & Rüdiger 1995; Durney 1999;
Brun & Toomre 2002; Rempel 2005; Miesch et al. 2006). In
these papers, it has been shown that along with the Reynolds
stresses, the baroclinic term involving latitudinal gradient of the
temperature and entropy fluctuations plays a significant role in
shaping the solar differential rotation. The anisotropic transport
of heat by convection or the influence of a tachocline at the
base of the convection zone both seem to contribute to break the
cylindricity (Brun & Rempel 2008). We delay to Section 5.3 the
quantitative discussion of all these effects in our RGB models.

In Figure 11, we show latitudinal profiles of Ω for cases
RG1 and RG2 at four different instants along with the average
formed over the whole temporal interval sampled (solid line).
The various curves correspond to temporal averages formed over
either successive one rotation periods for RG1 or over temporal
intervals of hundreds of days compatible with the period of
time for which RG2 possesses one or multiple meridional cells
(see below Section 4.2). We note the relatively good stability of
the profiles found for RG1 over several convective overturning
times and rotation periods (except near the polar regions due to
the small level arm there making it difficult to form meaningful
averages), thus confirming the well equilibrated state reached
by this case. For case RG2 the situation is less obvious, with
clear departure from the mean at given instant mostly because
this case undergoes a large dynamical oscillation due to its
slow rotation rate that we discuss in length in Section 4.2. Note
however the much smaller range of variation as a function of
latitude found in that case (30 nHz) with respect to case RG1
(200 nHz). This is due to the peculiar angular velocity profile
realized in this model.

Returning indeed to Figure 10 (bottom rows) showing the
angular velocity in the two cases rotating at a fiftieth of the solar
rate, we note a large angular velocity contrast in radius solely
due to the striking shellular state (i.e., angular velocity uniform
on spherical surfaces) achieved by the simulations. Further, the
rotation near the top edge of the computational domain is found
to be retrograde in an absolute way, i.e., even taking into account
the reference frame rotation. Given the large differences between
cases RG1 (RG1t) and RG2 (RG2t), we have run verification
models to be sure of the robustness of the results. For instance,
we have progressively decelerated case RG1 to 1/50th the solar
rate to check if we recover the shellular state achieved in case
RG2. We find that when reaching a value of the convective
Rossby number larger than about 1 (i.e., for a rotation around
1/15th solar), the influence of rotation on convection is reduced
(as expected from earlier studies; Glatzmaier & Gilman 1982;
Browning et al. 2004; Ballot et al. 2007; Brown et al. 2008).
Thus, the cylindrical profile of the differential rotation observed
in cases RG1 and RG1t is lost, the flow being less constrained
to be quasi two-dimensional along the rotation axis. This has
for direct consequence that such slowly rotating models do not
show any angular velocity contrast in latitude.

Figure 12 presents the mean radial profile for the specific
angular momentum obtained for each of our four models after
averaging the angular velocity over longitudes and latitudes, and
in time over one rotation period (except for case RG2t, averaged
over all the iterations available). Also plotted on this view graph
are the expected specific angular momentum profiles associated
with uniform angular velocity profiles with Ω0 = 0.1Ω� (long-
dashed triple dotted line) and Ω0 = 0.02Ω� (long-dashed line).

Figure 10. Left column: temporal and longitudinal average of the angular
velocity profile achieved in cases RG1, RG1t, RG2 over 1 rotation period,
and of RG2t over 1/2 rotation period. The reference frame rotation rate Ω/2π is
41.4 nHz (a tenth solar) for cases RG1 and RG1t, and 8.3 nHz for cases RG2 and
RG2t. The isorotation line corresponding to the frame rotation rate is indicated
on the plots, and corresponds to the second isorotation curve from the right for
cases RG1 and RG1t and to the first isorotation curve from the right for cases
RG2 and RG2t. Right column: radial profiles for selected latitudes (0, 15, 30,
45, 60, and 75 deg) for cases RG1, RG1t, RG2, and RG2t.

(A color version of this figure is available in the online journal.)
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Figure 11. We display at mid-convection zone for cases RG1 (left) and RG2 (right), the angular velocity as a function of latitude for four different temporal intervals
along with the average over the full temporal range sampled (solid line). For RG1 we display four consecutives 1 rotation period averages, and for RG2 we have chosen
the temporal intervals corresponding to Figure 14 with either one or two meridional circulation cells. We clearly note that the angular velocity profile for RG1 is stable
except near the polar regions, whereas the oscillating behavior of RG2 lead to significant departure of the angular velocity profiles at each instant with respect to the
longest average.

The profiles achieved by models RG1 and RG1t are very similar
both in shape and amplitude. Similarly, the profiles obtained for
models RG2 and RG2t are also almost identical. This indicates
that the distribution of specific angular momentum (and of the
mean radial angular velocity) achieved in the simulations is
not influenced by the turbulent state (e.g., Reynolds number)
of the simulations up to the values that we have been able
to compute. This is a quite different behavior compared to the
solar convection, where lowering the diffusivities while keeping
Pr constant in order to increase Re by a factor of 2 leads to
some modification of the angular velocity profile (see Figure 4
of Brun & Toomre 2002). On the other hand, the specific
angular momentum distribution achieved in our convective shell
strongly depends on the bulk rotation considered. For models
RG1 and RG1t with a bulk rotation a tenth of the solar value, the
profile presents a positive slope throughout the computational
domain. In these models, due to the cylindrical profile of Ω (see
Figure 10), the radial contrast at high latitudes is smaller than at
the equator so that these latitudes contribute to soften the mean
radial profile presented in Figure 12.

The specific angular momentum profile for the slower cases
RG2 and RG2t is radically different, with a change of slope
below r ≈ 0.2 R∗ and a negative slope in the outer part of the
computational domain. This is directly related to the shellular
rotation existing in these simulations. At small radii, the angular
velocity is large, and although its radial mean profile has a
negative slope, the contribution of the increasing radius (i.e., the
specific angular momentum scales as Ωr2) maintains a positive
slope for the specific angular momentum j. Moving toward the
top of the domain, the mean radial angular velocity dramatically
drops at all latitudes in these slowly rotating simulations (the
total variation of Ω(r) at all latitudes is of more than 2 orders of
magnitude; see Figure 10), decreasing faster than the increase
of the radius, and leading to the observed change of slope. Near
the top of the convective shell the absolute retrograde rotation
seen in Figure 10 leads to a second change of slope in the mean
radial profile of specific angular momentum.

Let us finally note that none of our simulations approach
the extreme cases of uniform mean radial specific angular
momentum or uniform mean radial angular velocity, as have
been assumed in the modeling of angular momentum transport
in the convective envelopes in one-dimensional stellar evolution
models.

Figure 12. Specific angular momentum profiles throughout the computational
domain for the four simulations. These profiles are obtained by averaging the vφ

component of the velocity field over latitude, longitudes, and time. The averages
are computed over the last rotation period for cases RG1 and RG1t, and over
two-thirds of a rotation for case RG2t. Overplotted are the profiles that would
be obtained if the angular velocity profiles were uniform over the convective
shell with values of 1/10th and 1/50th of the solar value.

(A color version of this figure is available in the online journal.)

4.2. Structure of Meridional Flows

Another important large-scale flow established in rotating
convective envelopes is the mean (axisymmetric) meridional
circulation (i.e., the flow in the r–θ plane). This flow is main-
tained by small imbalance between latitudinal pressure gradi-
ent, Coriolis force acting on the differential rotation, Reynolds
stresses, and buoyancy forces in the purely hydrodynamical
case (e.g., Miesch 2005; Brun & Rempel 2008). In the Sun,
this relatively weak flow (with respect to the solar differential
rotation) is thought to play an important role in setting the solar
cycle (Jouve & Brun 2007). It also plays important role for the
redistribution of angular momentum, even though it only con-
tains about 0.5% of the total kinetic energy (Brun & Toomre
2002). By contrast, in our RGB simulations we find that the
kinetic energy contained in the meridional circulation (MCKE)
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Table 2
Representative Velocities, Energy Contents, and Differential Rotation Contrast

Model ṽr ṽθ ṽφ ṽ′
φ ṽ ṽ′ KE DRKE CKE MCKE ΔΩ

RG1 1348 1015 1406 848 2202 1780 1.3 × 106 4.7 × 105 (36%) 7.1 × 105 (55%) 1.2 × 105 (9%) 78.9
RG1t 1370 1040 1456 914 2263 1803 1.3 × 106 4.6 × 105 (36%) 7.2 × 105 (56%) 1.1 × 105 (8%) 64.7
RG2 1905 1097 1511 1455 2670 2586 2.37 × 106 1.5 × 105 (6%) 2.11 × 106 (90%) 1.0 × 105 (4%) 4.2
RG2t 1939 1188 1380 1343 2666 2552 2.15 × 106 1.4 × 105(6.5%) 1.85 × 106 (86%) 1.6 × 105 (7.5%) 4.4

Notes. Temporal averages of the rms velocity ṽ, of the rms components ṽr , ṽθ , ṽφ , and of fluctuating velocities ṽ′ and ṽ′
φ (axisymmetric components

are removed) are estimated at mid-layer depth, all expressed in units of m s−1. For cases RG2 and RG2t that undergo a long-term oscillation of KE,
we have chosen to form the temporal average over a period representative of the simulations by avoiding peak (min/max) values. Also listed are the
time average over the complete volume of the total kinetic energy KE and that associated with the (axisymmetric) differential rotation DRKE, the
(axisymmetric) meridional circulation MCKE, and the nonaxisymmetric convection CKE, all in units of erg cm−3. The latitudinal contrasts between
0◦ and 60◦ of angular frequencies ΔΩ, quoted in nHz, are computed at the top of the domain.

accounts for about 8% of the total kinetic energy (see Table 2 and
Figure 2) and thus cannot be neglected in the energy balance
of our convective envelope. We display in Figure 13 the ax-
isymmetric streamlines along with the radial and latitudinal
components of the mean (axisymmetric) velocity for the four
cases analyzed in the present paper. Again the rotation plays a
significant role in shaping the flow properties, leading to a clear
difference in the realized meridional circulation profiles. For
cases RG1 and RG1t, we find a very stable profile consisting of
one large single cell per hemisphere. Each cell is directed toward
the pole at the top of the domain and toward the equator deeper
down. Near the star’s rotation axis the flow is mostly radial (ver-
tical), and near the equator it is directed perpendicular to that
axis. The contour maps reveal that the axisymmetric 〈vr〉 and
〈vθ 〉 components (with 〈 〉 denoting longitudinal average) are
of the same order of magnitude, with 〈vθ 〉 being antisymmetric
with respect to the equator and 〈vr〉 symmetric. For cases RG2
and RG2t, the picture is completely different. Due to the large
dipole in the temperature maps (cf. Figure 4), the meridional
circulation consists of one large single cell spanning the whole
shell. The direction of this flow is different for models RG2 and
RG2t, and depends on the latitudinal fluxes (see below). In both
cases, there is no radial transport in the equatorial region. The
amplitude of 〈vr〉 and 〈vθ 〉 are larger than in the faster rotating
cases (1000 m s−1 versus 700 m s−1). Due to its peculiar topol-
ogy, the radial and latitudinal components of the mean velocity
have opposite symmetries with respect to the equator and cases
RG1 and RG1t.

We also find that depending on the period over which the time
average is performed, the pattern of the meridional circulation
will present one or two cells in models RG2 and RG2t.

In order to illustrate the rich dynamics operating in the
slowly rotating case RG2, we display in Figure 14 the temporal
evolution of the meridional streamlines along with the temporal
traces of the kinetic energy densities (KE, DRKE, CKE, and
MCKE) over an interval of 2500 day near the end of the
total evolution of the simulation. This allows us to identify
the phases in which model RG2 possesses more than one large
single cell. It turns out that the appearance of a second cell in
the southern hemisphere is linked to a weakening of MCKE
with respect to DRKE. When MCKE becomes smaller than
DRKE we find a multicellular meridional circulation profile
similar to that achieved in cases RG1 and RG1t, for which
DRKE is always larger than MCKE. On the contrary when
MCKE is larger than DRKE, situation that occurs often and
lasts over a much longer periods of time as illustrated in the
figure (over the ranges a and c), the meridional flow possesses
one big clockwise cell. We believe that the reduced rotational

constraint in the slowly rotating case RG2 is at the origin of such
an intriguing behavior by allowing the meridional circulation
to evolve freely. Further the oscillating meridional circulation
patterns are likely a consequence of the convective structures
that are clearly influenced by the strength and the location of
the self-established temperature dipole (Figure 14).

5. ANALYZING THE DYNAMICS

As we have seen in the previous sections our simulations
possess a very rich dynamics. In this section, we aim to analyze
and understand how such a complex and nonlinear behavior
comes about. We will thus discuss the redistribution of energy,
angular momentum, and heat in our convective shell in order
to assess which physical processes are dominant in establishing
the convective patterns and large-scale flows observed in our
simulations.

5.1. Energetics of the Convection

Analyzing the kinetic energy budget contained in the turbulent
convective motions is very useful to understand key features of
our simulations, such as convection and large-scale flows, and
how they vary with the model’s parameters. As we have seen in
Figure 3, the large stratification present in our models leads to
an inward kinetic energy flux, with fast concentrated downflows
overwhelming the slow broad upflows in transporting the kinetic
energy. Indeed, the kinetic energy flux Fk scales as vrv

2 so it
is sensitive to the sign of the radial velocity component vr, and
as vr in downflows is larger than in upflows, it yields when
averaging over horizontal surfaces this asymmetric (downward)
transport of the kinetic energy. The slowly rotating cases possess
a more vigorous convection, with faster rms velocities (about a
factor 1.3 higher) as indicated in Table 2 (and also Figure 8).
Associated with these faster flows we also find that cases
RG2 and RG2t possess a larger inward directed kinetic energy
flux than their faster rotating counterparts (RG1 and RG1t).
Converted to luminosity the kinetic energy flux reaches −120%
(compared to −50%) of the total luminosity leading to an
extremely large convective luminosity of 220% (compared to
140%; see Figure 3). Here, again the stabilizing effect of rotation
on convection plays a central role in limiting the amplitude of
the flows and thus the strength of Fk in cases RG1 and RG1t.
Even if we compare case RG1 to case RG2 which have the
same Reynolds number, the asymmetry between upflows and
downflows is stronger in the slowly rotating case RG2.

To get a better insight on how the kinetic energy is redis-
tributed among the various axisymmetric and nonaxisymmet-
ric motions, we again split the KE into it components DRKE,
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Figure 13. First row: longitudinally averaged meridional circulation represented as streamlines, and contour plots of the radial 〈vr 〉 and latitudinal 〈vθ 〉 components
of the meridional circulation velocity further averaged over time (one period) for cases RG1, RG1t and RG2, and over a third of a rotation for case RG2t. Solid and
dashed contours denote counterclockwise and clockwise circulation, respectively. The color scale is the same for both contour plots in each row and is given by the
color bars.

(A color version of this figure is available in the online journal.)

MCKE, and CKE. We have already partly discussed the differ-
ent behavior of these components in Section 4.2 via Figure 13.
We report in Table 2 the volume and time-averaged values of
KE and its components for the four cases discussed in the pa-
per. These values reveal a strong difference between cases RG1
(RG1t) and RG2 (RG2t). The kinetic energy associated with
the differential rotation DRKE represents a third of the total

kinetic energy KE in cases RG1 and RG1t but only 6% in mod-
els RG2 and RG2t, where the kinetic energy density is essentially
concentrated in the (nonaxisymmetric) convection itself. This is
again due to the mild influence of rotation on convection in these
simulations with slow bulk rotation. As the bulk rotation rate
increases, more kinetic energy is diverted to longitudinal flows
(i.e., differential rotation), and much less so in the meridional
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Figure 14. Meridional circulation for case RG2 as a function of time over 2500 day late in the evolution of the simulation. The streamlines meridional cuts are obtained
by averaging in time over the periods indicated by the associated letters on the energy plot on the left.

Figure 15. Kinetic energy spectra for cases RG1t and RG2t averaged, respectively, over 1 and 1/10th of a rotation period.

flows. It is striking to note that MCKE in slowly rotating case
is close to DRKE and leads to fascinating modulation of the
dynamics as seen in Section 4.2 and Figure 14. In cases RG2
and RG2t, the contribution of the mean flows to the total kinetic
energy budget is noticeably weak and the convective motions
are mostly nonaxisymmetric. Further these two cases exhibit an
oscillation of their total kinetic energy that lasts about a rotation
period. The difference between evaluating the rms velocities
over a period of time for which KE is minimum or maximum
is or order 3%–5%. Since case RG2t is slowly emerging from
a pronounced deep of KE this explains why in Table 2, some
of the rms velocities for this case are smaller than in RG2.
Nevertheless given the smaller kinetic viscosity used in RG2t,
overall this case has a larger Reynolds number (cf. Table 1)
and is effectively more turbulent than RG2.

Another useful information on the turbulent properties of
convection can be retrieved by plotting the kinetic energy spectra
as a function of the spherical harmonic degree � as was done
in Figure 15. In this figure, we clearly see that the difference
of amplitude between the large (low � degree) and the small
scales is important. It involves many orders of magnitude, thus
confirming the well-resolved character of our simulations. For
the fast rotating cases, the profiles present a plateau at low �
degree and the maximum of the energy distribution is located
around � = 10. None of these features exist for cases RG2

and RG2t. Quite interestingly these more slowly rotating cases
display a conspicuous peak at � = 1 that dominates all the other
scales. This points toward the dipole in temperature and velocity
seen in the Mollweide maps of Figure 4, in the three-dimensional
rendering of Figure 5 and in the equatorial slices of Figure 7. As
previously mentioned, this is expected since in his linear study of
the onset of convection in spherical shells of various thickness,
Chandrasekhar (1961) has demonstrated that the � = 1 mode
is among the easiest mode to excite when the topology is close
to being a full sphere with an aspect ratio rmin/rmax equal or
close to zero. It is important to realize that our simulations are
fully nonlinear as demonstrated by the energy spectra, but that
nevertheless the � = 1 mode remains a dominant convection
mode since our choice in our models of a small aspect ratio (i.e.,
rmin/rmax = 0.1) favors low � modes.

5.2. Redistribution of Angular Momentum

Convection not only transports heat but also redistributes
angular momentum. We seek here to understand the mechanisms
responsible for the transport of angular momentum within
our rotating convective shells yielding the differential rotation
discussed in Section 4.1. With our choice of boundary conditions
(see Section 2.1), no net torque is applied to the shell and the
total angular momentum must be conserved. We indeed find that
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Figure 16. Time average of the latitudinal integral of the radial angular momentum flux Fr and of the radial integral of the latitudinal angular momentum flux Fθ

for cases RG1 (left panels) and RG2 (right panels). The fluxes have been decomposed into their viscous (dash triple dotted), Reynolds stresses (dotted-dashed), and
meridional circulation (dashed) components. The solid curves represent the total fluxes and serve to indicate the quality of the stationarity achieved. The positive
values represent a radial flux directed outward, and a latitudinal flux directed from north to south. The fluxes have been averaged over 8.5 rotation periods in each
case. The radial integrated fluxes for each cases have further been normalized by R2∗ .

in our four simulations the total angular momentum averaged
over the whole volume is conserved to within 10−7.

The transport of angular momentum may be assessed by
considering the mean radial and latitudinal angular momentum
fluxes Fr and Fθ . Following Elliott et al. (2000) and Brun &
Toomre (2002), the expression of these fluxes is extracted from
the φ component of the momentum equation after averaging in
time and longitude (denoted by the symbol ˆ; see also Palacios
& Brun 2007):

Fr = ρ̂r sin θ

⎡
⎢⎢⎢⎣−νr

∂

∂r

(
v̂φ

r

)
︸ ︷︷ ︸

Fr,V

+ v̂
′
rv

′
φ︸︷︷︸

Fr,R

+ v̂r (v̂φ + Ω0r sin θ )︸ ︷︷ ︸
Fr,MC

⎤
⎥⎥⎥⎦
(7)

Fθ = ρ̂r sin θ

⎡
⎢⎢⎢⎣−ν

sin θ

r

∂

∂θ

(
v̂φ

sin θ

)
︸ ︷︷ ︸

Fθ,V

+ v̂
′
θ v

′
φ︸︷︷︸

Fθ,R

+ v̂θ (v̂φ + Ω0r sin θ )︸ ︷︷ ︸
Fθ,MC

⎤
⎥⎦ . (8)

Fr,V (resp. Fθ,V ) is the flux associated with viscous transport,
Fr,R (resp. Fθ,R) that related to Reynolds stresses, and Fr,MC

(resp. Fθ,MC) represents the angular momentum flux due to
meridional circulation. As was done in Brun & Toomre (2002),
we then integrate respectively each flux over colatitude and
radius to assess the net flux through a sphere of varying radius
and through cones of varying inclination:

Ir (r) =
∫ π

0
Fr (r, θ ) r2 sin θ dθ,

Iθ (θ ) =
∫ rtop

rbot

Fθ (r, θ ) r sin θ dr . (9)

These integrated fluxes are presented in Figure 16 for our
cases RG1 and RG2, and have been averaged over 8.5 rotation
periods. For simplicity we drop the letter I when discussing the
individual contribution of the flux.

For the faster case RG1, the radial flux Fr,MC is strong due
to the two cells pattern, yielding a strong radial transport in the
equatorial regions. Despite some viscous transport associated
with the radial shear, the angular momentum fluxes are mainly
the result of a balance between the inward flux due to Reynolds
stresses and the outward flux due to meridional circulation.
The Reynolds stresses thus extract angular momentum from the
surface and speed up the inner region whereas the meridional
circulation flow, mostly directed outward at the equator, does
the opposite job and extracts momentum from the deep inner
parts.

Turning to the latitudinal fluxes, angular momentum is trans-
ported equatorward by Reynolds stresses, that act against the
poleward transport by meridional circulation. This is consistent
with the poleward streamlines existing in each hemisphere that
corresponds to a counterclockwise circulation in the northern
hemisphere. A small equatorward viscous transport occurs in
both hemispheres due to the direction of latitudinal variation
of Ω.

For case RG2, the radial transport of angular momentum by
meridional circulation is weak. Indeed, for this slowly rotating
simulation, the meridional circulation becomes unicellular, with
one big cell covering the whole convective shell, and no
radial transport is achieved in the equatorial regions, which
are the regions that contribute the most in the integration of the
radial fluxes. On the other hand, the viscous transport becomes
important, related to the strong radial shear existing in this model
in absence of radial transport by meridional circulation. The
mechanisms yielding important transport of angular momentum
are thus viscous terms balancing the Reynolds stresses, a
configuration which is radically different from that achieved
in model RG1 due to the very peculiar form of the meridional
circulation appearing in the slowly rotating models. Let us note
however that the net radial flux of angular momentum achieved



No. 2, 2009 NUMERICAL SIMULATIONS OF A ROTATING RED GIANT STAR 1093

in case RG2 is similar in amplitude to that achieved in case RG1.
The transport due to Reynolds stresses is weaker in case RG2
compared to case RG1 because in that simulation, the convective
pattern is less dominated by north–south aligned banana cells,
and develops a more isotropic flow in which correlations are
weaker.

The latitudinal fluxes are less symmetric with respect to the
equator in case RG2, due to the large single cell of meridional
circulation. The temporal average encompasses periods during
which a second cell appears in the southern hemisphere (e.g.,
Figure 14), which translates into some weak latitudinal transport
of angular momentum in this hemisphere. Similar to what is
obtained for case RG1, the latitudinal flux balance is mostly
between Reynolds stresses and meridional circulation because
shellular rotation leads to almost zero viscous transport.

In both directions and for both cases, we note that the different
processes balance each other so that the simulations tend to reach
a statistical equilibrium in which almost no net flux is found
in the radial or latitudinal direction. Due to the nonlinearity
present in our turbulent simulations, it is to be expected that the
total net flux of angular momentum (represented by the solid
lines) is not strictly zero everywhere. However, averaging over
several rotation periods leads already to a fairly good balance,
confirming the mature state of the analyzed solutions.

5.3. Latitudinal Heat Flux Balance

We now turn to discussing the transport of heat with latitude
achieved in our RGB models. We find that there are large
fluctuations of temperature and entropy in our simulations. In
Figure 17, we present temporal and longitudinal averages of
the temperature fluctuations for cases RG1 and RG2. In model
RG1, we find an organized symmetric pattern with respect to
the equator, consisting of a warm equator and cooler poles.
On the other hand, the northern hemisphere in RG2 is mostly
hot while the southern hemisphere is cold, leading to an anti-
symmetric temperature fluctuations profile consistent with the
presence in this model of a dominant � = 1 mode. Again there
is a clear dichotomy between the two series of models, the cases
rotating faster having smaller fluctuations and a more structured
(banded) thermodynamic background.

Convective motions under the influence of rotation lead to
efficient transport of heat in latitude or what is sometime referred
to as anisotropic heat transport (Rüdiger et al. 2005). As with
the transport in radial direction (see Figure 3), several physical
processes contribute to the transport of heat in latitude. In order
to determine which physical processes dominate in our models
we have derived a new diagnosis in the ASH code allowing
us to assess the latitudinal energy flux balance. By taking the
scalar product between the velocity v and the Navier–Stokes
equation (see Equation (2)) one can derive the equation for
the temporal evolution of the kinetic energy (Heyvaerts 1998;
Miesch 2005). By adding the heat equation (see Equation (3))
to the kinetic energy equation and after some algebra consisting
in putting under a flux conservative form some of the terms
(Heyvaerts 1998), one gets the anelastic equation for the total
density energy (Miesch 2005):

∂(U + KE)

∂t
= −∇ · F + B, (10)

where U = ρ̄T̄ S is the internal density energy, KE = 1
2 ρ̄v2

is the kinetic density energy, B = −vr ρ̄T̄ dS̄/dr is the work
against the stratification, and F is the total energy flux. The

B term comes about because of anelastic formulation (see
Bannon (1996) for a modified anelastic formulation in which
the equation of state is altered to make that term disappear). F
can be decomposed into several contributions:

F = −v·D−κρ̄T̄ ∇(S+S̄)−κρ̄Cp∇(T +T̄ )+
1

2
ρ̄v2v+ρ̄CpvT ,

(11)
the various terms being in turn heat transport by viscous stresses,
by entropy eddy diffusion, by radiative diffusion, along with the
kinetic energy and enthalpy fluxes. By assuming stationarity and
that there is no net mass flux through horizontal surfaces, i.e.,
〈ρ̄vr〉θφ = 0 (with 〈 〉θφ denoting an horizontal average), such
that B vanishes, one is left with the simple flux conservation
equation ∇ · F = 0.

In the latitudinal direction, Fθ has the following expression
(Elliott et al. 2000; Rüdiger et al. 2005; Miesch 2005):

Fθ = −(v · D)θ − κρ̄T̄

r

∂S

∂θ
− κρ̄Cp

r

∂T

∂θ
+ vθ

1

2
ρ̄v2 + ρ̄CpvθT .

(12)
One may further decompose the kinetic and enthalpy fluxes

into their mean and fluctuating components in order to isolate
the contribution coming from the mean meridional circulation.
Assuming that v can be decomposed into an axisymmetric
(mean) part denoted 〈v〉 and a fluctuating contribution denoted
v′, it can easily be shown that:

Fθ, e = ρ̄Cp

⎡
⎣〈v′

θT 〉︸ ︷︷ ︸
turbulent

+ 〈vθ 〉〈T 〉︸ ︷︷ ︸
mean

⎤
⎦ , (13)

where we recall that the temperature fluctuations T with respect
to the background reference temperature T̄ possesses a non-
vanishing axisymmetric mean (e.g., 〈T 〉 �= 0) as already
discussed in Figure 17. For the kinetic energy flux, we similarly
get:

Fθ, k = 0.5ρ̄

⎡
⎣〈v′

θ v
′2〉 + 2〈v〉〈v′

θ v
′〉 + 〈vθ 〉〈v′2〉︸ ︷︷ ︸

turbulent

+ 〈vθ 〉〈v〉2︸ ︷︷ ︸
mean

⎤
⎦ .

(14)
We will assume that the last term of the two above expressions

corresponds to the latitudinal transport of mean enthalpy and
kinetic energy by the mean meridional (latitudinal) flow. We then
integrate over the radius r for each θ (as we did in Section 5.2), to
get the net flux through cones of various colatitudes and deduce
the latitudinal heat flux balance. Figure 18 displays the balance
obtained for cases RG1 and RG2. For the faster model RG1, we
see that the turbulent Fe (we omit the θ index for simplicity)
is transporting heat poleward while both the turbulent Fk and
its mean part (cf. Equation (14)) are warming up the equator
balancing the turbulent Fe. The mean enthalpy flux Fe,m=0 (cf.
Equation (13)) is constant with poleward heat transport, helping
its turbulent counterpart. All the other terms contribute little
to this latitudinal transport. For case RG2, the overall picture is
messier and significantly different. The mean enthalpy flux plays
a more important role certainly because of the large one cell
meridional circulation established in that model, while strikingly
enough the fluctuating one is almost negligible (i.e., has almost
no net latitudinal effect). The turbulent Fk is now poleward
while its mean contribution remains equatorward thus in the
same direction as the mean enthalpy flux. The balance achieved
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Figure 17. Temporal and longitudinal averages for cases RG1 and RG2 of the temperature fluctuations, accompanied by latitudinal profiles at three different depths
in the computational domain. The results have been averaged over 1 rotation period in each case. The white contours for case RG1 indicate the levels with T ranging
from −300 K to 100 K by step of 50 K. The white contours for case RG2 indicate the levels with T ranging from −50 K to 60 K by step of 10 K.

(A color version of this figure is available in the online journal.)

Figure 18. Energy flux balance as a function of latitude, obtained after performing a radial integral of the latitudinal fluxes further averaged in time for case RG1 (left
panel) and RG2 (right panel). The averages are computed over 8.5 rotation periods in each case. The net flux is separated into five components: latitudinal enthalpy
flux Fe and meridional enthalpy flux (m = 0 mode) Fe,m=0, latitudinal radiative flux Frad, latitudinal entropy diffusion flux Fed, latitudinal kinetic energy flux Fk, and
latitudinal viscous flux Fnu (see Equations (12)–(14)). The fluxes are normalized with respect to the square of the star’s radius.

in this model is not as good as in RG1 mostly due to the fact that
the model possesses larger temporal fluctuations and that several
terms of comparable amplitude contribute to the latitudinal heat
transport. Similar results for the more turbulent cases RG1t
and RG2t are found. In summary, we note that in all models a
subtle latitudinal heat balance between the various processes is
established, involving mostly the enthalpy and kinetic fluxes and
that their relative importance including their mean and turbulent
contributions is clearly influenced by the rotation rate.

5.4. Quality of Thermal Wind Balance Achieved

In rotating convection, both radial and latitudinal heat trans-
port occur, as we have just discussed, establishing latitudinal
gradients in temperature and entropy within the convective zone

(see Figures 17 and 18). A direct consequence of these gradients
is that the surfaces of pressure and density fluctuations will not
coincide anymore, thereby yielding baroclinic effects. We can
turn to the vorticity equations (Pedlosky 1987; Zahn 1992) to an-
alyze the role of the turbulence and baroclinic effects in setting
the large-scale flows discussed in Section 4. Briefly summa-
rized, the baroclinic terms drive meridional flows that under the
influence of Coriolis force yield longitudinal flows also known
as the thermal wind. These baroclinic terms may also lead to a
departure from cylindricity of the angular velocity profiles by
braking Taylor–Proudman constraint (Pedlosky 1987).

The thermal wind balance equation can be derived from the
vorticity equation as discussed in detail by Brun & Toomre
(2002) and Miesch et al. (2006). The equation for the vorticity
ω = ∇ × v in the purely hydrodynamical case can be derived
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under the anelastic approximation by taking the curl of the
momentum equation (Equation (2); see also Fearn 1998 and
Brun 2005 for its magnetohydrodynamic (MHD) generalization
and the notion of magnetic (thermal) wind), it reads

∂ω

∂t
= (ωa · ∇)v − (v · ∇)ωa − ωa(∇ · v) (15)

+
1

ρ̄2
∇ρ̄ × ∇P − ∇×

(
ρg

ρ̄
êr

)
− ∇×(

1

ρ̄
∇ · D),

with ωa = ∇×v + 2Ω0 the absolute vorticity, ω = ∇×v
the vorticity in the rotating frame, and D the viscous tensor
(Equation (4)).

The φ component of the vorticity equation helps understand-
ing the relative importance of the different processes acting in
the meridional planes (Brun & Toomre 2002). In the stationary
case ( ∂ω

∂t
= 0), and assuming an axisymmetric configuration

( ∂
∂ϕ

= 0) the azimuthal component of Equation (15) is

2Ω0
∂vφ

∂z
= −(ω · ∇)vφ − ωφvr

r
− ωφvθ cot θ

r︸ ︷︷ ︸
Stretching

+ (v · ∇)ωφ +
vφωr

r
+

vφωθ cot θ

r︸ ︷︷ ︸
Advection

− ωφvr

d ln ρ̄

dr︸ ︷︷ ︸
Compressibility

+
g

rcp

∂S

∂θ︸ ︷︷ ︸
Baroclinicity

+
1

rρ̄cp

dS̄

dr

∂P

∂θ︸ ︷︷ ︸
Departure from adiabaticity

(16)

+
1

r

[
∂

∂r
(rAθ ) − ∂

∂θ
Ar

]
,︸ ︷︷ ︸

Viscous stresses

where
∂

∂z
= cos θ

∂

∂r
− sin θ

r

∂

∂θ
and

Ar = 1

ρ̄

[
1

r2

∂(r2Drr )

∂r
+

1

r sin θ

∂(sin θDθr )

∂θ
− Dθθ + Dφφ

r

]

Aθ = 1

ρ̄

[
1

r2

∂(r2Drθ )

∂r
+

1

r sin θ

∂(sin θDθθ )

∂θ
+
Dθr − cotθDφφ

r

]

In the above expressions, we have omitted for the sake of clarity
the 〈 〉 denoting the axisymmetric average.

Here, we have identified several contributions to charac-
terize the shape of the angular velocity along the z-axis that
we display (only for the dominant term) in Figure 19 for case
RG1 and in Figure 20 for case RG2: Stretching describes the
stretching/tilting of the vorticity due to velocity gradients; Ad-
vection describes the advection of vorticity by the flow; com-
pressibility describes the stretching of vorticity due to the flow
Compressibility; g

rcp

∂S
∂θ

is the baroclinic term; 1
rρ̄cp

dS̄
dr

∂P
∂θ

results
from departure from adiabaticity; Viscous accounts for the dif-
fusion of vorticity due to viscous stresses. Figure 19 displays for
RG1 the left-hand side of Equation (16), along with the domi-
nant terms of the right-hand side, their sum and the difference
RHS − LHS. The first point to notice is that the thermal wind
balance, which would be achieved in the stationary case by hav-
ing a strict equality between the LHS and the baroclinic term,
is not achieved in our simulation (contrary to what we find in
most of the solar convective envelope Brun & Toomre (2002)).

Figure 19. Temporal and longitudinal average for case RG1 of the derivative of
along the z-axis ∂υ̂φ/∂z and of the main components of the right-hand side of
this very same equation, namely, the compressibility term, the baroclinic term
and the viscous term, and of the complete right-hand side of Equation (16).
The last shell on the bottom right shows the difference of the left-hand side and
theright-hand side The color bar applies to all panels.

(A color version of this figure is available in the online journal.)

We note that LHS ∼ RHS which is a hint of the mature dynam-
ical state of the model. The dominant terms for the evolution of
vorticity also involve both turbulent transport by advection thus
emphasizing the key role played by turbulent convection in set-
ting the angular velocity profiles as discussed in Section 5.2. The
viscous stresses contribute in key regions (mostly at the top of
the domain) where the isocontours of Ω are distorted. Overall all
these large terms cancel each other thus resulting on isocontours
of Ω in RG1 that are close to cylinders as observed. A similar
analysis of RG2 reveals again that there is no strict thermal wind
balance. Large advection terms oppose the baroclinic contribu-
tion with compressibility also playing a role. The quality of the
achieved balance is not as good in part due to the fact that the
meridional flows possess large fluctuations that make temporal
average less meaningful, with the direct consequence that the
temporal derivative of ωφ cannot be neglected as easily. The
shellular shape of the differential rotation in the slowly rotating
cases RG2 and RG2t is clearly neither cylindrical nor conical,
and it is unclear given their large convective Rossby number (cf.
Table 1) and the weak influence of rotation on their dynamics
whether their angular velocity profile can be usefully analyzed
with the thermal wind balance contrary to RG1 and RG1t, for
which the diagnosis is more adequate. We thus conclude that
even though the amplitude of the baroclinic effect is large, it
does not play a role in shaping the angular velocity profile as
important as in solar simulations, at least at the rotation rates
that we have explored in this study.

6. SUMMARY AND PERSPECTIVES

We have presented the first three-dimensional anelastic simu-
lations of the deep stratified convective envelope of a RGB star
aimed at understanding the interplay between rotation and tur-
bulent convection. Despite the relative simplicity of our models,
they can give us a first hint on the intricate dynamics of these
extended convective envelopes and of the subtle interplay be-
tween convection and rotation. We have in particular been able
to test the sensitivity of our simulations to change in the bulk
rotation rate and/or to the Reynolds number.
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Figure 20. Same as Figure 19 for case RG2. Temporal average has been
performed over 800 days.

(A color version of this figure is available in the online journal.)

Convection displays a rich dynamics in red giant stars, and
this appears clearly both in our rotating simulations and in earlier
works that did not include rotation (Porter & Woodward 2000;
WPJ03). The achieved convective patterns are characterized by
broad upflows surrounded by a complex network of downflow
lanes. The total number of cells obtained at mid-depth of
the convective envelope of a giant is about ten at most,
in overall agreement with the star-in-a-box simulations of
the CoBOLD group. Although an overall coherence of the
convective structures exist in the entire convective shell, the
large aspect ratio existing between the top and bottom of these
huge envelopes implies a change of the convective pattern with
depth with a fast disappearance of the interconnected downflow
network present at the top of the simulated domain. Associated
with these convective cells are large temperature and velocity
fluctuations. They lead to a huge enthalpy, e.g., convective,
flux reaching up to 200% and more of the total flux emerging
at the top edge of the shell, thus compensating for the large
downward flux of kinetic energy due to the high degree of
stratification assumed in our simulations. The importance of
this downward flux of kinetic energy has also been observed in
other simulations of turbulent convection (Chan & Sofia 1989;
Cattaneo et al. 1991; Woodward et al. 2003), and indicates
a clear contradiction with one of the main assumptions of the
MLT used in one-dimensional stellar evolution codes, according
to which the kinetic energy flux can be neglected and the
convective luminosity is set to be the total luminosity (i.e.,
Lconv = Ltot = L∗) in convection zones.

Testing two different bulk rotation rates, we have also been
able to point the strong sensitivity of the heat and angular
momentum distribution to this parameter. In the slowly rotating
cases, more relevant to the rotation rate of the reported RGB star
observations, a large � = 1 temperature dipole is established
that leads to the separation of the convective shell in two zones
of respectively divergence and convergence of the horizontal
flow. Such a dipolar configuration also shows through the radial
velocity of the fluid, and is very similar to the dipolar behavior
observed in nonrotating simulations of turbulent convection
(Kuhlen et al. 2006; WPJ03; FSD02). When accelerating to a
bulk rotation of a tenth solar, the dipole no more dominates the

energy spectra by itself but instead a large plateau of dominant
�’s develops.

The bulk rotation rate also affects the resulting large-scale
flows, namely, differential rotation and meridional circulation.
Meridional circulation is found to possess two large cells (one
per hemisphere) or one large cell encompassing the overall
domain when rotation is slow. This structure is associated with
the temperature dipole existing in these slowly rotating cases,
for which the rotational influence is not large enough yet to
shape (constrain) the turbulent convection (i.e., the convective
Rossby numbers is greater than 1; see Table 1). Differential
rotation possesses large radial gradients in both faster and slower
cases, and the achieved profile does not vary when changing the
Reynolds number by a factor of about 3. On the other hand, the
latitudinal rotation profile is very sensitive to the rotation rate
such that the cylindrical profile existing for moderate rotation
is reshaped into a shellular rotation profile with no latitudinal
gradient for the slowly rotating cases.

The differential rotation profile can be analyzed considering
the quality of the achieved thermal wind balance in the simula-
tions. The cylindricity of the rotation achieved in the moderately
rotating cases is a consequence of the advection terms of the vor-
ticity equation canceling out the baroclinic effect. On the other
hand, in slowly rotating cases where the rotation profile is shel-
lular, there is no clear influence of the baroclinicity, and the
thermal wind diagnosis does not appear to be appropriate. In
neither cases is a strict thermal wind balance achieved.

Finally, we have for the first time produced an analysis of
the latitudinal energy balance in our simulations. Together with
the angular momentum transport, one can say that Reynolds
stresses play a key role in redistributing heat, energy, and angular
momentum. In the slowly rotating case, meridional circulation
flows are large and influence greatly the dynamical balance
with the mean axisymmetric transport contributing more than
the fluctuating enthalpy or kinetic energy fluxes.

This works opens a large field of perspectives both in the
domain of (magneto-)hydrodynamical simulations of turbulent
convection in the very peculiar conditions of deep extended
stellar envelopes, and in the domain of stellar evolution.

Both the finding of overluminous convective flux (due to a
large negative kinetic energy flux) and of nonuniform mean
radial angular velocity profiles in our simulations is of prime
importance for one-dimensional stellar evolution models with
rotation. As discussed in the introduction, these models normally
assume that the convective regions, with convection described
by the MLT formalism (with Lconv = L∗), rotate uniformly,
i.e., Ωconv(r) = cst. However, changing this assumption will
influence the efficiency of (shear-induced) turbulent transport
in the underlying radiative interior of giants as they undergo
dredge-up episodes, and may thus have an impact on their
surface chemical composition (see Palacios et al. 2006 for
details). In a forthcoming paper, we will thus analyze the impact
of such a result on one-dimensional rotating stellar evolution
models.

Of course the three-dimensional models discussed in this
work are still relatively simple descriptions of RGB stars and we
must be cautious when extending their results to the conditions
found in real stars, but we intend to progressively improve
their realism. These can be achieved by doing for instance
the following improvement: one possibility could be to add
a stable radiative shell at the bottom of our computational
domain in order to better understand its coupling and how
angular momentum is redistributed between the two zones. Also
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extending the thickness of the spherical shell so as to reach
radii closer to the actual surface of a giant star would help to
ground the results presented here. Finally, we are aware that the
presence of magnetic fields (which have actually been detected
at the surface of giant stars) is likely to alter the overall picture
(at least the achieved rotation profiles) that we have described in
this purely hydrodynamical study. We thus intend in a the near
future to consider MHD simulations of the envelope of red giant
stars and to study dynamo action and the generation of turbulent
and large-scale magnetic fields.
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dimensional stellar evolution model, and thank her together
with J.-P. Zahn & M. S. Miesch for useful discussions and
comments about this paper. The simulations were carried
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received financial support from the Programme National de
Physique Stellaire of CNRS/INSU (France), and was also
supported by a post-doctoral fellowship from CEA Saclay
(France) awarded to A.P. This work is part of the STARS2 project
(http://www.stars2.eu) founded by a grant of the European
Research Council awarded to A.S.B. We acknowledge the use
of the SDvision software (Pomarede et al. 2008) to generate the
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Kichatinov, L. L., & Rüdiger, G. 1995, A&A, 299, 446
Kuhlen, M., Woosley, S. E., & Glatzmaier, G. A. 2006, ApJ, 640, 407
Maeder, A., & Meynet, G. 2000, ARA&A, 38, 143
Maeder, A., & Zahn, J.-P. 1998, A&A, 334, 1000
Mathis, S., & Zahn, J.-P. 2004, A&A, 425, 229
Meynet, G., & Maeder, A. 1997, A&A, 321, 465
Miesch, M. S. 2005, Living Rev. Sol. Phys., 2, 1
Miesch, M. S., Brun, A. S., DeRosa, M. L., & Toomre, J. 2008, ApJ, 673, 557
Miesch, M. S., Brun, A. S., & Toomre, J. 2006, ApJ, 641, 618
Miesch, M. S., Elliott, J. R., Toomre, J., Clune, T. L., Glatzmaier, G. A., &

Gilman, P. A. 2000, ApJ, 532, 593
Palacios, A., & Brun, A. S. 2007, Astron. Nachr., 328, 1114
Palacios, A., Charbonnel, C., Talon, S., & Siess, L. 2006, A&A, 453, 261
Palacios, A., Talon, S., Charbonnel, C., & Forestini, M. 2003, A&A, 399, 603
Pedlosky, J. 1987, Geophysical Fluid Dynamics (New York: Springer-Verlag)
Petit, P., Donati, J.-F., & Collier Cameron, A. 2002, MNRAS, 334, 374
Pilachowski, C. A., & Milkey, R. W. 1984, PASP, 96, 821
Pilachowski, C. A., & Milkey, R. W. 1987, PASP, 99, 836
Pinsonneault, M. H., Kawaler, S. D., Sofia, S., & Demarque, P. 1989, ApJ, 338,

424
Pomarede, D., Fidaali, Y., Audit, E., Brun, A. S., Masset, F., & Teyssier, R. 2008,

in ASP Conf. Ser. 386, Proc. of the IGPP/DAPNIA International Conference
on Numerical Modeling of Space Plasma Flows, ASTRONUM2007, ed. N.
V. Pogorelov, E. Audit, & G. P. Zank (San Francisco, CA: ASP), 327

Porter, D. H., & Woodward, P. R. 2000, ApJS, 127, 159
Recio-Blanco, A., Piotto, G., Aparicio, A., & Renzini, A. 2002, ApJ, 572, L71
Recio-Blanco, A., Piotto, G., Aparicio, A., & Renzini, A. 2004, A&A, 417, 597
Rempel, M. 2005, ApJ, 622, 1320
Robinson, F. J., Demarque, P., Li, L. H., Sofia, S., Kim, Y.-C., Chan, K. L., &

Guenther, D. B. 2004, MNRAS, 347, 1208
Royer, F., Gerbaldi, M., Faraggiana, R., & Gómez, A. E. 2002a, A&A, 381, 105
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