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ABSTRACT

Many competing linear instabilities are likely to occur in astrophysical settings, and it is important to assess which
one grows faster for a given situation. An analytical model including the main beam plasma instabilities is developed.
The full three-dimensional dielectric tensor is thus explained for a cold relativistic electron beam passing through a
cold plasma, accounting for a guiding magnetic field, a return electronic current, and moving protons. Considering
any orientations of the wave vector allows to retrieve the most unstable mode for any parameters set. An unified
description of the filamentation (Weibel), two-stream, Buneman, Bell instabilities (and more) is thus provided,
allowing for the exact determination of their hierarchy in terms of the system parameters. For relevance to both real
situations and PIC simulations, the electron-to-proton mass ratio is treated as a parameter, and numerical calculations
are conducted with two different values, namely 1/1836 and 1/100. In the system parameter phase space, the shape
of the domains governed by each kind of instability is far from being trivial. For low-density beams, the ultra-
magnetized regime tends to be governed by either the two-stream or the Buneman instabilities. For beam densities
equaling the plasma one, up to four kinds of modes are likely to play a role, depending of the beam Lorentz
factor. In some regions of the system parameters phase space, the dominant mode may vary with the electron-
to-proton mass ratio. Application is made to solar flares, intergalactic streams, and relativistic shocks physics.
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1. INTRODUCTION

Weibel, filamentation, two-stream, Bell, or Buneman insta-
bilities are ubiquitous in astrophysics. They are involved in
the physics of solar flares where relativistic electron beams
are assumed to lose their energy through beam-plasma insta-
bilities, producing hard X-ray emissions (Karlicky et al. 2008;
Karlicky 2009). Filamentation, or Weibel, instabilities could
also be responsible for the birth of cosmological magnetic fields
(Schlickeiser & Shukla 2003; Schlickeiser 2005; Lazar 2008;
Lazar et al. 2009) as unstable particle streams through the in-
tergalactic medium can magnetize an initially un-magnetized
system. Such instabilities could also play an important role
in explaining the origin of a variety of high-energy photons
sources including supernova remnants, active galactic nuclei,
gamma-ray bursts, or Pulsar Wind Nebulae (Piran 1999; Gedalin
et al. 2002; Piran 2004; Waxman 2006; Stockem et al. 2007).
Within some of these systems, it is assumed that cosmic rays
are accelerated through shocks (relativistic or not) while the
instability generated upstream by their interaction with the in-
terstellar medium provides the magnetic turbulence eventually
responsible for synchrotron radiation emissions (Medvedev &
Loeb 1999; Silva et al. 2003; Nishikawa et al. 2006; Frederiksen
et al. 2004; Milosavljevic & Nakar 2006; Lemoine et al. 2006;
Niemiec et al. 2008).

Regardless of the context, the typical structure investigated
consists in a beam-plasma system initially both charge and cur-
rent neutralized. Initial charge neutralization implies the inclu-
sion of positive and negative species, while current neutraliza-
tion demands at least two streaming species. Streams are often
considered as opposed, but they can be parallel when streaming
species are of opposite signs. For example, a pair beam does not
need any more beams to be current neutral. Finally, accounting

for an external magnetic field B0 allows the system to be rele-
vant to a wide class of astrophysical problem. The simplest case
consists in a B0 parallel to the flow(s) but normal or oblique ori-
entations have also been considered (Fraix-Burnet & Pelletier
1991; Dieckmann et al. 2008; Bret & Dieckmann 2008a; Sironi
& Spitkovsky 2009).

We consider here the generic system formed by a cold electron
beam of density nb streaming at initial velocity vb, with Lorentz
factor γb = (1−v2

b/c
2)−1/2, over a cold electron/proton plasma.

The beam current is neutralized by an electronic return current
of density np and velocity vp such that nbvb = npvp. Ions are
initially at rest with density ni = nb + np. Finally, the model
includes a flow-aligned magnetic field B0 ‖ vb. Even for such
a simple system, linear stability analysis is intricate because
unstable modes are numerous. The intent of this paper is to
clarify this issue and determine the fastest growing mode for
any given set of parameters, by implementing an exact model
encompassing every basic instability. In order to keep the results
tractable, emphasis is on the simplest possible model with the
lowest number of free parameters. As explained in the sequel,
these requirements demand a beam-plasma system with mobile
ions and a guiding magnetic field, while kinetic effects will
not be investigated here. A cold fluid model is thus exactly
solved, rendering every possible coupling between unstable
modes. The dispersion equation arising from the exact dielectric
tensor is analyzed without calling on the electrostatic (k ‖ E),
or the purely electromagnetic (k ⊥ E), approximations. Such
kind of calculation is mandatory if the two-stream or Buneman
electrostatic modes are to be described within the very same
formalism than the electromagnetic filamentation or Bell-like
instabilities.

Let us list the possible unstable modes by progressively “as-
sembling” the system. The first block here is the unmagnetized
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background plasma with fixed protons. Because we take it cold,
it is stable against every kind of perturbations. Note that some
temperature anisotropy would make it Weibel unstable (Weibel
1959), the fastest growing modes being found for wave vectors
perpendicular to the high-temperature axis (Kalman et al. 1968).
Kinetic effects can thus drive this first component unstable even
before we add anything else.

Let us now “add” the electron beam and let the plasma
electrons establish the return current (protons are still fixed).
To simplify the discussion, we consider here a diluted beam
with nb � np (the rest of the paper also deals with higher beam
densities). As is known, the resulting beam-plasma system is
unstable. Perturbations with wave vector k ‖ vb are unstable for
0 < k � ωp/vb and define the so-called two-stream Instability
(Bohm & Gross 1949). Perturbations having k ⊥ vb are also
unstable for any k and pertain to the filamentation instability.1

Finally, perturbations with k neither parallel nor perpendicular
to the flow are also unstable (Faı̆nberg et al. 1970; Califano
et al. 1997, 1998a, 1998b) and may even be the fastest growing
modes in the diluted relativistic beam regime (Bret & Deutsch
2005; Bret et al. 2008).

Let us now give the protons the possibility to move. Ev-
ery aforementioned unstable mode is still unstable as the two
counter-streaming electron beams still interact. But both elec-
tron currents can now interact with the protons, giving rise to
Buneman unstable modes (Buneman 1959). A closer look at the
situation shows that Buneman modes arising from the beam/
protons interaction merge with the beam/return-current modes
(Bret & Dieckmann 2008b). But the return-current/proton inter-
action results in unstable Buneman modes reaching their max-
imum growth rate for k ∼ (np/nb)ωp/vb and k ‖ vb. Within
the diluted beam regime, nb � np implies unstable modes with
much shorter wavelength than the two-stream modes. Indeed, it
has been found than the Buneman modes can compete with the
two-stream ones if the beam is relativistic enough.

We finally make our system complete by adding a flow-
aligned magnetic field. Here again, the new ingredient brings
in more unstable modes without necessarily stabilizing the
previous ones. To start with, electronic Cyclotron and Upper-
Hybrid modes are destabilized, adding new branches to the
unstable spectrum for any orientations of k (Godfrey et al.
1975). Also, Alfvén modes resulting from the combination of the
vibrating protons in the magnetic field can also be destabilized.
These unstable modes were first pointed out by Bell by means of
an MHD formalism (Bell 2004, 2005), and their description was
later extended through the kinetic one (Zweibel 2002; Reville
et al. 2006).

Our simple magnetized beam/plasma system with mov-
ing protons in eventually two-stream, filamentation, oblique,
Cyclotron, Upper-Hybrid, Buneman, Bell...unstable! As the sys-
tem is released from equilibrium, every instability is triggered,
and the outcome of the linear phase is mostly shaped by the
growth of the fastest growing one. This most unstable mode can
be found for an oblique wave vector so that the search of the
dominant mode requires the implementation of a model capa-
ble of describing any unstable mode for any orientation of the
wave vector. Note that recent works involving ion beams also

1 The filamentation instability is singled out from the Weibel one. In its
original context, the Weibel instability results from a temperature anisotropy
with no drift. Filamentation instability involves relative streaming of various
species. In the present context, both instabilities maybe be disconnected as one
filamentation stable, or unstable, beam can interact with a Weibel stable, or
unstable, plasma (Bret et al. 2004, 2005). They can also interfere with each
other (Bret & Deutsch 2006; Lazar et al. 2006; Lazar 2008; Lazar et al. 2009).

evidenced such kind of modes (Niemiec et al. 2008; Ohira &
Takahara 2008). We thus now proceed to the elaboration of the
simplest possible model incorporating all the aforementioned
instabilities.

The unstable modes described here are just too numerous
to be detailed one by one. On the other hand, each one needs
to be discussed since the present aim is precisely to determine
their hierarchy. The full wave vector dependence of each mode
is therefore skipped, the focus being set on the most unstable
wave vector with the corresponding growth rate. Additionally,
modes which have not been found to govern the system for
any given sets of parameters are only briefly discussed in order
to keep the presentation tractable. Still for clarity, the names of
the numerous modes have not been abbreviated. Finally, analytic
expressions in terms of the magnetic field parameter ΩB defined
by Equations (4) are essentially derived for ΩB>1, while results
are also presented for the un-magnetized regime.

The paper is structured as follow: the analytic model is
explained in the next section. Unstable modes found for flow-
aligned wave vectors are listed in Section 3 before an overview
of the two-dimensional unstable spectrum is given in Section 4.
The key results of the article are exposed in Section 5 where
the fastest growing mode is determined in terms of the system
parameters. In this respect, Figures 5 and 8 can be considered
as the main results of the paper. They show which kind of
mode governs the linear phase of the beam-plasma system in
terms of the parameters. Application is then made to various
astrophysical settings in Section 6, before the final discussion
and conclusion.

2. ANALYTIC MODEL

The model relies on the cold relativistic fluid equations for
the three species involved. The calculation follows the lines of
previous ones (Califano et al. 1998b; Kazimura et al. 1998)
except that protons are allowed to move while a static flow-
aligned magnetic field is accounted for. The basic equations
include Maxwell’s equations and,

∂nj

∂t
+ ∇ · (nj vj ) = 0, (1)

∂pj

∂t
+ (vj · ∇)pj = qj

[
E +

vj × (B + B0)

c

]
, (2)

where j = b for the electron beam, j = p for the plasma return-
current, and j = i for plasma ions (protons). Here, pj = γjmj vj

and qj are the momentum and electric charge of specie j.
Although lengthy, the derivation of the dielectric tensor

is quite standard. The conservation, Maxwell’s, and Euler’s
equations are first linearized assuming every quantity slightly
departs from equilibrium like exp(ık · r − ıωt) where ı2 = −1.
Since B0 ‖ vb, vp while

∑
qjnj = ∑

qjnj vj = 0, the charge
and current neutral equilibrium state considered exactly fulfills
the full set of equations. We can write k = (kx, 0, kz) without
loss of generality by virtue of the axial symmetry with respect
to the beam and magnetic field axis (Godfrey et al. 1975).
We choose the z-axis for the direction of the beam and of the
magnetic field, having therefore vb = (0, 0, vb), vp = (0, 0, vp),
and B0 = (0, 0, B0). The linearized conservation and Euler’s
equations are first used to express the perturbed total current J1 in
terms of the electromagnetic field. The first-order magnetic field
is then eliminated through B1 = (c/ω)k × E1 and the resulting
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Table 1
Main Unstable Modes in the Diluted Beam Regime

Modes Zx Zz
a Growth Rate

Txx − ıTxy 0 ΩB/γb ∝ √
αRΩB

b

Txx + ıTxy 0 1
2 α/ΩB ∝ αRΩB

b

Two-stream 0 1
√

3
24/3 α1/3/γb

Buneman 0 1/α
√

3
24/3 R1/3

ObliqueB0, ΩB = 0 ∞ 1
√

3
24/3 (α/γb)1/3

UHLc, ΩB > 1 ∞ ΩB/γb
1
2 (α/ΩB )1/2

Oblique, ΩB > 1
√

1 + Ω2
B

√
1 + Ω2

B
1
4 α1/3/γb

UHLc, ΩB > 1 ∞ ΩB/γb +
√

1 + Ω2
B

1
2 α1/2/ΩB

Notes.
a For a given Zx, the growth rate is a function of Zz. The table only mentions the
Zz and the growth rate pertaining to the fastest growing mode. Magnetized mode
are reported for ΩB > 1. The transition between ΩB = 0 and 1 is described in
Godfrey et al. (1975) for R = 0.
b Bounded by Equation (13).
c UHL stands for “upper-hybrid-like.”

expression of the current is inserted into the usual combination
of Maxwell–Faraday and Maxwell–Ampère equations, namely

c2

ω2
k × (k × E1) + E1 +

4ıπ

ω
J1(E1) = 0. (3)

The electrostatic (k × E1 = 0) or purely electromagnetic
approximations (k·E1 = 0) would here result in a simplification
of the k × (k × E1) term. Although such options may be
useful when focusing on one give mode, the risk at this stage
would be to loose information about possible dominant modes
which would not fit in. A Mathematica Notebook has been
implemented to symbolically compute the tensor (Bret 2007).
It is expressed in terms of the dimensionless variables,

x = ω

ωp

, Z = kvb

ωp

, α = nb

np

, β = vb

c
, ΩB = ωB

ωp

,R = me

mi

,

(4)
where ω2

p = 4πnpq2/me is the electronic background plasma
frequency, ωB = |q|B0/mc the non-relativistic electronic
cyclotron frequency and me, mi the electron and ion (proton)
mass, respectively. The Alfvén velocity vA can be expressed in
terms of the variables above as

vA

c
=

√
R(1 + α)ΩB, with vA = B0√

4πnimi

. (5)

The dielectric tensor has the form,

T =
⎛
⎝Txx Txy Txz

T ∗
xy Tyy Tyz

T ∗
xz T ∗

yz Tzz

⎞
⎠ , (6)

where z∗ is the complex conjugate of z. Tensor elements
are reported in Appendix A in terms of the dimensionless
variables (4). In the limit of zero magnetic field, only the
square of the charges appears in the tensor expression. As a
consequence, the results in such a case also apply to two counter-
streaming pair plasmas (Jaroschek et al. 2005; Ramirez-Ruiz
et al. 2007).

The most general expression of the dispersion equation then
reads det T = 0 and necessarily encompasses every possible
unstable modes. As previously mentioned, we here emphasize

Table 2
Main Unstable Modes in the High Density Beam Regime α = 1

Modes Zx Zz Growth Rate

Txx ± ıTxy 0 �
√

R

TSBa, γbR
1/3 < 1/2 0

√
3/2γ

3/2
b 1/2γ

3/2
b

TSBa, γbR
1/3 > 1/2 0

√
2R

√
3

27/6 R1/6/γb

Oblique, ΩB > 1 2Ω1/2
B /γ 0.75

b ΩB/2γb 0.5/γ 1.15
b

UHLb 1 & 2, ΩB > 1 ∞ ∼ ΩB/γb 1/ΩB

Notes.
a TSB stands for the merged two-stream/buneman mode.
b UHL stands for “upper-hybrid-like.”

the search of the most unstable mode kM of the unstable k
spectrum. The function kM can only depend on the beam-to-
plasma density ratio α, the beam Lorentz factor γb, the magnetic
field strength parameter ΩB , and the mass ratio R. Once the
former has been fixed to 1/1836, or any higher value more suited
to comparison with PIC simulations (Jaroschek et al. 2004;
Spitkovsky 2008a; Karlicky 2009), the most unstable mode can
only be a function of (α, γb, ΩB ) ∈ [0, 1] × [1,∞] × [0,∞].
Note that this study is not limited to the diluted beam case so that
the return-current flowing at vp = αvb can also reach relativistic
velocities. Tables 1 and 2 summarize the results of the next two
sections as they display the main unstable modes in the diluted
(α � 1) and symmetric (α = 1) regimes, respectively. Mode
properties in the magnetized regime are given only for ΩB > 1.
A detailed study (at R = 0) of the transition from ΩB = 0 can
be found in Godfrey et al. (1975).

3. FLOW-ALIGNED WAVE VECTORS

We here detail the case of flow-aligned wave vector insta-
bilities before analyzing the most general situation. Even if
these modes do not always govern the system, such an analysis
is useful to get familiar with the competing instabilities, and
make a bridge with previous investigations. When considering
k = (0, 0, kz), the tensor (6) simplifies to,

T =
(

Txx Txy 0
−Txy Tyy 0

0 0 Tzz

)
, (7)

so that the dispersion equation simply reads,

Tzz(Txx + ıTxy)(Txx − ıTxy) = 0. (8)

This equation already contains most of the unstable modes
already discussed. The Tzz generates electrostatic two-stream
and Buneman modes while the others are responsible for the
so-called “Bell” unstable electromagnetic modes.

3.1. Electrostatic Modes

The Tzz terms reads,

Tzz = 1 − R(1 + α)

x2
− α

(x − Zz)2γ 3
b

− 1

(x + αZz)2γ 3
p

. (9)

The proton contribution stems from the term ∝ R/x2, the
beam one from the second term with numerator α, and the
return-current with γp = (1 − v2

p/c2)−1/2 accounts for the last
factor. The dispersion equation for these modes is independent
of the magnetic field since the resulting electrostatic modes



No. 2, 2009 WEIBEL, TWO-STREAM, FILAMENTATION, OBLIQUE, BELL, BUNEMAN... 993

0.01 0.1 1 10
Zz

10-5

10-4

0.001

0.01

Figure 1. Growth rate δ (ωp units) of the four unstable modes for flow-aligned
wave vectors in terms of Zz = k‖vb/ωp . Parameters are α = 0.1, γb = 20,
ΩB = 1 and R = 1/1836. The two electromagnetic modes yield the thin plain
and dashed curves from Equation (12) with “−” and “+” respectively. The bold
dashed pertains to the two-stream modes and the Buneman modes gives the
plain bold one.

have k ‖ E and only generate velocity perturbations along the
magnetic field. This equation has been analyzed elsewhere (Bret
& Dieckmann 2008b). For a diluted beam, the interaction of the
two electron beams produces two-stream unstable modes with
maximum growth rate (Mikhailovskii 1974)

δ =
√

3

24/3

α1/3

γb

for Zz = 1, (10)

and the interaction of the return current with the proton yields
unstable Buneman modes at much smaller wavelength with,

δ =
√

3

24/3
R1/3 for Zz = 1/α. (11)

These expressions change when the density ratio approaches
unity because the beam and the return current become symmetric
for α = 1 (see Section 3.3).

3.2. Electromagnetic Modes

The unstable electromagnetic modes arise here from the
Txx ± ıTxy terms of Equation (8) which read,

Txx ± ıTxy = x2 − Z2
z

β2
+

α(Zz − x)

γb(x − Zz) ∓ ΩB

− x + αZz

γp(x + αZz) ∓ ΩB

− Rx(1 + α)

x ± RΩB

. (12)

A straightforward calculation from the general dispersion re-
lation for circularly polarized wave with such wave vectors
(Ichimaru 1973; Achterberg 1983; Amato & Blasi 2009) yields
the very same result. These modes are the present configuration
analogs to the ones explained by Bell (2004, 2005). The main
difference with the scenarios in which they are usually involved
is that they are presently driven by an electronic current rather
than by a baryonic one.

Both dispersion equations yield unstable modes here. The
most relevant feature with respect to the mode hierarchy is that
growth rates are bounded by RΩB , regardless of the parameters
involved. This does not imply the growth rate can go to infinity
because unstable solutions exist only in a limited region of the
phase space (α, γb, ΩB, R).

The Txx − ıTxy term can be partially assessed analytically
neglecting the x2 and the return-current factor. The most unstable
modes are found at Zz ∼ ΩB/γb, with x ∼ RΩB . The maximum
growth rate varies like

√
α, and is always bounded by

δ < RΩB − Ω2
BR3/2. (13)

The Txx + ıTxy factor is more involved and has been partially
treated numerically. Unstable modes are found here at Zz ∼
1
2α/ΩB , with maximum growth rates varying like α, and still
bounded by Equation (13). Note that these modes are stable
for γb � αΩ2

B so that instability in the diluted beam regime
demands a low Lorentz factor.

Figure 1 displays the growth rate of these four unstable modes
in terms of Zz for some parameters triggering them all. One can
observe how the relevant spectrum extends over 3 orders of
magnitude. This point, and its consequences, are discussed in
the conclusion.

3.3. Non-diluted Beam Regime

Because we study small perturbations of the system composed
by both the beam and the plasma, the present theory is perfectly
valid up to α = 1. However, the physical interpretation of the
calculations can no longer be derived considering the beam is
a perturbation to the isolated background plasma. The system,
beam+plasma, has its own proper modes that are quite different
from those of the isolated plasma. Taking R = 0 for example,
the dispersion equation has two branches exactly given by

x2 = Z2
z +

1 −
√

1 ± 4Z2
z γ

3
b

γ 3
b

, (14)

which definitely differs from the cold isolated plasma dispersion
relation x = 1, i.e, ω = ωp. For such a symmetric system, the
Buneman modes at Zz ∼ 1/α merge with the two-stream modes
at Zz ∼ 1, and depending on γbR

1/3, the resulting mode may
be governed by the electrons or the ions dynamic (see Table 2).

For parallel wave vectors, electrostatic modes have been
studied previously (Bret & Dieckmann 2008b), and two different
regimes need to be considered depending on the product γbR

1/3.
For γbR

1/3 � 1/2, the fastest growing mode has

δ = 1

2γ
3/2
b

for Zz =
√

3

2γ
3/2
b

. (15)

Note that this result is exact for R = 0. In the opposite limit
γbR

1/3 � 1/2, one has

δ =
√

3R1/6

27/6γb

for Zz =
√

2R. (16)

Regarding the electromagnetic modes, the two terms Txx ±
ıTxy in Equation (8) yield the same growth rate because for
α = 1, these two functions are equal through the transformation
x → −x. Here again, the growth rate of these modes is always
bounded by RΩB , but instability occurs only for γb � 1/R and
ΩB � √

γb. As a consequence, the most unstable mode for a
given couple (γb, ΩB) cannot grow faster than RΩB < R

√
γb <√

R.
Figure 2 displays the growth rate of the two modes just

discussed for parameter sets yielding a Bell governed system.
Note that such situation demands a highly magnetized system.
Although this plot gives the sensation that Bell-like modes
can dominate some region of the parameters phase space, they
were never found to govern the full two-dimensional spectrum.
This example illustrates the importance of accounting for the
full unstable k spectrum instead of focusing on a given wave
vector orientation. While Bell-like modes grow slower for non-
flow-aligned wave vectors, other modes grow faster in oblique
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Figure 2. Growth rate δ (ωp units) for flow-aligned wave vectors in terms of
Zz = k‖vb/ωp . Parameters are α = 1 for ΩB = 10, and 60, with R = 1/1836
and γb = 103. Here, electromagnetic modes (thin lines) can overcome the
electrostatic ones (bold line).

directions. As a result, the unstable spectrum ends up governed
by the latters, even if the formers can “reign” over the beam axis.
This situation basically stems from the necessary smallness of
the mass ratio R. Dealing with a proton beam would allow to
reach R = 1, where Bell modes should definitely be found
governing some portion of the phase space. A similar theory
accounting for a proton beam would be needed to describe such
situations.

4. AN OVERVIEW OF THE 2D SPECTRUM

Before we establish the full hierarchy of the unstable modes
in terms of the parameters (α, γb, ΩB), let us give an overview
of the unstable spectrum in terms of k = (kx, 0, kz). The basic
principle here is that the unstable modes previously discussed for
kx = 0 remain unstable for some kx �= 0. The analytical analysis
becomes more involved because all modes are coupled, as the
tensor elements Txz and Tyz in Equation (6) no longer vanish.
However, the list of unstable modes is easier to grasp in the
diluted beam regime where the beam is just a perturbation to the
isolated background plasma. We therefore single out the diluted
and non-diluted beam regime in our analysis. Furthermore,
unstable modes found in an oblique direction have finite or
infinite kx. Both kinds of modes can be tackled by different
approaches, and are thus studied separately.

4.1. Diluted Beam - Zx = ∞
For the un-magnetized system with infinite ion mass, the

resulting spectrum is now well understood, including within
the framework of a full kinetic relativistic theory (Bret et al.

2008). There is a continuum of unstable modes bridging the two-
stream instability (k⊥ = 0) with the filamentation instability
(k‖ = 0). The magnetized version of the same system brings
two additional oblique branches. For ΩB > 1, the first one is
found at Zz ∼ ΩB/γb, with a maximum growth rate varying
like 1

2

√
α/ΩB . Still for ΩB > 1, the second branch is located

at Zz ∼ ΩB/γb +
√

1 + Ω2
B with a maximum growth rate

varying like 1
2

√
α/ΩB (Godfrey et al. 1975). Within the same

region of the spectrum, the oblique modes already present at

ΩB = 0 near Zz = 1 are now found at Zz ∼
√

1 + Ω2
B with a

maximum increment varying like α1/3/γb. These later modes are
commented in Section 4.3. At this stage, the unstable spectrum
may look like the one pictured on Figure 3(a) for the parameters
specified in caption.

At this junction, some comment is needed to clarify the
meaning of “oblique” mode (with small “o”). Figures 3 and 4
make it clear that unstable modes with both kx �= 0 and kz �= 0
are numerous. Such kind of modes have so far been referred
to in the literature as “oblique” (Watson et al. 1960; Niemiec
et al. 2008; Ohira & Takahara 2008), “electromagnetic beam-
plasma instability” (Califano et al. 1998b), “coupled two-stream
Weibel” (Jaroschek et al. 2005), or “Mixed mode” (Frederiksen
& Dieckmann 2008). The problem with such labeling is that
“oblique modes” are here just too numerous for only one tag.
In Tables 1 and 2, as in the rest of the paper, “oblique modes”
bridging between two-stream and filamentation instabilities for
ΩB = 0 are labeled “obliqueB0.” For ΩB > 1, they evolve
into what we presently call “oblique” modes (capital “O”), with
both kx �= 0 and kz �= 0, and a growth rate scaling like γ −1

b .
Finally, modes found reaching their maximum growth rate at
finite Zz and Zx = ∞ are labeled “upper-hybrid-like” modes
after Godfrey et al. (1975).

The spectrum is even richer when ions are “allowed” to move,
as Buneman and Bell-like modes are triggered. The resulting
spectrum is pictured on Figures 3(b) and (c) for R = 1/100
and 1/1836, respectively. An electron-to-proton mass ratio
R = 1/100 may be relevant for PIC simulation where the mass
ratio is usually incremented from its 1/1836 realistic value in
order to speed up the ions dynamic, saving thus computer time.
Regarding this last point, it is interesting to note that such a
trick is possible because the growth rates associated with the
moving ions increase with R, while the related scale length does
not (see Equations (11)). This is reflected on Figures 3(b) and
(c) where the dominant modes do not migrate with varying R.
If such was not the case, some higher mass ratio could demand
higher spatial resolution so that the computing time lost by a

(a) (b) (c)

Figure 3. Two-dimensional unstable spectrum in terms of the reduced wave vector Z for α = 0.1, γb = 2 and ΩB = 3. (a) R = 0. (b) R = 1/100. (c) R = 1/1836.

(A color version of this figure is available in the online journal.)
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(a) (b) (c) (d)

Figure 4. Two-dimensional unstable spectrum in terms of the reduced wave vector Z for α = 1, γb = 103, and ΩB = 60. (a) R = 0. (b) R = 1/100. (c) R = 1/1836.
With the same parameters than Figure 2, we see here how Bell-like modes around Zz = 0.08 do govern the Zz axis but not all the spectrum. Map (d), with parameters
ΩB = 10, γb = 5, and R = 1/1836, clearly evidences the oblique mode explained in Section 4.3 for Zz, Zx ∼ 1.

(A color version of this figure is available in the online journal.)

finer spatial resolution would not necessarily be compensated by
the accelerated dynamic. Also on these Figures, the occurrence
of the Buneman instability around Zz ∼ 1/α = 10 is clear.
The two-stream instability governs here the system even for
R = 1/100, but the electron and ion spectrums are almost
disconnected form each other only for R = 1/1836. Because
of the smallness of the real mass ratio, both the time and length
scales of each spectrum are disconnected from each other. In
such a case, the overall spectrum is nearly the superposition of
each sub-spectrum.

4.2. Non-diluted Beam Regime, α = 1 and Zx = ∞
Without moving ions (R = 0), the most relevant features

of the unstable spectrum in this case are oblique resonances at
Zz ∼ ΩB/γb and Zz ∼ ΩB/2γb. Only the first one extends up
to Zx = ∞ and yields a maximum growth rate δm ∼ 1/ΩB

(Bret et al. 2006). The next paragraph is devoted to an overview
of the second kind of modes. This large Zx regime can be
analytically investigated in the following way. We start deriving
the dispersion equation in this limit setting α = 1, γb = γp and
Zx → ∞ in Equation (6). We then use the fact that unstable
modes are found with �(ω) ∼ 0 and develop the resulting
dispersion equation to the second order in x. In this large Zx
limit, the system is found unstable only between,

Zz1 = ΩB

γb

√
1 − 2β2γb

Ω2
B

, (17)

and

Zz2 = ΩB

γb

. (18)

These results are exact and imply that filamentation instability
is canceled as soon as Zz1 > 0, i.e., ΩB > β

√
2γb. For

ΩB � βγ
1/2
b , the unstable range decreases like Zz2 − Zz1 ∼

β2/ΩB . The range of unstable wave vectors becomes therefore
increasingly narrow, yielding a quasi-monochromatic unstable
spectrum in this limit.

When ion motion is accounted for, part of the stability domain
can still be calculated exactly following the same guidelines.
With R �= 0, one finds

Zz1,R = Zz1, (19)

and

Zz2,R = ΩB

γb

√
1 + R

(
γb + Ω2

B/2
)

1 + RΩ2
B

/
2

. (20)

The maximum growth rate within this range remains close to
1/ΩB , and another range of unstable wave vectors and similar
growth rate appears at slightly larger Zzs. These new modes,
arising purely from the ion motion, will not be investigated here
although they are accounted for in the forthcoming numerical
evaluation of modes hierarchy.

Figures 4(a)–(c) shows the two-dimensional spectrum for the
parameters chosen for Figure 2 with ΩB = 60. The purpose of
this choice is to observe how some oblique modes govern the
full spectrum while Bell-like modes dominate the Zz-axis. On
Figure 2, the spectrum for ΩB = 60 is clearly governed by these
modes at Zz ∼ 0.08. The same modes, together with the way
they evolve when leaving the Zz-axis, are perfectly visible on
Figure 4(c) and one can check how they quickly stabilize for
oblique wave vectors.

4.3. Oblique Modes at Finite Zx

Sections 4.1 and 4.2 discussed unstable modes located at
Zx = ∞. The cold fluid approximation typically send some fast
growing modes to Zx = ∞, whereas temperature effects tend
to stabilize these small wavelengths instabilities by preventing
the pinching of too small filaments (Silva et al. 2002). But the
occurrence of a magnetic field also triggers some truly locally
most unstable oblique modes. The term “locally” means here
that the very same mode, as defined by one root of the dispersion
equation, reaches its maximum for a finite Zx. For more clarity,
Figure 4(d) displays a two-dimensional spectrum with α = 1,
while the other parameters have been chosen to single out this
mode.

For the diluted beam case, Table 1 mentions a maximum
growth rate varying like α1/3/γb. For the symmetric case α = 1,
Table 2 indicates a maximum oblique growth rate ∼ 0.5/γ 1.15

b

(numerical fit). Such scaling of this finite Zx mode bears
important consequences regarding modes hierarchy: a look at
Tables 1 and 2 shows that the ultra-magnetized regime tends
to stabilize every modes, except this one, the Buneman and the
Two Stream. While more modes compete for moderate ΩB , the
large ΩB limit is decided among these three. More details on
the ultra-magnetized regime are given in Section 5.2.

5. MODES HIERARCHY

We finally turn to the determination of the modes hierarchy
in terms of the parameters α, γb, and ΩB . Only the case
ΩB = R = 0 has been treated so far (Bret & Deutsch 2005;
Bret et al. 2008) evidencing two main features. On the one
hand, obliqueB0 modes can govern the diluted beam regime
from nb/np ∼ 0.53. For higher density ratios, filamentation
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Figure 5. Frontiers between the domains governed by different modes in terms of α and γb , for various ΩB and R = 1/1836, 1/100. The arrows on the frontiers show
how they evolve when ΩB increases. The red crosses show the parameter sets for the solar flares application explained in Section 6.1.

(A color version of this figure is available in the online journal.)

may dominate depending on the beam Lorentz factor γb. On the
other hand, obliqueB0 modes govern the ultra-relativistic regime
unless the system in strictly symmetric with nb = np.

After having calculated symbolically the dielectric tensor us-
ing a previously designed Mathematica Notebook, the polyno-
mial dispersion equation (17th degree) has been transferred to
MatLab for numerical study. A systematic search of the most
unstable modes has thus been conducted in terms of α, γb,
and ΩB for R = 1/1836 and 1/100. For each parameter set
(α, γb, ΩB ), the program returns the Zz and Zx components of
the most unstable mode together with the real and imaginary
parts of the corresponding complex frequency ωr + ıδ.

The function δM = max{δ, (kx, kz) ∈ R
2} is clearly contin-

uous. But the real part ωM corresponding to δM , together with
the wave vector ZM defining the mode growing at δM , may well
evolve discontinuously as the most unstable mode can perfectly
“jump” from one location of the two-dimensional spectrum to
another (Bret et al. 2008). For example, the Zz component of the
fastest growing mode along the beam axis, switches abruptly
from Zz = 1 to 1/α when the Buneman mode overcomes the
two-stream one. Indeed, these discontinuities are a way to de-
termine the domains where any given mode governs the system:
as long as the parameters evolve in such a way that the very
same mode keeps dominating, ZM and ωM are continuous.2 But
when the dominant mode changes, one of these functions will
suffer some discontinuity. Within the present cold model, the
most unstable oblique modes are often “sent” to Zz = ∞ so
that an oblique–oblique transition will not necessarily trigger
some discontinuity of the perpendicular component. But this is
neither the case of the parallel component Zz nor of the real
part of the frequency ωM . Figure 5 has thus been elaborated ex-
ploiting these properties and is commented in the sequel. Here
again, and for better clarity, we single out the diluted beam
regime α � 1 from the symmetric case α = 1. The main
reason for such a structure is that only these two extremes are
analytically accessible, whereas the intermediate case definitely
requires numerical assistance.

2 The roots of a polynomial are continuous functions of its coefficients. See
Uherka & Sergott (1977) for a proof.

5.1. Diluted Beam

Gathering the aforementioned data, the frontiers between the
domains governed by different modes are sketched in terms of
(γb, α) on Figure 5. Although α is limited to the range [0.1, 1],
the lower part of the graph can easily be deduced from the diluted
beam regime expressions reported in Table 1. This process is
repeated for various ΩBs and R = 1/1836, 1/100.

Starting with ΩB =0, the findings of Bret & Dieckmann
(2008b) are confirmed numerically here. Filamentation domi-
nates for large beam-to-plasma density ratios. The frontier vis-
ible in the lower-right corner pertains to the oblique/Buneman
transition. The growth rate of the un-magnetized oblique com-
peting mode in this case3 reads

√
3/24/3(α/γb)1/3 (Faı̆nberg

et al. 1970). The equation of the border is, therefore, simply

α = Rγb. (21)

For α = R and γb = 1, Equations (10) and (11) are identical so
that this frontier extends all the way down to α = R. Below this
line, Buneman modes govern the linear phase.

From ΩB = 1, the evolution is three-fold. To start with, the
two-stream instability governs an increasing weakly relativistic
region (lower-left corner) as its magnetized growth rate remains
the same, while oblique modes are made less unstable. By virtue
of the same kind of effects, Buneman modes gain weight on the
lower-right corner because their growth rate too does not vary
with the magnetic field. Finally, filamentation domain shrinks
as the magnetic field progressively shuts it down (Cary et al.
1981; Stockem et al. 2007). Regarding the border of the two-
stream region, a look at the Zx component shows it switches
from 0 to ∞ when crossing the limit. A comparison between
the growth rate values in this region and the expressions gathered
in Table 1, shows that the two-stream mode competes with the

upper-hybrid-like one located at Zz ∼ ΩB/γb +
√

1 + Ω2
B . The

two-stream/oblique frontier is thus defined for α � 1 by
√

3

24/3

α1/3

γb

=
√

α

2ΩB

⇔ α = 27Ω6
B

4γ 6
b

. (22)

3 The “obliqueB0” of Table 1.
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Figure 6. Low α partition of the phase space defined by Equations (22)–(24)
for 1 � ΩB � R−1/3 (see Section 5.2).

Regarding the Buneman/upper-hybrid-like frontier, the growth
rate ∼ 1

2

√
α/Ωb simply decreases with α until the Buneman

mode overcomes it. This transition thus occurs for
√

3

24/3
R1/3 =

√
α

2ΩB

⇔ α = 3R2/3

22/3
Ω2

B. (23)

Below this intersection, two-stream modes are directly compet-
ing with the Buneman ones. This later frontier is thus defined
by

α = Rγ 3
b . (24)

The partition defined by these three equations in the diluted
regime is thus pictured on Figure 6 for ΩB larger than 1 but
smaller than ∼R−1/3 (see Section 5.2 for this limitation).

For larger values of ΩB , the previous trends amplify. The
oblique domain (central region) is bounded toward the low αs
because oblique growth rates are scaled like α1/2 (or α1/3), while
the Buneman growth rate does not vary with α. The evolution
is of course faster with R = 1/100 than 1/1836 because the
Buneman grows faster in the second case.

From ΩB ∼ 5.8, the Buneman modes gain more “territory”
according to the aforementioned mechanisms. Noteworthily,
new modes appear to govern some portion of the phase space
at rather high density ratio and moderate Lorentz factor. For
R = 1/1836, the inserted spectrum maps on Figure 5 show
that a small part of the phase space (blue one) pertains to the
oblique mode described in Section 4.3. This “middle region” is
analytically involved to explore and such results could only be
derived numerically so far. The same mode governs a similar
region for R = 1/100, but in that case, another kind of oblique
mode (green regions) also intervenes. Why can such modes
lead the linear phase for R = 1/100 and not R = 1/1836? The
solution lies in the mode coupling already observed in Section 4.
Figures 3(a) and (c) show how the Buneman modes interfere
with the rest of the spectrum according to the value of R. For
R = 1/100, interferences are stronger than for R = 1/1836
because the spectrum is wider. While the beam is diluted
(as is the case for these plots), coupling effects are limited
because the various modes are well separated in the k space.
As the beam-to-plasma density ratio α increases, the Buneman
spectrum progressively merges with the rest of the unstable
modes. Interferences thus become potentially more intense, and
all the more that R is large. It turns out that the green region
in Figure 5 arises from a mode coupling which is much less
excited for R = 1/1836 than for R = 1/100. We find here
that tuning the electron-to-proton mass ratio in order to speed
up the system dynamic may bear qualitative consequences by
changing the nature of the dominant mode.

5.2. Diluted Beam, Ultra-magnetized Regime

The outcome of the ultra-magnetized regime is relevant for
pulsars physics, for example. For diluted beams, an increasing
magnetic field progressively stabilizes every mode except the
two-stream, the Buneman, and the oblique one (see Table 1).
Both two-stream and oblique are scaled like α1/3/γb, but the
pre-factors favor two-stream modes. Competition is eventually
between Buneman and two-stream with a frontier defined by
Equation (24). The magnitude of ΩB needed to trigger this
picture can be derive by setting α = 1 in Equation (23) as if the
“triple-point” pictured in Figure 6 was rejected to α = 1. Such
criterion places the ultra-magnetized regime beyond

ΩB ∼ R−1/3, (25)

which fits well what is observed in Figure 5. Let us now detail
the symmetric case and detail the mode hierarchy in terms of
(γb, ΩB).

5.3. Symmetric Case, α = 1

When α reaches unity, Table 2 indicates that the competition
is between the merged two-stream/Buneman, the upper-hybrid-
like and the oblique modes. However, a comparison of the
growth rates is possible as long as these modes are well separated
in the k space. When overlapping, the growth rate interfere,
and analytical predictions become very involved. A closer look
shows that the region

ΩB �
√

2Rγb, (26)

is thus defined. This limit lies below the cancellation threshold
for the filamentation instability, ΩB = β

√
2γb, at least up to

γb = 1/R. Indeed, the numerical exploration of this region
shows that filamentation governs the system almost as long as it
is not canceled. This allows for the tracing of the filamentation
domain in Figure 8, together with the other limits explained in
this section. As filamentation vanishes, it evolves smoothly into
the upper-hybrid-like modes with k‖ ∝ Zz �= 0.

When condition (26) is fulfilled, it is possible to directly com-
pare the growth rate of the three competing modes. The resulting
situation is rendered in Figure 7 and varies strongly with R. The
origin of such R-sensitivity is the fact that only the two-stream/
Buneman growth rate depends on the mass ratio in the large
γb limit. While its γb variation is monotonous, the variation of
the oblique modes is not, rendering the determination of the
hierarchy highly non-trivial for moderately relativistic beam.

Figure 7 shows that for R = 1/100, oblique modes are only
allowed to overcome the others as long as ΩB is not too large.
Numerically, it is found that for ΩB � 300, they are overcome
by two-stream/Buneman regardless of the beam energy. Beyond
this threshold, upper-hybrid-like modes govern if

ΩB <
27/6

√
3

γb

R1/6
. (27)

The resulting hierarchy map is display on Figure 8 and uncover
an intriguing bubble-like oblique domain.

When decreasing R down to its realistic value 1/1836,
Figure 7 shows how the large γb part of the two-stream/
Buneman curve is shifted down by virtue of its R1/6/γb scaling
(see Table 2). Even for ΩB = 500, the oblique growth rate (plain
blue curve) surpasses the two-stream/Buneman from γb ∼ 5 to
∼ 200. Whether such a situation holds for any ΩB is an open
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(A color version of this figure is available in the online journal.)
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respectively. The marks have been placed on the γb-axis because the systems they represent are un-magnetized.

question, but it has been checked that it does at least up to
ΩB = 103. In order to draw the hierarchy map, let us first
determine the Lorentz factor for which two-stream/Buneman
modes overcome the oblique one. The corresponding value of
γb fulfills

1

2

1

γ 1.15
b

=
√

3

27/6

R1/6

γb

⇒ γb ∼ 0.055

R10/9
, (28)

yielding γb ∼ 234 for R = 1/1836. The hierarchy map
here is the one pictured in Figure 8 for R = 1/1836. For
ΩB > 2 × 2341.15 = 1060, the system is governed with γb

increasing by two-stream/Buneman modes, then oblique, then
two-stream/Buneman again, then upper-hybrid-like and finally,
filamentation. For smaller ΩBs (yet, larger than ∼ 4), the last
two-stream/Buneman step is just skipped, as the system goes
directly from the oblique to the upper-hybrid-like regime.

It is therefore not easy to define some ultra-magnetized
regimes here. Unlike the diluted beam case where only two
modes are left to compete for a reasonably high magnetic field
defined by Equation (25), we find here that every mode involved

is likely to play a role, regardless of the magnetization. For R =
1/100, one could define a so-called ultra-magnetized regime
from the top of the oblique “Bubble” located at ΩB ∼ 300. For
larger magnetization, only three modes are left to compete. But
such a definition is no longer possible for R = 1/1836.

Finally, let us add a remark regarding the accuracy of
the borders calculations. While it is perfectly possible to
numerically compute hierarchy maps 5 and 8 with higher
definition, such progress is not imperative because two different
systems located on each side of a given border are likely to
evolve in quite a similar way during the linear phase. Let us
assume the border between two mode domains A and B goes
through α = α0, in such a way that A dominates for α < α0.
For α = α0, the growth rates δA and δB are strictly equal.
If α = α0 ± ε, then δA − δB = ∓ε′. If both A and B are
excited with the same initial amplitude, the time required for the
fastest to overcome the slowest only by a factor e is ∼ ω−1

p /ε′.
Depending on the system considered, this time may well exceed
the duration of the linear phase for ε′ small enough. It would
thus be inappropriate to claim that only A or B is relevant on
its respective side of the border. Even if the dominant mode
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Table 3
Parameters Used for the Applications

Setting nb/np γb ΩB Dominant Mode

Solar Flaresa 1/8 1.34 0, 1 ObliqueB0, Two-stream
Intergalacticb 1 1.005 0 ObliqueB0

Shocksc 1 10 0 Filamentation

Notes.
a From Karlicky (2009), β = 2/3 with R = 1/1836.
b From Lazar et al. (2009), β = 1/10 with R = 1/1836.
c From Silva et al. (2003). Two colliding pair plasmas without background ions,
i.e. R = 0.

evolution can be discontinuous, the system dynamic stemming
from the growth of the entire spectrum should evolve smoothly
when crossing a frontier. One can focus on either A or B only
far away from the borders so that the precise calculation of its
location is not crucial.

6. APPLICATIONS

We finally turn to the determination of the modes hierarchy
in terms of the parameters α, γb, and ΩB for the three settings
mentioned earlier. The parameters considered in each case are
reported in Table 3 and have been chosen after Karlicky (2009),
Lazar et al. (2009), and Silva et al. (2003). The respective growth
rate maps have been plotted on Figures 9(a)–(c). Although the
present theory is limited to the cold case, possible kinetic effects
are indicated in each case, and even calculated for the solar flares
environment.

6.1. Solar Flares

Here, we perform the calculation for one magnetized and one
non-magnetized case. The system location in the parameters
phase space is designated by the red crosses on Figure 5,
and the growth rate maps are displayed on Figures 9(a). For
both scenarios, the Buneman modes are clearly visible at
Zz ∼ 8 = 1/α, but cannot compete with the two-stream ones at
Zz ∼ 1 because the beam is not relativistic enough. With such a
beam-to-plasma density ratio, a much higher relativistic factor
is required for the two-stream/Buneman transition.

For the non-magnetized case (upper Figure 9(a)), this
weakly diluted beam system is governed by non-magnetized
“obliqueB0” modes at Zz ∼ 1. Although not dominant, the fila-
mentation instability4 plays an important role as its growth rate
is quite close to the largest one. The introduction of the mag-
netic field (lower Figure 9(a)) damps filamentation as well as the
oblique mode, resulting in a two-stream driven system. Note-
worthily, Figure 5 shows that a small variation of the Lorentz
factor can trigger a dominant mode transition for ΩB = 1. For
R = 1/100, the system is close to a triple-point where two-
stream, Buneman and upper-hybrid-like modes grow the same
speed. The system behavior in this case is therefore very sensi-
tive to the parameters choice.

A word of caution is needed here before concluding with re-
spect to the solar flares environment. The simulation performed
in Karlicky (2009) accounts for an electronic temperatures of
21.4 × 106 K (21.4 MK). Indeed, analysis of soft and hard
X-ray flare data indicate that plasma temperatures up to 40 MK
are obtained in large flares (Aschwanden 2002). Furthermore,
velocity distributions can be highly anisotropic due to stronger

4 Denoted “Weibel” in Karlicky (2009).
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Figure 9. Two-dimensional unstable spectrum in terms of the reduced wave
vector Z for parameters mentioned in Table 3. (a) Solar flares. (b) Intergalactic
streams. (c) Relativistic shock. The insert on the upper-left figure shows the
result of a fully kinetic calculation with R = 0, assuming electronic beam and
plasma temperatures of 20 MK.

(A color version of this figure is available in the online journal.)

heating along the magnetic field lines (Fisk 1976; Miller 1991;
Miller et al. 1997). For a mode with wave vector k growing at
growth rate ωi , a temperature spread Δv can be neglected pro-
viding |Δv|ω−1

i � k−1 (Faı̆nberg et al. 1970). Such a condition
simply ensures that during one e-folding time, particles are trav-
eling almost the same path when compared to the wavelength
considered. Focusing on the fastest growing obliqueB0 mode for
the non-magnetized case (upper Figure 9(a)), we find,

|Δv|
c

�
√

3

24/3

(
nb/np

γb

)1/3

. (29)

Accounting for |Δv| = 0.08c (i.e., T = 20 MK), the con-
dition above translates 0.08 � 0.31. The only change when
considering the two-stream dominated magnetized case (lower
Figure 9(a)) is that the Lorentz factor on the right-hand side
has the exponent −1 instead of −1/3. In such a case, the con-
dition reads 0.08 � 0.25. The cold approximation therefore
seems reasonable here, although condition (29) is only weakly
fulfilled. An interesting consequence of Equation (29) is that
the condition is not homogenous over the unstable spectrum. A
kinetic theory of the full unstable spectrum is currently under
elaboration, together with a rigorous mode-dependent definition
of the kinetic-fluid transition (A. Bret & L. Gremillet 2009, in
preparation). For a clearer assessment of the accuracy of the
cold approximation in the present case, the insert in the upper
Figure 9(a) displays a kinetic calculation of the most relevant
portion of the unstable spectrum, assuming electronic beam and
plasma temperatures of 20 MK. Such a calculation has been per-
formed neglecting ion motion, which is perfectly valid here. One
can check how the portion of the unstable spectrum only slightly
departs from its cold counterpart, while the largest growth rate
switches from 0.3ωp down to 0.22ωp. Note that similar calcu-
lation for the magnetized case is yet to be done.
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6.2. Intergalactic Streams

The corresponding spectrum is plotted on Figure 9(b). With
a small β and a beam-to-plasma density ratio of 1, this case
is also sensitive to the parameters (see the star on Figure 8).
We find here that non-magnetized “obliqueB0” modes govern
the system, though filamentation is far from being shut down.
But such a weakly relativistic symmetric system can switch
between oblique or filamentation regimes through very small
parameter variations. When accounting for kinetic effects, two-
stream/Buneman modes can also compete because they are least
sensitive to temperature. Indeed, for R = 0, these three modes
grow almost exactly the same way for a beam with γb = 1.1 and
temperature 100 keV (Bret et al. 2008). Such a result was found
for a plasma temperature of 5 keV, but similar conclusions can
be drawn with different plasma thermal spread. The discussion
at the end of Section 5 is relevant in this case as this system is
bordering various frontiers.

6.3. Relativistic Shocks

These kind of structures are currently extensively studied by
means of PIC simulations (Medvedev & Loeb 1999; Silva et al.
2003; Nishikawa et al. 2003; Milosavljevic et al. 2006; Chang
et al. 2008; Spitkovsky 2008a, 2008b; Martins et al. 2009),
due to their role in the Fireball model for gamma-ray bursts
(Piran 2000). The typical scenario arising from these studies is
two-fold: to start with, two relativistic plasmas shells collide
and the resulting instability eventually generates a quasi-steady
propagating shock. These plasma shells can be pair plasmas
(Silva et al. 2003; Chang et al. 2008), or electron–ion plasmas
(Spitkovsky 2008a; Martins et al. 2009). The un-magnetized pair
plasma case can be analyzed here setting R = ΩB = 0, and the
system is found clearly governed by the filamentation instability
(see Figure 9(c)). This conclusion supports the emphasis put
on this instability by the aforementioned authors.5 Moreover,
such domination is quite robust: as long as nb/np = 1,
γb = 10 and ΩB = 0, the only alternative to the filamentation
instability are the non-magnetized oblique modes. Accounting
for kinetic effects, a transition to such a regime demands a beam
temperature of the order 106 keV (Bret et al. 2008). Figure 8
also suggests that some magnetized version of the system with
ΩB > γb

√
2R could trigger a transition to the magnetized

oblique regime. But the bigger threat to the domination of
filamentation seems to be the beam-to-plasma density ratio.
As evidenced by Figure 5, this instability dominates the ultra-
relativistic regime only for strictly symmetric systems. At γb =
10 and 100, filamentation governs only for nb/np � 0.6 and
0.85, respectively. The symmetric system hypothesis has been
so far related to the simulation of equivalent density colliding
shells, within the Fireball framework. Since a slight change
in the density ratio may trigger a dominant mode transition,
subsequent work should be needed to test the robustness of the
shock formation in this respect.

The second stage of the scenario involves particles which
are accelerated by the shock (Spitkovsky 2008b), escape it, and
interact with the upstream medium generating more instabilities.
Considering now ΩB = 0, γb = 100, and α = 10−2,
Figure 5 shows that obliqueB0 modes dominate for R =
1/1836 while Buneman modes do so for R = 1/100. A more
detailed evaluation of the spectrum should be done from this
point, accounting for the non-thermal energy dispersion of the

5 Here again, “filamentation” is generally labeled “Weibel” in the literature.

escaping particles, and for the upstream ion temperature. Sorting
out this issue may be important because an interaction governed
by the purely electrostatic Buneman instability is less likely to
feed the magnetic turbulence needed in the Fireball scenario for
synchrotron radiation emission. At any rate, the small beam-to-
plasma density ratio implied in this second stage should prevent
the filamentation instability from playing any prominent role in
the linear phase.

7. DISCUSSION AND CONCLUSION

An exact cold fluid model for a relativistic beam-plasma
system including a guiding magnetic field and ion motion has
been implemented, allowing for a unified description of every
possible instability arising within such systems. After briefly
reminding, or deriving, the key results for each kind of unstable
modes, the hierarchy between them has been established in
terms of the beam-to-plasma density ratio, the beam Lorentz
factor, and the magnetic field strength, considering electron-to-
proton mass ratios of 1/1836 and 1/100.

In the diluted beam regime, the competition is mainly between
the two-stream, the Buneman, and the upper-hybrid-like modes,
as the hierarchy diagram in terms or (γb, α) adopts a typical “V”
shape for a given ΩB (though not too high). Two-stream and
Buneman take advantage of the magnetic field which leave both
of them unaffected while stabilizing the rest of the spectrum.
Additionally, the Buneman modes, arising from the interaction
of the electronic return current with the background protons,
govern the highly relativistic regime where the two-stream
modes are strongly reduced. The ultra-magnetized regime with
ΩB � R−1/3 is eventually governed by either the two-stream or
the Buneman instabilities.

When leaving the diluted beam region, the shape of the
hierarchy diagram is far from being trivial, and two different
kinds of Zz �= 0 modes may dominate. The first ones are
those already governing a part of the parameters space from
ΩB = 0. In the cold fluid un-magnetized model, they are found
at Zz ∼ 1 and Zx = ∞, whereas temperature effects would
give them a finite perpendicular component. Under the action
of the magnetic field, they continuously evolve to the upper-
hybrid-like modes referred to in Table 1, with a growth rate
∝ √

α/ΩB . But from ΩB ∼ 4.3 and 3.6 for R = 1/1836
and 1/100, respectively (numerical evaluations), another kind
of oblique mode is likely to govern the spectrum. Unlike the
previous ones, these modes reach their maximum growth rate
for one single wave vector and have the growth rate scaled
like α1/3/γb. With such a γb scaling, their domain shrinks with
increasing beam energy, as observed on Figures 5.

The transition is thus made with the symmetric regime
α = 1. Here, two-stream and Buneman modes merge and
dominate at low Lorentz factor. According to Figure 8, there
is no such thing as a simple description of the ultra-magnetized
regime. For a large mass ratio R = 1/100 and ΩB > 300,
two-stream, upper-hybrid-like, and filamentation modes are
likely to dominate, depending of the Lorentz factor. At lower
magnetization, oblique modes are likely to play a role for
moderate beam energy. At lower mass ratio with R = 1/1836,
the hierarchy is even more complex as the oblique “Bubble”
found at higher R expands toward the large ΩB regime.

While the ultra-magnetized regime is governed by electro-
static modes with flow aligned wave vector, this is not true for
density ratios close to one. Indeed, the later can be determined
by virtually any kind of modes. In this respect, diluted systems
are simpler to analyze, or simulate, than symmetric ones.
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Some modes, like the Buneman’s, strongly depend on the
electron-to-proton mass ratio R while others do not. As a
result, the hierarchy is R-dependent, and lowering the ratio for
computational purposes can bring some qualitative, not just
quantitative, changes. Figure 5 shows for example that a system
with α = 0.1, γb = 20, and ΩB = 1 is governed by oblique
modes for R = 1/1836 and Buneman ones for R = 1/100.
Equation (24) shows that the nature of the diluted beam ultra-
magnetized regime strongly depends on R.

By virtue of its possible discontinuous nature, as explained
in Section 5, a change of the dominant mode can have dramatic
consequences. One of them can be illustrated through the two-
stream/Buneman transition defined by Equation (24) for diluted
beams. Because two-stream modes are found near Zz = 1 and
Buneman ones near Zz = 1/α, the typical size of the structures
generated is ωp/vb on the left-hand side of the border, and
(np/nb)ωp/vb on its right side. As long as the beam is not too
diluted, these two quantities remain similar. But for a 103 times
diluted beam, both kinds of structures differ by three orders
of magnitude. For a relativistic symmetric system with α = 1
and γb > 1

2R−1/3, a transition from the two-stream/Buneman
regime to the upper-hybrid-like one implies a switch from a
Zz = √

2R dominant mode to a Zz = ΩB/γb one which again
can span several orders of magnitude.

These transitions have to do with the parallel wave vector
component rather than with the perpendicular one. Similar
transitions have been recorded in this paper for this later
component, but unstable modes located at Zx = ∞ acquire a
finite normal component as soon as temperatures are accounted
for. While kinetic effects may temper the Zx transitions, such
should not be the case for the magnitude of the Zz transitions,
because parallel components are less sensitive to temperature
than normal ones.

Turning now to the astrophysical settings considered here,
it is worth stressing that the value of the present theory
consists more in pointing what the main instabilities could be,
rather that confirming what they actually are (at least within
the current models). Considering solar flares of relativistic
shocks for example, it has already been checked that the
dominant instabilities are those stressed in Section 6. Even
in filamentation, or Weibel, modes are sometimes designated
instead of oblique ones, these latters are increasingly specifically
discussed in the literature, and identified as such (Jaroschek et al.
2005; Niemiec et al. 2008; Ohira & Takahara 2008; Frederiksen
& Dieckmann 2008; Kong et al. 2009). But what PIC simulations
can hardly do is indicating extensively which kind of modes
could take the lead when changing the parameters, including
the electron-to-proton mass ratio.

For solar flares, the domination of obliqueB0 modes is quite
robust in the non-magnetized case. Although the cold approxi-
mation should correctly describe the most unstable mode, given
the temperatures involved, a fully kinetic calculation of the spec-
trum has been done to confirm this point (see upper Figure 9(a)).
The situation is quite different when magnetizing the system. For
the magnetic parameter considered here, the lower Figure 9(a)
clearly show how some upper-hybrid-like modes at Zz ∼ 2 can
also play a role. Indeed, Figure 5 shows that for a realistic value
a the electron-to-proton mass ratio R = 1/1836, the transition
only needs a slightly higher relativistic factor. In such a case,
the instability will heat the system both in the parallel and per-
pendicular direction while the two-stream driven counterpart
preferentially heats it along the beam direction (Karlicky 2009).
Furthermore, tuning the mass ratio to speed up the dynamics can

here bring qualitative consequences, as evidenced in Figure 5. It
is thus found that the evolution of a magnetized electron beam
in this setting, together with the kind of heating provided, is
quite sensitive to the parameters.

Regarding intergalactic streams, the point made in Lazar et al.
(2009) is that given the parameters involved, filamentation in-
stability grows faster than the rest of the spectrum. The ex-
pected saturation level of the magnetic field thus produced is
then found consistent with the measurements. In this respect,
Figure 8 shows that the cold version of the system is border-
ing the two-stream/Buneman-filamentation frontier, so that fil-
amentation “leadership” is eventually not so clear. Admittedly,
kinetic effects are important as filamentation is found to domi-
nate through its interaction with some temperature anisotropy,
but such growth rate enhancement has been found to operate in
other parts of the spectrum as well (Bret et al. 2005). The ques-
tion remains open as to know how strong filamentation leader-
ship needs to be for the linear phase to saturate accordingly. Such
criterion would likely define some parameter window in which
Weibel-like instabilities could be responsible for intergalactic
magnetic fields.

Finally, the instability-based scenario for shocks formation
within the gamma-ray bursts framework has been examined
(Fireball model). Beam-plasma instabilities have been found so
far to play a key role at two levels. First, they seem to prompt
the shock formation itself, as the collisionless encounter of two
plasma shells is unstable. Second, once the shock has been
formed, it accelerates particles through diffusive Fermi accel-
eration. Particles escaping the shock upstream interact with the
medium and generate instabilities responsible for the magnetic
turbulence needed to trigger synchronic radiation emissions.
The first unstable system has a beam-to-plasma density ratio
close to unity. Indeed, it is necessarily unity in the recent PIC
simulations where a beam is reflected against a wall, and even-
tually interact with itself. For such settings, filamentation insta-
bility has been found leading the linear phase, and the shock
formation has so far been analyzed accordingly (Medvedev &
Loeb 1999; Spitkovsky 2008a, 2008b). But the present calcu-
lations suggest that a density ratio slightly smaller than 1 may
result in quite a different dominant instability. It would be very
interesting to test the robustness of the shock formation scenario
in this respect. Once the shock has been formed, instabilities up-
stream are thus expected to generate magnetic turbulence. We
now deal with a highly relativistic diluted beam/plasma system,
which should definitely not be governed by the filamentation in-
stability (see Figure 5). Kinetic effects are unlikely to modify
this picture, as filamentation modes are usually their first “vic-
tims” (A. Bret & L. Gremillet 2009, in preparation). Here again,
a parameter window is defined allowing for the development
of the best magnetic turbulence generators: Figure 5 clearly
shows how obliqueB0, upper-hybrid-like, two-stream, or Bune-
man modes are likely to shape the linear phase on this second
phase. Among these four candidates, the last two are reputed
purely electrostatic instabilities, which should thus be avoided.
An accurate characterization of the beam escaping the shock
upstream will thus be needed to assess the validity, or set limits,
to this scenario.
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Gustavo Wouchuk for encouraging discussions.
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APPENDIX

TENSOR ELEMENTS

The tensor mentioned in Equation (6) can be cast under the
from

T = T1 +
1

2x2
T2, (A1)

where

T1 =

⎛
⎜⎜⎝

1 − Z2
z

x2β2 0 ZxZz

x2β2

0 1 − Z2
x+Z2

z

x2β2 0
ZxZz

x2β2 0 1 − Z2
x

x2β2

⎞
⎟⎟⎠ and

T2 =
⎛
⎝T2xx T2xy T2xz

T ∗
2xy T2yy T2yz

T ∗
2xz T ∗

2yz T2zz

⎞
⎠ , (A2)

with,

T2xx = α (−x + Zz)

xγb − Zzγb + ΩB

+
α (x − Zz)

−xγb + Zzγb + ΩB

− x + αZz

xγp + αZzγp + ΩB

(A3)

+
x + αZz

− (x + αZz) γp + ΩB

+
Rx(1 + α)

−x + RΩB

− Rx(1 + α)

x + RΩB

, (A4)

T2yy = α (−x + Zz)

xγb − Zzγb + ΩB

+
α (x − Zz)

−xγb + Zzγb + ΩB

− x + αZz

xγp + αZzγp + ΩB

(A5)

+
x + αZz

− (x + αZz) γp + ΩB

+
Rx(1 + α)

−x + RΩB

− Rx(1 + α)

x + RΩB

, (A6)

1

2
T2zz = −R(1 + α) + x2

(
− α

(x − Zz)2 γ 3
b

− 1

(x + αZz)2 γ 3
p

)

(A7)

+
αZ2

x(γbγp(−α(x − Zz)2γb − (x + αZz)2γp) + (γb + αγp)Ω2
B)

((x − Zz)2γ 2
b − Ω2

B)((x + αZz)2γ 2
p − Ω2

B)
,

(A8)

T2xy = 2ıR2xΩB

1 + α

−x2 + R2Ω2
B

+ 2ıΩB

×
(

x + αZz

(x + αZz)2 γ 2
p − Ω2

B

+
α (−x + Zz)

− (x − Zz)2 γ 2
b + Ω2

B

)
,

(A9)

T2xz = −2αZx

(
(−x + Zz) γb

− (x − Zz)2 γ 2
b + Ω2

B

+
(x + αZz) γp

− (x + αZz)2 γ 2
p + Ω2

B

)
,

(A10)

T2yz =2ıαZxΩB

(
1

(x + αZz)2 γ 2
p − Ω2

B

+
1

− (x − Zz)2 γ 2
b + Ω2

B

)
.

(A11)
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